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A COMPACT ATTRACTOR FOR ENERGY CRITICAL AND

SUPER-CRITICAL NLS

PHAN VAN TIN

Abstract. We study the asymptotic behavior of large data solutions to nonlinear Schrödinger
equations (NLS): iut + ∆u = λ|u|pu + V u, where λ = ±1, p ⩾ 4

d−2
and V ∈ C∞

0 (Rd). In the

case 4
d

< p < 4
d−2

, Tao [20, 21] proved that in radial setting, any solution which is uniformly

bounded in H1 can split into a term of form eit∆u+ and a remainder term which converges in
H1(Rd) to a compact attractor, which is invariant under the (NLS) �ow. In this paper, using

the method used in [20], we prove that the similar result holds in the case p ⩾ 4
d−2

. Specially,

we work on fractional Sobolev space Hs(Rd) instead of H1(Rd) for some s > sp := d
2
− 2

p
, which

is the most di�culty in the proof.
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1. Introduction

We consider the following (NLS) equation:

(1.1)

{
iut +∆u = λ|u|pu+ V u, (t, x) ∈ R× Rd,

u(0) = ϕ,

where d ⩾ 5, λ = ±1, p ⩾ 4
d−2 , and V ∈ C∞

0 (Rd). Let sp = d
2 − 2

p and s satisfy d
2 > s > sp.

Throughout of this paper, we assume that p is even or p > ⌈s⌉ (the smallest integer number larger
or equal s) and solutions to (1.1) are uniformly bounded in Hs(Rd):

(1.2) E := sup
t∈Imax(u)

∥u(t)∥2Hs <∞,

where Imax(u) is the maximal time of existence of u. Using Theorem 1.2, under the above assump-
tions, we have Imax(u) = R i.e u is global. For convenience, we denote H = Hs. We abbreviate
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∥u∥Lp(Rd) by ∥u∥Lp or sometimes by ∥u∥p.

We consider the following conjecture called soliton resolution conjecture, which states that: any
global, uniformly bounded solution u of dispersive equations decomposes in large time as follows:

u(t) = eit∆u+ +

J∑
j=1

Rj(t, x) + o(1),

where Rj is a soliton and o(1) converges to zero as t → +∞. There are two special cases of this
conjecture:

(1) As t→ +∞, u(t) =
∑J

j=1Rj(t, x) + o(1). In this case, u(t, x) is called a multi-soliton.

(2) As t→ +∞, u(t) = eit∆u+ + o(1). In this case, u(t, x) scatters forward in time.

Recently, in [9, 7], the authors proved that the soliton resolution conjecture holds for the radial
critical wave equation in all odd space dimensions and in six space dimension. In [13], the authors
showed the conjecture for the equivariant wave maps equation R1+2 → S2, in all equivalence class
k ∈ N. To our best knowledge, there is no a proof for the soliton resolution conjecture for general
nonlinear Schrödinger equations even in radial setting. In [20, 21], the author proved a weaker
result than the above conjecture. More precisely, the author showed that, in radial setting, if
4
d < p < 4

d−2 , any global uniformly bounded solution in H1(Rd) to (1.1) decomposes in large time

into u(t) = eit∆u+ + K + o(1), where u+ ∈ H1(Rd), and K is a compact set which is invariant
under the �ow of (1.1). Our goal in this paper is to give a similar result to [20, 21] in the energy
critical and supercritical cases i.e p ⩾ 4

d−2 .

In the case V = 0, (1.1) becomes the usual (NLS) with a single power nonlinearity:

(1.3) iut +∆u = λ|u|pu.
In energy critical and energy-subcritical cases (i.e sp ⩽ 1), there are a lot of interested in the study-
ing of the multi-solitons theory and the scattering theory for nonlinear Schrödinger equations. In
energy supercritical cases (i.e sp > 1), the situation is more complex, where we work on fractional
Sobolev spaces. In [5], the authors proved local well posedness for (1.3) in high regular Sobolev
space Hs(Rd) (s ⩾ sp). In [16], the authors showed that for defocusing (NLS) (i.e λ = 1) in high

dimensions (d ⩾ 5), any uniformly bounded solution to (1.3) in critical Sobolev space Ḣsp is global
and scatters under a suitable condition of sp. Similar results were proved in [19, 17, 8]. Specially,
in [18], the authors showed that there exists a blow up solutions of (1.3) with energy supercritical
power even in defocusing case. Recently, in [11], we established a general pro�le decomposition
and proved some scattering results for general nonlinear Schrödinger equations. Moreover, in [10],
we extend the scattering result in [15] for L2-supercritical powers, specially, our results adapt to
the cases of energy-supercritical nonlinearity.

Inspired by [5], we study local and global theory for (1.1). De�ne

ρ =
p+ 2

1 + ps/d
, γ =

4(p+ 2)

p(d− 2s)
.

It is easy to check that (γ, ρ) is a admissible pair and satis�es the Sobolev embedding Ḣs,ρ ↪→ Lρ∗
,

where ρ∗ is de�ned by
1

ρ′
=

p

ρ∗
+

1

ρ
.

We have the following properties of (γ, ρ):

Proposition 1.1. ([5, Proposition 1.5]) We have

(i) 2 < ρ < 2d
d−2 ;

(ii) 2/γ = d(1/2− 1/ρ), and hence (γ, ρ) is an admissible pair;
(iii) ρ < d/s and hence ρ∗ > ρ;
(iv) 1/ρ′ = p/ρ∗ + 1/ρ;
(v) 1/γ′ ⩾ p/γ + 1/γ.

As in [5], we have the following result:
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Theorem 1.2. Let ϕ ∈ Hs and p, s be as the above. Then there exists a unique solution u of (1.1)
such that u ∈ C(0, Tmax;H

s) ∩ Lγ
loc

(0, Tmax;H
s,ρ). Moreover, the following properties hold:

(i) u ∈ Lq(0, T ;Hs,r) for every admissible pair (q, r) and every T < Tmax.
(ii) u is unique in Lγ(0, T ;Hs,ρ) for every T < Tmax.
(iii) ∥u(t)∥L2 = ∥ϕ∥L2 and E(u(t)) = E(ϕ) for all t ∈ (0, Tmax), where the energy E is de�ned

by

E(u(t)) :=

∫
Rd

1

2
|∇u(t, x)|2 + V (x)

1

2
|u(t, x)|2 + λ

1

p+ 2
|u(t, x)|p+2dx.

(iv) If Tmax <∞ then

lim
t→ Tmax

∥u(t)∥H = ∞.

From Theorem 1.2, we see that if solution u is uniformly bounded in Hs then u is global.
Inspired by [20], we study asymptotic behavior in large time of such solution. Our main result is
the following:

Theorem 1.3. Let E > 0. Then there exists a compact subset KE,rad ⊂ H which is invariant
under the �ow of (1.1), and such that for every radial global solution u satisfying (1.2), there exists
a unique u+ ∈ Hs such that

(1.4) lim
t→+∞

distH(u(t)− eit∆u+,KE,rad) = 0.

Here and in the sequel we write distH(f,K) := inf{∥f − g∥H : g ∈ K} for the distance between f
and K.

Remark 1.4. Consider the compact set KE,rad in the above theorem. Let u0 ∈ KE,rad and u be the
associated solution of (1.1). Since KE,rad is invariant under the �ow of (1.1), we have u(t) ∈ KE,rad

for all t ∈ R. Thus, {u(t) : t ∈ R} is pre-compact in Hs and u is called an almost periodic solution.
Assume that each almost periodic solution of (1.1) equals to zero, this property is called rigidity
property (see e.g [14, Theorem 5.1], [11, Proposition 5.1], [10, Proposition 1.5]). Then, Theorem
1.3 implies that each uniformly bounded solution of (1.1) in Hs scatters in both time directions.
However, in the case s = sp, the situation is more complex since smoothing e�ect can be not true
in this case (see Remark 3.18).

Remark 1.5. It seems that we could also prove a similar result of [20, Theorem 1.28] in nonradial
setting. However, in this paper, we only focus on solutions in radial setting.

Let u be a solution as in Theorem 1.3. From Lemma 3.20, e−it∆u(t) is weakly convergent to
some u+ ∈ Hs(Rd) as t goes to in�nity. De�ne v(t) = u(t) − eit∆u+, which is called the weakly
bound component of u. We will show that u+ satis�es the property (1.4).

We recall the following equivalence of precompactness and localisation:

Proposition 1.6. (see e.g [20, Proposition B.1]) Let K ⊂ Hs. Then the following are equivalent:

(i) K is precompact in Hs.
(ii) K is bounded, and for any µ0 > 0 there exists µ1 > 0 such that we have the frequency

localisation estimate ∥∥P⩾1/µ1
f
∥∥
H

≲ µ0

and the spatial localisation estimate∫
|x|⩾1/µ1

|f(x)|2dx ≲ µ2
0,

for all f ∈ K.
(iii) K is bounded, and for any µ0 > 0 there exists µ1 > 0 such that we have the frequency

localisation estimates ∥∥P⩾1/µ1
f
∥∥
H

≲ µ0

and

∥P⩽µ1
f∥H ≲ µ0
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and the spatial localisation estimate∫
|x|⩾1/µ1

|f(x)|2 + |Dsf(x)|2dx ≲ µ2
0,

for all f ∈ K.

The above proposition is generalized by the below criterion for compact attractor:

Proposition 1.7. (see e.g [20, Proposition B.2]) Let U be a collection of trajectories u : R+ → H.
Then the following are equivalent:

(i) There exists a compact set K ⊂ H such that limt→+∞ distH(u(t),K) = 0 for all u ∈ U .
(ii) U is asymptotically bounded in the sense that

(1.5) sup
u∈U

lim sup
t→+∞

∥u(t)∥H <∞

and for any µ0 > 0 there exists µ1 > 0 such that we have the asymptotic frequency
localisation estimate

lim sup
t→+∞

∥P⩾1/µ1
u(t)∥H ≲ µ0

and the spatial localisation estimate

lim sup
t→+∞

∫
|x|⩾1/µ1

|u(t, x)|2dx ≲ µ2
0

for all u ∈ U .
(iii) U is asymptotically bounded in the sense of (1.5), and for any µ0 > 0 there exists µ1 > 0

such that we have the asymptotic frequency localisation estimates

lim sup
t→+∞

∥P⩾1/µ1
u(t)∥H ≲ µ0

and

lim sup
t→+∞

∥P⩽µ1
u(t)∥H ≲ µ0

and the following improved spatial localisation estimate

lim sup
t→+∞

∫
|x|⩾1/µ1

|u(t, x)|2 + |Dsu(x)|2dx ≲ µ2
0

for all u ∈ U .

From Proposition 1.6 and Proposition 1.7, we see that precompactness is formally equivalent
to localisation in spatial and localisation in frequency. From Proposition 1.7, to prove Theorem
1.3, we only need to prove an asymptotic localisation in spatial and an asymptotic localisation in
frequency of v(t). The proof of asymptotic localisation in spatial of v(t) in L2 is similar in [20] and
we only sketch the proof in this paper.

This paper is organised as follows. In Section 2, we introduce the notations and basic tools used
in this paper. In Section 3, we prove local well-posedness of solutions to (1.1) in Hs and prove
some preliminary results used in the proof of the main result. In Section 4, we prove asymptotic
localisation in frequency of v(t). In Section 5, we prove asymptotic localisation in spatial of v(t)
and then prove the main result Theorem 1.3.

Acknowledgement
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author is supported by postdoc fellowship of Labex MME-DII: SAIC/2022 No 10078.



COMPACT ATTRACTOR 5

2. Notation and preliminaries

Let L = i∂t +∆ be Schrödinger operator.

For convenience, let f1(u) = λ|u|pu, f2(u) = V u and f(u) = f1(u) + f2(u).

For each X Banach space, de�ne ∥(u, v)∥X = ∥u∥X + ∥v∥X .

Denote by S the space of Schwartz functions.

Denote by τh the shift operator in space de�ned by τhf(x) = f(x− h).

Denote by F(f) = f̂ the Fourier transformation in space variable and F−1f or f̌ the inverse
Fourier transformation.

For each f ∈ S, de�ne Dsf := F−1(|ξ|sf̂(ξ)).

Denote by Ss(I) the Strichartz space i.e

∥u∥Ss(I) = sup
(q,r)admissible pair

∥u∥Lq
t (I)H

s,r
x
,

and Ns(I) the dual space of Ss(I).

We shall need some small exponents

1 ≫ η0 ≫ η1 ≫ η2 ≫ η3 > 0,

where η0 is small enough depending on E and the other �xed parameters, ηi is small enough de-
pending on E, η0, η1, · · · , ηi−1 for each i ∈ {1, 2, 3}.

Moreover, in Section 5, we shall need the other parameters:

1 > µ0 ≫ µ1 ≫ µ2 ≫ µ3 ≫ µ4 > 0.

where µ0 is small enough depending on E, and for each i ∈ {1, 2, 3, 4}, µi is small enough depending
on µ0, µ1, · · · , µi−1.

Lemma 2.1. There exists an admissible pair (q0, r0) with q0 > 2, exponents 2 < Q0, Q < 2d
d−2s ,

and an exponent 1 ⩽ R < 2d
d+4 such that

(2.1)
1

r0
+

p

Q0
=

1

r′0

and

(2.2)
1

2
+
p

Q
=

1

R
.

Lemma 2.2. For any u ∈ H, we have

∥f(u)∥Hs,R ≲ ∥u∥p+1
H + ∥u∥H .

Proof. By the fractional chain rule in Lemma 3.4 and |f ′1(u)| ≲ |u|p, we have∥∥Djf1(u)
∥∥
LR ≲ ∥u∥pLQ

∥∥Dju
∥∥
L2 ,

for j = 0, s. Let a be de�ned by 1
R = 1

a + 1
2 . Thus, 2 ⩽ a < d

2 . By Hölder and Sobolev embedding,
for j = 0, s, we have ∥∥Dj(f2(u))

∥∥
LR =

∥∥Dj(V u)
∥∥
LR

≲
∥∥Dj(V )

∥∥
La ∥u∥L2 + ∥V ∥La

∥∥Dju
∥∥
L2

≲ ∥u∥L2 +
∥∥Dju

∥∥
L2

≲ ∥u∥H .
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This implies the desired result. □

We have the following properties in Fourier analysis.

Lemma 2.3. Let f, g ∈ S. We have the following identity

F(fg) = F(f) ∗ F(g).

Lemma 2.4. (Bilinear Strichartz estimate)(see e.g [22]).
For any time interval I ⊂ R, any t0 ∈ I and any 0 < δ ⩽ 1

2 , we have

∥uv∥L2
t,x(I×Rd) ≲δ,q,r,q̃,r̃

(
∥u(t0)∥Ḣ−1/2+δ +

∥∥∥|∇|−1/2+δLu
∥∥∥
Lq′Lr′ (I×Rd)

)
×
(
∥v(t0)∥Ḣ(d−1)/2−δ +

∥∥∥|∇|(d−1)/2−δLv
∥∥∥
Lq̃′Lr̃′ (I×Rd)

)
,

for any u, v and any admissible pairs (q, r), (q̃, r̃) with q, q̃ > 2.

As a consequence of Lemma 2.4, we have the following result.

Lemma 2.5. (see e.g [20, Corollary 4.4]) For any time interval I ⊂ R, any N,M > 0 dyadic
numbers, we have

∥uNuM∥L2
t,x(I×Rd) ≲ ⟨|I|⟩

1
2
M (d−1)/2−δN− 1

2+δ

⟨N⟩s ⟨M⟩s
.

Lemma 2.6 (Dispersive estimate). For all 2 ⩽ r ⩽ +∞, f ∈ Lr′(Rd), and t > 0 we have∥∥eit∆f∥∥
Lr ≲

1

|t|d(1/2−1/r)
∥f∥Lr′ .

The following lemma can be useful in the further analysis.

Lemma 2.7. For 1 ⩽ r ⩽ 2, f ∈ C∞
0 (Rd), we have∥∥eit∆f∥∥

Lr ≲f (1 + t)M ,

for all M ∈ N and M > d/2− d/r.

Proof. Let a such that 1
r = 1

a + 1
2 , and M be a natural number such that Ma > d. We have∥∥eit∆f∥∥

Lr =
∥∥∥F−1(e−it|ξ|2 f̂(ξ))(x)

∥∥∥
Lr

x

=
∥∥∥(1 + |x|)−M (1 + |x|)MF−1(e−it|ξ|2 f̂(ξ))(x)

∥∥∥
Lr

x

≲
∥∥(1 + |x|)−M

∥∥
La

∥∥∥(1 + |x|)MF−1(e−it|ξ|2 f̂(ξ))(x)
∥∥∥
L2

x

≲
∥∥∥(1 + |x|)MF−1(e−it|ξ|2 f̂(ξ))(x)

∥∥∥
L2

x

≈
∥∥∥e−it|ξ|2 f̂(ξ)

∥∥∥
HM

ξ

(by Plancherel theorem)

≲f (t+ 1)M ,

where HM
ξ denotes the Sobolev space with variable ξ:

HM
ξ := {v ∈ L2

ξ : DMv ∈ L2
ξ}.

□

Lemma 2.8. Let N be a dyadic number. We have

PN (fg) = PN (P≳Nfg) + PN (fP≳Ng).
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Proof. Using Lemma 2.3, we have

F(PN (fg))(ξ) ≈ 1|ξ|≈N (f̂ ∗ ĝ)(ξ)

≈
∫
Rd

1|ξ|≈N f̂(ξ̃)ĝ(ξ − ξ̃)dξ̃

=

∫
Rd

1|ξ|≈N (1|ξ̃|≳N + 1|ξ−ξ̃|≳N )f̂(ξ̃)ĝ(ξ − ξ̃)dξ̃

=

∫
Rd

1|ξ|≈N1|ξ̃≳N |f̂(ξ̃)ĝ(ξ − ξ̃)dξ̃ +

∫
Rd

1|ξ|≈N1|ξ−ξ̃|≳N f̂(ξ̃)ĝ(ξ − ξ̃)dξ̃

= PN (P≳Nfg) + PN (fg≳N ).

□

Lemma 2.9. (Interchange of norms) Let r > 1 and f ∈ L1
yL

r
x. Then

∥f∥Lr
xL

1
y
⩽ ∥f∥L1

yL
r
x
.

Lemma 2.10. Let f ∈ Lr, r > 1. Then, for each N ⩾ 1 dyadic number, we have

∥P⩾Nf∥Lr ≲ sup
|h|⩽1/N

∥τhf − f∥Lr .

Proof. Assume that N = 2j . We have

P⩾Nf =
∑
k⩾j

Qkf,

where Qkf is de�ned by

F(Qkf)(ξ) = η(2−kξ)f̂(ξ),

for smooth function η ∈ C∞
0 (Rd) nonnegative, supported in {1/2 < |ξ| < 2} and satisfying

∞∑
j=−∞

η(2jξ) = 1, onR \ {0}.

From [6, Proof of Proposition 3.1], we have Qkf = f ∗ ψk, where ψk ∈ S,

(2.3) |ψk(x)| ⩽ CM2kd(1 + 2k|x|)−M ,

for all M , uniformly in k ∈ Z, and ∫
Rd

ψk = 0.

We use the following norm on Rd

|y| = sup
i=1,··· ,d

|yi|.

We have

∥P⩾Nf∥Lr =

∥∥∥∥∥∥f ∗
∑
k⩾j

ψk

∥∥∥∥∥∥
Lr

=

∥∥∥∥∥∥
∫
Rd

f(x− y)
∑
k⩾j

ψk(y)dy

∥∥∥∥∥∥
Lr

x

=

∥∥∥∥∥∥
∫
Rd

(f(x− y)− f(x))
∑
k⩾j

ψk(y)dy

∥∥∥∥∥∥
Lr

x

.

We rewrite f(x)− f(x− y) by

(f(x)−f(x−e1/N))+(f(x−e1/N)−f(x−(e1+e2)/N))+· · ·+(f(x−(e1+· · ·+eh)/N)−f(x−y)),

where ei is the unit vector chosen such that

|y − (e1 + · · ·+ eh)/N | < 1/N.
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We see that there are about h ≲ 1 + |Ny| = 1 + 2j |y| terms in the above sum. Thus, by Lemma
2.9, we have

∥P⩾Nf∥Lr ⩽ sup
|h|⩽1/N

∥τhf − f∥Lr

∫
Rd

(1 + 2j |y|)|
∑
k⩾j

ψk(y)|dy.

Consider the integral in the above expression. Let denote it by A. It su�ces to show that A is
bounded. In the domain |y| > 2−j , using (2.3), the integral is bounded by∫

|y|>2−j

2j |y|
∑
k⩾j

CM2kd(2k|y|)−Mdy ≲
∫
|y|>2−j

2jCM2j(d−M)|y|1−Mdy.

It is easy to see that the above integral is bounded when M > d+ 1. In the domain |y| ⩽ 2−j , A
is bounded by ∫

Rd

|
∑
k⩾j

ψk(y)|dy.

Since
∑

k⩾j ψk is the kernel of P⩾N , this is in L1. This completes the proof. □

Lemma 2.11. ([2, Proposition 9.3]) Let f ∈ H1,r, r > 1. Then,

∥τhf − f∥Lr ⩽ |h| ∥∇f∥Lr ,

for all h > 0.

The following expression is very useful in our proofs.

Lemma 2.12. Let f ∈ C1(C). Then,

f(u)− f(v) = (u− v)

∫ 1

0

∂zf(v + θ(u− v))dθ + u− v

∫ 1

0

∂zf(v + θ(u− v))dθ.

3. Local estimate

In this section, we prove some useful results to study asymptotic behavior in large time of
solutions to (1.1).

3.1. Some useful estimates. We need the following results for our analysis, many of them were
used in [1]:

Lemma 3.1. Let −∞ < s2 ⩽ s1 < ∞ and 1 < p1 ⩽ p2 < ∞ with s1 − d
p1

= s2 − d
p2
. Then we

have the following embeddings:

Ḣs1,p1 ⊂ Ḣs2,p2 , Hs1,p1 ⊂ Hs2,p2 .

Lemma 3.2 (Product chain rule 1). (see e.g [1, Lemma 2.2]) Let s ⩾ 0, 1 < r, r2, p1 < ∞,
1 < r1, p2 ⩽ ∞ such that 1

r = 1
ri

+ 1
pi

(i = 1, 2). Then,

∥fg∥Ḣs,r ≲ ∥f∥r1 ∥g∥Ḣs,p1 + ∥f∥Ḣs,r2 ∥g∥p2
.

As a consequence of the above lemma, we have the following estimate:

Lemma 3.3 (Product chain rule 2). (see e.g [1, Corollary 2.3]) Let s ⩾ 0, q ∈ N (q ⩾ 1),
1 < r, rik <∞, for 1 ⩽ i, k ⩽ q: 1

r =
∑q

i=1
1
rik
. Then∥∥∥∥∥

q∏
i=1

fi

∥∥∥∥∥
Ḣs,r

≲
q∑

k=1

∥fk∥
Ḣs,rk

k

∏
i̸=k

∥fi∥rik

 .

Lemma 3.4 (Fractional chain rule). (see e.g [1, Lemma 2.4]) Let G ∈ C1(C), s ∈ (0, 1), 1 <
r, r2 <∞, and 1 < r1 ⩽ ∞ satisfying 1

r = 1
r1

+ 1
r2
. Then,

∥G(u)∥Ḣs,r ≲ ∥G′(u)∥r1 ∥u∥Ḣs,r2 .

Lemma 3.5 (Gagliardo-Nirenberg inequality). (see [3]). Let s1 ⩽ s0, 1 ⩽ p0, p1, p ⩽ ∞, p0 > 1,
s = θs1 + (1− θ)s0,

1
p = θ

p1
+ 1−θ

p0
. Then

∥u∥Hs,p ≲ ∥u∥θHs1,p1 ∥u∥
1−θ
Hs0,p0 .
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Lemma 3.6 (Homogeneous Gagliardo-Nirenberg inequality). (see [11, Lemma 2.5]) Let s1 ⩽ s0,
p0 > 1, s = θs1 + (1− θ)s0,

1
p = θ

p1
+ 1−θ

p0
. Then

∥u∥Ḣs,p ≲ ∥u∥θḢs1,p1 ∥u∥
1−θ

Ḣs0,p0
.

Lemma 3.7. (see [1, Lemma 3.2]) Let s > 0, 1 < p <∞ and v = s− ⌊s⌋. Then∑
|α|=⌊s⌋

∥Dαf∥Ḣv
p
≈ ∥f∥Ḣs

p
,

where ⌊s⌋ denotes the largest integer smaller or equal s (the integer part of s).

Lemma 3.8 (Leibniz rule). Let f ∈ Ck be a real variable function and α = (α1, α2, · · ·, αd) ∈ Nd

such that |α| ⩽ k. Then Dαf(u) is written as follows:

(3.1) Dαf(u) =

|α|∑
h=1

∑
Λh

α

Cα,hf
(h)(u)

h∏
i=1

Dβiu,

where Cα,h ∈ N and Λh
α = {(β1, · · ·, βh) : for each i: βi ∈ Nd, β1 + · · ·+ βh = α, |βi| ⩾ 1}.

3.2. Local theory of (1.1) in Hs. In this subsection, we establish local theory for (1.1) in Hs

and prove Theorem 1.2. De�ne

G(f(u(t))) = −i
∫ t

0

S(t− τ)f(u(τ)) dτ.

We may rewrite (1.1) by

u(t) = S(t)ϕ+ G(f(u(t))).
Before proving Theorem 1.2, we prove some useful results.

Lemma 3.9. ([5, Lemma 4.1]) We have for any (q, r) admissible:

∥G(f(u))∥Lq(0,T )Ḣs,r(Rd) ≲ T δ ∥u∥p+1

Lγ(0,T )Ḣs,ρ(Rd)
+ T

γ−2
γ ∥u∥Lγ(0,T )Ḣs,ρ(Rd)(3.2)

and

∥G(f(u))− G(f(v))∥Lq(0,T )Lr(Rd) ≲ T δ
(
∥u∥p

Lγ(0,T )Ḣs,ρ(Rd)
+ ∥v∥p

Lγ(0,T )Ḣs,ρ(Rd)

)
∥u− v∥Lγ(0,T )Lρ(Rd)

+ T
γ−2
γ ∥u− v∥Lγ(0,T )Lρ(Rd) ,(3.3)

where δ = 1− p+2
γ .

Proof. Use the proof of Lemma 3.11 and the fact that Ḣs,ρ ↪→ Lρ∗
. We note that in the proof, we

only need the condition p even or p > ⌊s⌋ (instead of p > ⌈s⌉). □

Moreover, we have the following unique result.

Proposition 3.10. ([5, Proposition 4.2]) Let ϕ ∈ Hs, and suppose u ∈ Lγ(0, T ;Hs,ρ) is a solution
of (1.1). Then u ∈ Lq(0, T ;Hs,r) ∩ C([0, T ];Hs) for every admissible pair (q, r). Furthermore, if
v ∈ Lγ(0, T ;Hs,ρ) is also a solution of (1.1), then u = v.

Proof. By Lemma 3.9 and Strichartz, it is easy to prove that u ∈ Lq(0, T ;Hs,r)∩C([0, T ];Hs) for
each admissible pair (q, r).
Assume that u(t) ̸= v(t) for some t ∈ [0, T ]. Let t0 = inf{t ∈ [0, T ] : u(t) ̸= v(t)}. Using Lemma
3.9, we have, for all t ∈ [t0, T ]:

∥u− v∥Lγ(t0,t);Lρ = ∥G(f(u))− G(f(v))∥Lγ(t0,t);Lρ

⩽ C(t− t0)
δ
(
∥u∥p

Lγ(t0,t);Ḣs,p + ∥v∥p
Lγ(t0,t);Ḣs,p

)
∥u− v∥Lγ(t0,t);Lρ

+ ∥u− v∥Lγ(t0,t);Lρ (t− t0)
γ−2
γ .

Let t be close to t0, we give a contradiction. Thus, u(t) = v(t) for all t ∈ [0, T ], which is the desired
result. □
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Proof Theorem 1.2. We use a �xed point argument to prove the existence of solutions to (1.1). Let
M > 0, we de�ne

X = X (T,M) = {u ∈ Lγ(0, T ;Hs,ρ) : ∥u∥Lγ(0,T ;Ḣs,ρ) ⩽M}.

Endowed with the metric

d(u, v) = ∥u− v∥Lγ(0,T ;Lρ) ,

X is a complete metric space. We prove that the map

Ku = S(·)ϕ+ G(f(u)).

is a contraction mapping on X for suitable constants T,M . Let u ∈ X . Using (3.2), we have if

∥S(·)ϕ∥Lγ(0,T ;Ḣs,p)+CT
δMp+1+CT

γ−2
γ M ⩽M then Ku ∈ X . From (3.3), if 2CT δMp+CT

γ−2
γ <

1, then K is a contraction mapping on X . By Strichartz, K is a contractor on X if

(3.4) C ∥ϕ∥Ḣs + 2CT δMp+1 + CT
γ−2
γ M ⩽M.

Combining with Proposition 3.10, there exists a unique maximal solution to (1.1) such that u ∈
C((0, Tmax);H) ∩ Lγ

loc((0, Tmax);H
s,ρ). Assume Tmax <∞. Using (3.4) and by classical argument

(see e.g [4]), we have

lim
t→Tmax

∥u(t)∥Ḣs = ∞,

which completes the desired result. □

Lemma 3.11. Let p be even or p > ⌈s⌉ and u, v ∈ Ss(I × Rd). We have the following estimates:

∥f1(u)− f1(v)∥Lq′0Hs,r′0 (I×Rd)
≲ |I|1/q

′
0−1/q0

(
∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0Hs,r0 (I×Rd)

)
.

∥f2(u)− f2(v)∥Lq′0Hs,r′0 (I×Rd)
≲V ∥u− v∥Lq0Hs,r0 |I|1/q

′
0−1/q0 .

Proof. It su�ces to show the �rst estimate. The second estimate is proved by using Hölder and
the fact that V ∈ C∞

0 (Rd). We only consider the case p > ⌈s⌉; in the case p even the conclusion is
easily proved by using Hölder.
By Hölder,

∥f1(u)− f1(v)∥Lq′0Hs,r′0
≲ ∥f1(u)− f1(v)∥Lq0Hs,r′0

|I|1/q
′
0−1/q0 .

Thus, we only need to prove that

∥f1(u)− f1(v)∥Lq0Hs,r′0
≲ ∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0Hs,r0 (I×Rd) .

We have

(3.5) f1(u)− f1(v) = (u− v)

∫ 1

0

∂zf1(v + θ(u− v))dθ + u− v

∫ 1

0

∂zf1(v + θ(u− v))dθ.

Hence, by Hölder and using |∂zf1(u)|+ |∂zf1(v)| ≲ |u|p,

∥f1(u)− f1(v)∥Lq0Lr′0
≲ ∥u− v∥L∞LQ0 sup

θ∈[0,1]

∥|v + θ(u− v)|p∥Lq0La , ( where 1/a+ 1/Q0 = 1/r′0)

≲ ∥u− v∥L∞LQ0 (∥|u|p∥Lq0La + ∥|v|p∥Lq0La)

≲ ∥u− v∥L∞LQ0 ∥(u, v)∥
p−1
L∞LQ0

∥(u, v)∥Lq0Lr0 .

Thus, it remains to show that

∥f1(u)− f1(v)∥Lq0 Ḣs,r′0
≲ ∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0 Ḣs,r0 (I×Rd) .

By Hölder, it su�ces to show:

(3.6) ∥f1(u)− f1(v)∥Ḣs,r′0
≲ ∥u− v∥Ḣs,r0 ∥(u, v)∥

p
LQ0

+ ∥u− v∥LQ0 ∥(u, v)∥
p−1
LQ0

∥(u, v)∥Ḣs,r0 .
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By using (3.5) (with noting that the contribution of the �rst term and the second term are similar)
and Lemma 3.2, we have

∥f1(u)− f1(v)∥Ḣs,r′0
≲ ∥u− v∥LQ0

∥∥∥∥∫ 1

0

|∇|s∂zf1(v + θ(u− v))dθ

∥∥∥∥
La

+ ∥u− v∥Ḣs,r0

∥∥∥∥∫ 1

0

∂zf1(v + θ(u− v))dθ

∥∥∥∥
Lb

(where 1/b+ 1/r0 = 1/r′0).

Since |∂zf1(u)| ≲ |u|p, we have∥∥∥∥∫ 1

0

∂zf1(v + θ(u− v))dθ

∥∥∥∥
Lb

≲ ∥|u|p + |v|p∥Lb ≲ ∥(u, v)∥p
LQ0

,

hence the second term is acceptable. Thus, to prove (3.6), it su�ces to show that, for g = ∂zf1,
for each u:

(3.7) ∥|∇|sg(u)∥La ≲ ∥u∥p−1
LQ0

∥u∥Ḣs,r0 .

Since p > ⌈s⌉, the function g belongs to C⌈s⌉ and satis�es

(3.8) |g(k)(u)| ≲ |u|p−k, for each 0 ⩽ k ⩽ ⌈s⌉ .
By Lemma 3.7 and Leibniz rule Lemma 3.8, it su�ces to show that for each α ∈ Nd, |α| = ⌊s⌋,
1 ⩽ h ⩽ |α|, each 1 ⩽ i ⩽ h: βi ∈ Nd, |βi| ⩾ 1:

∑h
i=1 βi = α:

(3.9)

∥∥∥∥∥g(h)(u)
h∏

i=1

Dβiu

∥∥∥∥∥
Ḣv,a

≲ ∥u∥p−1
LQ0

∥u∥Ḣs,r0 , (where v = s− ⌊s⌋).

It is easy to check that h ⩽ |α| = ⌊s⌋ ⩽ ⌈s⌉ < p. Using Lemma 3.3 and (3.8), we have∥∥∥∥∥g(h)(u)
h∏

i=1

Dβiu

∥∥∥∥∥
Ḣv,a

≲
∥∥∥g(h)(u)∥∥∥

Ḣv,m0

h∏
i=1

∥∥Dβiu
∥∥
Lmi

(3.10)

+

h∑
k=1

∥∥|u|p−h
∥∥
Lm̃0

∥∥Dβku
∥∥
Ḣv,m̃k

h∏
i=1,i̸=k

∥∥Dβiu
∥∥
Lmi

,

where mi and m̃i for i = 1, · · · , h are chosen such that

1

mi
=
θi
r0

+
1− θi
Q0

, (where θi = |βi|/s)

1

m0
=

1

a
−

h∑
i=1

1

mi
,

m̃0 =
Q0

p− h
,

1

m̃k
=

1

a
− p− h

Q0
−

h∑
i=1,i̸=k

1

mi
=

(|βk|+ v)/s

r0
+

1− (|βk|+ v)/s

Q0
,

By the choice of mi and m̃i, using Lemma 3.6, we have∥∥Dβiu
∥∥
Lmi

≲ ∥u∥θi
Ḣs,r0

∥u∥1−θi
LQ0 ,∥∥Dβku

∥∥
Ḣv,m̃k

≲
∥∥∥D|βk|+vu

∥∥∥
Lm̃k

≲ ∥u∥θ̃k
Ḣs,r0

∥u∥1−θ̃k
LQ0

, (where θ̃k = (|βk|+ v)/s).

Thus, the second term in (3.10) is acceptable.

Consider the �rst term. If s /∈ N then ⌈s⌉ ⩾ h + 1 (since h ⩽ |α| = ⌊s⌋), using Lemma 3.4, we
have ∥∥∥g(h)(u)∥∥∥

Ḣs,m0
≲
∥∥∥g(h+1)(u)

∥∥∥
Lm

∥u∥Ḣv,n ( where 1/m+ 1/n = 1/m0)

≲
∥∥|u|p−h−1

∥∥
Lm ∥u∥Ḣv,n .
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Choosing m such that (p−h− 1)m = Q0 then 1/n = 1/m0− 1/m = v/s
r0

+ ⌊s⌋/s
Q0

. Using Gagliardo-

Nirenberg inequality Lemma 3.6, we have

∥u∥Ḣv,n ≲ ∥u∥v/s
Ḣs,r0

∥u∥⌊s⌋/s
LQ0

.

Thus, the �rst term in (3.10) is acceptable in the case s /∈ N. We next assume that s ∈ N. It is
easy to check that

1

m0
=

1

a
−

h∑
i=1

1

mi
=

Q0

p− h
.

Using (3.8), we see that the �rst term in (3.10) is acceptable in the case s ∈ N. Thus, (3.9) holds
and the proof is completed.

□

Remark 3.12. In the proof of the above lemma, we need the condition p > ⌈s⌉.

Lemma 3.13 (Perturbation lemma). Let u0 ∈ Hs, let I be a compact time interval containing t0,
A, µ̃1 > 0, and v : I → H be the strong solution of the following NLS:

ivt +∆ = f(v) +G

where v,G satisfy

∥v∥Lq0Hs,r0∩C0H(I×Rd) + ∥v(t0)− u0∥H ≲ A

and ∥∥∥ei(t−t0)∆(v(t0)− u0)
∥∥∥
Lq0Hs,r0∩L∞LQ0 (I×Rd)

≲ µ̃1

and

∥G∥
Lq′0Hs,r′0 (I×Rd)

≲ µ̃1.

Then, if µ̃1 is small enough depending on A, |I| then there exists a solution u : I → H of (1.1)
with initial data u(t0) = u0 such that

∥u− v∥Lq0Hs,r0∩L∞LQ0 (I×Rd) ≲A,|I| µ̃1.

and

∥u− v∥C0H ≲A,|I| 1.

Proof. By local theory, u exists on I. Let w = u− v, then w solves the following equation

iwt +∆w = f(w + v)− f(v)−G; w(t0) = v(t0)− u0.

De�ne X = ∥w∥Lq0Hs,r0∩L∞LQ0 (I×Rd) . We have

X ≲ µ̃1 + ∥f(v + w)− f(v)∥
Lq′0Hs,r′0

.

By Lemma 3.11, we have

X ≲ µ̃1 + |I|1/q
′
0−1/q0X((X +A)p + 1),

where we have used ∥v∥L∞LQ0 (I×Rd) ≲ ∥v∥L∞Hs(I×Rd) ≲ A. If |I| is small enough (depending only

on A) and µ̃1 is small enough depending on I, A, we conclude that X ≲ µ̃1. Moreover,

∥u− v∥C0H(I×Rd) ≲ A+ ∥f(u)− f(v)∥
Lq′0Hs,r′0

≲A 1.

Divide I into |I|/C(A) intervals Ik such that |Ik| is small enough for each k. Similarly as the above,
on each Ik, we have

∥w∥Lq0Hs,r0∩L∞LQ0 (Ik×Rd) ≲ µ̃1

and

∥w∥C0H(Ik×Rd) ≲A 1.

By an inductive argument, the claim follows. □



COMPACT ATTRACTOR 13

3.3. Fixed time estimate. From (1.2) and our convention to suppress dependence on E we have

(3.11) ∥u(t)∥H ≲ 1 for all t ∈ [0,+∞)

and hence by Sobolev embedding we have

(3.12) ∥u(t)∥Lq ≲ 1 for all 2 ⩽ q ⩽
2d

d− 2s
and t ∈ [0,+∞).

From Lemma 2.2, we have

(3.13) ∥f(u)∥Hs,R ≲ 1 for all t ∈ [0,+∞).

3.4. Local in time estimates. Next we prove a local-in-time Strichartz estimate.

Lemma 3.14. (Local Strichartz control). For any time interval I ⊂ [0,+∞) and any admissible
pair (q, r) we have

(3.14) ∥u∥LqHs,r(I) ≲ ⟨|I|⟩
1
q

as well as the nonlinearity estimate

(3.15) ∥f(u)∥
Lq′0Hs,r′0 (I)

≲ ⟨|I|⟩
1
q′0 .

Proof. By Theorem 1.2, the existence and uniqueness of solution u are proved. Moreover, u is
global and u ∈ Lq

locH
s,r(R × Rd) for any (q, r) admissible. By subdividing I, it su�ces to prove

this lemma in the case when |I| is much smaller than 1. De�ne

X = ∥u∥Lq0 (I)Hs,r0 (Rd) .

By Strichartz and Hölder inequality, we have

X ≲ ∥u∥L∞H + ∥|u|pu∥
Lq′0 (I)Hs,r′0

+ ∥V u∥L1(I)Hs

≲ 1 + ∥|u|pu∥
Lq′0 (I)Hs,r′0

+ |I| ∥u∥L∞Hs

≲ 1 + |I|
1
q′0

− 1
q0 ∥u∥p

L∞LQ0
X

≲ 1 + |I|
1
q′0

− 1
q0X, ( since ∥u∥L∞LQ0 ≲ ∥u∥L∞H ≲ 1)

≲ 1 +
1

2
X,

if |I| is small enough. This give X = O(1) and then ∥f(u)∥
Lq′0Hs,r′0

= O(1). This completes the
proof. □

The following result is useful to prove asymptotic localisation frequency of v:

Proposition 3.15. (Smoothing e�ect). We have the following estimate

(3.16) ∥PNf(u)∥Lq′0 (I)Lr′0
≲ ⟨N⟩−s−η1 ⟨|I|⟩

1
q′0 .

Proof. It su�ces to prove Proposition 3.15 for |I| ⩽ 1. Indeed, assume that Proposition 3.15 holds
for |I| ⩽ 1. Divide I into O(|I|) subintervals Ik such that |Ik| ≈ 1. On each Ik, we have

∥PNf(u)∥Lq′0 (Ik)L
r′0

≲ ⟨N⟩−s−η1 .

Summing the above inequality in k, we obtain (3.16). By Lemma 3.14, we may also assume N ⩾ 1.
For convenience, we shall omit the domain I × Rd in all norms in this proof. Our �rst task is to
show that

(3.17) ∥DsPNf1(u)∥Lq′0Lr′0
≲ N−η1 ,

where f1(u) = λ|u|pu. For convenience, in the proof of (3.17), we abbreviate f1 by f .

Consider the case p > ⌈s⌉. Using Lemma 3.7 and Lemma 3.8, we only need to prove that

(3.18)

∥∥∥∥∥PN

(
f (h)(u)

h∏
i=1

Dβiu

)∥∥∥∥∥
Lq′0 Ḣv,r′0

≲ N−η1 ,
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where 1 ⩽ h ⩽ ⌊s⌋, βi, α ∈ Nd, |βi| ⩾ 1, |α| = ⌊s⌋ and
∑h

i=1 βi = α.
By Lemma 2.8, we have∥∥∥∥∥PN

(
f (h)(u)

h∏
i=1

Dβiu

)∥∥∥∥∥
Lq′0 Ḣv,r′0

≲

∥∥∥∥∥P≳Nf
(h)(u)

h∏
i=1

Dβiu

∥∥∥∥∥
Lq′0 Ḣv,r′0

(3.19)

+

h∑
k=1

∥∥∥∥∥∥f (h)(u)(P≳ND
βku)

h∏
i=1;i ̸=k

Dβiu

∥∥∥∥∥∥
Lq′0 Ḣv,r′0

,(3.20)

where P≳N = P⩾ N
1+⌊s⌋

. By Lemma 3.3, the right hand side of (3.19) is controlled by the following

∥∥∥P≳Nf
(h)(u)

∥∥∥
Lq1 Ḣv,r1

h∏
i=1

∥∥Dβiu
∥∥
Lq

0,i
1 Lr

0,i
1

(3.21)

+
∥∥∥P≳Nf

(h)(u)
∥∥∥
Lq2Lr2

h∑
k=1

∥∥Dβku
∥∥
Lq

k,k
2 Ḣv,r

k,k
2

h∏
i=1,i̸=k

∥∥Dβiu
∥∥
Lq

k,i
2 Lr

k,i
2
,(3.22)

where the above parameters satisfy, for each k ∈ [1, h],

1

q′0
=

1

q1
+

h∑
i=1

1

q0,i1

,(3.23)

1

r′0
=

1

r1
+

h∑
i=1

1

r0,i1

,(3.24)

1

q′0
=

1

q2
+

h∑
i=1

1

qk,i2

,(3.25)

1

r′0
=

1

r2
+

h∑
i=1

1

rk,i2

.(3.26)

In (3.21) and (3.22), the parameters are chosen such that, for each i ∈ [1, h], i ̸= k:

2

q0,i1

+
d

r0,i1

=
d

2
− (s− |βi|),(3.27)

2

qk,i2

+
d

rk,i2

=
d

2
− (s− |βi|),(3.28)

2

qk,k2

+
d

rk,k2

=
d

2
− (s− |βk| − v).(3.29)

It implies that the pairs (q1, r1), (q2, r2) in (3.21) and (3.22) satisfy:

2

q1
+

d

r1
=
d

2
− s1 + (p− h)

(
d

2
− s

)
,(3.30)

2

q2
+

d

r2
=
d

2
− s2 + (p− h)

(
d

2
− s

)
,(3.31)

where s1 = ⌊s⌋ −
(
2− p

(
d
2 − s

))
and s2 = s−

(
2− p

(
d
2 − s

))
.

Using Sobolev embedding Lemma 3.1 and Lemma 3.14, the right hand of (3.19) is bounded by
the following

(3.32)
∥∥∥P≳Nf

(h)(u)
∥∥∥
Lq1 Ḣv,r1

+
∥∥∥P≳Nf

(h)(u)
∥∥∥
Lq2Lr2

.
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De�ne ulo = P<Nη0u, uhi = u− ulo. Using Lemma 2.10, the second term in (3.32) is bounded by∥∥∥P≳Nf
(h)(ulo)

∥∥∥
Lq2Lr2

+
∥∥∥P≳N (f (h)(u)− f (h)(ulo))

∥∥∥
Lq2Lr2

≲ sup
|h̃|⩽1/N

∥∥∥τh̃f (h)(ulo)− f (h)(ulo)
∥∥∥
Lq2Lr2

+
∥∥∥f (h)(u)− f (h)(ulo)

∥∥∥
Lq2Lr2

≲ sup
|h̃|⩽1/N

∥∥τh̃ulo − ulo
∥∥
Lq12Lr12

∥∥(τh̃ulo, ulo)∥∥p−h

Lq22Lr22
+ ∥u− ulo∥Lq̃12Lr̃12

∥∥(ulo, τh̃ulo)∥∥p−h

Lq̃22Lr̃22

≲

∥∥∥∥ 1

N
∥∇ulo∥

L
r12
x

∥∥∥∥
L

q12
t

+ ∥uhi∥Lq̃12Lr̃12
,

where the above parameters satisfy the following

2

q22
+

d

r22
=

2

q̃22
+

d

r̃22
=
d

2
− s,

2

q12
+

d

r12
=

2

q̃12
+

d

r̃12
=
d

2
− s2,

and hence, by Lemma 3.14,∥∥(τh̃ulo, ulo)∥∥Lq22Lr22
,
∥∥(ulo, τh̃ulo)∥∥Lq̃22Lr̃22

≲ 1.

Thus, the second term in (3.32) is controlled by

Nη0

N
∥ulo∥Lq12Lr12

+ ∥uhi∥Lq̃12Lr̃12
≲
Nη0

N
∥Ds2u∥S0 + ∥Ds2uhi∥S0

≲
Nη0

N
+Nη0(s2−s) ≲

Nη0

N
+N−η0(2−p( d

2−s)) ≲ N−η1 .

We next estimate the �rst term in (3.32). If s ∈ N then v = 0 and hence, we estimate the �rst
term in (3.32) by similar argument to estimate the second term. Assume that s /∈ N. Then,
p > ⌈s⌉ = ⌊s⌋+ 1 ⩾ h+ 1 and hence, f ∈ C(h+2)(C). For ulo as the above, we have∥∥∥P≳Nf

(h)(u)
∥∥∥
Lq1 Ḣv,r1

≲
∥∥∥P≳Nf

(h)(ulo)
∥∥∥
Lq1 Ḣv,r1

+
∥∥∥P≳N(f (h)(u)− f (h)(ulo))

∥∥∥
Lq1 Ḣv,r1

≲
∥∥∥P≳Nf

(h)(ulo)
∥∥∥
Lq1 Ḣv,r1

+
∥∥∥f (h)(u)− f (h)(ulo)

∥∥∥
Lq1 Ḣv,r1

.

For convenience, we denote by A,B the �rst and the second term in the above expression. To
estimate A, using Lemma 2.10, Lemma 2.12, Lemma 3.2, Lemma 3.4 and Lemma 2.11, we have

A ≲ sup
h̃⩽1/N

∥∥∥τh̃f (h)(ulo)− f (h)(ulo)
∥∥∥
Lq1 Ḣv,r1

≲ sup
h̃⩽1/N

∥∥τh̃ulo − ulo
∥∥
Lq11 Ḣv,r11

sup
θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(τh̃ulo − ulo))
∥∥∥
Lq21Lr21

+ sup
h̃⩽1/N

∥∥τh̃ulo − ulo
∥∥
Lq12Lr12

sup
θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(τh̃ulo − ulo))
∥∥∥
Lq22 Ḣv,r22

≲ sup
h̃⩽1/N

∥∥τh̃ulo − ulo
∥∥
Lq11 Ḣv,r11

sup
θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(τh̃ulo − ulo))
∥∥∥
Lq21Lr21

+ sup
h̃⩽1/N

∥∥τh̃ulo − ulo
∥∥
Lq12Lr12

sup
θ∈[0,1]

∥∥∥f (h+2)(ulo + θ(τh̃ulo − ulo))
∥∥∥
Lq32Lr32

∥∥ulo + θ(τh̃ulo − ulo)
∥∥
Lq42 ḣv,r42

≲
1

N

∥∥D1+vulo
∥∥
Lq11Lr11

∥ulo∥p−h

L(p−h)q21L(p−h)r21
+

1

N
∥∇ulo∥Lq12Lr12

∥ulo∥p−h−1

L(p−h−1)q32L(p−h−1)r32
∥ulo∥Lq42 Ḣv,r42

≲
1

N

∥∥D1+s2ulo
∥∥
S0 ≲

1

N
Nη0(1+s2) ≪ N−η1 ,
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where the unde�ned parameters in the above estimates are chosen such that

2

q21
+

d

r21
= (p− h)

(
d

2
− s

)
,

2

q11
+

d

r11
=
d

2
− s1,

2

q32
+

d

r32
= (p− h− 1)

(
d

2
− s

)
,

2

q42
+

d

r42
=
d

2
− s+ v,

2

q12
+

d

r12
=
d

2
− s2,

and hence by Sobolev embedding ∥ulo∥L(p−h)q21L(p−h)r21
, ∥ulo∥L(p−h−1)q32L(p−h−1)r32

, ∥ulo∥Lq42 Ḣv,r42
≲∥∥DSulo

∥∥
S0 . This implies that the term A is acceptable.

Similarly, to estimate the term B, we have

B ≲
∥∥∥f (h)(u)− f (h)(ulo)

∥∥∥
Lq1 Ḣv,r1

≲ ∥u− ulo∥Lq31 Ḣv,r31
sup

θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(u− ulo))
∥∥∥
Lq41Lr41

+ ∥u− ulo∥Lq52Lr52
sup

θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(u− ulo))
∥∥∥
Lq62 Ḣv,r62

≲ ∥u− ulo∥Lq31 Ḣv,r31
sup

θ∈[0,1]

∥∥∥f (h+1)(ulo + θ(u− ulo))
∥∥∥
Lq41Lr41

+ ∥u− ulo∥Lq52Lr52
sup

θ∈[0,1]

∥∥∥f (h+2)(ulo + θ(u− ulo))
∥∥∥
Lq72Lr72

∥ulo + θ(u− ulo)∥Lq82 Ḣv,r82

≲ ∥uhi∥Lq31 Ḣv,r31
∥|u|+ |ulo|∥p−h

L(p−h)q41L(p−h)r41

+ ∥uhi∥Lq52Lr52
∥|u|+ |ulo|∥p−h−1

L(p−h−1)q72L(p−h−1)r72
(∥u∥

Lq82 Ḣv,r82
+ ∥ulo∥Lq82 Ḣv,r82

)

≲ ∥Ds2uhi∥S0 ≲ Nη0(s2−s) ≲ N−η1 ,

where the unde�ned parameters in the above expressions satisfy

2

q41
+

d

r41
= (p− h)

(
d

2
− s

)
,

2

q31
+

d

r31
=
d

2
− s1,

2

q72
+

d

r72
= (p− h− 1)

(
d

2
− s

)
,

2

q82
+

d

r82
=
d

2
− s+ v,

and by Sobolev embedding we have ∥|u|+ |ulo|∥L(p−h)q41L(p−h)r41
, ∥|u|+ |ulo|∥L(p−h−1)q72L(p−h−1)r72

, ∥u∥
Lq82 Ḣv,r82

, ∥ulo∥Lq82 Ḣv,r82
≲

∥Dsu∥S0 + ∥Dsulo∥S0 ≲ 1. Thus, the term B is acceptable. Combining with the boundedness of
A, we conclude that the right hand side of (3.19) is acceptable.
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We next estimate (3.20). Using the fact that |f (h)(u)| ≲ |u|p−h+1, |f (h+1)(u)| ≲ |u|p−h, Lemma
3.4, Lemma 3.14 and Hölder inequality, we have∥∥∥∥∥∥f (h)(u)(P≳ND

βku)

h∏
i=1;i ̸=k

Dβiu

∥∥∥∥∥∥
Lq′0 Ḣv,r′0

(3.33)

≲ ∥u∥p−h+1

Lq13Lr13

∥∥P≳ND
βku
∥∥
Lqk3 Ḣv,rk3

h∏
i=1;i ̸=k

∥∥Dβiu
∥∥
Lqi3Lri3

+ ∥u∥p−h+1

Lq13Lr13

∥∥P≳ND
βku
∥∥
Lq̃k3 Lr̃k3

∥∥Dβiu
∥∥
Lq̃i3 Ḣv,r̃i3

h∏
j=1;j ̸={k,i}

∥∥Dβju
∥∥
Lq̃

j
3Lr̃

j
3

+ ∥u∥p−h

Lq̃04Lr̃04
∥u∥

Lq̃14 Ḣv,r̃14

∥∥P≳ND
βku
∥∥
Lq̃k4 Lr̃k4

h∏
i=1;i̸=k

∥∥Dβiu
∥∥
Lq̃i4Lr̃i4

,

where the about parameter satisfy

2

q13
+

d

r13
=
d

2
− s,

2

qi3
+

d

ri3
=
d

2
− (s− |βi|),

2

qk3
+

d

rk3
=
d

2
− ⌊s⌋+

(
2− p

(
d

2
− s

))
+ |βk|,

2

q̃i3
+

d

r̃i3
=
d

2
− (s− |βi| − v),

2

q̃j3
+

d

r̃j3
=
d

2
− (s− |βj |),

2

q̃k3
+

d

r̃k3
=
d

2
− s+

(
2− p

(
d

2
− s

))
+ |βk|

2

q̃04
+

d

r̃04
=
d

2
− s,

2

q̃14
+

d

r̃14
=
d

2
− (s− v),

2

q̃i4
+

d

r̃i4
=
d

2
− (s− |βi|),

2

q̃k4
+

d

r̃k4
=
d

2
− s+

(
2− p

(
d

2
− s

))
+ |βk|.

Thus, using Sobolev embedding Lemma 3.1, (3.33) is bounded by∥∥P≳ND
βku
∥∥
Lqk3 Ḣv,rk3

+
∥∥P≳ND

βku
∥∥
Lq̃k3 Lr̃k3

+
∥∥P≳ND

βku
∥∥
Lq̃k4 Lr̃k4

≲
∥∥∥P≳ND

s−(2−p( d
2−s))u

∥∥∥
S0

≲ N−(2−p( d
2−s)) ≲ N−η1 ,

which is acceptable. This implies that the term (3.20) is acceptable. Then, (3.18) and hence (3.17)
holds. The case p even is much more simple and is left for the reader.

Our second task is to show the following estimate:

(3.34) ∥DsPN (V u)∥Lq′Lr′ ≲ N−η1 ,

for all admissible pair (q, r). To prove (3.34), we use the following results.

Lemma 3.16.
∥∥P≳NV

∥∥
Lr

≲V,k N
−k for all k ⩾ 0.

Lemma 3.17. (See [12][Corollary 1.1]) Let p, p1, p2 be such that 1 < p, p1, p2 <∞ and 1
p = 1

p1
+ 1

p2
.

The the following holds for all f, g ∈ S

∥Ds(fg)−Dsfg −Dsgf∥Lp ⩽ C ∥Df∥Lp1

∥∥Ds−1g
∥∥
Lp2

.

Denote P<Nη0V = Vlo and Vhi = V − Vlo. We have

∥DsPN (V u)∥Lr′ = ∥DsPN (Vlou)∥Lr′ + ∥DsPN (Vhiu)∥Lr′

=
∥∥DsPN (VloP>N/10u)

∥∥
Lr′ + ∥DsPN (Vhiu)∥Lr′
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Consider the second term. Using Lemma 3.16, Lemma 3.17 and Hölder inequality, we have

∥DsPN (Vhiu)∥Lq′Lr′ = ∥DsPN (Vhiu)∥Lq′Lr′

⩽ ∥Ds(Vhiu)∥Lq′Lr′

⩽ ∥Ds(Vhi)u∥Lq′Lr′ + ∥VhiDsu∥Lq′Lr′ + ∥DVhi∥Lq1Lr1

∥∥Ds−1u
∥∥
LqLr

≲ ∥DsVhi∥Lq1Lr1 ∥u∥LqLr + ∥Vhi∥Lq1Lr1 ∥Dsu∥LqLr

+ ∥DVhi∥Lq1Lr1

∥∥Ds−1u
∥∥
LqLr

≲V N−η0 .

where (q1, r1) satis�es
1
q1

= 1
q′ −

1
q and 1

r1
= 1

r′ −
1
r . Thus, this term is acceptable.

Consider the �rst term. Using Lemma 3.17 and Hölder inequality, we have∥∥DsPN (VloP>N/10u)
∥∥
Lq′Lr′ ⩽

∥∥Ds(VloP>N/10u)
∥∥
Lq′Lr′

⩽
∥∥DsVloP>N/10u

∥∥
Lq′Lr′ +

∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′

+ ∥DVlo∥Lq1Lr1

∥∥Ds−1(P>N/10u)
∥∥
LqLr

⩽ ∥DsVlo∥Lq1Lr1

∥∥P>N/10u
∥∥
LqLr +

∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′

+ ∥DVlo∥Lq1Lr1

∥∥Ds−1(P>N/10u)
∥∥
LqLr .

The �rst term and the third term are acceptable since
∥∥P>N/10u

∥∥
LqLr ≲ N−s

∥∥Ds(P>N/10u)
∥∥
LqLr ≲

N−s and
∥∥Ds−1(P>N/10u)

∥∥
LqLr ≲ N−1

∥∥Ds(P>N/10u)
∥∥
LqLr ≲ N−1. Consider now the second

term. First, we have ∥∥VloDs(P>N/10u)
∥∥
Lq̃′Lr̃′ (I×Rd)

≲ 1,

for all q̃, r̃ is su�ciently close to q, r.
Moreover, using Lemma 2.5 for 0 < δ < 1

2 , we have∥∥VloDs(P>N/10u)
∥∥
L2

t,x(I×Rd)
⩽

∑
M<Nη0 dyadic,

M̃>N/10 dyadic

∥VMDsuM̃∥
L2

t,x(I×Rd)

≲
∑

M<Nη0 dyadic,

M̃>N/10 dyadic

M (d−1)/2−δM̃−1/2+δ

⟨M⟩s

≲
∑

M<Nη0 dyadic

M (d−1)/2−δN−1/2+δ

≲ Nη0((d−1)/2−δ)N−1/2+δ,

this is an acceptable term if we choose η0, δ ≪ 1. By interpolation, this implies that the term∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′ is also acceptable. Thus, (3.34) holds. Hence, ∥DsPNf(u)∥Lq′0 (I)Lr′0 (Rd)

≲

N−η1 and the proof of Proposition 3.15 is completed. □

Remark 3.18. In the above proof, the condition s > sp is useful since we should have 2 > p
(
d
2 − s

)
.

In the critical case s = sp, the situation is more complex and the smoothing e�ect can be not true.

Remark 3.19. In the above proof, the case p even is more simple. To deal with this case, we
don't need to use Lemma 2.10, Lemma 2.11 to estimate the term of form

∥∥P≳Nf
(h)(u)

∥∥
LqḢṽ,r

,

where ṽ = 0 or ṽ = v. It su�ces to use the product chain rule for this purpose since f (h)(u) is a
polynomial in u, u.

Lemma 3.20. ([20, Lemma 5.1]) Let E > 0 and u be a global solution of (1.1) such that
supt∈R ∥u(t)∥H ⩽ E. Then, e−it∆u(t) is weakly convergent to u+ ∈ H as t→ +∞.

Proposition 3.21. ([20, Proposition 5.2]) Let E > 0 and u be a global solution of (1.1) such that
supt∈R ∥u(t)∥H ⩽ E. Then there exists a unique decomposition

(3.35) u(t) = eit∆u+ + v(t),

where u+ ∈ H with

(3.36) ∥u+∥2H ⩽ E
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and

(3.37) ∥v(t)∥2H ⩽ 4E,

for all t ⩾ 0. We also have the following identities

(3.38) v(t) = eit∆(u(0)− u+)− i

∫ t

0

ei(t−t′)∆f(u(t′))dt′

and

(3.39) v(t) = iw-lim
T→+∞

∫ T

t

ei(t−t′)∆f(u(t′))dt′.

Remark 3.22. Assume that the solution u in Proposition 3.21 is almost periodic in the sense that
{u(t) : t ∈ R+} is pre-compact in Hs. Then u+ = 0. Indeed, since e−it∆u(t) weakly converges to
u+ in Hs, e−it∆u(t) also weakly converges to u+ in L2. It su�ces to show that for all ϕ ∈ C∞

0 (Rd),
we have

lim
t→∞

〈
u(t), eit∆ϕ

〉
L2 = 0.

Let ε > 0. By assumption, there exists Cε > 0 such that

∥u(t, x)∥2L2(|x|⩾Cε)
⩽ ε, ∀t ∈ R+.

We have, for t large enough,∣∣〈u(t), eit∆ϕ〉
L2

∣∣2 ≲
∣∣∣〈u(t), eit∆ϕ〉

L2(|x|⩾Cε)

∣∣∣2 + ∣∣∣〈u(t), eit∆ϕ〉
L2(|x|⩽Cε)

∣∣∣2
≲ ∥u(t)∥2L2(|x|⩾Cε)

∥ϕ∥2L2 + ∥u(t)∥2L∞
t L2

x

∫
|x|⩽Cε

|eit∆ϕ|2dx

≲ ε ∥ϕ∥2L2 + t−dCd
ε ∥ϕ∥

2
L1

≲ ε.

This implies that e−it∆u(t) weakly converges to 0 in L2, hence, u+ = 0. This completes the desired
result.

Lemma 3.23. ([20, Lemma 5.6]) Let T ∈ R and u, v be as in Proposition 3.21. Then for t0 large
enough (depending on T, u), we have

S(T )v(t0) = v(T + t0) + o(1)

where S(t) is the �ow of (1.1) and o(1) goes to zero in H norm as t0 → +∞.

Proof. Fix T , and let t0 large enough. De�ne I = [t0, t0 + T ]. We see that v solves the following
equation:

Lv = f(v) + [f(v + eit∆u+)− f(v)].

As t0 → +∞, we have ∥∥eit∆u+∥∥Lq0Hs,r0∩L∞LQ0 (I×Rd)
→ 0.

Moreover, ∥∥eit∆u+∥∥C0
t H(I×Rd)

≲ 1.

By Lemma 3.14 and triangle inequality, we have

∥v∥Lq0Hs,r0∩C0
t H(I×Rd) ≲T 1.

Let

X =
∥∥f(v + eit∆u+)− f(v)

∥∥
Lq′0Hs,r′0 (I×Rd)

.

By Lemma 3.11, we have

X ≲ |T |1/q
′
0−1/q0

(∥∥eit∆u+∥∥Lq0Hs,r0 (I×Rd)
+
∥∥eit∆u+∥∥Lq0 Ḣs,r0 (I×Rd)

∥∥(u, eit∆u+)∥∥pL∞LQ0 (I×Rd)

+
∥∥eit∆u+∥∥L∞LQ0 (I×Rd)

∥∥(u, eit∆u+)∥∥p−1

L∞LQ0 (I×Rd)

∥∥(u, eit∆u+)∥∥Lq0Hs,r0 (I×Rd)

)
,

which goes to zero as t0 → +∞. Thus, by perturbation Lemma 3.13, the claim follows. □
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4. Frequency localisation

In this section, we prove the following asymptotic localisation frequency of the weakly bound
component v of u:

Proposition 4.1. ([20, Proposition 6.1]) Let E > 0, u be a global solution of (1.1) such that
supt∈R ∥u(t)∥H ⩽ E and v be the weakly bound component of u. Then, we have

(4.1) lim sup
t→+∞

sup
N⩽1

N−η3 ∥P⩽Nv(t)∥H ≲ 1

and

(4.2) lim sup
t→+∞

sup
N⩾1

Nη3 ∥P⩾Nv(t)∥H ≲ 1.

Proof. The main idea is to use the Duhamel formulas (3.38) and (3.39).
Fix ε > 0. Let uε ∈ C∞

0 (Rd) such that

u(0)− u+ = uε +OH(ε2).

Hence, from (3.38), we have

(4.3) v(t) = eit∆uε − i

∫ t

0

ei(t−t′)∆f(u(t′))dt′ +OH(ε2).

To prove (4.1), it su�ces to show that

(4.4) ∥P⩽Nv(t)∥H ≲ 1,

for t large enough (can depend on E, u, ε but uniform in N) and N ⩽ 1.
Using (4.3) and (3.39), we have

∥P⩽Nv(t)∥2H =
∣∣⟨P⩽Nv(t), P⩽Nv(t)⟩H

∣∣
⩽

〈
iw-lim
T→+∞

∫ T

t

ei(t−t′)∆P⩽Nf(u(t
′))dt′,

P⩽Ne
it∆uε − i

∫ t

0

ei(t−t′′)∆P⩽Nf(u(t
′′))dt′′

〉
H

+O(ε2)

⩽
∫ T

t

∣∣∣〈ei(t−t′)∆P⩽Nf(u(t
′)), P⩽Ne

it∆uε

〉
H

∣∣∣ dt′
+

∣∣∣∣∣
∫ T

t

∫ t

0

YN (t′, t′′)dt′′dt′

∣∣∣∣∣+O(ε2),

for T large enough and YN is de�ned by

YN (t′, t′′) =
〈
ei(t−t′)∆P⩽Nf(u(t

′)), ei(t−t′′)∆P⩽Nf(u(t
′′))
〉
H
.

For the �rst integral, we have∥∥∥P⩽Ne
it′∆uε

∥∥∥
Hs,R′

≲uε

1

|t′|d(1/R−1/2)
.

Since R < 2d
d+4 , the exponent of |t

′| is larger than 2, hence, the �rst integral is bounded by O(ε2)

if t, T (t < T ) are large enough (not depend on N).
The second integral is bounded by ∫ ∞

t

∫ t

0

|YN (t′, t′′)| dt′dt′′.
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Using Lemma 2.2, we have

|YN (t′, t′′)| =
∣∣∣〈P⩽Nf(u(t

′))), ei(t
′−t′′)∆P⩽Nf(u(t

′′))
〉
H

∣∣∣
≲ ∥P⩽Nf(u(t

′))∥Hs,R

∥∥∥ei(t′−t′′)∆P⩽Nf(u(t
′))
∥∥∥
Hs,R′

≲ ∥P⩽Nf(u(t
′))∥LR ∥P⩽Nf(u(t

′′))∥LR

1

|t′ − t′′|d(1/R−1/2)

≲
1

|t′ − t′′|d(1/R−1/2)
.

Moreover, using Lemma 2.2, Bernstein's inequality, we have

|YN (t′, t′′)| ≲ ∥P⩽Nf(u(t
′))∥Hs ∥P⩽Nf(u(t

′′))∥Hs

≲ ∥P⩽Nf(u(t
′))∥L2 ∥P⩽Nf(u(t

′′))∥L2

≲ Nd(2/R−1) ∥f(u(t′))∥LR ∥f(u(t′′))∥LR

≲ Nd(2/R−1).

Combining all the above, we have∫ ∞

t

∫ t

0

|YN (t′, t′′)| dt′dt′′ ≲
∫ ∞

t

∫ t

0

min

(
1

t′ − t′′
, N2

)d(1/R−1/2)

dt′′dt′.

Since R < 2d
d+4 , the exponent d(1/R− 1/2) > 2, hence, the claim (4.4) follows.

We now prove (4.2). As before, we have

∥P⩾Nv(t)∥2H ≲ ε2 +

∣∣∣∣∣
∫ T

t

∫ t

0

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ,
for T large enough, where

ZN (t′, t′′) =
〈
ei(t−t′)∆P⩾Nf(u(t

′)), ei(t−t′′)∆P⩾Nf(u(t
′′))
〉
H
.

Thus, it su�ces to show that ∣∣∣∣∣
∫ T

t

∫ t

0

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ≲ N−η3 .

Consider the region where t′ ⩾ t+Nη2 . We have

|ZN (t′, t′′)| ≲ |t′ − t′′|−d(1/R−1/2).

Since d(1/R− 1/2) > 2, the contribution of this term is

≲
∫
t′>t+Nη2

∫
t′′<t

|t′ − t′′|−d(1/R−1/2)dt′′dt′ = O(N−η3),

where we use N−η2 ≪ N−η3 . Similar argument for the region t′′ ⩽ t − Nη2 . It remains to prove
that ∣∣∣∣∣

∫ t+Nη2

t

∫ t

max(0,t−Nη2 )

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ≲ N−η3 .

By Hölder inequality, the left hand side is bounded by

∥P⩾Nf(u(t
′))∥

L
q′0
t′ H

s,r′0
x ((t,t+Nη2 )×Rd)

×∥∥∥∥∥
∫ t

max(0,t−Nη2 )

ei(t
′−t′′)∆P⩾Nf(u(t

′′))dt′′

∥∥∥∥∥
L

q0
t′ H

s,r0
x ((t,t+Nη2 )×Rd)

.

By Strichartz, the left hand side is bounded by

∥P⩾Nf(u)∥2Lq′0Hs,r′0 ((max(t−Nη2 ,0),t+Nη2 )×Rd)
,
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which by Proposition 3.15 and dyadic decomposition can be bounded by

O(N2η2/q
′
0N−2η1),

this is acceptable. The proof is completed.
□

5. Spatial localisation

By Proposition 1.7, it su�ces to show the asymptotic localisation of v in spatial in L2. The
proof is the same as in [20] except that we work on fractional derivative in this paper. Thus, in
this section, we only sketch the main step in the proof of asymptotic localisation in spatial of v
and then the main result Theorem 1.3. We refer the reader to [20] for a complete proof. First, we
have the following result:

Theorem 5.1. ([20, Theorem 7.1]) Let E > 0, 0 < µ0 < 1. There exist J, µ4 (depending
only on E,µ0) with the following property: For any forward-global solution u of (1.1) such that
supt∈R ∥u(t)∥H ⩽ E, there exists functions x1, x2, · · · , xJ : R+ → R, such that

(5.1) lim sup
t→+∞

∫
inf1⩽j⩽J |x−xj(t)|⩾1/µ4

|v(t, x)|2dx ≲ µ2
0.

5.1. First step: L∞
x spatial localisation at �xed times. De�ne vmed = Pµ2<·<1/µ2

v. From
Proposition 4.1, we have, for t large enough:

(5.2) ∥v(t)− vmed(t)∥H ≲ µη3

2 .

Thus,

(5.3) u(t) = eit∆u+ + vmed(t) +OH(µη3

2 ).

As in [20], there exists J depending on E,µ0 and functions x1(t), x2(t), · · · , xJ(t) such that

(5.4) |vmed(t, x)| < µ
1/η1

3 whenever inf
1⩽j⩽J

|x− xj(t)| ⩾ µ−1
3 .

Moreover, for each t > 0 and j ̸= k, xj(t) ≡ xk(t) or |xj(t)− xk(t)| > µ−1
3 .

5.2. Second step: L∞
x spatial localisation on a time interval. Fix t0 a su�cient late time and

I = [t0 − µ−1
1 , t0 + µ−1

1 ]. Let D : Rd → R+ be the distance function D(x) = inf1⩽j⩽J |x− xj(t0)|;
thus |vmed(t0, x)| < µ

1/µ1

3 whenever D ⩾ µ−1
3 .

Let χ : Rd → R+ be a smooth cuto� function which equals to one when D(x) ⩽ 2µ−1
3 , vanishes

when D(x) ⩾ 3µ−1
3 and obeys the bounds ∇kχ = Ok(µ

k
3) for k ⩾ 0. We can let χ(x) = χ1(µ3x)

and chose suitable function χ1. We have the following result:

Lemma 5.2. ([20, Lemma 7.5]) We have

lim sup
t0→+∞

∥∥∥ei(t−t0)∆((1− χ)u(t0))
∥∥∥
Lq0Hs,r0∩L∞LQ0 (I×Rd)

≲ µη3

2 .

We have the following spatial decay:

Lemma 5.3. ([20, Lemma 7.6]) We have

lim sup
t0→+∞

∥∥∥1D>µ−2
3
u
∥∥∥
Lq0Lr0 (I×Rd)

≲µ1
µη3

2 .

As a consequence, we have the following result:

Corollary 5.4. ([20, Corollary 7.7]) For t0 large enough and any I ′ ⊂ I, we have∥∥∥∥1D>µ−3
3

∫
I′
ei(t0−t′)∆f(u(t′))dt′

∥∥∥∥
L2

x(Rd)

≲µ1
µη3

2 .
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5.3. Third step: L2
x localisation at �xed time. Using Corollary 5.4, we have the following

result:

Proposition 5.5. ([20, Proposition 7.9]) Let χ3 : Rd → R+ be a smooth cuto� function which
equals 1 when D ⩾ 2µ−3

3 , equals 0 when D ⩽ µ−3
3 and χ3 has bounded derivatives. Then for t0

large enough, we have
χ3v(t0) = OL2(µc

1),

for some c > 0.

Theorem 5.1 is followed from Proposition 5.5. As a consequence of Theorem 5.1, we have the
following asymptotic spatial localisation of v, which is the main result in this section:

Proposition 5.6. ([20, Theorem 8.1]) Let E > 0 and 0 < µ0 < 1. Then there exists µ5 depending
on E,µ0 (and on the other �xed parameters) with the following properties: For any global solution
u of (1.1) such that supt∈R ∥u(t)∥H ⩽ E, we have

(5.5) lim sup
t→+∞

∫
|x|⩾1/µ5

|v(t, x)|2dx ≲ µ2
0,

where v is the weak bound component of u.

Using asymptotic localisation in frequency and spatial of v Proposition 4.1 and Proposition 5.6,
we give the proof of the main result:

Proof of Theorem 1.3. By Proposition 1.7, Proposition 4.1 and Proposition 5.6, there exists a
compact set K ⊂ H such that

lim
t→+∞

distH(v(t),K) = 0

for all radial global solution u which is uniformly bounded in H.
Let KE,rad be the closure of the set of all limit points limtn→+∞ v(tn), where tn ranges over se-

quences of times which converge to in�nity. Then, KE,rad is close and hence is a compact subset of
K. Let us prove that KE,rad is also an attractor. Indeed, let tn → +∞. Since distH(v(tn),K) → 0
as n→ +∞, there exists kn ∈ K such that ∥v(tn)− kn∥H → 0. By the compactness of K, for each
sub-sequence of (tn) there exists φ ∈ K and a sub-sequence of (tn) (for convenience still denotes by
(tn)) such that ∥v(tn)− φ∥H → 0. Thus, φ ∈ KE,rad and hence, limt→+∞ distH(v(t),KE,rad) = 0.
By local theory and Lemma 3.23, KE,rad is invariant under S(t) for t small enough and hence for
all t large also.

Finally, we show the uniqueness of u+. If ũ+ satis�es the same properties of u+ then {eit∆(u+−
ũ+), t ⩾ 0} is pre-compact in H. Moreover, for 2 < p ⩽ 2d

d−2s ,∥∥eit∆(u+ − ũ+)
∥∥
Lp → 0, as t→ +∞.

Combining the above ∥∥eit∆(u+ − ũ+)
∥∥
H

→ 0 as t→ +∞.

Thus, u+ = ũ+, which completes the proof. □
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