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A COMPACT ATTRACTOR FOR ENERGY CRITICAL AND
SUPER-CRITICAL NLS

PHAN VAN TIN

ABsTrRACT. We study the asymptotic behavior of large data solutions to nonlinear Schrédinger
equations (NLS): tus + Au = Au|Pu + Vu, where A = +1, p > d;iQ and V € C5°(R9). In the
case % <p< ﬁ, Tao [20, 21] proved that in radial setting, any solution which is uniformly
bounded in H' can split into a term of form e**~u and a remainder term which converges in
H'(R?) to a compact attractor, which is invariant under the (NLS) flow. In this paper, using

the method used in [20], we prove that the similar result holds in the case p > ﬁ. Specially,
we work on fractional Sobolev space H*(R?) instead of H'(R?) for some s > s, := % - %, which
is the most difficulty in the proof.
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1. INTRODUCTION

We consider the following (NLS) equation:

(L.1) iug + Au = AMuPu+ Vu, (t,7) € R x RY
' u(0) = ¢,

where d > 5, A = 1, p > ﬁ, and V € C°(R?). Let s, = g —% and s satisfy g > 5> 5p.

Throughout of this paper, we assume that p is even or p > [s] (the smallest integer number larger
or equal s) and solutions to (1.1) are uniformly bounded in H*(R%):

2
(1.2) Ei= sup [u(t)]y. <oo,
t€ Imax (u)
where Iax (1) is the maximal time of existence of u. Using Theorem 1.2, under the above assump-
tions, we have Iyax(u) = R i.e u is global. For convenience, we denote H = H®. We abbreviate
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[l Lo gy DY llull» or sometimes by [ul],-

We consider the following conjecture called soliton resolution conjecture, which states that: any
global, uniformly bounded solution u of dispersive equations decomposes in large time as follows:

J
u(t) = e"®uy + > R;(t,x) +o(1),
j=1

where R; is a soliton and o(1) converges to zero as t — +o00. There are two special cases of this
conjecture:

(1) Ast — +oo, u(t) = Z}']:1 R;(t,z) + o(1). In this case, u(t, z) is called a multi-soliton.

(2) Ast — +oo, u(t) = e*®uy + o(1). In this case, u(t, r) scatters forward in time.
Recently, in [9, 7], the authors proved that the soliton resolution conjecture holds for the radial
critical wave equation in all odd space dimensions and in six space dimension. In [13], the authors
showed the conjecture for the equivariant wave maps equation R'*2 — S2, in all equivalence class
k € N. To our best knowledge, there is no a proof for the soliton resolution conjecture for general
nonlinear Schrédinger equations even in radial setting. In [20, 21|, the author proved a weaker
result than the above conjecture. More precisely, the author showed that, in radial setting, if
% <p< ﬁ, any global uniformly bounded solution in H*(R%) to (1.1) decomposes in large time
into u(t) = e*®uy + K + o(1), where u, € H'(R?), and K is a compact set which is invariant
under the flow of (1.1). Our goal in this paper is to give a similar result to [20, 21] in the energy
critical and supercritical cases i.e p > ﬁ.

In the case V' =0, (1.1) becomes the usual (NLS) with a single power nonlinearity:
(1.3) iug + Au = AulPu.

In energy critical and energy-subcritical cases (i.e s, < 1), there are a lot of interested in the study-
ing of the multi-solitons theory and the scattering theory for nonlinear Schrodinger equations. In
energy supercritical cases (i.e s, > 1), the situation is more complex, where we work on fractional
Sobolev spaces. In [5], the authors proved local well posedness for (1.3) in high regular Sobolev
space H*(R?) (s > s,). In [16], the authors showed that for defocusing (NLS) (i.e A = 1) in high
dimensions (d > 5), any uniformly bounded solution to (1.3) in critical Sobolev space H*» is global
and scatters under a suitable condition of s,. Similar results were proved in [19, 17, 8]. Specially,
in [18], the authors showed that there exists a blow up solutions of (1.3) with energy supercritical
power even in defocusing case. Recently, in [11], we established a general profile decomposition
and proved some scattering results for general nonlinear Schrédinger equations. Moreover, in [10],
we extend the scattering result in [15] for L2-supercritical powers, specially, our results adapt to
the cases of energy-supercritical nonlinearity.

Inspired by [5], we study local and global theory for (1.1). Define
_ p+2 _ 4(p+2)
P Txpsjd’ 7~ pld—2s)
It is easy to check that (v, p) is a admissible pair and satisfies the Sobolev embedding H5P s [P,
where p* is defined by

We have the following properties of (v, p):

Proposition 1.1. ([5, Proposition 1.5]) We have

(i) 2<p< 2L;

(i) 2/y=d(1/2 —1/p), and hence (v, p) is an admissible pair;
(iii) p < d/s and hence p* > p;

(iv) 1/p" =p/p* +1/p;

(V) 1y Zp/v+1/v.

As in [5], we have the following result:
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Theorem 1.2. Let ¢ € H® and p, s be as the above. Then there exists a unique solution u of (1.1)
such that u € C(0, Tyax; H¥) N L} (0, Tinax; H*?). Moreover, the following properties hold:

loc
(i) we LY0,T; H*") for every admissible pair (q,r) and every T < Tyjax.
(i) w is unique in L7(0,T; H*P) for every T < Tax.
(iii) [Ju(t)|l 2 = l|®|l 2 and E(u(t)) = E(¢) for allt € (0, Tmax), where the energy E is defined
by
1

P lu(t, z)|PT2da.

Plult) = [ IVutt) + V)glulta) + )

(iv) If Tiax < oo then
lim u()]l = oo,
From Theorem 1.2, we see that if solution u is uniformly bounded in H® then u is global.
Inspired by [20], we study asymptotic behavior in large time of such solution. Our main result is
the following:

Theorem 1.3. Let E > 0. Then there exists a compact subset Kg rqq C H which is invariant
under the flow of (1.1), and such that for every radial global solution u satisfying (1.2), there exists
a unique uy € H?® such that

(1.4) Jim distyy (u(t) = "B us K raa) = 0.

Here and in the sequel we write disty (f, K) = inf{||f — g||; : g € K} for the distance between f
and K.

Remark 1.4. Consider the compact set Kg ,qq in the above theorem. Let vy € Kg qq and u be the
associated solution of (1.1). Since Kg qq is invariant under the flow of (1.1), we have u(t) € Kg rqa
for all ¢t € R. Thus, {u(t) : t € R} is pre-compact in H*® and u is called an almost periodic solution.
Assume that each almost periodic solution of (1.1) equals to zero, this property is called rigidity
property (see e.g [14, Theorem 5.1], [11, Proposition 5.1], [10, Proposition 1.5]). Then, Theorem
1.3 implies that each uniformly bounded solution of (1.1) in H® scatters in both time directions.
However, in the case s = s,, the situation is more complex since smoothing effect can be not true
in this case (see Remark 3.18).

Remark 1.5. It seems that we could also prove a similar result of [20, Theorem 1.28] in nonradial
setting. However, in this paper, we only focus on solutions in radial setting.

Let u be a solution as in Theorem 1.3. From Lemma 3.20, e_‘“‘Au(t) is weakly convergent to
some uy € H5(RY) as t goes to infinity. Define v(t) = u(t) — e"*u,, which is called the weakly
bound component of u. We will show that u satisfies the property (1.4).

We recall the following equivalence of precompactness and localisation:

Proposition 1.6. (see e.g [20, Proposition B.1]) Let K C H®. Then the following are equivalent:
(i) K is precompact in H*.
(ii) K is bounded, and for any po > 0 there ewists pu1 > 0 such that we have the frequency
localisation estimate

1Po1/m f gy S o0
and the spatial localisation estimate

/ ()2 < 22,
|z|>1/p1

forall f € K.
(iii) K is bounded, and for any po > 0 there exists p1 > 0 such that we have the frequency
localisation estimates
[Po1/ £l g S 1o
and
||P<u1fHH 5 Ho
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and the spatial localisation estimate
[ @)+ 1) P S
|I‘>1/#1

forall f € K.
The above proposition is generalized by the below criterion for compact attractor:

Proposition 1.7. (see e.g |20, Proposition B.2]) Let U be a collection of trajectories v : RT — H.
Then the following are equivalent:

(i) There exists a compact set K C H such that lim,_,  distg(u(t), K) =0 for all u € U.
(ii) U is asymptotically bounded in the sense that

(1.5) sup lim sup ||u(¢)|| g < oo
ueU t—+oo

and for any po > 0 there exists p1 > 0 such that we have the asymptotic frequency
localisation estimate

limsup || P>1/,,w(t) ||z < po
t——4o0

and the spatial localisation estimate

t——+oo

lim sup/ lu(t, )|?de < pd
lz[>1/

for allu e U.
(iil) U is asymptotically bounded in the sense of (1.5), and for any o > 0 there exists py > 0
such that we have the asymptotic frequency localisation estimates

limsup || P>1/,,u(t)||5 S po
t—+oo

and

limsup || Pg,, u(t)|| g < po
t——+oo

and the following improved spatial localisation estimate

limsup/ lu(t, z)|? + |D%u(z)|*de < ud
|| >1/p1

t—-+o0
for allu e U.

From Proposition 1.6 and Proposition 1.7, we see that precompactness is formally equivalent
to localisation in spatial and localisation in frequency. From Proposition 1.7, to prove Theorem
1.3, we only need to prove an asymptotic localisation in spatial and an asymptotic localisation in
frequency of v(t). The proof of asymptotic localisation in spatial of v(t) in L? is similar in [20] and
we only sketch the proof in this paper.

This paper is organised as follows. In Section 2, we introduce the notations and basic tools used
in this paper. In Section 3, we prove local well-posedness of solutions to (1.1) in H*® and prove
some preliminary results used in the proof of the main result. In Section 4, we prove asymptotic
localisation in frequency of v(t). In Section 5, we prove asymptotic localisation in spatial of v(t)
and then prove the main result Theorem 1.3.
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2. NOTATION AND PRELIMINARIES

Let L = i0; + A be Schrédinger operator.

For convenience, let f1(u) = A|u|Pu, fa(u) = Vu and f(u) = fi(u) + fa(uw).
For each X Banach space, define [|(u,v)||y = ||ullx + [|v]| -

Denote by S the space of Schwartz functions.

Denote by 7, the shift operator in space defined by 7, f(x) = f(z — h).

Denote by F(f) = f the Fourier transformation in space variable and F~1f or f the inverse
Fourier transformation.

For each f € S, define D* f := FL(||* f(£)).

Denote by S¢(I) the Strichartz space i.e

(3 = sup (3 s,7
H ||SS(I) q,r)admissible pairH ||L;1(I)Hw ’

and N*(I) the dual space of S*(I).

We shall need some small exponents
I1>ng>nm>nn>n >0,
where 7 is small enough depending on E and the other fixed parameters, 7; is small enough de-
pending on E, ng,n1,- - ,n;—1 for each i € {1,2,3}.
Moreover, in Section 5, we shall need the other parameters:
1> po > p1 > po > g > pa > 0.

where pg is small enough depending on E, and for each ¢ € {1,2,3,4}, u; is small enough depending
On [bo, fh1y " 5 fi—1-

2d
d—2s’

Lemma 2.1. There exists an admissible pair (qo,r0) with g9 > 2, exponents 2 < Qp, Q <
and an exponent 1 < R < 24 gych that

d+4

1 P 1
2.1 T
21) ro Qo Tg
and

1 »p 1
2.2 -+ = = —.
(2.2) 2+Q 7

Lemma 2.2. For any u € H, we have
£ @) gem < Nlly™ + ] -
Proof. By the fractional chain rule in Lemma 3.4 and |f](u)| < |ul?, we have
D7 fr(w)|| pn < Nlullfe [|[D7ul] .

for j = 0,s. Let a be defined by % = %Jr % Thus, 2 < a < g. By Holder and Sobolev embedding,
for j =0, s, we have

1D7 (£ ()| = [ D7 (Va)[
SN2 el + 1V o | D7l
< lull s + | D7 2

S llullg -
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This implies the desired result. g

We have the following properties in Fourier analysis.

Lemma 2.3. Let f,g € S. We have the following identity

F(fg) = F(f) * F(g)-

Lemma 2.4. (Bilinear Strichartz estimate)(see e.g [22]).

For any time interval I CR, any to € I and any 0 < § < %

5, we have

—1/2+6
ool oxasy Ssarar (Hultlamsmes + 01700 )

< (otto)asocs + 119172280

Ld’L’""(Ide)> ’
for any u,v and any admissible pairs (q,r), (¢,7) with q¢,q > 2.
As a consequence of Lemma 2.4, we have the following result.

Lemma 2.5. (see e.g [20, Corollary 4.4]) For any time interval I C R, any N,M > 0 dyadic
numbers, we have
1 Md=1)/2=6 = 3+6
lununl 2 < ()2 T
B2 (1R Ny ()

Lemma 2.6 (Dispersive estimate). For all 2 <r < 400, f € L (R%), and t > 0 we have

1
I — ,
o S e Wl

HeitAf’

The following lemma can be useful in the further analysis.
Lemma 2.7. For 1 <r <2, f € C°(R?), we have
1) e S5 (L4 DM,
for all M e N and M > d/2 —d/r.

Proof. Let a such that % = % + %, and M be a natural number such that Ma > d. We have

||eitAf|

= [ i@,

- H(l + )M (1 + I:vl)Mf‘l(e‘”'ﬁ'Zf(s))(w)\

Ly

S N ) [0+ ) F e o)) )|

L(l
L3

S [+ anMFE e fg)) @)

LE
~ He‘it‘g‘Zf(g)H (by Plancherel theorem)

Sr @+ )M,

M
H§

where HéM denotes the Sobolev space with variable &:

HM :={veL{:D"ve L}

Lemma 2.8. Let N be a dyadic number. We have

Pn(fg) = Pn(P>nfg) + Pn(fP>n9).
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Proof. Using Lemma 2.3, we have

F(Px(f9)€) = Lren (< 9)(€)
~ [ Ve F@i(e -

:/ Ligan (Lg>n + 1 5\>N)f(£) —&)d¢

9(¢
:/ Lganligzn F(E)3(E - ) /1|s|~N1|§fé|,>vaﬂ7g(5~)~‘7(5*g)d£~

= Pn(P>nfg) + PN(f95N>-

Lemma 2.9. (Interchange of norms) Let r > 1 and f € L, L},. Then
1f]
Lemma 2.10. Let f € L™, r > 1. Then, for each N > 1 dyadic number, we have

L;Lé < ”f”L;L; :

|Ponfllr S sup  |l7af — fll -
[

<1

Proof. Assume that N = 27. We have
Ponf= Z Qrf,
k>j
where Qy f is defined by

F(QeN)(©) =n27*)f(©),
for smooth function n € C§°(R?%) nonnegative, supported in {1/2 < |¢| < 2} and satisfying

o0

> n(27¢) =1, onR\{0}.

j=—00
From [6, Proof of Proposition 3.1], we have Qxf = f * ¥, where ¢y € S,
(2.3) [0 (2)] < 21 + 24]a])~M
for all M, uniformly in k € Z, and

Y = 0.
Rd

We use the following norm on R?
lyl= sup |yl

i=1,---,d

We have

PN fll - = f*Zwk

k>j

LT

:/ffﬂ— Z'l/)k

k>j

Ly

= /Rd(f(x —y) = f(2) Y er(y)dy

k2j

We rewrite f(x) — f(z —y) by

(f(x)=flz—er/N))+(f(z—er/N)— f(z—(e1+ea) /N))+- -+ (f(x—(er+--+en) /N)— flz—

where e; is the unit vector chosen such that

ly—(ex+---+en)/N| <1/N.

Y))s
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We see that there are about h < 1+ |[Ny| = 1 + 27|y| terms in the above sum. Thus, by Lemma
2.9, we have

1Pofllr < sup mf = flye [ 0+ 215D Y etoldy.

[hI<1/ k>j

Consider the integral in the above expression. Let denote it by A. It suffices to show that A is
bounded. In the domain |y| > 277, using (2.3), the integral is bounded by

/ 2y D Cur2™ (2 ) Mdy < / 29 Cpy 2Dy =M gy,
ly>277 3 lyl>2-

It is easy to see that the above integral is bounded when M > d + 1. In the domain |y| < 277, A

is bounded by
dy.
/d | E wk(y” Y

k>j
Since Zk>j 1y, is the kernel of Ps, this is in L. This completes the proof. O
Lemma 2.11. (|2, Proposition 9.3]) Let f € H'", r > 1. Then,
lmnf = fllp- < AV £ L

for all h > 0.
The following expression is very useful in our proofs.

Lemma 2.12. Let f € C*(C). Then,
1 1
fu) — fv) = (u—w) / O.f(v+0(u—v))dd +u— v/ Ozf (v + 0(u —v))db.
0 0

3. LOCAL ESTIMATE

In this section, we prove some useful results to study asymptotic behavior in large time of
solutions to (1.1).

3.1. Some useful estimates. We need the following results for our analysis, many of them were
used in [1]:
Lemma 3.1. Let —00 < s0 < 81 <00 and 1 < py <p2<oowithslf%:t927£. Then we
have the following embeddings:
E 5P C }'13271027 HS1PL — Hs2:P2,
Lemma 3.2 (Product chain rule 1). (see e.g [1, Lemma 2.2]) Let s > 0, 1 < r,r9,p; < 00,
1 < ry,pe < oo such that % = % + i (i=1,2). Then,
19l ger S NNy N9l gromn + 11F 1 ggoors lgllp, -
As a consequence of the above lemma, we have the following estimate:

Lemma 3.3 (Product chain rule 2). (see e.g [1, Corollary 2.3]) Let s > 0, ¢ € N (q > 1),

1<rrl <oo, for 1<ik<q: 1 =311 Then
k
q q
Tl =3 (1l TTI
i=1 |l fger k=1 itk

Lemma 3.4 (Fractional chain rule). (see e.g [1, Lemma 2.4]) Let G € C}(C), s € (0,1), 1 <
r,re < 00, and 1 < r; < oo satisfying % = % + % Then,

G 7. S NG @, Mull oo -

Lemma 3.5 (Gagliardo-Nirenberg inequality). (see [3]). Let s1 < so, 1 < po,p1,p < 00, po > 1,

s=10s1+ (1 —0)sq, %:I%—Flp;oe. Then
0 1-6
[ell gow S Nl ggormn el grs000 -
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Lemma 3.6 (Homogeneous Gagliardo-Nirenberg inequality). (see [11, Lemma 2.5]) Let s1 < so,
po>1, s=10s1 + (1 —0)so, % = ;;1_’_11);09' Then
0 1-6
[ull g S Nl s on el gegmo -
Lemma 3.7. (see [1, Lemma 3.2]) Let s >0, 1 <p < oo and v =s — |s]. Then
Z HDafHH;; ~ Hf”H; )
lo|=s]

where |s| denotes the largest integer smaller or equal s (the integer part of s).

Lemma 3.8 (Leibniz rule). Let f € C* be a real variable function and o = (a1, az, - - -, ag) € N9
such that || < k. Then D f(u) is written as follows:

|ex| h
(3.1) Df(u) = ZZCa)hf(h)(u)HDﬂ"u,

h=1 AR i=1

where Cpp, € N and Ah = {(B1,--+,Bn) : for each i: B; € N4, By + -+ By = o, |B;| = 1}.

3.2. Local theory of (1.1) in H®. In this subsection, we establish local theory for (1.1) in H*®
and prove Theorem 1.2. Define

G(f(u(t)) = —i/o S(t —7)f(u(r))dr.

We may rewrite (1.1) by
u(t) = S(t)¢ + G(f(u(t)))-

Before proving Theorem 1.2, we prove some useful results.

Lemma 3.9. ([5, Lemma 4.1]) We have for any (q,r) admissible:

1 =2
(3.2) Hg(f(u))HLq(o,T)Hw(Rd) S 7° ||U||I£J§(O,T)Hs,p(Rd) +T> HU”Lw(o’T)Hs,n(Rd)

and

167 ()~ GG paosmyzr oy < T° (10 sy teoty 101 oy 1oy ) 18 = @l 7y 0 s
7-2

(3.3) + 777 lu— UHLw(o,T)LP(Rd) )

whereézl—pTH.

Proof. Use the proof of Lemma 3.11 and the fact that H®r < L[P". We note that in the proof, we
only need the condition p even or p > |s]| (instead of p > [s]). O

Moreover, we have the following unique result.

Proposition 3.10. ([5, Proposition 4.2]) Let ¢ € H®, and suppose v € LY(0,T; H*") is a solution
of (1.1). Then uw € LY(0,T; H*")NC([0,T]; H®) for every admissible pair (q,r). Furthermore, if
v e LY(0,T; H*?) is also a solution of (1.1), then u = v.

Proof. By Lemma 3.9 and Strichartz, it is easy to prove that v € L1(0,T; H*>") N C([0,T]; H®) for
each admissible pair (g, 7).

Assume that u(t) # v(t) for some ¢t € [0,T]. Let to = inf{¢t € [0,T] : u(t) # v(t)}. Using Lemma
3.9, we have, for all ¢ € [to, T):

[ = 0ll L 19,0900 = G0 (@) = GUFD Lo 20,0):20

é
<C(t—10) (Il o iyszem 1012 o sz ) 10 = 0l g 00

y—2

+llw =0l 1y 4,090 (E—T0) 7

Let ¢ be close to tg, we give a contradiction. Thus, u(t) = v(t) for all ¢ € [0, T], which is the desired
result. O



10 PHAN VAN TIN

Proof Theorem 1.2. We use a fixed point argument to prove the existence of solutions to (1.1). Let
M > 0, we define

X = X(T,M) = {ue L7(0,Ts H) : |[ull o o ooy < M-
Endowed with the metric
d(u,v) = [lu — U”L’Y(O,T;LP) )

X is a complete metric space. We prove that the map

Ku=5()¢+G(f(u)).
is a contraction mapping on X for suitable constants T, M. Let u € X. Using (3.2), we have if

~—=2 y—2
1SSl - 0.1ty + CTOMPHL+CT ™5~ M < M then Ku € X. From (3.3),if 20T°MP+CT 5 <
1, then K is a contraction mapping on X. By Strichartz, KC is a contractor on X if
(3.4) Cllgll 7. + 20T MPT + CT™5 M < M.
Combining with Proposition 3.10, there exists a unique maximal solution to (1.1) such that u €

C((0, Trmax); H) N L] ((0, Tinax); H*?). Assume Tpax < co. Using (3.4) and by classical argument

loc

(see e.g [4]), we have

li Ollgs =
i (b)) . = oo,

which completes the desired result. O

Lemma 3.11. Let p be even or p > [s] and u,v € S*(I x R?). We have the following estimates:

< |I|1/Q6*1/f10

[|.f1(u) — fl(U)HLq()Hs,T(g(Ide) ~ (Hu - U||quHs‘ro(ijd ||(va)||]2wLQo(1XRd)

= 0l e oy 0= o ey 1080 oo ey ) -
1 F208) = F20) et iy S 11— 0l g |11/,

Proof. 1t suffices to show the first estimate. The second estimate is proved by using Holder and
the fact that V € C§°(R?). We only consider the case p > [s]; in the case p even the conclusion is
easily proved by using Holder.

By Holder,

1£1() = Fr@) | g oty S 1F1(w) = Fr ()] g pomg V71
Thus, we only need to prove that

Hfl (u) - fl (U)”quHS,ré 5 ”u - UHL‘IOHS»"O (IxR4) H(u, U)HZI),OOLQO([XRd)

-1
+ llu = vll o oo (1 xmay 1 Ve Lo (rxmay (s )l oo gm0 (1xma) -

We have
35 ) — f0) = (u—v) / 0. f1(v + 0(u — v))d6 + m/ O fr (v + O(u — v))d6.
0 0

Hence, by Hélder and using |9, f1(u)| + |0z.f1(v)| < |ul?,

1f1(w) = e ooy S Nl =0l e oo S llo+ 6w = 0)["l| ao o »  ( Where 1/a+1/Qo =1/rg)
€

S llw =0l e pao NPl Lao o + V1PNl oo o)
Sl = 0]l oo po [ )= 00 102 0) | o 1o -
Thus, it remains to show that
1f1(w) = fr(O)l o ey S N =0l o g7, 70 (IxR4) 1w, ”)HiwLQo(Ide)
+ Ju— ”HLocLQo(Ide) [ (w, U)HLOOLQQ(IX]RUZ) ||(U>U)||quHsmo(Ide) :

By Holder, it suffices to show:

(36)  [f1(u) = () gy S N = llggema 1t )15 + = wll o (s 0) [ (s 0) | goora -
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By using (3.5) (with noting that the contribution of the first term and the second term are similar)
and Lemma 3.2, we have

1
1f1(u) = fr()]l gory S 1w —vll a0 /0 IV?0 f1(v + 0(u —v))dO

La

+ lu = || oo (where 1/b+ 1/rg = 1/1().

/o . f1(v+0(u—v))db

Lb

Since |0, f1(u)] < |ul|P, we have
1
/ O:f1(v+0(u—v)dd| Sl + Pl S (w,0)[7 e,

0 Lb

hence the second term is acceptable. Thus, to prove (3.6), it suffices to show that, for g = 9, f1,
for each wu:

s —1
(3.7) IVIEg)lipe < lullfao lull e -
Since p > [s], the function g belongs to C*! and satisfies
(3.8) |9 (u)| < JulP~%,  for each 0 < k < [s].

By Lemma 3.7 and Leibniz rule Lemma 3.8, it suffices to show that for each a € N9, |a| = |s],
1<h<|al,each 1 <i<h: B eNt |G| >1: X Bi=a

h
. -1
(3.9) 9" () [ DPu S llullpao lull oo - (where v =s —[s]).
i=1 Hv.a
It is easy to check that h < |o| = |s] < [s] < p. Using Lemma 3.3 and (3.8), we have
h h
(h) Bi (h) Bs
(3.10) PARICON 1 R2E0 IS PICICOT I | ([ 25
1=1 Hv.a =1
h h
—h Bk Bi
+ D Ml g 2%l o T 117 o,
k=1 i=1,i#k
where m; and rm; for i = 1,--- , h are chosen such that
1 0; 1-—206;
— =4 L. (where 6; = |B;|/s
el 16il/5)
h
1 1 1
mo " 2w
e
0 p— h7
h
1 p—h Z L Bkl tv)/s | 1=(|Bkl +v)/s
— = - — = + :
L I ro Qo
By the choice of m; and m;, using Lemma 3.6, we have
||DBluHLmi S Hu Hsmo ”uHLQo )
Br 1Br|+v
|07 o S [P0
0 -0 5
S ull. v llull oot s (where 6 = (|Bx| +v)/s).

Thus, the second term in (3.10) is acceptable.

Consider the first term. If s ¢ N then [s] > h + 1 (since h < |a| = |s]), using Lemma 3.4, we

have
[, s o 0| Tl (where 1/m+ 1/ = 1/mo)

< [Muf="=1

Hsm0

m HU'HH“’” .
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Choosing m such that (p —h —1)m = Qo then 1/n=1/mo—1/m = % + % Using Gagliardo-
Nirenberg inequality Lemma 3.6, we have

v/s
Hs,'ro

Ls]/s

lullzas” -

[l o < Ml

Thus, the first term in (3.10) is acceptable in the case s ¢ N. We next assume that s € N. It is
easy to check that
h

Lol v

moy a — m; Cp—h
Using (3.8), we see that the first term in (3.10) is acceptable in the case s € N. Thus, (3.9) holds
and the proof is completed.

O

Remark 3.12. In the proof of the above lemma, we need the condition p > [s].

Lemma 3.13 (Perturbation lemma). Let ug € H®, let I be a compact time interval containing to,
A fiy >0, and v : I — H be the strong solution of the following NLS:

v+ A= f(v)+G
where v, G satisfy
01l oo 15 ronco (1 xray T [[0(t0) — uolly S A
and

S i
L90 Hs:moNL>° LRo (I xR4)

ei(tfto)A(v(tO) o UO) ‘

and
||G||Lq6Hs’T6(IXRd) S ﬁl‘

Then, if fi1 is small enough depending on A, |I| then there exists a solution uw : I — H of (1.1)
with initial data u(ty) = up such that

[lu— U”L‘IUHSWUOLOQLQO(IXR"’) Sar) A
and
lu = vllgoy San 1.
Proof. By local theory, u exists on I. Let w = u — v, then w solves the following equation
iwy + Aw = flw+v) — f(v) = G;  w(ty) = v(ty) — uo.

Define X = [|w|| pao gr.r0n 1.0 L@0 (1xray - We have
X S+ If(v+w) = FO o grorp -
By Lemma 3.11, we have
XS i+ [0 X (X + AP +1),
where we have used ||v] o oo (1xray S |Vl oo pre(rxray S A- If 1] is small enough (depending only
on A) and fi; is small enough depending on I, A, we conclude that X < ji;. Moreover,
Ju— UHCOH(Ide) SA+|f(u) - f(v)Hng)Hs,rg) Sal
Divide I into |I|/C(A) intervals Ij such that || is small enough for each k. Similarly as the above,
on each I, we have
||w||quH5=7'onL°0LQo(1k xRd) f, [l
and
lwllco (1, xray Sa 1.

By an inductive argument, the claim follows. O
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3.3. Fixed time estimate. From (1.2) and our convention to suppress dependence on E we have
(3.11) lu®)||; <1 forall t € [0,400)

and hence by Sobolev embedding we have

(3.12) u®)| . $1 forall 2< g <

2d
FRy and ¢ € [0, 4+00).

From Lemma 2.2, we have

(3.13) |f(w)]l gor ST forall ¢t €[0,+00).

~

3.4. Local in time estimates. Next we prove a local-in-time Strichartz estimate.

Lemma 3.14. (Local Strichartz control). For any time interval I C [0,+00) and any admissible
pair (q,r) we have

(3.14) lell agrercry S (HD®
as well as the nonlinearity estimate

1
(3.15) I g grooms gy S CHD*

Proof. By Theorem 1.2, the existence and uniqueness of solution u are proved. Moreover, u is
global and u € L} H*"(R x R?) for any (¢,r) admissible. By subdividing I, it suffices to prove
this lemma in the case when |I| is much smaller than 1. Define

X = ||UHqu(1)HSvTo(Rd)'
By Strichartz and Holder inequality, we have
X 5 ||uHL°°H + H|’LL|p’LL||Lq6(I)H5,,.6 + ||Vu||L1(I)H
<1t Pl gy et + 1 Tl

A1
ST+ ™ fullfepe, X

S1+ III"D WX, (since ullp~gop S lullpep S 1)

<1 fX

~ + 2 )
if 7] is small enough. This give X = O(1) and then || f(u)|, 4 ;;+.y = O(1). This completes the
proof. d

The following result is useful to prove asymptotic localisation frequency of v:

Proposition 3.15. (Smoothing effect). We have the following estimate
1
(3.16) 1B )y gy S (V)57 (1%

Proof. Tt suffices to prove Proposition 3.15 for |I| < 1. Indeed, assume that Proposition 3.15 holds
for |I| < 1. Divide I into O(]I|) subintervals I;, such that |I;| ~ 1. On each I}, we have

1P 0} g, 1 S V)57

Summing the above inequality in k, we obtain (3.16). By Lemma 3.14, we may also assume N > 1
For convenience, we shall omit the domain I x R? in all norms in this proof. Our first task is to
show that

(3.17) I1D*Pr fr(u)ll oy 1y S N7,

where fi(u) = A|luPu. For convenience, in the proof of (3.17), we abbreviate f; by f.

Consider the case p > [s]|. Using Lemma 3.7 and Lemma 3.8, we only need to prove that

h
Py (f(h) (u) H Dﬁiu>

=1

(3.18) <N,

A /
L9 HY"0
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where 1 < h < [s], Bi,a € N4 |8 > 1, o] = [s] and 31, B = a.

By Lemma 2.8, we have

h
(3.19) ( ™ (u HD@ ) S|P n f M (w) [[ DPiu
L% £ i=1 LI Foh
h h
(3.20) Z w)(PsyD%u) [ D%u ,
k=1 i=13i#£k Lab Frvomh

where P>y = P, - By Lemma 3.3, the right hand side of (3.19) is controlled by the following

h
(3.21) HP>Nf( ( ‘ La1 fvom 1_[1 HD& Lq(f i
K2
h h
(3:22) + HP>Nf ‘ La2 L2 Z HDﬂkuHqu st H HDﬁiu |Lq§’iLT§’i ’
k=1 i=1,i#k

where the above parameters satisfy, for each k € [1, h],

h
(3.23) ql(,)=qll+§_;q§
(3.24) ;:i+§§w

h
(3.25) ql(,)=q12+;q§,iv
(320 Loliy

In (3.21) and (3.22), the parameters are chosen such that, for each ¢ € [1, h], i # k:

2

d d
(3.27) 2 — (s = |8,
@t 2
2 d d
(3.28) i + Fi g — (s = [Bil)s
dz Ty
2 d d
(329) W k’,k 2 (S - |Bk| — ’U)
dz 2

It implies that the pairs (q1,71), (g2,72) in (3.21) and (3.22) satisfy:

2 d d d
(330) ql+rl—2—81+(p—h)(2—8>,
2 d d d
31 S == —h)(=-
(3.31) q2+r2 5 s2+ (p h)(2 s)

where s; = [s] — (2—p (£ —s)) andsa =s— (2—p (% —s)).
Using Sobolev embedding Lemma 3.1 and Lemma 3.14, the right hand of (3.19) is bounded by
the following

(3.32) HPZNf(h)(u)’

+[|Pon s )|

La1 Hv"1 La2Lr2
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Define w1, = P<pnnot, Upi = u — U)o. Using Lemma 2.10, the second term in (3.32) is bounded by

(h) (h) _ f(R)
|Pent®o)| [ Pen (PP @) = s
< _p(h) _ () ‘ "(h) _ () ‘
< s s o) = f O+ 00 = O
_ h
S sup |[mue — wiol| L a H(T;Lulo,ulo)HLqZL,z+||u wioll a3 ;71 || (o o) || a3, 12
|h|<1/N
1
Sy Vol gl il g g

where the above parameters satisfy the following

2 d 2 d d
—t+t===1+t==7—3S,
% s G T3 2
2 d 2 d d
— — = = - = = — S2,
Gty B Ty 2

and hence, by Lemma 3.14,

||(Tﬁu107u10)||Lq§LT§ ) H(ulmTﬁulO)HL‘f%Lf% S

Thus, the second term in (3.32) is controlled by

N"o N0 R R
7 ol oy o+ lumill .y 1y S = 1Dl o + 1D uni| g0
< N L N < N Nemo2p(d-5) < Ny

We next estimate the first term in (3.32). If s € N then v = 0 and hence, we estimate the first
term in (3.32) by similar argument to estimate the second term. Assume that s ¢ N. Then,
p>[s] =|s] +1>h+1and hence, f € C"*2)(C). For uy, as the above, we have

v

< HP%JVf(m(ub)

+ || PN ) = 0 )|

o LRI EIRITN]

a1 fvsr1 ‘Lﬂf{vﬂ“l La1 FIvsm1

< | Py s )

L9 Hv"1 La1 fvsr1

For convenience, we denote by A, B the first and the second term in the above expression. To
estimate A, using Lemma 2.10, Lemma 2.12, Lemma 3.2, Lemma 3.4 and Lemma 2.11, we have

A5 swp |7 o) = £ (o)

h<1/N L Hv
< hiL;I/)N 7o = ulOHqu a1 GS][Jp Hf(hﬂ)(ul +O(mamo ulo))‘ LG L3
" ﬁiL;I/)N HT};UIO N ulOHLq5 L2 azl[g,)l] Hf(hﬂ)(ulo + 070 — ulo))‘ 1,93 froo3
< sup ||rpwe — UIOHquHv . sup Hf(thl)(ulo + (15 u10 — ulo))‘ L

h<1/N 0€[0,1]

+ sup HTh’LLlo ulo”y% s az%p Hf(h+2) (o + 0(75u10 — UIO))HL(I% . + 0(T5u0 — ulO)HLq% fo.rd

h<1/N

p—h—1

1
S 0% HD +UUIOHL‘11L7 ”ulOHL(p hya? [ (p—h)r2 N Hvul"”m%y% ”“lOHL(p h—1)q3 [ (p—h—1)r} Hulo”mé‘H’”ﬂé

< 7Nno(1+a’2) < N ™,

1
S LD g~
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where the undefined parameters in the above estimates are chosen such that

2 d d
egunfi)
g =M1z

2 d _d

-+ -5 =5 =51,

gt i 2

2 d d
24y (d),
g 3 ( I3
2+i—£l—s+v

g Ty 2 ’

2 d_d

- - — 3 25

g Ty 2

and hence by Sobolev embedding ||u,||

HDSuIOHSo. This implies that the term A is acceptable.
Similarly, to estimate the term B, we have

L=ha? p(p—h)r} ||“lo||L<p—h—1>qu<p—h—1>r3 ) ||UloHLq§Hw§ S

B 5|1 ) — ™ ()|

Sl = woll g o sup [ D (g + 0 = ws0))|

La1 fIvsm1

Y eeio,1) ratprt
- : (ht1) -
T ol g g 021[3)1] Hf (o + 0(u mo))‘ L9 foors
Sl — ol o s sUD Hf<h+1>(ulo +0(u— ulo))‘ it gt

0€(0,1]

o fu—woll a8 E H FOHD) (0 1 O(u — ulo))Hngﬂ luto + 0w — 10) |48 o

—h
< lunill g gt sl Fol 170 it
—h—1
il g el Feol 17552 g oy (Nl o =+ ol g o)

< Nmo(s2—s) < N—™,

~

S D% uni || g0

where the undefined parameters in the above expressions satisfy

d d
(i),
+i—£l—s

T%_Q 1

d d
(1)

_d
+f8—§—3+v7

and by Sobolev embedding we have |l + foll ot io-rort Ml = 1101l s o » 10t o » Nl o8 o
| D*ul| go + ||[D*uio||go < 1. Thus, the term B is acceptable. Combining with the boundedness of

~

A, we conclude that the right hand side of (3.19) is acceptable.
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We next estimate (3.20). Using the fact that | £ (u)| < |u|P~"*1, | f*FD (w)] < |u|P~", Lemma
3.4, Lemma 3.14 and Holder inequality, we have

(3.33) F® (u)(Ps y DP*u) H DPiy
i=1;i#£k Lq(/]H'U,Té
h
D h+1 Bk Bi o
Sl 1Pan D ull g s T 1Dl g
i=15ik
h
D h+1 Bk Bi ) ) Bj o
ol 1P D% ull o D%l g 11;[% A}HDJuHngL;g
J=13j#{kyi
h
p—h B Bi o
JF”“HL%LTQ HUHL%}H“"& ||PZND kuHL@ZTLFf 1_[;‘é HD UHLCT};L’F?;’
i=15itk
where the about parameter satisfy
2 d d 2 d d 2 d d d
S O WO SRR SR SR I AT O
RS LN S8 S aUal U 33 o SUR Gl ¢ o
2 d d 2 d d 2 d d d
— = =5 (518l —v), 5~ (=18 ~+~=—8+< <—8)>+ﬁk
et S DN R B SR UM S 5 . 154
2 d d 2 d d 2 d d
= = ==—8 = t== —(S—U, Ti—f‘%:*—s_ﬁi,
ti=5 % atm=3 -l )

2 d d d
— = 2-p(=-— .
g s e (Go)) e

Thus, using Sobolev embedding Lemma 3.1, (3.33) is bounded by

1P D2l g oo + 1P D] g

Lqé" s
< HP>NDS_(2_‘”(%_S))U .
~ S

; + [Pon Dl

L35 7% L35 7%

< N~(2-p(5-9)) < y—m

which is acceptable. This implies that the term (3.20) is acceptable. Then, (3.18) and hence (3.17)
holds. The case p even is much more simple and is left for the reader.

Our second task is to show the following estimate:
(3.34) 1D°Pn (V)| par prr S N7,
for all admissible pair (g,r). To prove (3.34), we use the following results.

Lemma 3.16. ||PZNV|

Lo Svie N7F for allk >0

Lemma 3.17. (See [12][Corollary 1.1]) Let p, p1, p2 be such that 1 < p,p1,p2 < 00 and% = p%—’_p%'
The the following holds for all f,g € S

”Dg(fg) - D*fg— DsngLp <C HDfHLpl HDs_lgHLm :

Denote PonynV =W, and V3 =V — V. We have

|1D* Pn (V)| = [|D* Py (Viow) || o + (|1 D* P (Vi) || e
= | D*Pn(VioPs nj10w) || v + 1D Py (Vi) ||
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Consider the second term. Using Lemma 3.16, Lemma 3.17 and Holder inequality, we have
1D° Py (Vaiw) | por - = |1D° P (Vasw)|| o
< 1D (Viw)ll o 1
<D (Vai)ull por o + Ve D*ull o o + 1D Vi [l pay 1 HDS?I

N ||D8Vhi||L41Lr1 ||U||Lqu + ”Vhi”quL"l ”Dsu”LqLT

U’HL‘ILT

-1
+HDVhi||L<11LT1 ‘DS uHLqu
S,V N "o,
where (q;,71) satisfies - = L — L and L = L — 1 Thus, this term is acceptable.
q1 q q T1 T T

Consider the first term. Using Lemma 3.17 and Holder inequality, we have
|| D* P (Vio P 10w s <D (Vo Ponjiow)]| por v
< ||D*Vio Ps ny10tt|| gr o + [[VieD* (Ps 10w
+ 1DVioll pay 1 [|D° (P vj10w) || o
<D Vio |l par HP>N/IOU||LqLT + }|V10DS(P>N/1OU)HLQ’LT’
+ ||DV10HL41LT1 ’Ds_l(P>N/10U

The first term and the third term are acceptable since HP>N/10“HLqu~ SN—s HDS(P>N/10u
N=* and ||D*~1(Ps n/10u < N7U||D*(Psnjiou
term. First, we have

)HL‘I'LT

) HL‘Z'LT/

Mpar-

ez =

< N~!. Consider now the second

Mpar- e =

<1

HVIODS(P>N/10“)HLé/Lr‘"(Ide) ~

for all ¢, 7 is sufficiently close to g, r.
Moreover, using Lemma 2.5 for 0 < § < %, we have

Vo D*(Po o)l s rpay < > VarD*upgll 2 | (1xray
M<N™ dyadic, '
M>N/10 dyadic

DS

~Y
M<N™ dyadic,
M>N/10 dyadic

S Z M(d*l)/275N71/2+5
M<NM0 dyadic
< N’I’]o((d*l)/szs)Nfl/Qﬁ’é’

M (d—1)/2-6 yp—1/2+5
(M)

this is an acceptable term if we choose 7y,6 < 1. By interpolation, this implies that the term
[VioD* (Ps n/10) || Lo v 18 als0 acceptable. Thus, (3.34) holds. Hence, 1D P f) Lty 1y 7t ety S

N~™ and the proof of Proposition 3.15 is completed. g

Remark 3.18. In the above proof, the condition s > s, is useful since we should have 2 > p (g — s).
In the critical case s = s, the situation is more complex and the smoothing effect can be not true.

Remark 3.19. In the above proof, the case p even is more simple. To deal with this case, we
don’t need to use Lemma 2.10, Lemma 2.11 to estimate the term of form |[P>Nf™ ()|, ...,

where o = 0 or ¥ = v. It suffices to use the product chain rule for this purpose since f (u) is a
polynomial in u, .

Lemma 3.20. ([20, Lemma 5.1]) Let E > 0 and u be a global solution of (1.1) such that
supyer |lu(t)|l; < E. Then, e~"*2u(t) is weakly convergent to uy € H ast — +oc.

Proposition 3.21. ([20, Proposition 5.2]) Let E > 0 and u be a global solution of (1.1) such that
supseg |[u(t)|| y < E. Then there exists a unique decomposition

(3.35) u(t) = e uy + (1),
where uy € H with
(3.36) lusll < B
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and
2

(3.37) o) < A4E,
for allt > 0. We also have the following identities

t
(3.38) o(t) = €D (u(0) — us) — i / A (e dt!

0
and

T
(3.39) v(t) = iw-lim | e CTAf(u(t))dt.
T—+o0 Jy

Remark 3.22. Assume that the solution u in Proposition 3.21 is almost periodic in the sense that
{u(t) : t € R} is pre-compact in H*. Then u; = 0. Indeed, since e~*“u(t) weakly converges to
uy in H®, e~ Ay(t) also weakly converges to u, in L2. It suffices to show that for all ¢ € C5°(R?),
we have

: itA _
Jim (u(t), e"2¢),, = 0.
Let € > 0. By assumption, there exists C. > 0 such that
2
Hu(t, I)HL2(|J;\2CE) <eg, YVt € RT.

We have, for t large enough,
_ _ 2 ,
|(u(t), e, |" S ‘<“(t)’ezm¢>m<|z|>ca>’ + ‘<“(t)’elm¢>m<|m\<cs>

2 2 2 i
S @Iz opzc 012 + IIU(t)IILgOLg/ "2 9| d

lz|<Ce

2

2 - 2
Selllze +t7CL 6]

3

N

This implies that e~#“u(t) weakly converges to 0 in L2, hence, u; = 0. This completes the desired
result.

Lemma 3.23. ([20, Lemma 5.6]) Let T € R and u,v be as in Proposition 3.21. Then for ty large
enough (depending on T,u), we have

S(T)v(te) = v(T + to) + o(1)
where S(t) is the flow of (1.1) and o(1) goes to zero in H norm as tg — +00.

Proof. Fix T, and let ¢y large enough. Define I = [tg,to + T]. We see that v solves the following
equation:

Lv= f(v) + [f(v+e"uy) = F(0)].

As tg — 400, we have
itA

||e — 0.

U+ || Lao H#moNLoe LRo (IxR4)
Moreover,
itA < 1

e u+HC$H(1><JRd) ~

By Lemma 3.14 and triangle inequality, we have

”U”quHsv’“oﬂC?H(Ide) Srl
Let
X = Hf(“ + e Puy) — ﬂv)“L‘léH“‘é([de) :

By Lemma 3.11, we have

X 5 |T|M st w0 (Heimu+Hqusto(Ide) + HeimmrHquHsn‘o(Ide) H(u’eitA“Jr)HiooLQo(Ide)

p—1

itAu"‘HL‘X’LQo(IX]Rd) [(u. e tAu"")HL‘X’LQO(IX]Rd) [(u, €’

tAu+) ||L’10Hs,7‘0 (IXRd)) )

which goes to zero as ty — +o00. Thus, by perturbation Lemma 3.13, the claim follows. O

+ [le
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4. FREQUENCY LOCALISATION

In this section, we prove the following asymptotic localisation frequency of the weakly bound
component v of u:

Proposition 4.1. ([20, Proposition 6.1]) Let E > 0, u be a global solution of (1.1) such that
supser ||u(t)]|; < E and v be the weakly bound component of u. Then, we have

(4.1) limsup sup N~ || P<no(t)|| 5 S 1
t—+oco N1

and

(4.2) limsup sup N || P> yo(t)] 5 < 1.

t—+oco N2>1

Proof. The main idea is to use the Duhamel formulas (3.38) and (3.39).
Fix ¢ > 0. Let u. € C§°(R?) such that

u(0) — uy = u. + Op(e?).

Hence, from (3.38), we have

(4.3) v(t) = e*Pu, — i/t A F(u(t))dt + O (£2).
0

To prove (4.1), it suffices to show that
(4.4) [P<no®)ly S 1,

for t large enough (can depend on E,u,e but uniform in N) and N < 1.
Using (4.3) and (3.39), we have

IP<xv(®) 3 = [(P<nv(t), Panv(t)) |

T
< <iw—lim ei(tft')Apng(U(t/))dtla
T—+o0 Jy

t
Peweu. —i | e“t-t”)APgNf<u<t">>dt"> 1 0()
0 H

T
</ ‘<€i(t_t/)AP<Nf(u(tl)),PgNeitAU5>H’dtl
t

T t
/ / Yn (', t")dt"dt'
t 0

for T large enough and Yy is defined by

+ + 0(e?),

V() = (78 Py f(u(t), e 2 Pen flu(t))) .

For the first integral, we have

1

it’ A <
s R ~Ue |t/|d(1/R—1/2)'

HPgNe Ue

Since R < dz—_&, the exponent of [t/| is larger than 2, hence, the first integral is bounded by O(g?)
if t,T (t <T) are large enough (not depend on N).

The second integral is bounded by
oo t
/ / [V (', t")] dt'dt”.
t Jo
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Using Lemma 2.2, we have
Yiv (¢, ¢)] = | (P s (u@))), e =2 Py pue”))) |
S IPen ) e [~ 2 Pen flul)|
1

S 1P S WP S o a7

< 1
~ |t/ _ t//‘d(l/R—1/2) '

Moreover, using Lemma 2.2, Bernstein’s inequality, we have
Y (' )] S I1P<n ()l e 1P fult)]] e
S IP<n f )l 2 IP<n f (w(®))]l 2

S NUCED F )| r | @) s
< Nd(2/R-1)

Combining all the above, we have

d(1/R—1/2)
/ / Y (¢, )] dt'dt” < / / mln( t,,,NQ) dt"dt’.

Since R < d+4, the exponent d(1/R — 1/2) > 2, hence, the claim (4.4) follows.

/ / Zn(t',t")dt" dt’
for T large enough, where

Zn (t/7 t//) _ <€i(t_t,)AP>Nf(u(t/)), ei(t_t”)AP>Nf(u(t”))>

Thus, it suffices to show that

We now prove (4.2). As before, we have

[Psno(t)]ly S %+

" .

N tdt" dt | S N7,

Counsider the region where ¢’ > ¢t + N"2. We have
|ZN(tl,t//)| < |tl . t//|7d(1/R71/2).

Since d(1/R — 1/2) > 2, the contribution of this term is

f, / / ‘t/ N t//‘—d(l/R71/2)dt//dt/ _ O(ang),
t'>t+N"2 St <t

where we use N~ « N~ Similar argument for the region ¢” < ¢t — N". It remains to prove

that
t+N"2 t
/ / Zn(t ") dt" dt!
t max(0,t—N"2)

By Holder inequality, the left hand side is bounded by
P> f(u(t'))

By Strichartz, the left hand side is bounded by

< N7,

” aly 15T X
L,PH; O ((t,t+N"2)xRd)

t
/ ei(tlit”)AP)Nf(u(t”))dt“

max(0,t—N"2)

LIPHZ ™0 ((t,t+N"2) xRY)

2
||P>Nf(u)”Lq(IJHS’T(/J((max(thW,O),t+N’72)><Rd) )
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which by Proposition 3.15 and dyadic decomposition can be bounded by
O(N?m/0 N—2m),

this is acceptable. The proof is completed.

5. SPATIAL LOCALISATION

By Proposition 1.7, it suffices to show the asymptotic localisation of v in spatial in L?. The
proof is the same as in [20] except that we work on fractional derivative in this paper. Thus, in
this section, we only sketch the main step in the proof of asymptotic localisation in spatial of v
and then the main result Theorem 1.3. We refer the reader to [20] for a complete proof. First, we
have the following result:

Theorem 5.1. ([20, Theorem 7.1]) Let E > 0, 0 < po < 1. There exist J,puys (depending
only on E, ug) with the following property: For any forward-global solution uw of (1.1) such that
sup,cg |[u(t)||; < E, there exists functions x1, 2, -+ ,x; : RT — R, such that

5.1 lim sup v(t, z)|Pde < p2.
~Y O

t—+o00 [Hf1<j<J le—x;(t)|=>1/pa

5.1. First step: L7° spatial localisation at fixed times. Define vyeq = Pp,<.<1/4,v- From
Proposition 4.1, we have, for ¢ large enough:

(5.2) [0(t) = Vmea ()|l S p13°-
Thus,
(5.3) u(t) = ¢+ vmealt) + O ().

As in [20], there exists J depending on FE, uo and functions zy(t), z2(t), -+ ,2s(t) such that

(5.4) [Vmed (t, )| < ué/m whenever ian |z —x; (1) = p3 '

1<5<

Moreover, for each t > 0 and j # k, 2;(t) = zx(t) or |z;(t) — 21(t)| > p3 .

5.2. Second step: L° spatial localisation on a time interval. Fix ¢, a sufficient late time and
I=[to—p;* to+purt]. Let D:R?Y — R be the distance function D(z) = infi¢j<y | — z;(to)];

/M whenever D > ugl.

thus |vmed (to, )| < /Jé

Let x : RY — R* be a smooth cutoff function which equals to one when D(x) < 23", vanishes
when D(x) > 3u3 " and obeys the bounds V*y = O (1) for k > 0. We can let x(x) = x1(u3)
and chose suitable function x;. We have the following result:

Lemma 5.2. ([20, Lemma 7.5]) We have

S (1— yuto))| <

lim su
b Lo He:roNLoe Lo (I xR4)

to—+o0

We have the following spatial decay:
Lemma 5.3. ([20, Lemma 7.6]) We have

< Mns.
Lao Lro(IxRd) ~H T2

limsupH1 _zu’
D
to—+oo >Ha3

As a consequence, we have the following result:

Corollary 5.4. ([20, Corollary 7.7]) For ty large enough and any I' C I, we have

1D>#;3 /I\, ei(to*t’)Af(u(t/))dt/
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5.3. Third step: L2 localisation at fixed time. Using Corollary 5.4, we have the following
result:

Proposition 5.5. ([20, Proposition 7.9]) Let x3 : R? — RT be a smooth cutoff function which
equals 1 when D > 2;13_3, equals 0 when D < /LS_S and xs has bounded derivatives. Then for tg
large enough, we have

x3v(to) = Orz2(u5),
for some ¢ > 0.

Theorem 5.1 is followed from Proposition 5.5. As a consequence of Theorem 5.1, we have the
following asymptotic spatial localisation of v, which is the main result in this section:

Proposition 5.6. ([20, Theorem 8.1]) Let E > 0 and 0 < pg < 1. Then there exists us depending
on E, ugy (and on the other fixed parameters) with the following properties: For any global solution
u of (1.1) such that sup,c ||u(t)||; < E, we have

(5.5) 1imsup/ lo(t, ) Pde < pl,
|| >1/ps

t——+o0

where v is the weak bound component of u.

Using asymptotic localisation in frequency and spatial of v Proposition 4.1 and Proposition 5.6,
we give the proof of the main result:

Proof of Theorem 1.3. By Proposition 1.7, Proposition 4.1 and Proposition 5.6, there exists a
compact set K C H such that
lim distg(v(t), K) =0
t—+oo

for all radial global solution w which is uniformly bounded in H.

Let Kg raa be the closure of the set of all limit points lim;, _, o v(t,), where ¢,, ranges over se-
quences of times which converge to infinity. Then, Kg raq is close and hence is a compact subset of
K. Let us prove that Kg raq is also an attractor. Indeed, let ¢,, — +o0. Since distg (v(t,), K) — 0
as n — +o0, there exists k,, € K such that ||v(¢,) — k,||; — 0. By the compactness of K, for each
sub-sequence of (¢,,) there exists ¢ € K and a sub-sequence of (t,,) (for convenience still denotes by
(tn)) such that ||v(t,) — ¢||; = 0. Thus, ¢ € Kgraa and hence, lim;_, 4 o dist g (v(t), Kgrada) = 0.
By local theory and Lemma 3.23, Kg raq is invariant under S(t) for ¢ small enough and hence for
all ¢ large also.

Finally, we show the uniqueness of u . If @i, satisfies the same properties of u then {e™* (u, —

U4 ),t > 0} is pre-compact in H. Moreover, for 2 < p < di—‘és,

Heim(qu - ﬂ+)HLp —0, ast— +oo.

Combining the above 4
| (uy —ay)||, = 0 ast— +oc.
Thus, u4 = @4, which completes the proof. O
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