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Executable semantics of Arm’s
Architecture Specification Language

Hadrien Renaud1

1University College London, London, United Kingdom

The behaviour of Arm instructions is specified using a pseudocode language
called ASL that does not yet have semantics. We present an interpreter for this
language in both sequential and concurrent setting. This allows us to compare
the behaviours of AArch64 instructions as implemented by herd7 , the tool which
Arm uses for describing its memory model, against the behaviours of the same
instructions as described in ASL. We find discrepancies between those semantics
for the Compare-And-Swap instruction.

1 Introduction
The specification of the Arm architecture is a long document called the Arm Architecture
Reference Manual (Arm ARM) [Arm23]. In the Arm ARM, one can find a list of all AArch64
instructions with a representative description of its sequential behaviours in a language
called Architecture Specification Language (ASL). The Arm ARM also gives the definition
of the Arm memory model, or in other words the rules that govern the execution of a
concurrent program written in Arm assembly. The Arm memory model is a formal and
executable artefact, written in the domain-specific language cat [AMT14, ACM16].

ASL The ASL written in the Arm ARM does not have a formal definition, but rather
an informal understanding of how it should work, explained at the end of the Arm ARM
(Appendix K 16 page 12795 [Arm23]). After some efforts to build verification flows on top
of this pseudocode [Rei16], Arm has decided to transition between this informal pseudocode
(referred to as ASLv0) to a new language called ASLv1.

ASLv1 is an imperative language, strongly typed, with loops, exceptions, and functions.
The main specificity of this language is its encoding of bit-vectors: bit-vector types are
dependent on a length and operations on those are checked during type-checking. The
language allows some polymorphism on the lengths of bit-vectors: a function can be declared
to work on bits of length N and all the subsequent operations will work on this symbolically
defined bit-vector length. Although there is a (still in review and private) specification for
the language, this is not a semantics for the language, i.e. a specification of how to execute
ASL code, merely a formal syntax with explanations and some type-checking rules.

The memory model The cat file which gives the definition of the Arm memory model can
be executed by the herd7 tool [AMT14]. This tool executes symbolically all the instructions
in a test, which create events (or Effects as Arm calls them). For example, a load (resp.
store) instruction creates a Memory Read (resp. Write) Effect. It also keeps track of the
ordering constraints between the different Effects. Those ordering constraints can come
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from explicit instructions such as fences, or from data-flow constraints. The herd7 tool takes
as input a model written in cat , and uses it to filter out the executions where those ordering
constraints don’t comply with this model, e.g. when they form a cycle.

The Arm memory model uses two kinds of intra-instruction ordering constraints: Intrinsic
data dependencies indicate that the value produced by the first event has been used by the
other; and Intrinsic control dependencies indicate that a binary decision made in a first
event allows or not the other event to happen. There is no precise definition of those ordering
constraints, and earlier work [AMT14] and the Arm ARM only mention their existence.
The Arm ARM also lists intra-instruction dependencies for some instructions, e.g. loads,
stores and Compare-And-Swap (see Section 3).

The semantics of AArch64 instructions in herd7 are devised in tandem by the Arm staff
and the herd7 authors. When possible, this is done using the listing provided by the Arm
ARM; otherwise, this work is a loose interpretation of the Arm ARM. This work is a first
step in providing semantics to the ASL language, and thus equip the Arm ARM with a
semantics of instructions.

Motivation The herd7 model thus relies on handwritten semantics of instructions. By
providing semantics to the ASL code in the Arm manual, we aim at clarifying the semantics
of the instructions and enabling comparison of those semantics and the ones given in herd7 .
With an executable ASL semantics, herd7 ’s ASL interpreter can build instruction semantics
directly from the Arm ARM’s companion artefacts.

2 Contribution
We present two interpreters for ASL, called ASLRef, provided alongside the herd7 tool [AM23],
in the directory asllib. We use monadic style OCaml to build interpreters which helps
building a purely functional interpreter that implements imperative features. They also make
our implementation very flexible: by keeping the interpretation monad abstract, we can
give the language different semantics by using different monads. We will use this feature to
define both sequential and concurrent semantics. For the latter, the monadic style also helps
implementing symbolic execution at a low cost. For concurrent semantics, we instantiate
our interpreter with a symbolic execution monad, adding a state monad keeping track of the
ordering constraints induced by the ASL code. For example, an Intrinisc data dependency
is added between two events when there is a data-flow chain between the two.

With our interpreter for ASLv1, also comes a tool to transliterate ASLv0 into ASLv1.
Although not complete, this makes it possible to execute ASLv0 pseudocode with our
interpreter. For example, it can parse the 37000-line-long ASLv0 library which comes with
the pseudocode in the Arm ARM’ We also present a working type-checker for ASLv1. It
has not yet been the subject of any theoretical study.

3 Validation
For some instructions, the Arm ARM comes with a listing of intra-instruction dependencies.
The herd7 tool follows the Arm ARm in that respect, building Effects and the Intrinsic
Dependencies that order them as per those listings.

Our work provides another way to build Effects and Intrinsic Dependencies for a given
instruction: we can use our interpreter on the ASL code given for this instruction. One
might expect those two ways of building the semantics of an instruction to coincide. Our
work demonstrates that this is not always the case and aims to remedy this state of affairs by
reconciling both semantics sources. In the following, we will compare the intra-instruction
dependencies for the Compare-And-Swap (CAS) instruction, for which the Arm ARM provide
a list of intra-instruction dependencies.
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a: R[x]*q=5

b: W[x]*q=3

iico_ctrl

g: W0:X1q=5

iico_ctrl

d: R0:X3q=x

iico_data

iico_datae: R0:X1q=5

iico_ctrliico_data iico_ctrl

f: R0:X2q=3

iico_data

Figure 1. Intrinsic dependencies for CAS (ok case)

let address = X[n];
let data = Mem[address];
if data == X[s] then

Mem[address] = X[t];
end
X[s] = data;

Figure 2. Simplified ASL
code for CAS

Example of the CAS instruction Informally, the instruction CAS X1, X2, [X3] first
reads the address indicated by X3; then, if the value read is identical as the value in X1, it
writes to the address indicated by X3 the value in register X2; in the end, it writes the value
read from memory into the register X1. In the following, we say that CAS is in the ok case
when the comparison is successful and the write to memory is done.

The intrinsic dependencies graph of herd for this instruction, shown in Figure 1, matches
the list of intrinsic dependencies of the Arm ARM for this case. On the other hand, Figure 2
shows a simplified version of ASL pseudocode for the CAS instruction, taken from the
Arm ARM. With our semantics of ASL, we can identify where there should be intrinsic
dependencies from this ASL code, and we find some differences with the semantics given
by herd. One notable difference is intrinsic data dependencies that arrives on the Write
Register effect (line 6 of Figure 2, or arrows e → g and a → g on Figure 1). For each of
those potential dependencies, we can construct small AArch64 assembly programs called
litmus tests that can be simulated [AMT14] or executed on hardware [AMSS11]. Three
tests [MR23a, MR23b, MR23c] helped Arm architects to decide which intra-instruction
dependencies should exist: the ones from herd7 , the ones from the Arm ARM, or both?
The conclusion reached by Arm is that there should be a non-deterministic choice between
either dependency, which is novel for Arm instructions. We have implemented this in
herd7 [Ren23], and we have suggested changes to the ASL code for CAS that are currently
being discussed within Arm.

4 Conclusion
We have proposed two interpreters for ASL, one sequential and one concurrent. This has
allowed the automatic extraction of intra-instruction dependencies from the ASL code
associated with an AArch64 instruction. We have exhibited discrepancies between the herd7
semantics and the ASL semantics of some instructions, such as CAS, that have been fixed
in herd7 and fixes for the corresponding ASL code are in discussion within Arm.

Further work Pre-existing ASLv0 interpreters exist, both internally and externally to
Arm [Rei16, Rei20]. We are currently working on regressing our interpreter against those.
To do so, we are building a tool called ASLCarpenter, provided alongside our interpreters,
which generates ASL code for fuzzing those pre-existing interpreters with respect to ours.

We also aim to automate the work of comparing the herd7 intra-instruction dependencies
and the ones extracted from the ASL code from an instruction. For a given AArch64 litmus
test, we can replace the herd7 semantics of AArch64 instructions by executing the ASL code
associated with an instruction. Both way of executing tests should behave the same way
with respect to the memory model: any discrepancy should reveal a divergence in the way
intra-instruction dependencies are computed. This experiment has been devised with Jade
Alglave and is now carried on by Luc Maranget.
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