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A COMPACT ATTRACTOR FOR ENERGY CRITICAL AND

SUPER-CRITICAL NLS

PHAN VAN TIN

Abstract. We study the asymptotic behavior of large data solutions to nonlinear Schrödinger
equations (NLS): iut + ∆u = λ|u|pu + V u, where p ⩾ 4

d−2
and V ∈ C∞

0 (Rd). In the case
4
d

< p < 4
d−2

, Tao [12] proved that in radial setting, as t → +∞, any solution u of bounded

energy can split into a term of form eit∆u+ and remainder term converges in H1(Rd) to a

compact attractor which is invariant under the NLS �ow. In the case p ⩾ 4
d−2

, we work on

Sobolev space Hs(Rd) for some s > sp := d
2
− 2

p
, which is more complex than working on

H1(Rd). Basing on the method in [12], we prove that any radial solution with uniform bounded
on Hs(Rd) can split as in the work of Tao.
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1. Introduction

We consider the following (NLS) equation:

(1.1)

{
iut +∆u = λ|u|pu+ V u, (t, x) ∈ R× Rd,

u(0) = ϕ,

where d ⩾ 5, λ = ±1, p ⩾ 4
d−2 , p is even or p > ⌈s⌉ and V ∈ C∞

0 (Rd). Let sp = d
2 − 2

p . Fix s such

that d
2 > s > sp, the energy is de�ned by

(1.2) E(u) = sup
t∈I

∥u(t)∥2Hs ,

For convenience, denote H = Hs. We abbreviate ∥f∥Lp(Rd) by ∥u∥Lp or sometimes by ∥u∥p.
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We consider the following conjecture which is called soliton resolution conjecture: any global
uniform bounded solution u of dispersive equations can be decomposed as t→ +∞ as follows:

u(t) = eit∆u+ +

J∑
j=1

Rj(t, x) + o(1),

where Rj are solitons and o(1) converges to zero as t → +∞. There are two special cases of this
conjecture:

(1) As t→ +∞, u(t) =
∑J=1

j=1 Rj(t, x). In this case, u(t, x) is called multi-soliton.

(2) As t→ +∞, u(t) = eit∆u+. In this case, u(t, x) scatters forward in time.

Recently, in [6] and [5], the authors proved the soliton resolution conjecture holds for the ra-
dial critical wave equation in all odd space dimensions and in six space dimension. To the best
of our knowledge, there is not a proof for the soliton resolution conjecture for general nonlinear
Schrödinger equations even in radial setting. In [12] and [13], the author proved a weaker result
than the above soliton resolution conjecture. More precise, the author showed that any radial
uniform bounded solution of a nonlinear Schrödinger equation (NLS) can decompose as t → +∞
by u(t) = eit∆ +K + o(1), where K is a compact set which is invariant under �ow of NLS. Our
goal of this paper is to give a similar result to [12, 13] in the energy critical and supercritical cases
i.e p ⩾ 4

d−2 .

In energy critical and energy subcritical, there are many works relating to two above special
cases of the soliton resolution conjecture for nonlinear Schrödinger equations. Let us give a short
introduce for studying NLS in energy supercritical case. In [4], the authors proved local well posed-
ness of simple power NLS (V = 0 in (1.1)) in high regular Sobolev space Hs(Rd) (s ⩾ sp). In [10],
the authors showed that for defocusing NLS in high dimensions (d ⩾ 5), any uniform bounded in

critical Sobolev space Ḣsp is global and scatters under a suitable condition of sp. Specially, in [11],
the authors showed that there exists a blow up solutions for NLS in energy supercritical setting
even in defocusing case. In focusing case, there is not many studying for asymptotic behavior of
solutions for large initial data in energy supercritical setting. Recently, in [7], we establish pro�le
decomposition and prove some scattering results for general nonlinear Schrödinger equations.

Inspiring by [4], we study local and global theory for (1.1). De�ne

ρ =
p+ 2

1 + ps/d
, γ =

4(p+ 2)

p(d− 2s)
.

It is easy to check that (γ, ρ) is a admissible pair and satisfy the Sobolev embedding Ḣs,ρ ↪→ Lρ∗
,

where ρ∗ such that
1

ρ′
=

p

ρ∗
+

1

ρ
.

We have the following properties of ρ, γ:

Proposition 1.1 ([4][Proposition 1.5). ] We have

(i) 2 < ρ < 2d
d−2 ;

(ii) 2/γ = d(1/2− 1/ρ), and hence (γ, ρ) is an admissible pair;
(iii) ρ < d/s and hence ρ∗ > ρ;
(iv) 1/ρ′ = p/ρ∗ + 1/ρ;
(v) 1/γ′ ⩾ p/γ + 1/γ.

As in [4], we have the following result.

Theorem 1.2. Let ϕ ∈ H and p, s be as the above. Then there exists a solution of (1.1) u ∈
C(0, Tmax;H) ∩ Lγ

loc
(0, Tmax;H

s,ρ). Moreover, the following properties hold:

i u ∈ Lq(0, T ;Hs,r) for every admissible pair (q, r) and every T < Tmax.
ii u is unique in Lγ(0, T ;Hs,ρ) for every T < Tmax.
iii ∥u(t)∥L2 = ∥ϕ∥L2 and E(u(t)) = E(ϕ) for all t ∈ (0, Tmax).
iv If Tmax <∞ then

lim
t→ Tmax

∥u(t)∥H = ∞.
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From Theorem 1.2, we see that if solution u has bounded energy then u is global. Inspire by
[12], we study asymptotic behavior of solutions with uniformly bounded energy. Our main result
is the following:

Theorem 1.3. Let E > 0. Then there exists a compact subset KE,rad ⊂ H which is invariant
under the NLS �ow, and such that for every radial global solution u of energy at most E, there
exists a unique radiation u+ ∈ H such that

(1.3) lim
t→+∞

distH(u(t)− eit∆u+,KE,rad) = 0.

Here and in the sequel we write distH(f,K) := inf{∥f − g∥ : g ∈ K} for the distance between f
and K.

Remark 1.4. Consider the compact set KE,rad in the theorem 1.3. Let u0 ∈ KE,rad and u be the
associated solution of (1.1). Since KE,rad is invariant under �ow of (1.1), u(t) ∈ KE,rad for all t ∈ R.
Thus, {u(t) : t ∈ R} is pre-compact in Hs and u is called an almost periodic solution. Assume that
each almost periodic solution of (1.1) must be zero, this property is called rigidity property (see
e.g [9][Theorem 5.1]). Then Theorem 1.3 implies that each uniformly bounded solution of (1.1)
scatters in both directions. However, in the case s = sp, the situation is more complex since local
smoothing e�ect can not hold in this case (see Remark 3.18).

Remark 1.5. It seems that we could also obtain a similar result in [12][Theorem 1.28] in nonradial
setting. However, in this paper, we only focus on solutions in radial setting.

Let u be a solution as in Theorem 1.3. From Lemma 3.20, e−it∆u(t) is weakly convergent to
some u+ ∈ Hs(Rd) as t→ +∞. De�ne v(t) = u(t)−eit∆u+, which be called weak bound component
of u. We will show that u+ satis�es the property (1.3).

We recall the following equivalence of precompactness and localisation:

Proposition 1.6. (see e.g [12][Proposition B.1]) Let K ⊂ H. Then the following are equivalent:

(i) K is precompact in H.
(ii) K is bounded, and for any µ0 > 0 there exists µ1 > 0 such that we have frequency

localisation estimate ∥∥P⩾1/µ1
f
∥∥
H

≲ µ0

and the spatial localisation estimate∫
|x|⩾1/µ1

|f(x)|2dx ≲ µ2
0,

for all f ∈ K.
(iii) K is bounded, and for any µ0 > 0 there exists µ1 > 0 such that we have frequency

localisation estimate ∥∥P⩾1/µ1
f
∥∥
H

≲ µ0

and

∥P⩽µ1
f∥H ≲ µ0

and the spatial localisation estimate∫
|x|⩾1/µ1

|f(x)|2 + |Dsf(x)|2dx ≲ µ2
0,

for all f ∈ K.

The above proposition is generalized by the below criterion for compact attractor:

Proposition 1.7. (see e.g [12][Proposition B.2]) Let U be a collection of trajectories u : R+ → H.
Then the following are equivalent:

(i) There exists a compact set K ⊂ H such that limt→+∞ distH(u(t),K) = 0 for all u ∈ U .
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(ii) U is asymptotically bounded in the sense that

(1.4) sup
u∈U

lim sup
t→+∞

∥u(t)∥H <∞

and for any µ0 > 0 there exists µ1 > 0 such that we have the asymptotic frequency
localisation estimate

lim sup
t→+∞

∥P1/µ1
u(t)∥H ≲ µ0

and the spatial localisation estimate

lim sup
t→+∞

∫
|x|⩾1/µ1

|u(t, x)|2dx ≲ µ2
0

for all u ∈ U .
(iii) U is asymptotically bounded in the sense of (1.4), and for any µ0 > 0 there exists µ1 > 0

such that we have the asymptotic frequency localisation estimate

lim sup
t→+∞

∥P⩾1/µ1
u(t)∥H ≲ µ0

and
lim sup
t→+∞

∥P⩽µ1
u(t)∥H ≲ µ0

and the following improved spatial localisation estimate

lim sup
t→+∞

∫
|x|⩾1/µ1

|u(t, x)|2 + |Dsu(x)|2dx ≲ µ2
0

for all u ∈ U .

From Proposition 1.6 and Proposition 1.7, we see that precompactness are formally equivalent
to localisation in spatial and frequency. From Proposition 1.7, to prove Theorem 1.3, we only need
to prove asymptotic localisation in spatial and frequency of v(t).

This paper is organised as follows. In Section 2, we introduce the useful notations and basic
tools in this paper. In Section 3, we prove local well-posedness of solutions of (1.1) in Hs and give
some basic results in the proof of the main result. In Section 4, we prove asymptotic localisation in
frequency of v(t). In Section 5, we prove asymptotic localisation in spatial of v(t) and then prove
the main theorem 1.3. In Appendix, we prove some lemmas used in the proof of the main result.

Acknowledgement

The author wishes to thank Prof.Thomas Duyckaerts for his guidance and encouragement. The
author is supported by postdoc fellowship of Labex MME-DII: SAIC/2022 No 10078.

2. Notation and preliminaries

Let L = i∂t +∆ be Schrödinger operator.

For convenience, we de�ne f1(u) = λ|u|pu, f2(u) = V u and f(u) = f1(u) + f2(u).

For each X Banach space, de�ne ∥(u, v)∥X = ∥u∥X + ∥v∥X .

Denote S is the space of Schwartz functions. We shall need some small exponents

1 ≫ η0 ≫ η1 ≫ η2 ≫ η3 > 0,

where η0 is small enough depending on E and the other �xed parameters, ηi is small enough de-
pending on E, η0, η1, · · · , ηi−1.

Moreover, in Section 5, we shall need some other constants:

1 > µ0 ≫ µ1 ≫ µ2 ≫ µ3 ≫ µ4 > 0.

where µ0 is small enough depending on E and the other �xed parameters, µi is small enough
depending on µ0, µ1, · · · , µi−1.
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Lemma 2.1. There exists an admissible pair (q0, r0) with q0 > 2, exponents 2 < Q0, Q < 2d
d−2s ,

and an exponent 1 ⩽ R < 2d
d+4 such that

(2.1)
1

r0
+

p

Q0
=

1

r′0

and

(2.2)
1

2
+
p

Q
=

1

R
.

Lemma 2.2. For any u ∈ H, we have

∥f(u)∥Hs,R ≲ ∥u∥p+1
H + ∥u∥H .

Proof. By Hölder, we have ∥∥Djf1(u(t))
∥∥
LR ≲ ∥u(t)∥pLQ

∥∥Dju(t)
∥∥
L2 ,

for j = 0, s. Let a be such that 1
R = 1

a + 1
2 . Thus, 2 ⩽ a ⩽ d

2 . By Hölder and Sobolev embedding,
for j = 0, s, we have ∥∥Dj(f2(u))

∥∥
LR =

∥∥Dj(V u)
∥∥
LR

≲
∥∥Dj(V )

∥∥
La ∥u∥L2 + ∥V ∥La

∥∥Dju
∥∥
L2

≲ ∥u∥L2 +
∥∥Dju

∥∥
L2

≲ ∥u∥H .

This implies the desired result. □

Denote F(f) = f̂ is Fourier-transformation by space variable. We have the following basic
property in Fourier-analysis.

Lemma 2.3. Let f, g ∈ S. we have the following identity:

F(fg) = F(f) ∗ F(g).

Lemma 2.4. For any time interval I ⊂ R, any t0 ∈ I and any 0 < δ ⩽ 1
2 , we have

∥uv∥L2
t,x(I×Rd) ≲

(
∥u(t0)∥Ḣ−1/2+δ +

∥∥∥|∇|−1/2+δLu
∥∥∥
Lq′Lr′ (I×Rd)

)
×
(
∥v(t0)∥Ḣ(d−1)/2−δ +

∥∥∥|∇|(d−1)/2−δLv
∥∥∥
Lq̃′Lr̃′ (I×Rd)

)
,

for any u, v and any admissible pairs (q, r), (q̃, r̃) with q, q̃ > 2.

As a consequence, we have the following result.

Lemma 2.5. (see e.g [12][Corollary 4.4]) For any time interval I ⊂ R, any N,M > 0 dyadic
numbers, we have

∥uNuM∥L2
t,x(I×Rd) ≲ ⟨|I|⟩

1
2
M (d−1)/2−δN− 1

2+δ

⟨N⟩s ⟨M⟩s
.

Lemma 2.6 (Dispersive estimate). For all 2 ⩽ r ⩽ +∞ and f ∈ Lr′(Rd), we have∥∥eit∆f∥∥
Lr ≲

1

|t|d(1/2−1/r)
∥f∥Lr′ .

Lemma 2.7. For 1 ⩽ r ⩽ 2, f ∈ D(Rd), we have∥∥eit∆f∥∥
Lr ≲f (1 + t)M ,

for all M ∈ N and M > d/2− d/r.
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Proof. Let a be such that
1

r
=

1

a
+

1

2
.

Let M be a natural number such that Ma > d.
We have ∥∥eit∆f∥∥

Lr =
∥∥∥F−1(e−it|ξ|2 f̂(ξ))(x)

∥∥∥
Lr

x

=
∥∥∥(1 + |x|)−M (1 + |x|)MF−1(e−it|ξ|2 f̂(ξ))(x)

∥∥∥
Lr

x

≲
∥∥(1 + |x|)−M

∥∥
La

∥∥∥(1 + |x|)MF−1(e−it|ξ|2 f̂(ξ))(x)
∥∥∥
L2

x

≲
∥∥∥e−it|ξ|2 f̂(ξ)

∥∥∥
HM

ξ

≲f (t+ 1)M .

□

3. Local estimate

This section gives some useful tools for studying asymptotic behavior as t → +∞ of solutions
of (1.1). First, we introduce some basic tools in studying of fractional derivative.

3.1. Basic tools of fractional derivative. We need the following results on fractional derivative
for our analysis:

Lemma 3.1. Let −∞ < s2 ⩽ s1 < ∞ and 1 < p1 ⩽ p2 < ∞ with s1 − d
p1

= s2 − d
p2
. Then we

have the following embedding:

Ḣs1,p1 ⊂ Ḣs2,p2 , Hs1,p1 ⊂ Hs2,p2 .

Lemma 3.2 (Product chain rule 1). (see e.g [1][Lemma 2.2]) Let s ⩾ 0, 1 < r, r2, p1 < ∞,
1 < r1, p2 ⩽ ∞ such that 1

r = 1
ri

+ 1
pi

(i = 1, 2). Then,

∥fg∥Ḣs,r ≲ ∥f∥r1 ∥g∥Ḣs,p1 + ∥f∥Ḣs,r2 ∥g∥p2
.

As a consequence of the above lemma, we have the following:

Lemma 3.3 (Product chain rule 2). (see e.g [1][Corollary 2.3]) Let s ⩾ 0, q ∈ N (q ⩾ 1),
1 < r, rik <∞, for 1 ⩽ i, k ⩽ q: 1

r =
∑q

i=1
1
rik
. Then∥∥∥∥∥

q∏
i=1

fi

∥∥∥∥∥
Ḣs,r

≲
q∑

k=1

∥fk∥
Ḣs,rk

k

∏
i̸=k

∥fi∥rik

 .

Lemma 3.4 (Fractional chain rule). (see e.g [1][Lemma 2.4]) Let G ∈ C1(C), s ∈ (0, 1), 1 <
r, r2 <∞, and 1 < r1 ⩽ ∞ satisfying 1

r = 1
r1

+ 1
r2
,

∥G(u)∥Ḣs,r ≲ ∥G′(u)∥r1 ∥u∥Ḣs,r2 .

Lemma 3.5 (Gagliardo-Nirenberg inequality). (see [2]). Let s1 ⩽ s2, p0 > 1, s = θs1 + (1− θ)s2,
1
p = θ

p1
+ 1−θ

p0
. Then

∥u∥Hs,p ≲ ∥u∥θHs1,p1 ∥u∥
1−θ
Hs2,p0 .

Lemma 3.6 (Homogeneous Gagliardo-Nirenberg inequality). Let s1 ⩽ s2, p0 > 1, s = θs1 + (1−
θ)s2,

1
p = θ

p1
+ 1−θ

p0
. Then

∥u∥Ḣs,p ≲ ∥u∥θḢs1,p1 ∥u∥
1−θ

Ḣs2,p0
.

Lemma 3.7. (see [1][Lemma 3.2]) Let s > 0, 1 < p <∞ and v = s− ⌊s⌋. Then∑
|α|=⌊s⌋

∥Dαf∥Ḣv
p
≈ ∥f∥Ḣs

p
,

where ⌊s⌋ is largest integer below s.
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Lemma 3.8 (Leibniz rule). Let f ∈ Ck be a real variable function and α = (α1, α2, · · ·, αd) ∈ Nd

such that |α| ⩽ k. Then Dαf(u) is written as follows:

(3.1) Dαf(u) =

|α|∑
h=1

∑
Λh

α

Cα,hf
(h)(u)

h∏
i=1

Dβiu,

where Cα,h ∈ N and Λh
α = {(β1, · · ·, βh) : for each i: βi ∈ Nd, β1 + · · ·+ βh = α, |βi| ⩾ 1}.

3.2. Local theory in Hs. In this subsection, we prove local theory for solutions in Hs of (1.1)
Theorem 1.2. De�ne

G(f(u(t))) = −i
∫ t

0

S(t− τ)f(u(τ)) dτ.

We may rewrite (1.1) by
u(t) = S(t)ϕ+ G(f(u(t))).

Before proving Theorem 1.2, we need some tools.

Lemma 3.9 ([4][Lemma 4.1). ] We have for any (q, r) admissible:

∥G(f(u))∥Lq(0,T )Ḣs,r(Rd) ≲ T δ ∥u∥p+1

Lγ(0,T )Ḣs,ρ(Rd)
+ T

γ−2
γ ∥u∥Lγ(0,T )Ḣs,ρ(Rd)(3.2)

and

∥G(f(u))− G(f(v))∥Lq(0,T )Lr(Rd) ≲ T δ
(
∥u∥p

Lγ(0,T )Ḣs,ρ(Rd)
+ ∥v∥p

Lγ(0,T )Ḣs,ρ(Rd)

)
∥u− v∥Lγ(0,T )Lρ(Rd)

+ T
γ−2
γ ∥u− v∥Lγ(0,T )Lρ(Rd) ,(3.3)

where δ = 1− p+2
γ .

Proof. Use the proof of Lemma 3.11 and note that Ḣs,ρ ↪→ Lρ∗
. Remark that in this proof, we

only need the condition p even or p > ⌊s⌋. □

Moreover, we have the following unique result.

Proposition 3.10 ([4][Proposition 4.2). ] Let ϕ ∈ Hs, and suppose u ∈ Lγ(0, T ;Hs,ρ) is a solution
of (1.1). Then u ∈ Lq(0, T ;Hs,r) ∩ C([0, T ];Hs) for every admissible pair (q, r). Furthermore, if
v ∈ Lγ(0, T ;Hs,ρ) is also a solution of (1.1), then u = v.

Proof. By Lemma 3.9 and Strichartz, it is easy to prove that u ∈ Lq(0, T ;Hs,r) ∩ C([0, T ];Hs).
Assume u(t) ̸= v(t) for some t ∈ [0, T ]. Let t0 = inf{t ∈ [0, T ], u(t) ̸= v(t)}. Using Lemma 3.9, we
have, for all t ∈ [t0, T ]:

∥u− v∥Lγ(t0,t);Lρ = ∥G(f(u))− G(f(v))∥Lγ(t0,t);Lρ

⩽ C(t− t0)
δ
(
∥u∥p

Lγ(t0,t);Ḣs,p + ∥v∥p
Lγ(t0,t);Ḣs,p

)
∥u− v∥Lγ(t0,t);Lρ

+ ∥u− v∥Lγ(t0,t);Lρ (t− t0)
γ−2
γ .

Let t be close to t0, we give a contradiction. Thus, u(t) = v(t) for all t ∈ [0, T ], which is the desired
result. □

Proof Theorem 1.2. We use �xed point argument to prove existence of solution of (1.1). LetM > 0,
we de�ne

X = X (T,M) = {u ∈ Lγ(0, T ;Hs,ρ) : ∥u∥Lγ(0,T ;Ḣs,ρ) ⩽M}.
Endowed with the metric

d(u, v) = ∥u− v∥Lγ(0,T ;Lρ) ,

X is a complete metric space.
We wish to prove that the map

Fu = S(·)ϕ+ G(f(u)).
is a contradiction map on X for suitable constants T,M . Let u ∈ X . Using (3.2), we have if

∥S(·)ϕ∥Lγ(0,T ;Ḣs,p)+CT
δMp+1+CT

γ−2
γ M ⩽M then Fu ∈ X . From (3.3), if 2CT δMp+CT

γ−2
γ <

1 then F is a strict contradiction on X . By Strichartz, F is a contradiction from X to X if

(3.4) C ∥ϕ∥Ḣs + 2CT δMp+1 + CT
γ−2
γ M ⩽M.
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Combining with Proposition 3.10, there exists a unique maximal solution of (1.1) u ∈ C(0, Tmax;H)∩
Lγ
loc(0, Tmax;H

s,ρ). Assume Tmax < ∞. Using (3.4) and by classical argument (see e.g [3]), we
have

lim
t→Tmax

∥u(t)∥Ḣs = ∞,

which completes the desired result. □

Lemma 3.11. Let p be even or p ⩾ ⌈s⌉ and u, v ∈ Ss(I × Rd). We have the following estimates:

∥f1(u)− f1(v)∥Lq′0Hs,r′0 (I×Rd)
≲ |I|1/q

′
0−1/q0

(
∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0Hs,r0 (I×Rd)

)
.

∥f2(u)− f2(v)∥Lq′0Hs,r′0 (I×Rd)
≲V ∥u− v∥Lq0Hs,r0 |I|1/q

′
0−1/q0 .

Proof. It su�ces to show the �rst estimate. The second estimate is proved by using Hölder and
V ∈ D(Rd). We only consider the case p ⩾ ⌈s⌉; in the case p even the conclusion is easily proved
by using Hölder.
By Hölder,

∥f1(u)− f1(v)∥Lq′0Hs,r′0
≲ ∥f1(u)− f1(v)∥Lq0Hs,r′0

|I|1/q
′
0−1/q0 .

Thus, we only need to prove that

∥f1(u)− f1(v)∥Lq0Hs,r′0
≲ ∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0Hs,r0 (I×Rd) .

We have

(3.5) f1(u)− f1(v) = (u− v)

∫ 1

0

∂zf1(v + θ(u− v))dθ + u− v

∫ 1

0

∂zf1(v + θ(u− v))dθ.

By Hölder and using |∂zf1(u)|+ |∂zf1(v)| ≲ |u|p,

∥f1(u)− f1(v)∥Lq0Lr′0
≲ ∥u− v∥L∞LQ0 sup

θ∈[0,1]

∥|v + θ(u− v)|p∥Lq0La , ( where 1/a+ 1/Q0 = 1/r′0)

≲ ∥u− v∥L∞LQ0 (∥|u|p∥Lq0La + ∥|v|p∥Lq0La)

≲ ∥u− v∥L∞LQ0 ∥(u, v)∥
p−1
L∞LQ0

∥(u, v)∥Lq0Lr0 .

Thus, it remains to show that

∥f1(u)− f1(v)∥Lq0 Ḣs,r′0
≲ ∥u− v∥Lq0 Ḣs,r0 (I×Rd) ∥(u, v)∥

p
L∞LQ0 (I×Rd)

+ ∥u− v∥L∞LQ0 (I×Rd) ∥(u, v)∥
p−1
L∞LQ0 (I×Rd)

∥(u, v)∥Lq0 Ḣs,r0 (I×Rd) .

By Hölder, it su�ces to show:

(3.6) ∥f1(u)− f1(v)∥Ḣs,r′0
≲ ∥u− v∥Ḣs,r0 ∥(u, v)∥

p
LQ0

+ ∥u− v∥LQ0 ∥(u, v)∥
p−1
LQ0

∥(u, v)∥Ḣs,r0 .

By using (3.5) (with noting that the contribution of the �rst term and the second term are similar)
and product rule Lemma 3.2, we have

∥f1(u)− f1(v)∥Ḣs,r′0
≲ ∥u− v∥LQ0

∥∥∥∥∫ 1

0

|∇|s∂zf1(v + θ(u− v))dθ

∥∥∥∥
La

+ ∥u− v∥Ḣs,r0

∥∥∥∥∫ 1

0

∂zf1(v + θ(u− v))dθ

∥∥∥∥
Lb

(where 1/b+ 1/r0 = 1/r′0).

Since |∂zf1(u)| ≲ |u|p, we have∥∥∥∥∫ 1

0

∂zf1(v + θ(u− v))dθ

∥∥∥∥
Lb

≲ ∥|u|p + |v|p∥Lb ≲ ∥(u, v)∥p
LQ0

,

hence the second term is acceptable. Thus, to prove (3.6), it su�ces to show that, for g = ∂zf1,
for each u:

(3.7) ∥|∇|sg(u)∥La ≲ ∥u∥p−1
LQ0

∥u∥Ḣs,r0 .



COMPACT ATTRACTOR 9

Since p > ⌈s⌉, the function g belongs to C⌈s⌉ and satis�es

(3.8) |g(k)(u)| ≲ |u|p−k, for each 0 ⩽ k ⩽ ⌈s⌉ .

By Lemma 3.7 and Leibniz rule Lemma 3.8, we only need to prove for each α ∈ Nd, 1 ⩽ h ⩽ |α|,
each 1 ⩽ i ⩽ h: βi ∈ Nd, |βi| ⩾ 1:

∑h
i=1 βi = α:

(3.9)

∥∥∥∥∥g(h)(u)
h∏

i=1

Dβiu

∥∥∥∥∥
Ḣv,a

≲ ∥u∥p−1
LQ0

∥u∥Ḣs,r0 , (where v = s− ⌊s⌋).

We have h ⩽ |α| ⩽ ⌊s⌋ ⩽ ⌈s⌉ < p. Using Lemma 3.3 and (3.8), we have∥∥∥∥∥g(h)(u)
h∏

i=1

Dβiu

∥∥∥∥∥
Ḣv,a

≲
∥∥∥g(h)(u)∥∥∥

Ḣv,m0

h∏
i=1

∥∥Dβiu
∥∥
Lmi

(3.10)

+

h∑
k=1

∥∥|u|p−h
∥∥
Lm̃0

∥∥Dβku
∥∥
Ḣv,m̃k

h∏
i=1,i̸=k

∥∥Dβiu
∥∥
Lmi

,

where mi and m̃i for i = 0, · · · , h are chosen such that

1

mi
=
θi
r0

+
1− θi
Q0

, (where θi = |βi|/s)

1

m0
=

1

a
−

h∑
i=1

1

mi
,

m̃0 =
Q0

p− h
,

1

m̃k
=

1

a
− p− h

Q0
−

h∑
i=1,i̸=k

1

mi
=

(|βk|+ v)/s

r0
+

1− (|βk|+ v)/s

Q0
,

By the choice of mi and m̃i, using Gagliardo-Nirenberg inequality Lemma 3.6, we have∥∥Dβiu
∥∥
Lmi

≲ ∥u∥θi
Ḣs,r0

∥u∥1−θi
LQ0 ,∥∥Dβku

∥∥
Ḣv,m̃k

≲
∥∥∥D|βk|+vu

∥∥∥
Lm̃k

≲ ∥u∥θ̃k
Ḣs,r0

∥u∥1−θ̃k
LQ0

, (where θ̃k = (|βk|+ v)/s).

Thus, the second term in (3.10) is acceptable.
Consider the �rst term. If s /∈ N then ⌈s⌉ ⩾ h+1 (since h ⩽ |α| = ⌊s⌋), using fractional chain rule
Lemma 3.4, we have∥∥∥g(h)(u)∥∥∥

Ḣs,m0
≲
∥∥∥g(h+1)(u)

∥∥∥
Lm

∥u∥Ḣv,n ( where 1/m+ 1/n = 1/m0)

≲
∥∥|u|p−h−1

∥∥
Lm ∥u∥Ḣv,n .

Choosing m such that (p−h− 1)m = Q0 then 1/n = 1/m0− 1/m = v/s
r0

+ ⌊s⌋/s
Q0

. Using Gagliardo-

Nirenberg inequality Lemma 3.6, we have

∥u∥Ḣv,n ≲ ∥u∥v/s
Ḣs,r0

∥u∥⌊s⌋/s
LQ0

.

Thus, the �rst term in (3.10) is acceptable. Then, (3.9) holds and the proof is completed.
□

Remark 3.12. In the proof of the above lemma, the condition p > ⌈s⌉ is needed.

Lemma 3.13 (Perturbation lemma). Let u0 ∈ H, let I be a compact time interval containing t0,
let A, µ̃1 > 0, and v : I → H be strong solution of the following NLS:

ivt +∆ = f(v) +G

where v,G satisfy

∥v∥Lq0Hs,r0∩C0H(I×Rd) + ∥v(t0)− u0∥H ≲ A
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and ∥∥∥ei(t−t0)∆(v(t0)− u0)
∥∥∥
Lq0Hs,r0∩L∞LQ0 (I×Rd)

≲ µ̃1

and

∥G∥
Lq′0Hs,r′0 (I×Rd)

≲ µ̃1.

Then, if µ̃1 is small enough depending on A, |I| there exists a solution u : I → H of (1.1) with
initial data u(t0) = u0 such that

∥u− v∥Lq0Hs,r0∩L∞LQ0 (I×Rd) ≲A,|I| µ̃1.

and

∥u− v∥C0H ≲A,|I| 1.

Proof. By local theory, u exists on I. Let w = u− v, then w solves the equation

iwt +∆w = f(w + v)− f(v)−G; w(0) = v(t0)− u0.

De�ne X = ∥w∥Lq0Hs,r0∩L∞LQ0 (I×Rd) . We have

X ≲ µ̃1 + ∥f(v + w)− f(v)∥
Lq′0Hs,r′0

.

By Lemma 3.11, we have

X ≲ µ̃1 + |I|1/q
′
0−1/q0X((X +A)p + 1).

If |I| ⩽ C(A) (depending only on A) and µ̃1 is small enough depending on I, A, we conclude that
X ≲ µ̃1 on I. Moreover,

∥u− v∥C0H(I×Rd) ≲ A+ ∥f(u)− f(v)∥
Lq′0Hs,r′0

≲A 1.

Dividing I into |I|/C(A) interval Ik, on each Ik, we have

∥w∥Lq0Hs,r0∩L∞LQ0 (Ik×Rd) ≲ µ̃1

and

∥w∥C0H(Ik×Rd) ≲A 1.

By inductive argument, the claim follows. □

3.3. Fixed time estimate. From (1.2) and our convenience to suppress dependence on E we have

(3.11) ∥u(t)∥H ≲ 1 for all t ∈ [0,+∞)

and hence by Sobolev embedding we have

(3.12) ∥u(t)∥Lq ≲ 1 for all 2 ⩽ q ⩽
2d

d− 2s
and t ∈ [0,+∞).

From Lemma 2.2, we have

(3.13) ∥f(u)∥Hs,R ≲ 1 for all t ∈ [0,+∞).

3.4. Local-in-time estimates. Next we prove a local-in-time Strichartz estimate.

Lemma 3.14. (Local Strichartz control). For any time interval I ⊂ [0,+∞) and any admissible
pair of exponents (q, r) we have

(3.14) ∥u∥LqHs,r(I) ≲ ⟨|I|⟩
1
q

as well as the nonlinearity estimate

(3.15) ∥f(u)∥
Lq′0Hs,r′0 (I)

≲ ⟨|I|⟩
1
q′0 .

Proof. By Theorem 1.2, there exist and uniqueness of solution u are proved. Moreover, u is global
and u ∈ Lq

locH
s,r(R × Rd) for any (q, r) admissible. By subdividing I it su�ces to prove that if

|I| ≲ 1 then ∥u∥LqHs,r(I) ≲ 1 and ∥f(u)∥
Lq′0Hs,r′0 (I)

≲ 1. De�ne

X = ∥u∥Lq0 (I)Hs,r0 (Rd) .
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By Strichartz and Hölder inequality, we have

X ≲ ∥u∥L∞H + ∥|u|pu∥
Lq′0 (I)Hs,r′0

+ ∥V u∥L1L2

≲ 1 + ∥|u|pu∥
Lq′0 (I)Hs,r′0

+ ∥V ∥L1L∞ ∥u∥L∞L2

≲ 1 + |I|
1
q′0

− 1
q0 ∥u∥p

L∞LQ0
X

≲ 1 + |I|
1
q′0

− 1
q0X, ( where we use ∥u∥L∞LQ0 ≲ ∥u∥L∞H ≲ 1)

≲ 1 +
1

2
X,

if we make |I| small enough. This give X = O(1) and then ∥f(u)∥
Lq′0Hs,r′0

= O(1). This completes
our proof. □

The following result is useful to prove asymptotic localisation frequency of v:

Proposition 3.15. (Local smoothing e�ect). We have the following result

(3.16) ∥PNf(u)∥Lq′0 (I)Lr′0
≲ ⟨N⟩−s−η1 ⟨|I|⟩

1
q′0 .

Proof. It su�ces to prove Proposition 3.15 for |I| ⩽ 1. Indeed, assume Proposition 3.15 holds for
|I| ⩽ 1. Divide I into |I| subintervals Ik such that |Ik| ≈ 1. On each Ik, we have

∥PNf(u)∥Lq′0 (Ik)L
r′0

≲ ⟨N⟩−s−η1 .

Summing the above inequality in k, we obtain (3.16). By Lemma 3.14, we may also assume N ⩾ 1.
For convenience, we shall omit the domain I × Rd in all norms in this proof. Consider the case p
is not even and p > ⌈s⌉. Our �rst task is to show that

(3.17) ∥DsPNf1(u)∥Lq′0Lr′0
≲ N−η1 ,

where f1(u) = λ|u|pu. For convenience, in the proof of (3.17), we abbreviate f1 by f .

Using Lemma 3.7 and Lemma 3.8, we only need to prove that

(3.18)

∥∥∥∥∥PN

(
f (h)(u)

h∏
i=1

Dβiu

)∥∥∥∥∥
Lq′0 Ḣv,r′0

≲ N−η1 ,

where 1 ⩽ h ⩽ ⌊s⌋, βi, α ∈ Nd, |βi| ⩾ 1, |α| = ⌊s⌋ and
∑h

i=1 βi = α.
We have ∥∥∥∥∥PN

(
f (h)(u)

h∏
i=1

Dβiu

)∥∥∥∥∥
Lq′0 Ḣv,r′0

≲

∥∥∥∥∥P≳Nf
(h)(u)

h∏
i

Dβiu

∥∥∥∥∥
Lq′0 Ḣv,r′0

(3.19)

+

h∑
k=1

∥∥∥∥∥∥f (h)(u)(P≳ND
βku)

h∏
i=1;i̸=k

Dβiu

∥∥∥∥∥∥
Lq′0 Ḣv,r′0

,(3.20)

where P≳N = P⩾ N
1+⌊s⌋

. By Lemma 3.3, (3.19) is controlled by the following

∥∥∥P≳Nf
(h)(u)

∥∥∥
Lq1 Ḣv,r1

h∏
i

∥∥Dβiu
∥∥
Lq0

i Lr0
i

+
∥∥∥P≳Nf

(h)(u)
∥∥∥
Lq2Lr2

h∑
k=1

∥∥Dβku
∥∥
Lqk

k Ḣv,rk
k

h∏
i=1,i̸=k

∥∥Dβiu
∥∥
Lqk

i Lrk
i

≲
∥∥P≳Nu

∥∥
Lq11 Ḣv,r11

∥∥|u|p−h
∥∥
Lq21Lr21

h∏
i

∥∥Dβiu
∥∥
Lq0

i Lr0
i

(3.21)

+
∥∥P≳Nu

∥∥
Lq12Lr12

∥∥|u|p−h
∥∥
Lq22Lr22

h∑
k=1

∥∥Dβku
∥∥
Lqk

k Ḣv,rk
k

h∏
i=1,i̸=k

∥∥Dβiu
∥∥
Lqk

i Lrk
i
,(3.22)
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where the above parameters satisfy, for each k ∈ [1, h]

1

q′0
=

1

q1
+

h∑
i=1

1

q0i
,(3.23)

1

r′0
=

1

r1
+

h∑
i=1

1

r0i
,(3.24)

1

q′0
=

1

q2
+

h∑
i=1

1

qki
,(3.25)

1

r′0
=

1

r2
+

h∑
i=1

1

rki
.(3.26)

In (3.21), the parameters are chosen such that, for each i ∈ [1, h]

2

q0i
+

d

r0i
=
d

2
− (s− |βi|),(3.27)

2

q21
+

d

r21
= (p− h)

(
d

2
− s

)
.(3.28)

Let s1 be such that 2
q11

+ d
r11

= d
2 − s1. From (3.23), (3.24), (3.27), (3.28), we see that s1 =

⌊s⌋ −
(
2− p

(
d
2 − s

))
. It is easy to check that 0 < s1 and s1 + v < s (using s > sp ⩾ 1). Thus, by

Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

(3.21) ≲
∥∥Ds1+vP≳Nu

∥∥
Lq11Lm1

1
∥Dsu∥p−h

L(p−h)q21Lm2
1

h∏
i=1

∥Dsu∥
Lq0

i Lm0
i

≲ Ns1+v−s ∥Dsu∥
Lq11Lm1

1
∥Dsu∥p−h

L(p−h)q21Lm2
1

h∏
i=1

∥Dsu∥
Lq0

i Lm0
i

≲ N−(2−p( d
2−s)),

where it is easy to check that m1
1,m

2
1,m

0
1 are such that (q11 ,m

1
1), ((p − h)q21 ,m

2
1), (q

0
i ,m

0
i ) (for

i ∈ [1, h]) are admissible pairs.
In (3.22), the parameters are chosen such that,

2

q22
+

d

r22
= (p− h)

(
d

2
− s

)
,(3.29)

2

qkk
+

d

rkk
=
d

2
− (s− |βk| − v),(3.30)

2

qki
+

d

rki
=
d

2
− (s− |βi|), for eachi ̸= k, k ∈ [1, h].(3.31)

Let s2 be such that 2
q12

+ d
r12

= d
2 − s2. From (3.25), (3.26), (3.29), (3.30), (3.31), we see that

s2 = s−
(
2− p

(
d
2 − s

))
. Moreover, by Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

(3.22) ≲
∥∥Ds2P≳Nu

∥∥
Lq12Lm1

2
∥Dsu∥p−h

L(p−h)q22Lm2
2

h∑
k=1

∥Dsu∥
Lqk

kLmk
k

h∏
i=1,i̸=k

∥Dsu∥
Lqk

i Lmk
i

≲ Ns2−s ∥Dsu∥
Lq12Lm1

2
∥Dsu∥p−h

L(p−h)q22Lm2
2

h∑
k=1

∥Dsu∥
Lqk

kLmk
k

h∏
i=1,i̸=k

∥Dsu∥
Lqk

i Lmk
i

≲ N−(2−p( d
2−s)),

where m1
2,m

2
2,m

k
i are such that (q12 ,m

1
2), (q

2
2 ,m

2
2), (q

k
i ,m

k
i ) (for i ∈ [1, h]) are admissible pairs.

Combining the above, we have

(3.19) ≲ N−(2−p( d
2−s)).
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Similarly, we have

(3.20) ≲ N−(2−p( d
2−s)).

This implies that

∥DsPNf(u)∥Lq′0 Ḣv,r′0
≲ N−(2−p( d

2−s)).

Moreover, since s > sp, we have 2− p
(
d
2 − s

)
> 0.

Our second task is to show the following

(3.32) ∥DsPN (V u)∥Lq′Lr′ ≲ N−η1 ,

for all (q, r) admissible pair. To prove (3.32), we use the following results.

Lemma 3.16. ∥P⩾NV ∥Lr ≲V,k N
−k for all k ⩾ 0.

Lemma 3.17. (See [8][Corollary 1.1]) Let p, p1, p2 be such that 1 < p, p1, p2 <∞ and 1
p = 1

p1
+ 1

p2
.

The the following holds for all f, g ∈ S

∥Ds(fg)−Dsfg −Dsgf∥Lp ⩽ C ∥Df∥Lp1

∥∥Ds−1g
∥∥
Lp2

.

Denote P<Nη0u = ulo and uhi = u− ulo. We have

∥DsPN (V u)∥Lr′ = ∥DsPN (Vlou)∥Lr′ + ∥DsPN (Vhiu)∥Lr′

=
∥∥DsPN (VloP>N/10u)

∥∥
Lr′ + ∥DsPN (Vhiu)∥Lr′

Consider the second term. Using Lemma 3.16, Lemma 3.17 and Hölder inequality, we have

∥DsPN (Vhiu)∥Lq′Lr′ = ∥DsPN (Vhiu)∥Lq′Lr′

⩽ ∥Ds(Vhiu)∥Lq′Lr′

⩽ ∥Ds(Vhi)u∥Lq′Lr′ + ∥VhiDsu∥Lq′Lr′ + ∥DVhi∥Lk1Lh1

∥∥Ds−1u
∥∥
Lk2Lh2

≲ ∥DsVhi∥Lq1Lr1 ∥u∥LqLr + ∥Vhi∥Lq1Lr1 ∥Dsu∥LqLr

+ ∥DVhi∥Lq1Lr1

∥∥Ds−1u
∥∥
LqLr

≲V N−η0 .

where (q1, r1) is such that 1
q1

= 1
q′ −

1
q and 1

r1
= 1

r′ −
1
r . Thus, this term is acceptable.

Consider the �rst term. Using Lemma 3.17 and Hölder inequality, we have∥∥DsPN (VloP>N/10u)
∥∥
Lq′Lr′ ⩽

∥∥Ds(VloP>N/10u)
∥∥
Lq′Lr′

⩽
∥∥DsVloP>N/10u

∥∥
Lq′Lr′ +

∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′

+ ∥DVlo∥Lq1Lr1

∥∥Ds−1(P>N/10u)
∥∥
LqLr

⩽ ∥DsVlo∥Lq1Lr1

∥∥P>N/10u
∥∥
LqLr +

∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′

+ ∥DVlo∥Lq1Lr1

∥∥Ds−1(P>N/10u)
∥∥
LqLr .

The �rst term and the third term are acceptable since
∥∥P>N/10u

∥∥
LqLr ≲ N−s

∥∥Ds(P>N/10u)
∥∥
LqLr ≲

N−s and
∥∥Ds−1(P>N/10u)

∥∥
LqLr ≲ N−1

∥∥Ds(P>N/10u)
∥∥
LqLr ≲ N−1. Consider now the second

term. First, we have ∥∥VloDs(P>N/10u)
∥∥
Lq̃′Lr̃′ (I×Rd)

≲ 1,
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for all q̃, r̃ is su�ciently close to q, r.
Moreover, using Lemma 2.5 for 0 < δ < 1

2 , we have∥∥VloDs(P>N/10u)
∥∥
L2

t,x(I×Rd)
⩽

∑
M<Nη0 dyadic,

M̃>N/10 dyadic

∥VMDsuM̃∥
L2

t,x(I×Rd)

≲
∑

M<Nη0 dyadic,

M̃>N/10 dyadic

M (d−1)/2−δM̃−1/2+δ

⟨M⟩s

≲
∑

M<Nη0 dyadic

M (d−1)/2−δN−1/2+δ

≲ Nη0((d−1)/2−δ)N−1/2+δ,

this is an acceptable term if we choose η0, δ ≪ 1. By interpolation, this implies that the term∥∥VloDs(P>N/10u)
∥∥
Lq′Lr′ is also acceptable. Thus, (3.32) holds. Hence, ∥DsPNf(u)∥Lq′0 (I)Lr′0 (Rd)

≲

N−η1 and the proof of Proposition 3.15 is completed. □

Remark 3.18. In the above proof, the condition s > sp is used since we should have 2 > p
(
d
2 − s

)
.

In the critical case s = sp, the situation is more complex and local smoothing e�ect can not hold.

Lemma 3.19 (Schur's test). If

sup
x∈Rd

(∫
y∈Rd

|K(x, y)|rdy
)1/r

+ sup
y∈Rd

(∫
x∈Rd

|K(x, y)|rdx
)1/r

< C,

where r satis�es 1
r = 1 −

(
1
p − 1

q

)
, for some 1 ⩽ p ⩽ q ⩽ ∞, then the operator Tf(x) =∫

y∈Rd K(x, y)f(y)dy extends to a continuous operator T : Lp(Rd) → Lq(Rd) with ∥T∥Lp→Lq ⩽ C.

Lemma 3.20 ([12][Lemma 5.1). ] Let u be a global solution of energy at most E. Then, e−it∆u(t)
is weakly convergent to u+ ∈ H as t→ +∞.

Proposition 3.21 ([12][Proposition 5.2). ] Let u be a global solution of energy at most E > 0.
Then there exists a unique decomposition

(3.33) u(t) = eit∆u+ + v(t),

where u+ ∈ H with

(3.34) ∥u+∥2H ⩽ E

and

(3.35) ∥v(t)∥2H ⩽ 2E,

for all t ⩾ 0. We also have the following identities

(3.36) v(t) = eit∆(u(0)− u+)− i

∫ t

0

ei(t−t′)∆f(u(t′))dt′

and

(3.37) v(t) = iw-lim
T→+∞

∫ T

t

ei(t−t′)∆f(u(t′))dt′.

Remark 3.22. Assume that the solution u in Proposition 3.21 is almost periodic in sense that
{u(t) : t ∈ R+} is pre-compact in H. Then u+ = 0. Indeed, since e−it∆u(t) weakly converges to
u+ in H, e−it∆u(t) also weakly converges to u+ in L2. We only need to show that for all ϕ ∈ D(Rd),
we have

lim
t→∞

〈
u(t), eit∆ϕ

〉
L2 = 0.

Let ε > 0. By assumption, there exists Cε > 0 such that

∥u(t, x)∥2L2(|x|⩾Cε)
⩽ ε, ∀t ∈ R+.
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We have ∣∣〈u(t), eit∆ϕ〉
L2

∣∣2 ≲
∣∣∣〈u(t), eit∆ϕ〉

L2(|x|⩾Cε)

∣∣∣2 + ∣∣∣〈u(t), eit∆ϕ〉
L2(|x|⩽Cε)

∣∣∣2
≲ ∥u(t)∥2L2(|x|⩾Cε)

∥ϕ∥2L2 + ∥u(t)∥L∞
t L2

x

∫
|x|⩽Cε

|eit∆ϕ|2dx

≲ ε ∥ϕ∥2L2 + t−dCd
ε ∥ϕ∥

2
L1

≲ ε, if t large enough.

This implies that e−it∆u(t) also weakly converges to 0 in L2, hence, u+ = 0. This completes the
proof.

Lemma 3.23 (Weakly bound component are approximate solutions, [12][Lemma 5.6). ] Let T ∈ R
and u, v be as in Proposition 3.21. Then for all t0 large enough (depending on T, u), we have

S(T )v(t0) = v(T + t0) + oH(1)

where S(t) is the �ow of (1.1) and oH(1) goes to zero in H norm as t0 → +∞.

Proof. Fix T , and let t0 large enough. De�ne I = [t0, t0 + T ]. We see that v solves the following
NLS:

Lv = f(v) + [f(v + eit∆u+)− f(v)].

As t0 → +∞, we have ∥∥eit∆u+∥∥Lq0Hs,r0∩L∞LQ0 (I×Rd)
→ 0.

Moreover, ∥∥eit∆u+∥∥C0
t H(I×Rd)

≲ 1.

By Lemma 3.14 and triangle inequality, we have

∥v∥Lq0Hs,r0∩C0
t H(I×Rd) ≲T 1.

Let
X =

∥∥f(v + eit∆u+)− f(v)
∥∥
Lq′0Hs,r′0 (I×Rd)

.

By Lemma 3.11, we have

X ≲ |T |1/q
′
0−1/q0

∥∥eit∆u+∥∥Lq0Hs,r0 (I×Rd)

(
1 +

∥∥eit∆u+∥∥Lq0 Ḣs,r0 (I×Rd)

∥∥(u, eit∆u+)∥∥pL∞LQ0 (I×Rd)

+
∥∥eit∆u+∥∥L∞LQ0 (I×Rd)

∥∥(u, eit∆u+)∥∥p−1

L∞LQ0 (I×Rd)

∥∥(u, eit∆u+)∥∥Lq0Hs,r0 (I×Rd)

)
,

which go to zero as t0 → +∞. Thus, by perturbation Lemma 3.13, the claim follows. □

4. Frequency localisation

In this section, we prove the following asymptotic localisation frequency of weakly bound com-
ponent v of u:

Proposition 4.1. Let u be a global solution of energy at most E and let v be the weakly bound
component of u. Then, we have

(4.1) lim sup
t→+∞

sup
N⩽1

N−η3 ∥P⩽Nv(t)∥H ≲ 1

and

(4.2) lim sup
t→+∞

sup
N⩾1

Nη3 ∥P⩾Nv(t)∥H ≲ 1.

Proof. See [12][Proposition 6.1]. We sketch the proof here. The main idea is to use the double
Duhamel formula (3.36) and (3.37).
Fix ε > 0. Let uε ∈ D(Rd) be such that

u(0)− u+ = uε +OH(ε2).

Hence, from (3.36), we have

(4.3) v(t) = eit∆uε − i

∫ t

0

ei(t−t′)∆f(u(t′))dt′ +OH(ε2).
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To Prove (4.1), it su�ces to prove that

(4.4) ∥P⩽Nv(t)∥H ≲ Nη3 + ε,

for t large enough (can depend on E, u, ε but is independent on N) and N ⩽ 1.
Using (4.3) and (3.37), we have

∥P⩽Nv(t)∥2H =
∣∣⟨P⩽Nv(t), P⩽Nv(t)⟩H

∣∣
⩽

〈
iw-lim
T→+∞

∫ T

t

ei(t−t′)∆P⩽Nf(u(t
′))dt′,

P⩽Ne
it∆uε − i

∫ t

0

ei(t−t′′)∆P⩽Nf(u(t
′′))dt′′

〉
H

+O(ε2)

⩽
∫ T

t

∣∣∣〈ei(t−t′)∆P⩽Nf(u(t
′)), P⩽Ne

it∆uε

〉
H

∣∣∣ dt′
+

∣∣∣∣∣
∫ T

t

∫ t

0

YN (t′, t′′)dt′′dt′

∣∣∣∣∣+O(ε2),

for T large enough and YN is de�ned by

YN (t′, t′′) =
〈
ei(t−t′)∆P⩽Nf(u(t

′)), ei(t−t′′)∆P⩽Nf(u(t
′′))
〉
H
.

For the �rst integral, we have∥∥∥P⩽Ne
it′∆uε

∥∥∥
Hs,R′

≲uε

1

|t′|d(1/R−1/2)
.

Since R < 2d
d+4 , the exponent of ⟨t′⟩ is larger than 2, hence, the �rst integral is bounded by

O(ε2) if t, T (t < T ) large enough (not depend on N).
The second integral is bounded by ∫ ∞

t

∫ t

0

|YN (t′, t′′)| dt′dt′′

.
Using Lemma 2.2, we have

|YN (t′, t′′)| =
∣∣∣〈P⩽Nf(u(t

′))), ei(t
′−t′′)∆P⩽Nf(u(t

′′))
〉
H

∣∣∣
≲ ∥P⩽Nf(u(t

′))∥Hs,R

∥∥∥ei(t′−t′′)∆P⩽Nf(u(t
′))
∥∥∥
Hs,R′

≲ ∥P⩽Nf(u(t
′))∥LR ∥P⩽Nf(u(t

′′))∥LR

1

|t′ − t′′|d(1/R−1/2)

≲
1

|t′ − t′′|d(1/R−1/2)
.

Moreover, using Lemma 2.2, Bernstein's inequality, we have

|YN (t′, t′′)| ≲ ∥P⩽Nf(u(t
′))∥Hs ∥P⩽Nf(u(t

′′))∥Hs

≲ ∥P⩽Nf(u(t
′))∥L2 ∥P⩽Nf(u(t

′′))∥L2

≲ Nd(2/R−1) ∥f(u(t′))∥LR ∥f(u(t′′))∥LR

≲ Nd(2/R−1).

Combining all the above, we have∫ ∞

t

∫ t

0

|YN (t′, t′′)| dt′dt′′ ≲
∫ ∞

t

∫ t

0

min

(
1

t′ − t′′
, N2

)d(1/R−1/2)

dt′′dt′.

Since R < 2d
d+4 , the exponent d(1/R− 1/2) > 2, hence, the claim (4.4) follows.
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We now prove (4.2). As before, we have

∥P⩾Nv(t)∥2H ≲ ε2 +

∣∣∣∣∣
∫ T

t

∫ t

0

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ,
for T large enough, where

ZN (t′, t′′) =
〈
ei(t−t′)∆P⩾Nf(u(t

′)), ei(t−t′′)∆P⩾Nf(u(t
′′))
〉
H
.

Thus, it su�ces to show that ∣∣∣∣∣
∫ T

t

∫ t

0

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ≲ N−η3 .

Consider the region where t′ ⩾ t+Nη2 . We have

|ZN (t′, t′′)| ≲ |t′ − t′′|−d(1/R−1/2).

Since d(1/R− 1/2) > 2, the contribution of this term is

≲
∫
t′>t+Nη2

∫
t′′<t

|t′ − t′′|−d(1/R−1/2)dt′′dt′ = O(N−η3),

where we use N−η2 ≪ N−η3 . Similar argument for the region t′′ ⩽ t − Nη2 . It remains to prove
that ∣∣∣∣∣

∫ t+Nη2

t

∫ t

max(0,t−Nη2 )

ZN (t′, t′′)dt′′dt′

∣∣∣∣∣ ≲ N−η3 .

By Hölder inequality, the left hand side is bounded by

∥P⩾Nf(u(t
′))∥

L
q′0
t′ H

s,r′0
x ((t,t+Nη2 )×Rd)

×∥∥∥∥∥
∫ t

max(0,t−Nη2 )

ei(t
′−t′′)∆P⩾Nf(u(t

′′))dt′′

∥∥∥∥∥
L

q0
t′ H

s,r0
x ((t,t+Nη2 )×Rd)

.

By Strichartz, the left hand side is bounded by

∥P⩾Nf(u)∥2Lq′0Hs,r′0 ((max(t−Nη2 ,0),t+Nη2 )×Rd)
,

which by Proposition 3.15 and dyadic decomposition can be bounded by

O(N2η2/q
′
0N−2η1),

this is acceptable. The proof is completed.
□

5. Spatial localisation

In this section, we prove localisation in spatial of v and then the main result Theorem 1.3. First,
we have the following localisation result:

Theorem 5.1. Let E > 0, 0 < µ0 < 1. There exist J, µ4 (depending only on E,µ0) with the
following property: For each u is a forward-global solution of energy at most E, then there exists
functions x1, x2, · · · , xJ : R+ → R, such that

(5.1) lim sup
t→+∞

∫
inf1⩽j⩽J |x−xj(t)|⩾1/µ4

|v(t, x)|2dx ≲ µ2
0.
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5.1. First step: L∞
x spatial localisation at �xed times. De�ne vmed = Pµ2<·<1/µ2

v. We
exploit the frequency localisation of vmed. From Proposition 4.1, we have

(5.2) ∥v(t)− vmed(t)∥H ≲ µη3

2

and thus,

(5.3) u(t) = eit∆u+ + vmed(t) +OH(µη3

2 ).

For each t, let x1(t), x2(t), · · · , xJ(t)(t) be a set of points such that |xj(t) − xk(t)| > µ−1
3 for each

j ̸= k and

(5.4) |vmed(t, xj(t))| ⩾ µ
1/η1

3 for all 1 ⩽ j ⩽ J(t).

By the rapid decay of the convolution kernel of Pµ2<·<µ−1
2

and Hölder, we have

|vmed(t, xj(t))|2 ≲ µ−d
2

∫
|x−xj(t)|⩽1/2µ−1

3

|vmed(t, x)|2dx+O(µ
3/η1

3 )

and thus ∫
|x−xj(t)|⩽1/2µ−1

3

|vmed(t, x)|2dx ≳ µ
2/η1

3 µd
2 ≳ µ

2/η1+d
3

for all j. Thus, by uniformly bounded of H-norm of v, there exists J depending on E,µ3 such that
J(t) ⩽ J for all t. If J(t) < J then for each J(t) < j ⩽ J , we de�ne xj(t) = x1(t). By the above
construction, for all t, there exist x1(t), x2(t), · · · , xJ(t) such that

(5.5) |vmed(t, x)| < µ
1/η1

3 whenever inf
1⩽j⩽J

|x− xj(t)| ⩾ µ−1
3 .

5.2. Second step: L∞
x spatial localisation on a time interval. Fix t0 a su�cient late time and

I = [t0 − µ−1
1 , t0 + µ−1

1 ]. Let D : Rd → R+ be the distance function D(x) = inf1⩽j⩽J |x− xj(t0)|;
thus |vmed(t0, x)| ⩽ µ

1/µ1

3 whenever D ⩾ µ−1
3 .

Let χ : Rd → R+ be a smooth cuto� function which equals to one when D(x) ⩽ 2µ−1
3 , vanishes

when D(x) ⩾ 3µ−1
3 and obeys the bounds ∇kχ = Ok(µ

k
3) for k ⩾ 0. We can let χ(x) = χ1(µ3x)

and chose suitable function χ1.
We have the following result:

Lemma 5.2. We have

lim sup
t→+∞

∥∥∥ei(t−t0)∆((1− χ)u(t0))
∥∥∥
Lq0Hs,r0∩L∞LQ0 (I×Rd)

≲ µη3

2 .

Proof. Let ũ+ ∈ D(Rd) be such that ũ+ = u+ +OH(µη3

2 ), this gives

(1− χ)u(t0) = eit0∆ũ+ + (1− χ)vmed(t0) +OH(µη3

2 ).

The contribution of the �rst term on the right hand side is acceptable if we choose t0 large enough.
For the second term on the right hand side, we have

(1− χ)vmed(t, x) = (1− χ)P<100µ−1
2
(1D⩾µ−1

3
vmed(t0))

+ (1− χ)P<100µ−1
2
(1D<µ−1

3
vmed(t0))

Using Lemma 6.3, the second term in the right hand side is acceptable. It remains to consider the
�rst term. We only need to prove that∥∥∥ei(t−t0)∆

(
(1− χ)P100µ−1

2
(1D⩾µ−1

3
vmed(t0))

)∥∥∥
Lq0Hs,r0∩L∞LQ0 (I×Rd)

≲ µη3

2

for t0 large enough.
Using Lemma 6.2, the left hand side is bounded by

Oµ1
(µ

−1/η0

2 )
∥∥∥1D⩾µ−1

3
vmed(t0)

∥∥∥
Lr0∩LQ0

.

From (5.5), ∥∥∥1D⩾µ−1
3
vmed(t0)

∥∥∥
L∞

⩽ µ
1/η1

3 .

Interpolating this with bounded L2 norm of v, we obtain the desired result.
□
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We have the following spatial decay:

Lemma 5.3. We have

lim sup
t0→+∞

∥∥∥1D>µ−2
3
u
∥∥∥
Lq0Lr0 (I×Rd)

≲µ1
µη3

2 .

Proof. Let ũ be the solution of (1.1) with initial data ũ(t0) = χu(t0). From Lemma 3.13 and
Lemma 5.2, we see that

∥ũ∥Lq0Hs,r0∩C0H(I×Rd) = OH(µ−1
1 )

and

(5.6) ∥u− ũ∥Lq0Hs,r0 ≲µ1
µη3

2 .

Let W = 1+ µ3D̃ be such that D̃ ∈ C2(Rd), ∇D̃ ≲ 1, ∇2D̃ ≲ 1 and
∥∥∥D̃ −D

∥∥∥
L∞

⩽ 1 (see Lemma

6.1 for the choice of such D̃). We have ∇W,∇2W = O(µ3) and Wχ = χ+ µ3Dχ+ µ3(D̃−D)χ =
O(1). Thus,

(5.7) ∥Wũ(t0)∥L2 ≲ ∥u(t0)∥L2 ≲ 1.

We have
(i∂t +∆)(Wũ) = O(W |ũ|pũ) +O(WV ũ) +O(µ3|ũ|) +O(µ3∇ũ).

By Strichartz and
∥∥eit∆f∥∥

Lq0Lr0
≲ ∥f∥L2 , we have

∥Wũ∥C0L2∩Lq0Lr0 (I′×Rd) ≲ ∥Wũ(t′)∥L2 + ∥W |ũ|pũ∥
Lq′0Lr′0 (I′×Rd)

+ µ3|I ′| ∥ũ∥H
for any I ′ ⊂ I, t′ ∈ I ′. Denote the left hand side by X(I ′), by Hölder, we have

X(I ′) ≲ ∥Wũ(t′)∥L2 + |I ′|1/q
′
0−1/q0X(I ′) + |I ′|µ3

and hence (for I ′ small enough), we have

X(I ′) ≲ ∥Wũ(t′)∥L2 + µ−1
1 µ3.

By iterating this using (5.7), we have
X(I) ≲µ1

1.

Thus, ∥∥∥1D̃> 1
2µ

−2
3
Wũ

∥∥∥
Lq0Lr0 (I×Rd)

⩽ ∥Wũ∥Lq0Lr0 (I×Rd) ≲µ1 1

and hence, ∥∥∥1D̃> 1
2µ

−2
3
ũ
∥∥∥
Lq0Lr0 (I×Rd)

≲µ1
µ3.

Moreover, 1D>µ−2
3

⩽ 1D̃> 1
2µ

−2
3

by the choice of D̃. Thus,∥∥∥1D>µ−2
3
ũ
∥∥∥
Lq0Lr0 (I×Rd)

≲µ1
µ3.

Combining with (5.6), we obtain the desired result. □

As a consequence, we have local in time of Strichartz Duhamel:

Corollary 5.4. For t0 large enough and any I ′ ⊂ I, we have∥∥∥∥1D>µ−3
3

∫
I′
ei(t0−t′)∆f(u(t′))dt′

∥∥∥∥
L2

x(Rd)

≲µ1
µη3

2 .

Proof. Let χ2 : Rd → R+ be a smooth cuto� such that χ2 = 1 when D ⩽ µ−2
3 , χ2 = 0 when

D > 2µ−2
3 and χ2 has bounded derivatives.

We have

f(u(t′)) = P⩾µ−1
2
f(u(t′)χ2) + P⩽µ−1

2
(1D⩽2µ−2

3
f(u(t′)χ2)) +O(1D>µ−2

3
(|u|p+1(t′) + |V u(t′)|)).

By Lemma 5.3, Hölder, we have∥∥∥1D>µ−2
3
(|u|p+1 + |V u|)

∥∥∥
Lq′0Lr′0 (I×Rd)

≲µ1 µ
η3

2

and hence this term is acceptable.
Consider the term P⩽µ−1

2
(1D⩽2µ−2

3
f(u(t′)χ2)). Using Lemma 6.4, and ∥f(u(t′))∥LR ≲ 1, we obtain
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the contribution of P⩽µ−1
2
(1D⩽2µ−2

3
f(u(t′)χ2)) is acceptable.

It remains to consider the contribution of the term P⩾µ−1
2
f(u(t′)χ2). We have∥∥∥∥1D>µ−3

3

∫
I′
ei(t0−t′)∆P⩾µ−1

2
f(u(t′)χ2)dt

′
∥∥∥∥
L2

≲
∥∥∥P⩾µ−1

2
f(uχ2)

∥∥∥
Lq′0Lr′0 (I×Rd)

≲ µs
2 ∥f(uχ2)∥Lq′0 Ḣs,r′0 (I×Rd)

≲ µη3

2 .

this term is acceptable. This completes the proof. □

5.3. Third step: L2
x localisation at �xed time. We now prove the following result:

Proposition 5.5. Let χ3 : Rd → R+ be a smooth cuto� function which equals 1 when D ⩾ 2µ−3
3 ,

equals 0 when D ⩽ µ−3
3 and χ3 has bounded derivatives. Then for t0 large enough, we have

χ3v(t0) = OL2(µc
1),

for some c > 0.

Proof. From corollary 5.4, we have

χ3

∫
I′
ei(t0−t′)∆f(u(t′))dt′ = OL2(µ

η3/2
2 ).

for all I ′ ⊂ I. Thus, by Duhamel's formula, we have

χ3v(t0) = χ3e
−iµ−1

1 ∆v(t0 + 1/µ1) +OL2(µ
η3/2
2 )

and
χ3v(t0) = χ3e

+iµ−1
1 ∆v(t0 − 1/µ1) +OL2(µ

η3/2
2 )

This implies that

∥χ3v(t0)∥2L2 =
〈
χ3e

−iµ−1
1 ∆v(t0 + 1/µ1), χ3e

+iµ−1
1 ∆v(t0 − 1/µ1)

〉
L2

+O(µ
η3/2
2 ).

Thus, it su�ces to show that〈
e−iµ−1

1 ∆v(t0 + 1/µ1), χ
2
3e

+iµ−1
1 ∆v(t0 − 1/µ1)

〉
L2

≲ µc
1.

Let ϕ be a Schwartz function be such that u(0)− u+ = ϕ+OL2(µ2). Thus, by (3.36), we have

v(t0 − 1/µ1) = ei(t0−1/µ1)∆ϕ− i

∫ t0−1/µ1

0

ei(t0−µ1−t′)∆f(u(t′))dt′ +OL2(µ2)

and hence

χ2
3e

iµ−1
1 ∆v(t0 − 1/µ1) = eit0∆ϕ− (1− χ2

3)e
it0∆ϕ− iχ2

3

∫ t0−1/µ1

0

ei(t0−t′)∆f(u(t′))dt′ +OL2(µ2).

From dispersive estimate we see that (1− χ2
3)e

it0∆ϕ = OL2(µ2) for t0 large enough. Using (3.37),
it su�ces to show that

(5.8)

∫ +∞

t0+1/µ1

∣∣∣〈ei(t0−t′)∆f(u(t′)), eit0∆ϕ
〉
L2

∣∣∣ dt′ ≲ µ2c
1 ,

and

(5.9)

∫ +∞

t0+1/µ1

∫ t0−1/µ1

0

∣∣∣〈ei(t0−t′)∆f(u(t′)), χ2
3e

i(t0−t′′)∆f(u(t′′))
〉
L2

∣∣∣ dt′′dt′ ≲ µ2c
1 .

To prove (5.8), using (2.2) and Hölder, we have∣∣∣〈ei(t0−t′)∆f(u(t′)), eit0∆ϕ
〉
L2

∣∣∣ = ∣∣∣〈f(u(t′)), eit′∆ϕ〉
L2

∣∣∣ ≲ ∥∥∥eit′∆ϕ∥∥∥
LR′

≲ϕ |t′|−d(1/R−1/2)

. Since d(1/R− 1/2) > 2, we obtain (5.8) for t0 large enough.

Now, we prove (5.9). Writing χ2
3 = 1− (1− χ2

3), we have

(5.10)
〈
ei(t0−t′)∆f, χ2

3e
i(t0−t′′)∆g

〉
L2

=
〈
ei(t

′′−t′)∆f, g
〉
L2

−
∫
Rd

∫
Rd

f(x)g(z)Kt′,t′′(x, z)dxdz,
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for each test functions f, g and Kt′,t′′ is de�ned by

Kt′,t′′(x, z) = c(t0 − t′)−d/2(t0 − t′′)−d/2

∫
Rd

ei|x−y|2/4(t0−t′)−i|x−z|2/4(t0−t′′)(1− χ2
3)(y)dy,

for some constant c.

We prove that

(5.11) Kt′,t′′(x, z) ≲ |t′ − t′′|−d/2.

Let φ = 1 − χ2
3. Then φ = 0 on D ⩾ 2µ−3

3 and φ = 1 on D ⩽ µ−3
3 . Without loss of generality,

we assume supp(φ) ⊂ B(x0, 2µ
−3
3 ) for some x0 ∈ Rd. Rewriting φ(x) = φ̃(µ3

3(x − x0)), we have
supp(φ̃) ⊂ B(0, 2).

We have:

Kt′,t′′(x, z) = c(t0 − t′)−d/2(t0 − t′′)−d/2

∫
Rd

e
i
(

1
4(t0−t′)−

1
4(t0−t′′)

)
|y−c̃|2

φ̃(µ3
3(y − x0))dy, (for some constant c)

= c(t0 − t′)−d/2(t0 − t′′)−d/2

∫
Rd

e
i t′−t′′
4(t0−t′)(t0−t′′) |y|

2

φ̃(µ3
3(y − x1))dy, (where x1 = x0 + c̃)

= c(t0 − t′)−d/2(t0 − t′′)−d/2

∫
Rd

e−iα|y|2 φ̃(µ3
3(y − x1))dy,

(
where α =

|t′ − t′′|
4|t0 − t′||t0 − t′′|

)
= c(t0 − t′)−d/2(t0 − t′′)−d/2α−d/2

∫
Rd

e−i|ỹ|2 φ̃(µ3
3/
√
α(ỹ −

√
αx1))dỹ

= c|t′ − t′′|−d/2

∫
Rd

e−i|y|2 φ̃(µ3
3/
√
α(y − x2))dy, ( where x2 =

√
αx1).

De�ne L = (1 + |y|2)−1(1 + iy/2∂y). We have L∗(f) = (1 + iy/2∂y)((1 + |y|2)−1f and

L(e−i|y|2) = e−i|y|2 .

Thus, for some M ∈ N large enough chosen later,

Kt′,t′′(x, z) = c|t′ − t′′|−d/2

∫
Rd

LM (e−i|y|2)φ̃(µ3
3/
√
α(y − x2))dy

= c|t′ − t′′|−d/2

∫
Rd

e−i|y|2(L∗)M (φ̃(µ3
3/
√
α(y − x2)))dy.

To prove (5.11), we only need to prove the following lemma

Lemma 5.6. The following estimate holds for M ∈ N large enough:∣∣∣∣∫
Rd

e−i|y|2(L∗)M (φ̃(µ3
3/
√
α(y − x2)))dy

∣∣∣∣ ≲ 1.

Proof. For convenience, de�ne M3 = µ3
3/
√
α. By induction, we see that

(L∗)M =

M∑
k=0

(yM3)
k∂ky φ̃(M3(y − x2))(1 + |y|2)−2M+k(ck0 + ck1|y|2 + · · ·+ ck(M−k)|y|2M−2k).

Moreover,

yk = (y − x2 + x2)
k =

k∑
h=0

ch(y − x2)
k−hxh2 .

Combing to uniform bounded of ykφ(y), using ck0+ck1|y|2+ · · ·+ck(M−k)|y|2M−2k ≲ (1+ |y|2)M−k

it su�ces to estimate

Q0 :=

∫
M3|y−x2|⩽2

(M3x2)
h(1 + |y|2)−Mdy, (for each 0 ⩽ h ⩽M).

Since |M3x2|h ≲ 1 + |M3x2|M ∀0 ⩽ h ⩽ M , we only need to check the case h = 0 and h = M .
Choosing M = 2d. The �rst case is easy to estimate Q0. Consider the second case. If |M3x2| ⩽ 10
then we see that Q0 ≲ 1. Consider the case |M3x2| ⩾ 10. If M3 ⩾ 1 then |y−x2| ⩽ 2

M3
⩽ 2. Thus,

1 + |y|2 ≳ (1 + |y|2)(1 + |y − x2|2) ≳ 1 + |x2|2 ≳ |x2|. This implies that Q0 ≲ MM
3 (2/M3)

d = 2d.
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Consider the case M3 ⩽ 1. Since |M3x2| ⩾ 10 and M3|y−x2| ⩽ 2 and |y−x2|+ |y| ⩾ |x2|, we have
|y| ≳ |x2|. Thus, Q0 ≲ |x2|M

∫
M3|y−x2|⩽2

(1+|y|2)−M/2|y|−Mdy ≲
∫
M3|y−x2|⩽2

(1+|y|2)−M/2dy ≲ 1.

This completes the proof of Lemma 5.6.

Thus,Kt′,t′′(x, z) ≲ |t′−t′′|−d/2. This implies that (5.10) is estimated by |t′−t′′|−d/2 ∥f∥L1 ∥g∥L1 .
Moreover, (5.10) is also estimated by ∥f∥L2 ∥g∥L2 . Hence, by bilinear interpolation, (5.10) is esti-

mated by |t′ − t′′|−d(1/R−1/2) ∥f∥LR ∥g∥LR . By the choice of R, d(1/R − 1/2) > 2, hence (5.9) is
proved. This completes the proof of Proposition 5.5.

□

Theorem 5.1 is followed from Proposition 5.5. As a consequence of Theorem 5.1, we have the
following spatial localisation result:

Proposition 5.7. Let E > 0 and 0 < µ0 < 1. Then there exists µ5 = µ5(E,µ0) depending on
E,µ0 (and on the other �xed parameters) with the following properties: for any u radial global
solution of energy at most E, we have

(5.12) lim sup
t→+∞

∫
|x|⩾1/µ5

|v(t, x)|2dx ≲ µ2
0,

where v is the weak bound component of u.

Proof. Apply Theorem 5.1, for all t su�ciently large, there exist x1(t), · · · , xJ(t) such that∫
Rd

1inf1⩽j⩽J |x−xj(t)|⩾1/µ4
|v(t, x)|2dx ≲ µ2

0.

Since u is radial, u+ and v are also radial. Thus, we may average the above estimate over rotation
and obtain that ∫

Rd

(∫
Sd−1

1inf1⩽j⩽J ||x|ω−xj(t)|⩾1/µ4
dω

)
|v(t, x)|2dx ≲ µ2

0.

In particular, we have∫
|x|⩾1/µ5

∫
Sd−1

1−
J∑

j=1

1||x|ω−xj(t)|<1/µ4

 dω

 |v(t, x)|2dx ≲ µ2
0.

But if µ5 is su�ciently small depending on µ4, by using |x| ⩾ 1/µ5, we have∫
Sd−1

1||x|ω−xj(t)|<1/µ4
dω

=

∫
Sd−1

1|ω−xj(t)/|x||< 1/µ4
|x|

dω

⩽
∫
Sd−1

1|ω−x0|<µ5/µ4
dω (where x0 = xj(t)/|x|)

= Vol({||ω − x0| < µ5/µ4|} ∩ Sd−1)

⩽ (µ5/µ4)
d−1.

Thus, if µ5 is small enough depending on both J and µ4, we have∫
Sd−1

1−
J∑

j=1

1||x|ω−xj(t)|<1/µ4

 dω ⩾
1

2
.

for all |x| ⩾ 1/µ5 and the desired result is proved.
□

Combining the above analysis, we give the proof of the main result:

Proof of Theorem 1.3. By Proposition 1.7, Proposition 4.1 and Theorem 5.1, there exists a compact
set K ⊂ H such that

lim
t→+∞

distH(v(t),K) = 0
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for all radial global bounded solution u of energy at most E.

Let KE,rad be the closure of the set of all limit points limtn→+∞ v(tn), where tn ranges over se-
quences of times which converge to in�nity. Then, KE,rad is close and hence is a compact subset of
K. Let us prove that KE,rad is also a attractor. Indeed, let tn → +∞. Since, distH(v(tn),K) → 0
as n→ +∞, there exists kn ∈ K such that ∥v(tn)− kn∥K → 0. By compactness of K, for each sub-
sequence of (tn) there exists φ ∈ K and a sub-sequence of (tn) which for convenience still denotes by
(tn) such that ∥v(tn)− φ∥H → 0. Thus, φ ∈ KE,rad and hence, limt→+∞ distH(v(t),KE,rad) = 0.
By local theory and Lemma 3.23, KE,rad is invariant under S(t) for t small and hence for all t large
also.

Finally, we show the uniqueness of u+. If ũ+ satis�es the same properties of u+ then {eit∆(u+−
ũ+), t ⩾ 0} is pre-compact in H. Moreover, for 2 < p ⩽ 2d

d−2s ,∥∥eit∆(u+ − ũ+)
∥∥
Lp → 0, as t→ +∞.

Combining the above ∥∥eit∆(u+ − ũ+)
∥∥
H

→ 0 as t→ +∞.

Thus, u+ = ũ+, which completes the proof. □

6. Appendix

In this section, we prove some useful results which is used in the proof of the main result.

Lemma 6.1. Let x1, x2, · · · , xJ ∈ Rd and D(x) = inf1⩽j⩽J |x − xj |. There exists a function

D̃ ∈ C2(Rd) such that
∥∥∥D̃ −D

∥∥∥
L∞

⩽ 1 and ∇D̃,∇2D̃ ≲ 1.

Proof. We see thatD ∈ C0(Rd)∩C∞(Rd)\A for some zero measure setA. Indeed, A = ∪i{xi}∪j ̸=k

{x : |x − xj | = |x − xk|}. Moreover, D is small inside ∪J
i=1B(xi, 1) and |∇D|, |∇2D| ≲ 1 outside

∪J
i=1B(xi, 1) ∪j ̸=k {x : |x− xj | = |x− xk|}.
We �rst study the graph of D in Rd+1 i.e the set of elements of form (x,D(x)), x ∈ Rd. For

each j, the graph of |x− xj | is {(x, |x− xj |), x ∈ Rd} ⊂ Rd+1, which is a co-dimension one surface
having a critical point at xj . The graph of |x − xk| can be given by move the graph of |x − xj |
by vector xj − xk. For each xj ̸= xk, the intersection of the graph (x, |x − xj |) and (x, |x − xk|)
is a co-dimension two surface: {(x, |x − xj |) : |x − xj | = |x − xk|}. Thus, the graph of D is
a co-dimension one surface which is singular at each xj and at each co-dimension two surface
{(x, |x − xj |) : |x − xj | = |x − xk|}. We can easily take a regular surface H close to the graph of

D, which is graph of a smooth function D̃. We see that D̃ ∈ C∞(Rd) and D̃ satis�es the desired
properties if we take H is close enough to the graph of D.

□

Let t0, t, t
′, χ, µ2, µ3, vmed be as in Subsection 5.2. We have the following results:

Lemma 6.2. The operator ∇kei(t−t0)∆(1−χ)P≲µ−1
2

have an operator norm of Oµ1
(µ

−c(k)
2 ) on Lr

for 2 < r < 2d
d−2s , c(k) depending on k and ∀k ∈ N. Similar result holds for Djei(t−t0)∆(1−χ)P≲µ−1

2

for j = 0, s.

Proof. By density, we need only work on Schwartz functional space. We consider the case k = 0,
the general case is obtained by bounded derivatives of χ and interpolation.
Let ψ be smooth function such that ψ(ξ) = 1 if |ξ| ⩽ 1 and ψ(ξ) = 0 if |ξ| ⩾ 2.
For each t ∈ R and N dyadic, we have

eit∆P≲Nf = F−1
(
e−it|ξ|2ψ(ξ/N)f̂(ξ)

)
= F−1(e−it|ξ|2ψ(ξ/N)) ∗ f.
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Thus, by Young inequality, forM > d an integer, the operator norm of eit∆P≲Nf on Lr is bounded
by ∥∥∥F−1(e−it|ξ|2ψ(ξ/N))(x)

∥∥∥
L1

=
∥∥∥NdF−1(e−itN2|ξ|2ψ(ξ))(Nx)

∥∥∥
L1

x

=
∥∥∥F−1(e−i(tN2)|ξ|2ψ(ξ))(x)

∥∥∥
L1

x

=
∥∥∥F(e−i(tN2)|·|2ψ(·))(ξ)

∥∥∥
L1

ξ

≲
∥∥∥(1 + |ξ|)MF(e−i(tN2)|ξ|2ψ(ξ))

∥∥∥
L2

∥∥(1 + |ξ|)−M
∥∥
L2

≲
∥∥∥e−i(tN2)|ξ|2ψ(ξ)

∥∥∥
HM

ξ

≲
∥∥(1 + |ξ|)Mψ(ξ)

∥∥
HM

ξ

(1 + |tN2|)M

≲ (1 + |tN2|)M .

Thus, the operator norm of ei(t−t0)∆P≲µ−1
2

on Lr is bounded by

(1 + |t− t0|2µ−2
2 )M = Oµ1

(µ−2M
2 ).

It remains to prove that ei(t−t0)∆(1 − χ)P≲µ−1
2

has bounded operator on Lr by Oµ1
(µ−c

2 ) for

some constant c > 0. The above expression is of form eit∆(1− χ)P≲µ−1
2

= eit̃∆(1− χ)Ψ(µ2D) for

|t| ⩽ µ−1
1 and Ψ is a cut o� function which vanishes in {ξ : |ξ| ⩾ 2}. Recall that

eit∆f(x) =

∫
1

td/2
e

−i|x−y|2
t f(y)dy (up to multiply by a constant).

Thus,

eit∆(χf)(x) =

∫
1

td/2
e

−i|x−y|2
t χ(y)f(y)dy,

which means that the Schwartz kernel of the operator T1 : f 7→ eit∆(χf) is

K1(x, y) =
1

td/2
e

−i|x−y|2
t χ(y).

Similarly, using the inverse Fourier transform:

Ψ(µD)u =

∫ ∫
Ψ(µξ)ei(x−y)ξu(y)dydξ

and thus the Schwartz kernel of the operator T2 : u 7→ Ψ(µD)u is

K2(x, y) =

∫
Ψ(µξ)ei(x−y)ξdξ =

1

µd

∫
Ψ(ξ)e

i(x−y)ξ
µ dξ =

1

µd
Ψ̂

(
y − x

µ

)
.

Thus, the Schwartz kernel of f 7→ eit∆(χΨ(µD)f) is

K(x, z) =

∫
K1(x, y)K2(y, z)dy =

∫
χ(y)

1

td/2
e

−i|x−y|2
t

1

µd
Ψ̂

(
z − y

µ

)
dy

=

∫
χ(x− y)

1

td/2
e

i|y|2
t

1

µd
Ψ̂

(
y + z − x

µ

)
dy

=

∫
χ(x−

√
ty)ei|y|

2 1

µd
Ψ̂

(√
ty + z − x

µ

)
dy.

Let θ(y) = 1 for |y| ⩽ 1, θ(y) = 0 for |y| ⩾ 2.
Then write K = Ki +Ke, where

Ki =

∫
θ(y)χ(x−

√
ty)ei|y|

2 1

µd
Ψ̂

(√
ty + z − x

µ

)
dy,

Ke =

∫
(1− θ(y))χ(x−

√
ty)ei|y|

2 1

µd
Ψ̂

(√
ty + z − x

µ

)
dy.
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We have ∫
|Ki(x, z)|dz ⩽

∫
|y|⩽2

∫
Rd

∣∣∣∣ 1µd
Ψ̂

(√
ty + z − x

µ

)∣∣∣∣ dzdy
⩽
∫
|y|⩽2

∫
Rd

|Ψ̂(z)|dzdy ⩽ C (independent ofx),

Similarly,
∫
|Ki(x, z)|dx ⩽ C (independent of z).

It remains to control Ke. We have

Ke(x, z) =

∫
χ(x−

√
ty)(1− θ(y))

(
−iy
|y|2

∂

∂y

)
(ei|y|

2

)
1

µd
Ψ̂

(√
ty + z − x

µ

)
dy

After integration by part, we get:

|Ke(x, z)| ≲ C

(√
t+ 1 +

√
t

µ

)M
1

µd

∫
|y|⩾1

∣∣∣∣Ψd

(√
ty + z − x

µ

)∣∣∣∣ 1

|y|M
dy,

where Ψd ∈ S(Rd) (sum of derivatives of Ψ̂). It is easy to check that

sup
z

∫
|Ke(x, z)|dx+ sup

x

∫
|Ke(x, z)|dz ≲ C

(√
t+ 1 +

√
t

µ

)M

.

By Schur's test 3.19, we get the desired result. □

Lemma 6.3. We have ∥∥∥(1− χ)P<100µ−1
2
(1D<µ−1

3
vmed(t0))

∥∥∥
H

≲ µη3

2

Proof. Since the convolution kernel of P<100µ−1
2

is a Schwartz function and the support of 1 − χ

belongs to {|x| : D(x) > 2µ−1
3 }, we have kernel of (1− χ)P<100µ−1

2
1D<µ−1

3
is bounded by

|(1− χ)P<100µ−1
2
(1D<µ−1

3
(x, y)| ≲l N

d−l|x− y|−l1|x−y|>µ−1
3
,

for any l > 0. Thus, from Young inequality and Hs-norm bounded of vmed we obtain the desired
result. □

Lemma 6.4. The operator 1D>µ−3
3
ei(t0−t′)∆P⩽µ−1

2
1D⩽2µ−2

3
has an LR → L2 norm of O(µ100

3 ) for

each t′ ∈ I.

Proof Lemma 6.4. Let f ∈ LR. We have, for φ is a smooth cuto� function which equals 1 in |ξ| ⩽ 1
and equals 0 in |ξ| ⩾ 2:

A0 :=1D>µ−3
3
ei(t0−t′)∆P⩽µ−1

2
1D⩽2µ−2

3
f(x)

= 1D>µ−3
3
(x)F−1

(
e−i(t0−t′)|ξ|2φ(ξ/µ−1

2 )F(1D⩽2µ−2
3
f)
)
(x)

= 1D>µ−3
3
(x)F−1

(
e−i(t0−t′)|ξ|2φ(ξ/µ−1

2 )
)
∗ (1D⩽2µ−2

3
f)(x)

= 1D>µ−3
3
(x)
(
1|·|>µ−3

3 /2F
−1(e−i(t0−t′)|ξ|2φ(ξ/µ−1

2 )) ∗ (1D⩽2µ−2
3
f)
)
(x).
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Let R̃ satis�es 1
R + 1

R̃
= 1 + 1/2.

Thus, by Young inequality and using ∥f∥Hs =
∥∥(1 + |x|)sF−1f(x)

∥∥
L2 , we have

∥A0∥L2 ≲ ∥f∥LR

∥∥∥1|·|>µ−3
3 /2F

−1
(
e−i(t0−t′)|ξ|2φ(ξ/µ−1

2 )
)∥∥∥

LR̃

≲ ∥f∥LR µ
d(1/R̃−1)
2

∥∥∥1|·|>µ−3
3 µ−1

2 /2F
−1
(
e−i(t0−t′)µ−2

2 |ξ|2φ(ξ)
)∥∥∥

LR̃

≲ ∥f∥LR µ
d(1/R̃−1)
2

∥∥∥F−1
(
e−i(t0−t′)µ−2

2 |ξ|2φ(ξ)
)∥∥∥

LR̃(|x|⩾µ−3
3 µ−1

2 /2)

≲ ∥f∥LR µ
d(1/R̃−1)
2

∥∥∥(1 + |x|)M (1 + |x|)−MF−1
(
e−i(t0−t′)µ−2

2 |ξ|2φ(ξ)
)
(x)
∥∥∥
LR̃(|x|⩾µ−3

3 µ−1
2 /2)

≲ ∥f∥LR µ
d(1/R̃−1)
2 O((µ3

3µ2)
l)
∥∥∥e−i(t0−t′)µ−2

2 |ξ|2φ(ξ)
∥∥∥
HM

ξ

for M > d and any l > 0

≲φ ∥f∥LR O(µl
3)(1 + µ−1

1 µ−2
2 )M

≲ ∥f∥LR O(µ100
3 ), (for l large enough)

This completes the proof. □
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