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A COMPACT ATTRACTOR FOR ENERGY CRITICAL AND
SUPER-CRITICAL NLS

PHAN VAN TIN

ABsTrRACT. We study the asymptotic behavior of large data solutions to nonlinear Schrédinger
equations (NLS): tus + Au = A|u|Pu + Vu, where p > ﬁ and V € C5°(RY). In the case
% <p< ﬁ7 Tao [12] proved that in radial setting, as ¢ — 400, any solution u of bounded
energy can split into a term of form e®*“u4 and remainder term converges in H'(R%) to a
compact attractor which is invariant under the NLS flow. In the case p > ﬁ, we work on

Sobolev space H*(R?) for some s > sp := % — %, which is more complex than working on

H'(R%). Basing on the method in [12], we prove that any radial solution with uniform bounded
on H*(R%) can split as in the work of Tao.
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1. INTRODUCTION

We consider the following (NLS) equation:

(11) iug + Au = AMuPu+ Vu, (t,7) € R x RY
' u(0) = ¢,

where d > 5, A ==+1, p> %5, piseven or p > [s] and V € C°(R?). Let s, = 4 — %. Fix s such

that g > 5 > sp, the energy is defined by
(1.2) E(u) = sup [lu(t)[|- ,
tel

For convenience, denote H = H®. We abbreviate || f[|;,ga) by [[ul;, or sometimes by [[u],.
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We consider the following conjecture which is called soliton resolution conjecture: any global
uniform bounded solution u of dispersive equations can be decomposed as ¢t — 400 as follows:

J
u(t) = e uy + ZRj(t,sc) + o(1),
j=1

where R; are solitons and o(1) converges to zero as t — +o00. There are two special cases of this
conjecture:

(1) Ast — +oo, u(t) = Zj;l R;(t,z). In this case, u(t,z) is called multi-soliton.

(2) Ast — +oo, u(t) = e*®u, . In this case, u(t, ) scatters forward in time.

Recently, in [6] and [5], the authors proved the soliton resolution conjecture holds for the ra-
dial critical wave equation in all odd space dimensions and in six space dimension. To the best
of our knowledge, there is not a proof for the soliton resolution conjecture for general nonlinear
Schrédinger equations even in radial setting. In [12] and [13], the author proved a weaker result
than the above soliton resolution conjecture. More precise, the author showed that any radial
uniform bounded solution of a nonlinear Schrodinger equation (NLS) can decompose as t — +oo
by u(t) = e*® + K + o(1), where K is a compact set which is invariant under flow of NLS. Our
goal of this paper is to give a similar result to [12, 13] in the energy critical and supercritical cases
iep> ﬁ.

In energy critical and energy subcritical, there are many works relating to two above special
cases of the soliton resolution conjecture for nonlinear Schrodinger equations. Let us give a short
introduce for studying NLS in energy supercritical case. In [4], the authors proved local well posed-
ness of simple power NLS (V = 0 in (1.1)) in high regular Sobolev space H*(R%) (s > s,). In [10],
the authors showed that for defocusing NLS in high dimensions (d > 5), any uniform bounded in
critical Sobolev space H*» is global and scatters under a suitable condition of sp- Specially, in [11],
the authors showed that there exists a blow up solutions for NLS in energy supercritical setting
even in defocusing case. In focusing case, there is not many studying for asymptotic behavior of
solutions for large initial data in energy supercritical setting. Recently, in [7], we establish profile
decomposition and prove some scattering results for general nonlinear Schrédinger equations.

Inspiring by [4], we study local and global theory for (1.1). Define
p+2 4(p+2)

P= 1+ ps/d’ 7= p(d —2s)’
Tt is easy to check that (v, p) is a admissible pair and satisfy the Sobolev embedding HsP < [P,
where p* such that

p 1
/ T+7'
1Y P P

We have the following properties of p,:

Proposition 1.1 ([4][Proposition 1.5). | We have
(i) 2<p<%;
(ii) 2/v=d(1/2—1/p), and hence (v, p) is an admissible pair;
(iii) p < d/s and hence p* > p;
(iv) 1/p" =p/p* +1/p;
(V) 19" Zp/v+1/7.

As in [4], we have the following result.

Theorem 1.2. Let ¢ € H and p,s be as the above. Then there exists a solution of (1.1) u €
C(0, Tomax; H) N L] (0, Trnax; H$?). Moreover, the following properties hold:

loc
iwe L90,T; H*") for every admissible pair (q,r) and every T < Tyax-
il w is unique in LY(0,T; H*P) for every T < Tiax-

i u()ll 2 = 6] and E(u(t)) = E(8) for all t € (0, Ta).

iv If Thhax < oo then

li t = oo0.
Jim (b)) = o0
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From Theorem 1.2, we see that if solution u has bounded energy then u is global. Inspire by
[12], we study asymptotic behavior of solutions with uniformly bounded energy. Our main result
is the following:

Theorem 1.3. Let E > 0. Then there exists a compact subset Kg rqq C H which is invariant
under the NLS flow, and such that for every radial global solution u of energy at most E, there
ezists a unique radiation uy € H such that

(1.3) i distrr (u(t) = €"Sup, K raa) = 0.

Here and in the sequel we write disty(f, K) := inf{||f —g|| : g € K} for the distance between f
and K.

Remark 1.4. Consider the compact set Kg rqq in the theorem 1.3. Let ug € Kg rqq and u be the
associated solution of (1.1). Since Kg rqq is invariant under flow of (1.1), u(t) € Kg rqq forall t € R.
Thus, {u(t) : t € R} is pre-compact in H® and v is called an almost periodic solution. Assume that
each almost periodic solution of (1.1) must be zero, this property is called rigidity property (see
e.g [9][Theorem 5.1]). Then Theorem 1.3 implies that each uniformly bounded solution of (1.1)
scatters in both directions. However, in the case s = s, the situation is more complex since local
smoothing effect can not hold in this case (see Remark 3.18).

Remark 1.5. It seems that we could also obtain a similar result in [12][Theorem 1.28] in nonradial
setting. However, in this paper, we only focus on solutions in radial setting.

Let u be a solution as in Theorem 1.3. From Lemma 3.20, e~"*Ay(t) is weakly convergent to
some u; € H*(R%) ast — +oo. Define v(t) = u(t) —e?u , which be called weak bound component
of u. We will show that . satisfies the property (1.3).

We recall the following equivalence of precompactness and localisation:

Proposition 1.6. (see e.g [12][Proposition B.1]) Let K C H. Then the following are equivalent:

(i) K is precompact in H.
(ii) K is bounded, and for any po > O there exists puy > 0 such that we have frequency
localisation estimate

P21/ Il S o

and the spatial localisation estimate

/ F@)Pde < 422,
|z|>1/p1

forall f € K.
(iil) K is bounded, and for any po > 0 there ewists puy > 0 such that we have frequency
localisation estimate

[Po1/un f ||y S Ho
and
||P<M1fHH < o

and the spatial localisation estimate

/ F@) + |D*f ()2 < 42,
|z|>1/p1

forall f € K.

The above proposition is generalized by the below criterion for compact attractor:

Proposition 1.7. (see e.g [12]/Proposition B.2]) Let U be a collection of trajectories u : R™ — H.
Then the following are equivalent:

(i) There exists a compact set K C H such that lim;_, o disty(u(t), K) =0 for all u € U.
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(il) U is asymptotically bounded in the sense that
(1.4) sup lim sup ||u(t)||g < o0

ueU t—+oo

and for any po > 0 there exists p1 > 0 such that we have the asymptotic frequency
localisation estimate

limsup || Py, w(t) |5 S o
t——+oo

and the spatial localisation estimate

lim sup/ lu(t, z)|*de < pd
lz|>1/p1

t—+oo

for allu e U.

(iil) U is asymptotically bounded in the sense of (1.4), and for any o > 0 there exists py > 0
such that we have the asymptotic frequency localisation estimate

limsup || Po1/,,u() g S po
t——4o0
and
limsup || P, u(t)|| g < po
t——+oo

and the following improved spatial localisation estimate

limsup/ lu(t, z)|* + | D*u(x)Pdr < ud
|| >1/p1

t——+oo

for allu e U.

From Proposition 1.6 and Proposition 1.7, we see that precompactness are formally equivalent
to localisation in spatial and frequency. From Proposition 1.7, to prove Theorem 1.3, we only need
to prove asymptotic localisation in spatial and frequency of v(t).

This paper is organised as follows. In Section 2, we introduce the useful notations and basic
tools in this paper. In Section 3, we prove local well-posedness of solutions of (1.1) in H® and give
some basic results in the proof of the main result. In Section 4, we prove asymptotic localisation in
frequency of v(t). In Section 5, we prove asymptotic localisation in spatial of v(¢) and then prove
the main theorem 1.3. In Appendix, we prove some lemmas used in the proof of the main result.

ACKNOWLEDGEMENT

The author wishes to thank Prof.Thomas Duyckaerts for his guidance and encouragement. The
author is supported by postdoc fellowship of Labex MME-DII: SAIC/2022 No 10078.

2. NOTATION AND PRELIMINARIES

Let L = i0; + A be Schrodinger operator.
For convenience, we define fi(u) = MulPu, fo(u) = Vu and f(u) = f1(u) + fa(u).
For each X Banach space, define ||(u,v)||y = [Jullx + [|v] x-

Denote S is the space of Schwartz functions. We shall need some small exponents
I>no > m > n2>n3 >0,
where 7 is small enough depending on E and the other fixed parameters, 7; is small enough de-
pending on E, 19, M1, - ,Ni—1-
Moreover, in Section 5, we shall need some other constants:
1> po > p1 > po > pus > pug > 0.

where p is small enough depending on E and the other fixed parameters, p; is small enough
depending on g, ft1,- -, fi—1-
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2d

Lemma 2.1. There exists an admissible pair (qo,r0) with qo > 2, exponents 2 < Qo, Q < 7255,

and an exponent 1 < R < 2L such that

d+4

1 P 1
2.1 ===
( ) To Qo 7"6
and

1 »p 1
2.2 a2 -
(2.2) 5T &

Lemma 2.2. For any u € H, we have
1
1F @) oo S Nl + Null s -
Proof. By Holder, we have
107 fu(u®)| e S lu®fe [|Dut)] .

for j =0, s. Let a be such that % = % + % Thus, 2 < a < g. By Holder and Sobolev embedding,
for j =0, s, we have

127 (Fa)] = [ D7 (V)| e

N ||Dj(V)||La HU||L2 + HV”La Dju||L2
N HU”L? + HDjuHLz
S lullg -
This implies the desired result. O

Denote F(f) = f is Fourier-transformation by space variable. We have the following basic
property in Fourier-analysis.

Lemma 2.3. Let f,g € S. we have the following identity:
F(fg) =F(f)*F(g)-

Lemma 2.4. For any time interval I C R, any to € I and any 0 < 6 < 2

5, we have

— )
luvlizz  (rxre) S <||U(t0)|g—1/2+5 - H\V| 1/2+ Lu‘

Lq’LW(Ide))
(It + 7147214

Lé’LF’(MRd)) ’
for any u,v and any admissible pairs (q,r), (¢,7) with q,§ > 2.
As a consequence, we have the following result.

Lemma 2.5. (see e.g [12][Corollary 4.4]) For any time interval I C R, any N, M > 0 dyadic
numbers, we have
1 Md=1)/2=6 N—3+5
lununl 2 < ()2 TYE
L? (IxR%) <N> <M>

Lemma 2.6 (Dispersive estimate). For all 2 <r < 400 and f € L (R%), we have

1

Heimf| Lr N W Hf“LT/ :

Lemma 2.7. For 1 <r <2, f € D(R?), we have
e 2 £l sp (4D,

for all M e N and M > d/2 —d/r.
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Proof. Let a be such that

+

d.

SHEE
DO |

1

r
Let M be a natural number such that Ma >
We have

HeitAf’

= [P A ) @)

= @ lah M@+ )M F e ) @)

Ly

L3

SN+ 1ah) M| |1+ 2 F e ) (@)

L3

< e i)

Sy t+1)M

Hy

3. LOCAL ESTIMATE

This section gives some useful tools for studying asymptotic behavior as ¢ — 400 of solutions
of (1.1). First, we introduce some basic tools in studying of fractional derivative.

3.1. Basic tools of fractional derivative. We need the following results on fractional derivative
for our analysis:
Lemma 3.1. Let —00 < s9 < 81 <00 and 1 < py <p2<oowithslf%:5271%. Then we
have the following embedding:

HsvPr H$27p27 HS1PL — |s2:P2,
Lemma 3.2 (Product chain rule 1). (see e.g [1]/[Lemma 2.2]) Let s > 0, 1 < r,ra,p1 < 00,
1 < ry,pe < oo such that % = Ti + % (it=1,2). Then,

1f gl grer S WFI N9l gemn + 1LF 1 grera N9l -
As a consequence of the above lemma, we have the following:

Lemma 3.3 (Product chain rule 2). (see e.g [1][Corollary 2.8]) Let s > 0, ¢ € N (¢ > 1),

1<rri<oo, for1<ik<gq: 1= 3:1%" Then
k
q q
11+ <> 1kl yert 11 Il fill
1=1 Hs.r k=1 i#£k

Lemma 3.4 (Fractional chain rule). (see e.g [1|/Lemma 2.4]) Let G € C*(C), s € (0,1), 1 <
1

r,re < 00, and 1 < r; < oo satisfying % = % + 5

G g S NG @, ull oo -

Lemma 3.5 (Gagliardo-Nirenberg inequality). (see [2]). Let s1 < s2, po > 1, s = 0s1 + (1 —0)s2,
L_ 0 4120 Tphep

P p1 Po

6 1-60
HsP ~5 Hs1-P1 Hs2:P0 *
[ull gron S Nl Il

Lemma 3.6 (Homogeneous Gagliardo-Nirenberg inequality). Let s; < s2, po > 1, s =6s1 + (1 —
0)sy, £ = L 4 120 Then
p p1 Po P 10
Hu”HéP S HU’HHSLPI HU||H52,;,O :
Lemma 3.7. (see [1][Lemma 3.2]) Let s > 0,1 <p < oo andv=s— |s|. Then
Z HDafHH; ~ ”fHH; )
le]=]s]

where |s] is largest integer below s.
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Lemma 3.8 (Leibniz rule). Let f € C* be a real variable function and o = (o, g, - - -, ag) € N?
such that || < k. Then D f(u) is written as follows:

la| h
(3.1) Df(u) =" Cont™ () [[ D,

h=1 Ah i=1

where Cpp, € N and Ah = {(B1,-+,Bn) : for each i: B; € N4, By + -+ By = o, || = 1}.

3.2. Local theory in H*®. In this subsection, we prove local theory for solutions in H*® of (1.1)
Theorem 1.2. Define

G(f(u(t)) = —i/o S(t —7)f(u(r))dr.
We may rewrite (1.1) by

u(t) = S(t)o + G(f (u(®))).

Before proving Theorem 1.2, we need some tools.

Lemma 3.9 ([4][Lemma 4.1). | We have for any (q,r) admissible:

s +1 =2
(32) Hg( ( ))HLQ(O TYHs7(R4) ~ <T ||u||zl)/'y(0,T)Hs,p(]Rd)+T K Hu||L“f(0,T)H5,p(Rd)

and

||g(f(u)) - g(f(v))”Lq(O,T)LT'(Rd) S/ T5 (HUHLW(O T)H& 2 (R4) + ||U||Lw 0 T)H“ P(Rd)) HU - v”L’Y(O,T)LP(Rd)

(3.3) + T [Jlu— UHLv(o,T)Lﬂ(Rd) )

where § = 1 — p7+2_

Proof. Use the proof of Lemma 3.11 and note that H$? < LP". Remark that in this proof, we
only need the condition p even or p > |s]. O

Moreover, we have the following unique result.
Proposition 3.10 ([4][Proposition 4.2). [ Let ¢ € H?, and suppose u € LY(0,T; H*?) is a solution
of (1.1). Then uw € L9(0,T; H>")NC([0,T); H?) for every admissible pair (q,r). Furthermore, if
v e L7(0,T; H**) is also a solution of (1.1), then u = v.
Proof. By Lemma 3.9 and Strichartz, it is easy to prove that w € L1(0,T; H*") N C([0,T]; H®).

Assume u(t) # v(t) for some t € [0,T]. Let to = inf{t € [0, T],u(t) # v(t)}. Using Lemma 3.9, we
have, for all ¢ € [tg, T:

e =0l g e = 1)) = G @D 010
<Ot = t0)" (Il e N1 o) 10 = 2l gty

=2
+ ||u7rU||L’v(t07t);Lﬂ (tfto) v

Let t be close to tg, we give a contradiction. Thus, u(t) = v(t) for all ¢ € [0, T, which is the desired
result. O

Proof Theorem 1.2. We use fixed point argument to prove existence of solution of (1.1). Let M > 0,
we define
X=X(T,M)={ueLl”(0,T;H>"): ||uHL’Y(OTHé ) X < M}
Endowed with the metric
d(u,v) = [ju — UHL'Y(O,T;LP) )
X is a complete metric space.
We wish to prove that the map
Fu=2S8()¢+G(f(u))
is a contradiction map on X for suitable constants 7, M. Let u € X. Using (3.2), we have if
1Sl 1 o.1sfemy +CT MPH +CT ™5 M < M then Fu € X. From (3.3), if 20T MP+CT ™5 <
1 then F is a strict contradiction on X. By Strichartz, F is a contradiction from X to X if

(3.4) Cl|¢]l o + 20T MPT + CT™5" M < M.



8 PHAN VAN TIN

Combining with Proposition 3.10, there exists a unique maximal solution of (1.1) u € C(0, Tyax; H)N
L] (0, Trax; H*?). Assume Tpax < oo. Using (3.4) and by classical argument (see e.g [3]), we

loc
have
li e =
i [u(t)] . = o,
which completes the desired result. O

Lemma 3.11. Let p be even or p > [s] and u,v € S*(I x R?). We have the following estimates:
Hfl (u) - fl (U)”L(I(/JHS)T(/J (IXRd) 5 |I|1/‘I0*1/QO (HU - v”LqOHs,rO(IXRd) ||('U,, U)HZI)/WLQO (IX]Rd)

~1
+ [l = vll g L@o (rxre) ”(uaU)HimLQo(lde) ||(“’U)”L%H”O(MW)) :
/7
1£2(0) = £2(0) it gt ety S 1= 0l e 111561750,

Proof. 1t suffices to show the first estimate. The second estimate is proved by using Holder and
V € D(RY). We only consider the case p > [s]; in the case p even the conclusion is easily proved
by using Holder.

By Holder,

1F1(w) = L) o grovry S () = Fr(0)] g romy [T/,
Thus, we only need to prove that

Hfl(u) - f (v)”LqOsté S ”u - UHLCIOHS»TO(IXRd) H(u7 U)le,ooLQo(Ide)
+ ||’LL - U||L°°LQ0(I><Rd) ”(uvv)”i:olLQo(Ide) ”(U»U)HLQOHW'O(IXRd) :
We have
1 1
(3.5) filuw) — fi(v) = (u—v) / 0. fi(v+0(u—v))dd +u— v/ Ozf1(v+6(u —v))db.
0 0
By Holder and using |0, f1(u)| + |9zf1(v)] < |ul?,
[ f1(u) = fr()l oo 1o S 1w =0l Lo Lo 9s1§p] [lv+60(u— )Pl Lapas ( Where 1/a+1/Qq = 1/rp)
€

)

S llw—vll e pao NPl Lao o + MVl oo o)
-1

S llu =0l o pao (s )1 a0 1w 0) | pao o -

Thus, it remains to show that
| f1(u) — fl(U)”LqOng S lu— U”quHs»v-o(Ide) [ (w, U)HiooLQo(Ide)
-1
= 0l e o ey 10 01220 ety 108 ) e o ety -
By Holder, it suffices to show:
—1

(36)  Nfi(w) = fr(0)ll oy S Ml =l oo (s 0) 700 + llu = vl Lo 11(us )17 ag 11(ws 0) || oo -

By using (3.5) (with noting that the contribution of the first term and the second term are similar)
and product rule Lemma 3.2, we have

1
/ V10, f1 (v + O — v))d0
0

[f1(u) = fr()]l oy S 1w = vll a0

La

+ |lu— v g (where 1/b+ 1/rq = 1/1().

/0 0. f1(v + 0(u — v))do

Lb

Since |0, f1(u)] < |ul|P, we have

/01 0. f1(v + 0(u — v))do

hence the second term is acceptable. Thus, to prove (3.6), it suffices to show that, for g = 9, f1,
for each u:

—1
(3.7) V1)l e < Nl el groro -

S Ml + Pl < 1w, v) a0 »
L Lo

Lb
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Since p > [s], the function g belongs to C*] and satisfies
(3.8) lg®) ()] < |uP~F,  for each 0 < k < [s].

By Lemma 3.7 and Leibniz rule Lemma 3.8, we only need to prove for each a € N%, 1 < h < |al,
cach 1<i<h: B eN% (B >1: 0 B =

h
(3.9) 9" () [[ D7 Sllulfao el ey, (where v = s — [s]).
1=1 H’v,a
We have h < |a] < |s] < [s] < p. Using Lemma 3.3 and (3.8), we have
h h
(h) Bi < ||g™ Bi
(3.10) g™ (u) HD ul = Hg (u)HHO H | D u||Lmi
=1 Hv.a =1
h h
—h . i
+ el g 1P ullgron TT 107l
k=1 i=1,i£k
where m; and m; for ¢ = 0,--- , h are chosen such that
1 0; 1-—86;
— = here 0; = |5;
P, + 00 (where 0; = |B;|/s)
h
1 1 1
mo " 2w
iy = 20
0 p— hv
h
1 1 p—h Z L Bkl +v)/s  1—(IBkl+v)/s
~ - - — — + )
me o Qo 4 M To Qo

By the choice of m; and m;, using Gagliardo-Nirenberg inequality Lemma 3.6, we have

IDPu| s S MNuall % Ml o

||DﬂkUHHv,mk < HDW}chu

LMk

0 1—0y ~
S llullgen lullzee (where 0 = (|Bk] +v)/s).

Thus, the second term in (3.10) is acceptable.
Consider the first term. If s ¢ N then [s] > h+1 (since h < |a| = |s]), using fractional chain rule
Lemma 3.4, we have

Hg(m (“)H < Hg<h+1>(u)Hm ull o ( where 1/m +1/n = 1/mq)

Hs,mo
S == all o -

Choosing m such that (p—h—1)m = Qo then 1/n=1/mg—1/m = % + % Using Gagliardo-
Nirenberg inequality Lemma 3.6, we have

v/s
o

Ls)/s

[l pao” -

[l gron < Nl

Thus, the first term in (3.10) is acceptable. Then, (3.9) holds and the proof is completed.

Remark 3.12. In the proof of the above lemma, the condition p > [s] is needed.

Lemma 3.13 (Perturbation lemma). Let ug € H, let I be a compact time interval containing to,
let A jiy >0, and v : I — H be strong solution of the following NLS:

v+ A= f(v)+G

where v, G satisfy
[0l Lao £rs rorco mr(rxray + [0(0) = woll g < A
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and
<

ei(t—tg)A(v(to) _ UO) ‘

Lao H#moNLee LRo (I xR4)
and

fefl

Then, if fi1 is small enough depending on A, |I| there exists a solution v : I — H of (1.1) with
initial data u(ty) = ug such that

-
LI 70 (IxRd) ~ P11

[lu— U”L'IoHsvror‘wLmLQO(lde) San) A

and
lu—=vllcoy San 1.
Proof. By local theory, u exists on I. Let w = u — v, then w solves the equation
wy + Aw = f(w+v) — f(v) —G;  w(0) =v(ty) — uo.

Define X = [|w|| pao grs.r0n 1 £@0 (1xray - We have

XS+ 10+ w) = F)ll o oy -
By Lemma 3.11, we have

X < fig + [TV %10 X (X + AP +1).

If |[I| < C(A) (depending only on A) and fi; is small enough depending on I, A, we conclude that
X < ji1 on I. Moreover,

lu = vllcogrxrey S A+ IF (W) = FO Lo oy Sa 1.

Dividing I into |I|/C(A) interval Ij, on each Ij, we have

||w||quHs=7'onLooLQo(1k xR4) S
and

”wHCOH(Ikad) Sal

By inductive argument, the claim follows. (|
3.3. Fixed time estimate. From (1.2) and our convenience to suppress dependence on F we have
(3.11) lu()|l; <1 forall t € [0,400)

and hence by Sobolev embedding we have

2d

(3.12) lu@)ll;e ST foral2<g< y and ¢ € [0, 400).
—2s

From Lemma 2.2, we have

(3.13) )l ger S1 forall t € [0, +00).

3.4. Local-in-time estimates. Next we prove a local-in-time Strichartz estimate.

Lemma 3.14. (Local Strichartz control). For any time interval I C [0,400) and any admissible
pair of exponents (q,r) we have

(3.14) ull ooy S (HD?
as well as the nonlinearity estimate

1
(3.15) 1F N g oy S CHD

Proof. By Theorem 1.2, there exist and uniqueness of solution u are proved. Moreover, u is global
and u € L} H*"(R x R?) for any (¢,r) admissible. By subdividing [ it suffices to prove that if
|I| 5 1 then ||u||LQHS=’"(I) 5 1 and Hf(u)||L<I6HSJ'6(I) S.z 1. Define

X = ||UHqu(1)Hsmo(1Rd)~
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By Strichartz and Holder inequality, we have

X S Null o g =+ [Pl o HlIVullpipe

LI (I1)H*"
S U Pl gy gt + 1Vl il o o

ST+ 1% w00 X

ST+ 1% WX, (where we use [|ull e poo S [ull oy S 1)
§1+%X,

if we make |I| small enough. This give X = O(1) and then || f(u)|, 4 ;s..y = O(1). This completes
our proof. O

The following result is useful to prove asymptotic localisation frequency of v:

Proposition 3.15. (Local smoothing effect). We have the following result

(3.16) 1P F @l S ()57 (I

Proof. Tt suffices to prove Proposition 3.15 for |I] < 1. Indeed, assume Proposition 3.15 holds for
|I| < 1. Divide I into |I| subintervals Ij, such that |Iz| =~ 1. On each I, we have

1P 0} 1 S V)57

Summing the above inequality in k, we obtain (3.16). By Lemma 3.14, we may also assume N > 1
For convenience, we shall omit the domain I x R¢ in all norms in this proof. Consider the case p

is not even and p > [s]. Our first task is to show that
(3.17) 1D° P fr () g S N,

~

where f1(u) = Alu|Pu. For convenience, in the proof of (3.17), we abbreviate f; by f.

Using Lemma 3.7 and Lemma 3.8, we only need to prove that

h
(3.18) IWr(wau)IIIW%u> <N,
i=1 L0 FYT0
where 1 < h < 3], B0 € N, [8] > 1, [a] = [5] and X0, 6, = o
We have
h h
(3.19) PN<ﬂM@nIID&u> Pon f®(w) [[ PP u
i=1 LI Y70 i L% H”vr'
h
(3.20) + ) (P (u) (P y DPru) H DPiy ,
k=1 i=1;i#k L fomh
where P>y = . By Lemma 3.3, (3.19) is controlled by the following
HP’%Nf(h) (U)‘ La1 Hv:m1 H HDﬁiuHquQLT?
h h
* HPZNf(h)(u)‘ LazL72 Z HDﬁkuHquﬁH”vrﬁ H HDﬁiuHquL r
k=1 i=1,i#k
h
(3.21) S Pewvull ot ot el 2 o2 TTIDull o 0
h l h
(3.22) 1Pl oy oy N1l g g D ND 0l g ot TT D% 0l

k=1 i=1,i#k
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where the above parameters satisfy, for each k € [1, h)

11

(3.23) — = ,
a0 Z; @
11 1

3.24 == -

(3.24) Ty T1 + Z r)’
1

(3.25) = 7
% Z; @

h

1 1

(3.26) e > -
0 i=1 ' %

In (3.21), the parameters are chosen such that, for each i € [1, h]

2 d d
(3:27) @JF@ =5~ (s— 18,
2 d d
3.28 —+—==({@—-h (—s).
(3.29) S+ =0-n)
Let s; be such that q% + % = ¢ — 5. From (3.23), (3.24), (3.27), (3.28), we see that s; =
1 1

ls] — (2—p (4 —s)). It is easy to check that 0 < s; and s; +v < s (using s > s, > 1). Thus, by
Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

h
(3:21) S [ D Peul| of ot 1D 6l 2 Hl ID*ull 40, mo

h
SN D]y 1Dl s TLID ul o
=1

< N-Conld-)
where it is easy to check that mi,m?,m{ are such that (¢, m}), ((p — h)g},m?), (¢¥,m?) (for

€ [1, h]) are admissible pairs.
In (3.22), the parameters are chosen such that,

)

2 d d
(3.29) S+ G =0-n(5-5).
2 d d
3.30 == —(s— B -
(3.30) =50,
2 d d
(3.31) —+ =5 —(s—[Bi]), foreachi#k,k€[l,h].
q; T 2

Let sy be such that % + % = 4 — 5,. From (3.25), (3.26), (3.29), (3.30), (3.31), we see that

2

Sg=8— (2 —-p (% - s)) Moreover, by Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

h h
(3:22) S || D Pynul] oy oy IDulP ,L)qZL,n2Z||DSu||Lq,ngg [T 1Dl s
k=1 i=1,i#k
h h
SN D% g oy 1Dl ez D ID%ul g o [T D%l e
k=1 i=1,i#k

< N-(a(29))

where m}, m3, m¥ are such that (q3, ml), (¢3,m3), (¢F,m¥) (for i € [1,h]) are admissible pairs.

Combining the above we have

)

(3.19) < N~(2-7(5-9)).
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Similarly, we have
(3.20) < N—(2-7(5-9)).
This implies that
1D P f ()] g oy < N CP(E2))

Moreover, since s > s,, we have 2 — p (% — s) > 0.

Our second task is to show the following
(3.32) 1D* Py (Vu)| o S N,
for all (¢, r) admissible pair. To prove (3.32), we use the following results.
Lemma 3.16. [Py V||, Sy N7% for all k > 0.

Lemma 3.17. (See [8][Corollary 1.1]) Let p, p1, p2 be such that 1 < p,p1,p2 < 0o and + = L + L.

p p1 b2
The the following holds for all f,g € S
1D*(fg) = D°fg = D*9f |l o < CIDfll 1oy D> ]| 1 -
Denote P-nnou = uj, and up; = u — uy,. We have

|D* Py (V)| = [|D° Py (Vio) | o + | D* Py (Vi) || e
= || D*Px (VioPs nj10w)|| v + 1 D° Py (Vi) | v

Consider the second term. Using Lemma 3.16, Lemma 3.17 and Hélder inequality, we have

1D° Py (Vaiw) | por 1 = [1D° Py (Vaiw) | por 10
<D (V)| por
<D (Vi) ull por o + Vi D0l o o + 1DVl ey o ([ D° 7 01| iy g

S ||D5Vhi||L«I1Ln HU”Lqu + HVhi||Lq1L"'1 HDSUHLqL"‘

+ ”DVhiHLrn L HDsfluHLqLT
Sy N7,
where (qi,71) is such that + =4 — L and L =L — 1 Thus, this term is acceptable.
q1 q q 71 s T

Consider the first term. Using Lemma 3.17 and Hdélder inequality, we have

|| D* Px (Vio P 10w < |[D*(Vio P 10w o 1o

< ||D*Vio P nj1ott|| gr oo + |[Vie D (Ps nyj10u
+ 1DVioll pay 11 [|D° (P vj10w) | o e

<NID*Vaoll par £ [|1P>ny10w| 1o pr + [[Vie D (Psnyi0t)|| or o

+ ”DViOHL‘nLTl ||DS_I(P>N/1OU

)HLQ’LT'

)HLG’LT'

)HL(ILT'

The first term and the third term are acceptable since || Ps yj10ul| .. S N7 || D*(Psnjiow)|| opr S
N~° and |‘DS_1(P>N/10u)HLqLT <N ||DS(P>N/10U)HLqLT < N~1. Consider now the second
term. First, we have

|[Vio D* (P /10w S,

)HLé’Lf’(Ix]Rd) ~
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for all ¢, 7 is sufficiently close to ¢, r.
Moreover, using Lemma 2.5 for 0 < § < %, we have

Vi D*(Po w0l s 1pay < > IVarD*upgll 2 | (1xeay
M<N" dyadic, "
M>N/10 dyadic

s 2

~Y
1\~/I<N"0 dyadic,
M>N/10 dyadic

< Z M(d—1)/2—8 pr—1/2+8
M<NM0 dyadic
< No((d=1)/2=0) y—=1/2+46

N (d—1)/2-6 yp—1/2+5
(M)*

this is an acceptable term if we choose 79,d < 1. By interpolation, this implies that the term
[VioD* (Ps n/10) || g v 18 8150 acceptable. Thus, (3.32) holds. Hence, 1D* Pn () a1y 176 ety S

N~™ and the proof of Proposition 3.15 is completed. g

Remark 3.18. In the above proof, the condition s > s, is used since we should have 2 > p (g — s).
In the critical case s = s, the situation is more complex and local smoothing effect can not hold.

Lemma 3.19 (Schur’s test). If

1/r 1/r
sup ( / |K<x,y>7“dy) T sup ( / |K<x,y>|rdx) <c
zER? y€ERd y€ERd z€ER

where T satisfies % =1- (% — %), for some 1 < p < q < oo, then the operator Tf(x) =

fyeRd K(z,y)f(y)dy extends to a continuous operator T : LP(R?) — L4(RY) with ||T||,, ;. < C.

Lemma 3.20 ([12][Lemma 5.1). ] Let u be a global solution of energy at most E. Then, e~"*2u(t)
is weakly convergent to uy € H ast — +00.

Proposition 3.21 ([12]|[Proposition 5.2). | Let u be a global solution of energy at most E > 0.
Then there exists a unique decomposition

(3.33) u(t) = e uy + (1),
where uy € H with
(3.34) lurlf < B
and
2
(3.35) lo()|? < 2E
for allt > 0. We also have the following identities
¢
(3.36) v(t) = e (u(0) —uy) —i / et f(u(t)))dt!
0
and
T o
(3.37) v(t) = iw-lim | TR f(u(t))dt.
T—+oco t

Remark 3.22. Assume that the solution u in Proposition 3.21 is almost periodic in sense that
{u(t) : t € R*} is pre-compact in H. Then u, = 0. Indeed, since e~®#?u(t) weakly converges to
uy in H, e~ A y(t) also weakly converges to u, in L2. We only need to show that for all ¢ € D(R?),
we have

: itA _
Jim (u(t),e"2¢) . = 0.
Let ¢ > 0. By assumption, there exists C. > 0 such that

2
lut, 2)| 22050y <& VEE RT.
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We have

, , 2 , 2
|<U(t)aelm¢>m|2 S ‘<“(t)7elm¢>L2(lwl>Cs) + ‘<”(t)762m¢>m(|x\<cg)

2 2 itA
S Moz 19122 + Nu®l oo /| e
T|XxCe

2 - 2
Sellolz: + 7 CLIIgILs
Se, if ¢ large enough.

This implies that e~®#®u(t) also weakly converges to 0 in L?, hence, uy = 0. This completes the
proof.

Lemma 3.23 (Weakly bound component are approximate solutions, [12][Lemma 5.6). [ Let T € R
and u,v be as in Proposition 3.21. Then for all ty large enough (depending on T,u), we have

S(T)v(te) = v(T +to) + or (1)
where S(t) is the flow of (1.1) and oy (1) goes to zero in H norm as tg — +00.

Proof. Fix T, and let ¢y large enough. Define I = [tg,to + T]. We see that v solves the following
NLS:

Lv = f(v) + [f(v + e"Pus) = f(v)]-

As tg — 400, we have
itA

||e — 0.

Ut Hqu H#m0NL% LR (I xR<)
Moreover
’ Heim“+Hcg’H(1de) S

By Lemma 3.14 and triangle inequality, we have

||U||quHsmomc?H(Ide) Srl
Let
X = Hf(v +e'Buy) — f(U)Hqu)HS*"f)(IxR'i) :
By Lemma 3.11, we have

X3 |T|1/qéil/q0 HeitAu‘*‘HquHsvTo(Ide) (1 + ||eitAu+HLGOH-*vTo(Ide) H(u’6itAu+)}|Il),°°LQO(I><Rd)

+ HeitAUJFHLmLQO(Ide) H(u’eitAu+)}’i;1LQo([de) H(uvei

which go to zero as tg — +o0o. Thus, by perturbation Lemma 3.13, the claim follows. 0

A
Puy) HLQoHsmo(Ide)> ’

4. FREQUENCY LOCALISATION

In this section, we prove the following asymptotic localisation frequency of weakly bound com-
ponent v of wu:

Proposition 4.1. Let u be a global solution of energy at most E and let v be the weakly bound
component of u. Then, we have

(4.1) limsup sup N~ || Panv(t)]|; < 1
t—+oco N1

and

(4.2) limsup sup N || P> yo(t)[| y S 1.
t—+oco N2>1

Proof. See [12][Proposition 6.1]. We sketch the proof here. The main idea is to use the double
Duhamel formula (3.36) and (3.37).
Fix ¢ > 0. Let u. € D(R?) be such that

u(0) —uy = u. + Oy (e?).

Hence, from (3.36), we have

(4.3) v(t) = e*Pu, —i /t A F () dt + O (€2).
0
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To Prove (4.1), it suffices to prove that
(4.4) |Panu(®)ll; S N +e,

for ¢ large enough (can depend on FE,u,e but is independent on N) and N < 1.
Using (4.3) and (3.37), we have

IP<xv(®)| 3 = [(P<nv(t), Panv(t)) |

T
< <iw—lim ei(t_t/)Apng(U(t,))dt/a

T—+oco t

t
PeyeBug —i / t=tAp f(u(t”))dt”> +0(?)
0 H

T
< / ‘<ei(t_t/)AP<Nf(u(t/))7PgNeitAu5>H‘ dtl

t
T t
/ / Yn (', t")dt"dt’
t 0

for T large enough and Yy is defined by

YN(t/, t”) _ <6i(t7t/)AP<Nf(u(t/)), ei(tft”)Apng(u(t/I))>

+ + 0(e?),

u
For the first integral, we have

1

it’ A <
e R ~Ue |t/|d(1/R71/2)'

HPgNe Ue

Since R < %, the exponent of (t’) is larger than 2, hence, the first integral is bounded by

O(e?)if t,T (t < T) large enough (not depend on N).
The second integral is bounded by
o] t
/ / [Yn (', t")| dt'dt”
t Jo
Using Lemma 2.2, we have

Yot )] = |(Pen fu®)), =2 Pen flut)) |

S IP<x S @Dl o || P @)

Hs R
1
SJ ||P§Nf(u(t/))”LR Hpng(u(tN))HLR |t/ — t//|d(1/R_1/2)

< 1
~ |t/ _ t/l|d(1/R—1/2) .

Moreover, using Lemma 2.2, Bernstein’s inequality, we have
Y (¢, )] S 1P<n ()l g 1P fult)]] e
S IP<n f )l 2 1P<n f ()]l 2

S NUCED £ @) e L (@)
5 Nd(2/R—1)_

Combining all the above, we have

0o pt 0o ot 1 d(1/R—1/2)
/ / Yy (', ") dt'dt” < / / min ([ ——, N? dt"dt’.
¢ Jo t Jo t =t

Since R < d%u the exponent d(1/R — 1/2) > 2, hence, the claim (4.4) follows.
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We now prove (4.2). As before, we have

1P>no()lly S €+

T ft
/ / Zn (" dt"dt'|
t Jo
for T large enough, where

Zn(t,t") = (TP fu(t), AP flult))

Thus, it suffices to show that

N Yt dt' | S N7,

Consider the region where t’ >t + N". We have

|ZN(tl,t//)| g |tl 7t//|7d(1/371/2).

Since d(1/R — 1/2) > 2, the contribution of this term is

< / / ‘t/ _ t”‘_d(l/R_lm)dt”dt/ _ O(N_m),
t'>t+N2 J' <t

where we use N~ <« N~ Similar argument for the region t” <t — N"2. It remains to prove
that
t+N"2

Zn @ " dt"dt' | S N7,

max(0,t—N"2)

By Holder inequality, the left hand side is bounded by

1P f(u(t'))

By Strichartz, the left hand side is bounded by

Il a omt x
L, H, O ((t,t+N"2)xR4)

t
/ €i(t/_t”)AP>Nf(U(t//))dtH

max(0,t—N"2)

LI HZ"O((t,t+N"2) xR7)

2
||P>Nf(u)”Lq(IJHs’"'(/J((max(th"2,O),t+N7l2)><]Rd) ’
which by Proposition 3.15 and dyadic decomposition can be bounded by
O(N2nz/q6N*2m ),

this is acceptable. The proof is completed.

5. SPATIAL LOCALISATION

In this section, we prove localisation in spatial of v and then the main result Theorem 1.3. First,
we have the following localisation result:

Theorem 5.1. Let E > 0, 0 < pg < 1. There exist J, g (depending only on E, ug) with the
following property: For each u is a forward-global solution of energy at most E, then there exists
functions x1,x9,--- , x5 : RT — R, such that

5.1 lim sup v(t, z)|Pde < p2.
~ Mo

t—+o0 [Hflgng |w—z;(t)|=1/1a
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5.1. First step: L7° spatial localisation at fixed times. Define vpeq = Pyoc.c1/p,v- We
exploit the frequency localisation of vy,eq- From Proposition 4.1, we have

(5.2) [0(t) = Vmea ()| 7 < 13°
and thus,
(5.3) u(t) = €y + vimea(t) + O (13).

For each ¢, let z1(t), z2(t), -+ , (1) (t) be a set of points such that |z;(t) — k()| > p3 ' for each
j # k and

(5.4) |vmed (£, 25 ()] = py/™  for all 1 < j < J(t).
By the rapid decay of the convolution kernel of P _ _ gt and Holder, we have
tmeat ;) S i [ mea (t,2) *d + O3/ ™)
|z —a; (t)|<1/205 "

and thus
/ [omea(t, ) 2 2 /™ i 2 i3/
|e—x;(t)|<1/2u5 "
for all j. Thus, by uniformly bounded of H-norm of v, there exists J depending on F, 3 such that
J(t) < J for all t. If J(t) < J then for each J(t) < j < J, we define z;(t) = z1(¢). By the above

construction, for all ¢, there exist x1(¢), z2(¢), -,z s(t) such that
(5.5) [Vmed (t, )| < ué/m whenever inf |z — x;(t)] > p3 .
N

5.2. Second step: LY° spatial localisation on a time interval. Fix t; a sufficient late time and
I =ty —p;* to+py']. Let D:RY — RY be the distance function D(z) = infi<j<y |z — z;(to)];

/1 whenever D > 3.

thus |Umed(t07x)‘ < N:li,
Let x : R? — R* be a smooth cutoff function which equals to one when D(z) < 2/¢§1, vanishes
when D(x) > 3uz ' and obeys the bounds V*y = O (1§) for k > 0. We can let x(x) = x1(u3z)
and chose suitable function x;.
We have the following result:

Lemma 5.2. We have

lim sup < pd.

t—+o0

eilt—to)A (1 — X)u(to)>‘

L0 H*"0NL> L20 (I xR¥)
Proof. Let @i, € D(RY) be such that i, = uy + Oy (u®), this gives
(1= x)ulto) = eitOAa-f- + (1 = X)Vmed (to) + OH(I/QB)

The contribution of the first term on the right hand side is acceptable if we choose tg large enough.
For the second term on the right hand side, we have

(1 = X)Umeal(t,z) = (1 — X)P<100p2_1(1D>#;1Umed(t0))
(L= )P0t (L1 Umealto)

Using Lemma 6.3, the second term in the right hand side is acceptable. It remains to consider the
first term. We only need to prove that

ez’(iﬁ—to)A ((1 _ X)PmOH;l(1D>M;1Umed(t0)))‘

for ty large enough.
Using Lemma 6.2, the left hand side is bounded by

ONl (M;l/no)

NN

Lo HsmoNnLee LRo (I xR4)

1 -1, t ‘ .
‘ D>pg med( 0) LronLQo

From (5.5),

1/n
TE—

Interpolating this with bounded L? norm of v, we obtain the desired result.
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We have the following spatial decay:
Lemma 5.3. We have

73
S./l‘l o™

lim sup Hl
Lo Lm0 (IxR%)

to——+o0

D>M;2u‘

Proof. Let @ be the solution of (1.1) with initial data @(tg) = xu(to). From Lemma 3.13 and
Lemma 5.2, we see that

H’&’”L%HS”OOC’OH(IXRd) = OH(/M_I)

and
(5 6) ||’LL - u”quH 70 Nl~b1 :u2 .
Let W = 1+ p3D be such that D € C?(R%), VD < 1, V2D < 1 and HD DH 1 (see Lemma

6.1 for the choice of such D). We have VI, V2W = O(u3) and Wx = x + usDx +AL5(D —D)x =
O(1). Thus,

(5.7) Wato)ll > S lluto)ll > <1
We have
(10 + A)(Wa) = O(Wla|Pa) + O(WV @) + O(us|i|) + O(us V).
By Strichartz and |[e”2f||, o ..o < IIf]lL>, we have
Wl co 2 oo Lro (1 xcray S IWAE) | L2 + IWI@PE Loy 1 11y + 3l ]
for any I’ C I, t' € I'. Denote the left hand side by X (I’), by Holder, we have
X(I) S NWat)|l o + |1V OX(I) + |1 |ug

and hence (for I’ small enough), we have

X(I) S IWat)ll 2 + p3 " ps.
By iterating this using (5.7), we have

X(I) S, 1.
Thus,
H1D>1”72wa‘ Lo Lo (IxR?) S HW&HLQOLTO(IXW) S 1
and hence,
- Yy <
H1D>%#32u‘ LqOLTO([x]Rd) ~H1 H3-
Moreover, 1D>u§ < 1D>1 _» by the choice of D. Thus,
a1 <
H1D>“32u‘ L0 Lo (I xR4) ~Spa M3
Combining with (5.6), we obtain the desired result. O

As a consequence, we have local in time of Strichartz Duhamel:

Corollary 5.4. For tg large enough and any I' C I, we have

1D>M§3 // ei(to—t/)Af(u(t’))dt/

Proof. Let y2 : R? — RT be a smooth cutoff such that yo = 1 when D < ,u3 , X2 = 0 when
D > 2us 2 and x2 has bounded derivatives.
We have

Flu(t)) = Py f(u(t')x2) + Peyor (Lpgo,—2 f(u(t)x2)) + O =2 (lufPTH(H) + [Vu(t)])).
By Lemma 5.3, Holder, we have

12+ + V)|

< 73
LI L7 (1xRe) H2

and hence this term is acceptable.
Consider the term P -1 (15, -2 f(u(t')x2)). Using Lemma 6.4, and || f(u(t'))[| ;= < 1, we obtain
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the contribution of P - (1D<2H;2 f(u(t)x2)) is acceptable.

It remains to consider the contribution of the term P, . f (u(t")x2). We have

S HP%;lf(qu)‘

this term is acceptable. This completes the proof. O

1D>H;3 // ei(to—t )Ap>uglf(u(t/)x2)dt/

L2

S w3 1 @x2)ll oy groorty ey S 12

LI L0 (I xRd)

5.3. Third step: L2 localisation at fixed time. We now prove the following result:

Proposition 5.5. Let x3 : R? — Rt be a smooth cutoff function which equals 1 when D > 2;;3_3,
equals 0 when D < pgg and x3 has bounded derivatives. Then for ty large enough, we have

x3v(to) = Or2(17),

for some ¢ > 0.

Proof. From corollary 5.4, we have
X [ ON )t = 0 (i),
for all I’ C I. Thus, by Duhamel’s formula, we have
X3v(to) = xze ™1 Aoty +1/p1) + Opa (u3*'?)

and
xsu(to) = xae 1 Aoty — 1/p1) + Opa (u3*'?)
This implies that

.o—1 .o—1
Ixav(to)lzz = (xae ™ 2olto + 1/m) xae ™ Bulto = 1/m) ) | +O(ug’?).
Thus, it suffices to show that
(7 Bolto +1/m) et Bulto = 1)) | S wi.
Let ¢ be a Schwartz function be such that w(0) — uy = ¢ + Op2(p2). Thus, by (3.36), we have
) to—1/p1 ,
0t 1) = 0 [ O )+ g )
0
and hence
2 iuy A itoA 2\ jitoA 2 ol NA
xze' Su(to — 1/pa) = 0% — (1 — x3)e™*%¢ — ix3/ 0= flu(t))dt’ + Ora (o).
0

From dispersive estimate we see that (1 — x3)e®02¢ = Op2(uz) for ty large enough. Using (3.37),
it suffices to show that

+oo
(5.8) /
to+1/p1

and

400 to—1/p1
(5.9) / /
to+1/p1 JO

To prove (5.8), using (2.2) and Holder, we have

i(to—t')A / ito A _ ’ it' A
(@2 pue)eto) | = (@), e o)
. Since d(1/R —1/2) > 2, we obtain (5.8) for ¢y large enough.

dt'" S pie,

<ei(t07t’)Af(u(tl))’ eitgA¢>

L2

<€i(t°_t/)Af(u(t/)),Xgei(to_t”)Af(u(t”))>L2‘ dt" dt’ < ’u%c.

< <o |t'|—d(1/R—1/2)

LR ™

eit/Agb‘

Now, we prove (5.9). Writing x3 = 1 — (1 — x2), we have

a0y (etodf et 08g) (03 g gy [ H@gG K e, 2o
L2 L2 Rd JRd
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for each test functions f,g and Ky ;- is defined by
Ky (. 2) = clto — )42 (ty — 1" —d/2/ gile =yl /4(to—t ) ~ila—2I* [4(to—t") (1 _ \2)())dy,
v, 2) = elto = 1) ~P0 =)~ | (1= X3)w)dy
for some constant c.
We prove that

(511) Kt',t” (1‘72’) 5 |t/ — t/l|—d/2.

Let ¢ =1 —x3. Then ¢p =0on D > 2u3% and ¢ = 1 on D < p3®. Without loss of generality,
we assume supp(p) C B(wo,2u3 ") for some zy € R%. Rewriting ¢(z) = @(ud(x — x0)), we have
supp(¢) C B(0,2).

We have:
. 1 1 a2
Ky (1, 2) = c(to — ")~ 42(tg — t”)fd/Q/ 61(4“0*“) a7y ) vl @(u3(y — x0))dy, (for some constant c)
Rd

¢/ ¢!’

= c(ty — t')"Y2(tg — ")~ U/? /R Tt W 53 (y — 21))dy, (where o1 = o + &)
= cto—t')"Y?(tg — t”)_d/z/ e‘mly‘zaﬁ(ug(y — 11))dy, (where o= S il N )
R¢ lto — t'|[to — t"|
= clta = #)7 (00— )72 [ TP 8/ - V)i
= |t — |72 /Rd e~ G(ud/valy — x2))dy,  ( where 25 = vazi).
Define L = (1 + |y|>)~(1 + iy/20,). We have L*(f) = (1 +1iy/29,)((1+ |y|*)~*f and

L(e~ Py = eilvl”,

Thus, for some M € N large enough chosen later,

Kivr(w,2) = it =172 [ 110 o003/ aly = )y
=l =72 [ Y (= )i
R

To prove (5.11), we only need to prove the following lemma

Lemma 5.6. The following estimate holds for M € N large enough:

/]Rd e~ (LM (@(13/Valy — 2)))dy| S 1.

Proof. For convenience, define M3 = 13 //a. By induction, we see that

M
= 3 (M) OEG(Ma(y — w2)) (L + [y12) M (e + cnalyl? + -+ crur—p lyPM ).
k=0

Moreover,
k

v =y —ma+a2)f =D enly — o) alb.
h=0
Combing to uniform bounded of y*¢(y), using cxo+cr1|y|*+- - - +cxr—r) [y|*M ~2F < (1+|y>) M+
it suffices to estimate

Qo = / (Msz2)"(1 + |y|)"Mdy, (for each 0 < h < M).
Msly—z2|<2

Since |Mzxa" <1+ |Mzxa|M VO < h < M, we only need to check the case h = 0 and h = M.
Choosing M = 2d. The first case is easy to estimate ()9. Consider the second case. If |Mszzo| <
then we see that Qo < 1. Consider the case |[Msxa| > 10. If M3 > 1 then |y — 1:2\ <55 <2 Thus

Lty 2 T+ [y (A + [y — 22) 2 1+ |22f* 2 2] This implies that Qo < (2/M3) =2
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Consider the case M3 < 1. Since |M3xo| > 10 and M3ly — 22| < 2 and |y — za| + |y| > |z2|, we have
[yl 2 laal. Thus, Qo < feal™ oy o o(THE) M2l My < [, ()M 2dy S 1.
This completes the proof of Lemma 5.6.

Thus, Ky 4 (z,2) < [¢/—t"|~%/2. This implies that (5.10) is estimated by [t/ —¢"|~%2 || f|| ;1 |9l .1 -
Moreover, (5.10) is also estimated by |||, ||g]|2- Hence, by bilinear interpolation, (5.10) is esti-
mated by [t/ — |79/ E=1/2) | || . ||gll .- By the choice of R, d(1/R — 1/2) > 2, hence (5.9) is
proved. This completes the proof of Proposition 5.5.

U

Theorem 5.1 is followed from Proposition 5.5. As a consequence of Theorem 5.1, we have the
following spatial localisation result:

Proposition 5.7. Let E > 0 and 0 < po < 1. Then there exists us = ps(E, po) depending on
E, po (and on the other fixed parameters) with the following properties: for any u radial global
solution of energy at most E, we have

(5.12) limsup/ lo(t, x)|?de < ud,
lz|>1/ps

t——+o0

where v is the weak bound component of u.

Proof. Apply Theorem 5.1, for all ¢ sufficiently large, there exist z1(t), - ,zs(¢) such that

/Rd Linfye, e jomay (0] 21/us [0(E, ) P S .

Since u is radial, u4 and v are also radial. Thus, we may average the above estimate over rotation

and obtain that
/ </ Lint,cjcy ac|w—r1:j(t)|21/u4dw) w(t,z)Pdz < pg.
Rd Sd—l

In particular, we have

J
/| 31/ /Sd ) 1- Z 1||:r\wfzj(t)|<1/lt4 dw |’U(t,.’13)|2d.’1? 5 /’Lg
z|>1/ps -

j=1

But if us is sufficiently small depending on 4, by using |z| > 1/us, we have

/sdﬂ 1“$|w*wj(t)\<1/u4dw

= /Sd,l Vo (0) 1ol < s B0
/Sdi1 Lw—ao|<ps/psdw (where zq = a;(t)/|z])

= Vol({[lw — zo| < ps/pal} N 5471

< (ps/pa)
Thus, if ps5 is small enough depending on both J and 4, we have

J

1

/ 1= Z Ujzjw—a;(t)|<1/ps | dw = 3
gd—1 =

N

for all x| > 1/pus and the desired result is proved.

Combining the above analysis, we give the proof of the main result:

Proof of Theorem 1.3. By Proposition 1.7, Proposition 4.1 and Theorem 5.1, there exists a compact
set K C H such that

lim distg(v(t), K) =0

t——+o0
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for all radial global bounded solution u of energy at most E.

Let Kg raa be the closure of the set of all limit points lim;, _, o v(t,), where ¢,, ranges over se-
quences of times which converge to infinity. Then, Kg 14q is close and hence is a compact subset of
K. Let us prove that Kg raq is also a attractor. Indeed, let ¢,, — +o0. Since, distg (v(t,), K) — 0
as n — 400, there exists k,, € K such that ||v(t,) — k|| — 0. By compactness of K, for each sub-
sequence of (¢,) there exists ¢ € K and a sub-sequence of (¢,) which for convenience still denotes by
(tn) such that ||v(t,) — ¢|lz — 0. Thus, ¢ € Kg raq and hence, lim;_, o dist g (v(t), g raa) = 0.
By local theory and Lemma 3.23, Kg raq is invariant under S(t) for ¢ small and hence for all ¢ large
also.

Finally, we show the uniqueness of u . If @ satisfies the same properties of u then {e®® (u, —

@y),t > 0} is pre-compact in H. Moreover, for 2 < p < 24,

He“A(u+ - ﬂ+)||Lp —0, ast— +oo.

Combining the above
€ (uy —iig)||, =0 ast— +oo.

Thus, uy = 44, which completes the proof. O

6. APPENDIX

In this section, we prove some useful results which is used in the proof of the main result.

Lemma 6.1. Let 1,29, - ,2; € R? and D(z) = inf1<;<s|z — x;|. There exists a function
D € C%(RY) such that HD - DH <1and VD,V?D < 1.
LOO

Proof. We see that D € C°(R")NC>(R?)\ A for some zero measure set A. Indeed, A = U;{x; }U;y
{z: |z — ;] = |x — x|}. Moreover, D is small inside U/ ; B(x;,1) and |VD|,|V2D| < 1 outside
UL B0y 1) s {2+ |1 — 5] = | — ).

We first study the graph of D in R4*! i.e the set of elements of form (z, D(z)), * € R%. For
each j, the graph of |z — z;| is {(x, |z — z;]),z € RY} € R?*L which is a co-dimension one surface
having a critical point at ;. The graph of |z — x| can be given by move the graph of |z — x|
by vector x; — x. For each x; # wx, the intersection of the graph (z, |z — z;|) and (z, |z — zx|)
is a co-dimension two surface: {(z,|r — zj|) : |z — 2;| = |o — x%|}. Thus, the graph of D is
a co-dimension one surface which is singular at each z; and at each co-dimension two surface
{(z, |z — z;]) : | — z;| = |z — zx|}. We can easily take a regular surface H close to the graph of
D, which is graph of a smooth function D. We see that D € C°°(R%) and D satisfies the desired
properties if we take # is close enough to the graph of D.

O

Let to, t,t', X, fi2, 43, Umed be as in Subsection 5.2. We have the following results:

Lemma 6.2. The operator VFe!(t=t0)5(1 — X)Psugl have an operator norm of O,, (M;C(k)) on L"
for2 <r < 24 c(k) depending on k and Vk € N. Similar result holds for Djei(t_tO)A(l—x)P<H;1

d—2s’
for j =0,s.

Proof. By density, we need only work on Schwartz functional space. We consider the case k = 0,
the general case is obtained by bounded derivatives of x and interpolation.

Let v be smooth function such that ¢(¢) = 1if |{] < 1 and (&) =0 if |¢] > 2.

For each ¢t € R and N dyadic, we have

eitAPSNf _ 71 (e—it‘5|21/;(£/N)f(§))
= F M e M p(e/N)) « f.
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Thus, by Young inequality, for M > d an integer, the operator norm of e”APS ~Jfon L is bounded
by

|7 e e e/ @)

NOFH (e Ny () (Na)|

2l Ll

= |F e I () @)

Fe NIy )|

(L + IEDMF e Py +1eh™ |,
—i(tN?)[¢|?

e 1/)(5)HH£M

1+ 1D e (1 + ENZD™
< L+ [Nt

L

A

A

A

Thus, the operator norm of e?(*~ 75O)AP gt on L" is bounded by

(L+ [t = to ™)™ = Oy, (™).
It remains to prove that e!(*~t0)A(1 — X)Pg,-+ has bounded operator on L" by Oy, (p5 ) for
some constant ¢ > 0. The above expression is of form e?®(1 — xX)Pe, S = e (1 — x)¥(ua D) for
|t| < py' and W is a cut off function which vanishes in {¢ : |¢] > 2}. Recall that

. 1 —ile—
B f(xr) = / a72° el f(y)dy (up to multiply by a constant).
Thus,
i 1 —ilz—y|?
AN = [ e T xW)fw)dy,

which means that the Schwartz kernel of the operator T} : f — e®(xf) is

1 —ilz—y|?

Ki(@y) = gpe” 7 x).

Similarly, using the inverse Fourier transform:

w(uD)u= [ [ we)ee I uty)dyde

and thus the Schwartz kernel of the operator Ts : u — U(uD)u is

Ka(z,y) =/ (ug)e'*vedg = ui/\lf(g)e%dg_ ld\p< I)

W
Thus, the Schwartz kernel of f — ™ (x¥(uD)f) is

K(z,2) =/Kl(x,y)Kz(y,z)dyz/x(y)ﬁ%eﬂﬁ‘i’ (z;y) dy
:/X(x— g iylzld\il< +z—m>
- [t v < iamsy,

Let O(y) =1 for |y| < 1, 6(y) =0 for |y| >
Then write K = K; + K., where

K= /O(y)x(x - \/Zy)e“y‘Qid\if (‘/W) dy,

I

Ke:/ufe(y)) (@ — Viy)e z'y'“ (*[“u )dy.
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We have

1 & —
/|K (z,2)|dz < / / ( y—l—z x)’dzdy
lyl<2 /R4

/ / z)|dzdy < C (independent ofz),
ly|<2 JRd

Similarly, [ |K;(z,z)|dz < C (independent of z).

It remains to control K.. We have

Kulw) = [ xte=vin@ - o) (5 ) @) (”*ﬂ‘x) dy

After integration by part, we get:

M
t 1 t - 1
g (Viers X)L [ e (VR o,
H e Jly>1 H |yl
where ¥, € S(R?) (sum of derivatives of ). It is easy to check that
Vi M
sup/ | Ke (2, 2)|dx + sup/ |Ke(x,2)|dz S C (\/i—i— 1+ >
z T 1%

By Schur’s test 3.19, we get the desired result. O

Lemma 6.3. We have

H(1 - X)P<100u;1<1D<u;1”med(t0))HH S py?
Proof. Since the convolution kernel of P 10045 is a Schwartz function and the support of 1 —
belongs to {|z| : D(z) > 2u3 '}, we have kernel of (1 X)P<100u 11pys1 is bounded by
(1 - X)P<100u2_1(1D<u (2 y)| St N — y|_l1\wfy|>u§1’

for any [ > 0. Thus, from Young inequality and H*-norm bounded of v,eq we obtain the desired
result. O

Lemma 6.4. The operator lps, 361(t0 t)AP 71 D<2u;” has an L% — L? norm of O(u3%) for
each t' € I.

Proof Lemma 6.4. Let f € L. We have, for ¢ is a smooth cutoff function which equals 1in |¢] < 1
and equals 0 in [£] > 2:

Ap =10 0B 1) 2 f (2)
= 1@ F (N (e 1V F (12 )) (@)
= 1@ F 1 (7P (e f151)) 5 (g2 ) @)
=1y (@) (1o F €O NP (/15 1)) % (L)) (@),
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Let R satisfies & 4+ + =14 1/2.

Th
1A

Th

(1]
2]
(3]

[4]

[5

[6]
(7]
(8]
(9]
[10]

[11]

kR "R
us, by Young inequality and using || f|| ;. = ||(1+ |x|)s.7-'*1f(:v)HL2, we have

_ —i(to—t’' 2 —
ollz S I fllp= Lspze et ! (e (to=OIF (¢ / 1))’ LR
d(1/R—1 — —i(to—t s 2|€|?
<l Lr ,LLQ( /R—1) Hl\-\>u§3u;1/2}— 1 (6 (to—t") g "€l @(5))‘
d(1/R—1 - —i(to—t" )y 2|€?
S Wl )Hf 1 (e tomors e @(§>>HLE(|T|>M%1/Q>
=3 2

S gD (U o) (1 fal) M FE (e om0 K o 6)) )|

LE

LE(|lz|zp3 st /2)

Sl r sV O((13p2)Y) He‘i“”‘t')”f‘f‘zv(f)HHM for M > d and any [ > 0
3

So 11l r OGS+ oy g )™
S fll,n OuA™),  (for I large enough)

is completes the proof. O
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