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We study the asymptotic behavior of large data solutions to nonlinear Schrödinger equations (NLS)

In the case Tao [12] proved that in radial setting, as t → +∞, any solution u of bounded energy can split into a term of form e it∆ u + and remainder term converges in H 1 (R d ) to a compact attractor which is invariant under the NLS ow. In the case p ⩾ 4 d-2 , we work on Sobolev space H s (R d ) for some s > sp := d 2 -2 p , which is more complex than working on H 1 (R d ). Basing on the method in [12], we prove that any radial solution with uniform bounded on H s (R d ) can split as in the work of Tao.
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Introduction

We consider the following (NLS) equation:

(1.1) 

iu t + ∆u = λ|u| p u + V u, (t, x) ∈ R × R d , u(0) = ϕ,
E(u) = sup t∈I ∥u(t)∥ 2 H s ,
For convenience, denote H = H s . We abbreviate ∥f ∥ L p (R d ) by ∥u∥ L p or sometimes by ∥u∥ p . We consider the following conjecture which is called soliton resolution conjecture: any global uniform bounded solution u of dispersive equations can be decomposed as t → +∞ as follows:

u(t) = e it∆ u + + J j=1 R j (t, x) + o(1),
where R j are solitons and o(1) converges to zero as t → +∞. There are two special cases of this conjecture:

(1) As t → +∞, u(t) = J=1 j=1 R j (t, x). In this case, u(t, x) is called multi-soliton. (2) As t → +∞, u(t) = e it∆ u + . In this case, u(t, x) scatters forward in time. Recently, in [START_REF] Duyckaerts | Soliton resolution for the radial critical wave equation in all odd space dimensions[END_REF] and [START_REF] Collot | Soliton resolution for the radial quadratic wave equation in six space dimensions[END_REF], the authors proved the soliton resolution conjecture holds for the radial critical wave equation in all odd space dimensions and in six space dimension. To the best of our knowledge, there is not a proof for the soliton resolution conjecture for general nonlinear Schrödinger equations even in radial setting. In [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF] and [START_REF] Tao | A global compact attractor for high-dimensional defocusing nonlinear Schrödinger equations with potential[END_REF], the author proved a weaker result than the above soliton resolution conjecture. More precise, the author showed that any radial uniform bounded solution of a nonlinear Schrödinger equation (NLS) can decompose as t → +∞ by u(t) = e it∆ + K + o [START_REF] An | Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in H s (R n ). Nonlinear Anal[END_REF], where K is a compact set which is invariant under ow of NLS. Our goal of this paper is to give a similar result to [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][START_REF] Tao | A global compact attractor for high-dimensional defocusing nonlinear Schrödinger equations with potential[END_REF] in the energy critical and supercritical cases i.e p ⩾ 4 d-2 . In energy critical and energy subcritical, there are many works relating to two above special cases of the soliton resolution conjecture for nonlinear Schrödinger equations. Let us give a short introduce for studying NLS in energy supercritical case. In [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], the authors proved local well posedness of simple power NLS (V = 0 in (1.1)) in high regular Sobolev space H s (R d ) (s ⩾ s p ). In [START_REF] Killip | Energy-supercritical NLS: critical Ḣs -bounds imply scattering[END_REF], the authors showed that for defocusing NLS in high dimensions (d ⩾ 5), any uniform bounded in critical Sobolev space Ḣsp is global and scatters under a suitable condition of s p . Specially, in [START_REF] Merle | On blow up for the energy super critical defocusing nonlinear Schrödinger equations[END_REF], the authors showed that there exists a blow up solutions for NLS in energy supercritical setting even in defocusing case. In focusing case, there is not many studying for asymptotic behavior of solutions for large initial data in energy supercritical setting. Recently, in [START_REF] Duyckaerts | Prole decomposition and scattering for general nonlinear Schrödinger equations[END_REF], we establish prole decomposition and prove some scattering results for general nonlinear Schrödinger equations.

Inspiring by [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], we study local and global theory for (1.1). Dene It is easy to check that (γ, ρ) is a admissible pair and satisfy the Sobolev embedding Ḣs,ρ → L ρ * , where ρ * such that

1 ρ ′ = p ρ * + 1 ρ .
We have the following properties of ρ, γ:

Proposition 1.1 ([4][Proposition 1.5). ] We have (i) 2 < ρ < 2d d-2 ; (ii) 2/γ = d(1/2 -1/ρ), and hence (γ, ρ) is an admissible pair; (iii) ρ < d/s and hence ρ * > ρ;

(iv) 1/ρ ′ = p/ρ * + 1/ρ; (v) 1/γ ′ ⩾ p/γ + 1/γ.

As in [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], we have the following result. Theorem 1.2. Let ϕ ∈ H and p, s be as the above. Then there exists a solution of (1.1) u ∈ C(0, T max ; H) ∩ L γ loc (0, T max ; H s,ρ ). Moreover, the following properties hold: i u ∈ L q (0, T ; H s,r ) for every admissible pair (q, r) and every T < T max . ii u is unique in L γ (0, T ; H s,ρ ) for every

T < T max . iii ∥u(t)∥ L 2 = ∥ϕ∥ L 2 and E(u(t)) = E(ϕ) for all t ∈ (0, T max ). iv If T max < ∞ then lim t→ Tmax ∥u(t)∥ H = ∞.
From Theorem 1.2, we see that if solution u has bounded energy then u is global. Inspire by [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF], we study asymptotic behavior of solutions with uniformly bounded energy. Our main result is the following: Theorem 1.3. Let E > 0. Then there exists a compact subset K E,rad ⊂ H which is invariant under the NLS ow, and such that for every radial global solution u of energy at most E, there exists a unique radiation u + ∈ H such that

(1.3) lim t→+∞ dist H (u(t) -e it∆ u + , K E,rad ) = 0.
Here and in the sequel we write dist H (f, K) := inf{∥f -g∥ : g ∈ K} for the distance between f and K.

Remark 1.4. Consider the compact set K E,rad in the theorem 1.3. Let u 0 ∈ K E,rad and u be the associated solution of (1.1). Since K E,rad is invariant under ow of (1.1), u(t) ∈ K E,rad for all t ∈ R. Thus, {u(t) : t ∈ R} is pre-compact in H s and u is called an almost periodic solution. Assume that each almost periodic solution of (1.1) must be zero, this property is called rigidity property (see e.g [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case[END_REF][Theorem 5.1]). Then Theorem 1.3 implies that each uniformly bounded solution of (1.1) scatters in both directions. However, in the case s = s p , the situation is more complex since local smoothing eect can not hold in this case (see Remark 3.18). Remark 1.5. It seems that we could also obtain a similar result in [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Theorem 1.28] in nonradial setting. However, in this paper, we only focus on solutions in radial setting.

Let u be a solution as in Theorem 1.3. From Lemma 3.20, e -it∆ u(t) is weakly convergent to some u + ∈ H s (R d ) as t → +∞. Dene v(t) = u(t)-e it∆ u + , which be called weak bound component of u. We will show that u + satises the property (1.3).

We recall the following equivalence of precompactness and localisation: Proposition 1.6. (see e.g [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Proposition B.1]) Let K ⊂ H. Then the following are equivalent:

(i) K is precompact in H.

(ii) K is bounded, and for any µ 0 > 0 there exists µ 1 > 0 such that we have frequency localisation estimate

P ⩾1/µ1 f H ≲ µ 0
and the spatial localisation estimate

|x|⩾1/µ1 |f (x)| 2 dx ≲ µ 2 0 ,
for all f ∈ K. (iii) K is bounded, and for any µ 0 > 0 there exists µ 1 > 0 such that we have frequency localisation estimate

P ⩾1/µ1 f H ≲ µ 0 and ∥P ⩽µ1 f ∥ H ≲ µ 0
and the spatial localisation estimate

|x|⩾1/µ1 |f (x)| 2 + |D s f (x)| 2 dx ≲ µ 2 0 ,
for all f ∈ K.

The above proposition is generalized by the below criterion for compact attractor:

Proposition 1.7. (see e.g [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Proposition B.2]) Let U be a collection of trajectories u : R + → H.

Then the following are equivalent: (i) There exists a compact set K ⊂ H such that lim t→+∞ dist H (u(t), K) = 0 for all u ∈ U.

(ii) U is asymptotically bounded in the sense that for all u ∈ U. (iii) U is asymptotically bounded in the sense of (1.4), and for any µ 0 > 0 there exists µ 1 > 0 such that we have the asymptotic frequency localisation estimate 

|u(t, x)| 2 + |D s u(x)| 2 dx ≲ µ 2 0 for all u ∈ U.
From Proposition 1.6 and Proposition 1.7, we see that precompactness are formally equivalent to localisation in spatial and frequency. From Proposition 1.7, to prove Theorem 1.3, we only need to prove asymptotic localisation in spatial and frequency of v(t).

This paper is organised as follows. In Section 2, we introduce the useful notations and basic tools in this paper. In Section 3, we prove local well-posedness of solutions of (1.1) in H s and give some basic results in the proof of the main result. In Section 4, we prove asymptotic localisation in frequency of v(t). In Section 5, we prove asymptotic localisation in spatial of v(t) and then prove the main theorem 1.3. In Appendix, we prove some lemmas used in the proof of the main result.

Acknowledgement

The author wishes to thank Prof.Thomas Duyckaerts for his guidance and encouragement. The author is supported by postdoc fellowship of Labex MME-DII: SAIC/2022 No 10078.

Notation and preliminaries

Let L = i∂ t + ∆ be Schrödinger operator.

For convenience, we dene

f 1 (u) = λ|u| p u, f 2 (u) = V u and f (u) = f 1 (u) + f 2 (u).
For each X Banach space, dene ∥(u, v)∥ X = ∥u∥ X + ∥v∥ X . Denote S is the space of Schwartz functions. We shall need some small exponents

1 ≫ η 0 ≫ η 1 ≫ η 2 ≫ η 3 > 0,
where η 0 is small enough depending on E and the other xed parameters, η i is small enough depending on

E, η 0 , η 1 , • • • , η i-1 .
Moreover, in Section 5, we shall need some other constants:

1 > µ 0 ≫ µ 1 ≫ µ 2 ≫ µ 3 ≫ µ 4 > 0.
where µ 0 is small enough depending on E and the other xed parameters, µ i is small enough depending on µ 0 , µ 1 , • • • , µ i-1 .

Lemma 2.1. There exists an admissible pair (q 0 , r 0 ) with q 0 > 2, exponents 2 < Q 0 , Q < 2d d-2s , and an exponent 1 ⩽ R < 2d d+4 such that (2.1)

1 r 0 + p Q 0 = 1 r ′ 0 and
(2.2)

1 2 + p Q = 1 R .
Lemma 2.2. For any u ∈ H, we have

∥f (u)∥ H s,R ≲ ∥u∥ p+1 H + ∥u∥ H .
Proof. By Hölder, we have

D j f 1 (u(t)) L R ≲ ∥u(t)∥ p L Q D j u(t) L 2 ,
for j = 0, s. Let a be such that 1

R = 1 a + 1 2 . Thus, 2 ⩽ a ⩽ d 2 .
By Hölder and Sobolev embedding, for j = 0, s, we have

D j (f 2 (u)) L R = D j (V u) L R ≲ D j (V ) L a ∥u∥ L 2 + ∥V ∥ L a D j u L 2 ≲ ∥u∥ L 2 + D j u L 2 ≲ ∥u∥ H .
This implies the desired result. □ Denote F(f ) = f is Fourier-transformation by space variable. We have the following basic property in Fourier-analysis. Lemma 2.3. Let f, g ∈ S. we have the following identity:

F(f g) = F(f ) * F(g).
Lemma 2.4. For any time interval I ⊂ R, any t 0 ∈ I and any 0 < δ ⩽ 1 2 , we have

∥uv∥ L 2 t,x (I×R d ) ≲ ∥u(t 0 )∥ Ḣ-1/2+δ + |∇| -1/2+δ Lu L q ′ L r ′ (I×R d ) × ∥v(t 0 )∥ Ḣ(d-1)/2-δ + |∇| (d-1)/2-δ Lv L q′ L r′ (I×R d ) ,
for any u, v and any admissible pairs (q, r), (q, r) with q, q > 2.

As a consequence, we have the following result.

Lemma 2.5. (see e.g [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Corollary 4.4]) For any time interval I ⊂ R, any N, M > 0 dyadic numbers, we have

∥u N u M ∥ L 2 t,x (I×R d ) ≲ ⟨|I|⟩ 1 2 M (d-1)/2-δ N -1 2 +δ ⟨N ⟩ s ⟨M ⟩ s .
Lemma 2.6 (Dispersive estimate). For all 2 ⩽ r ⩽ +∞ and f ∈ L r ′ (R d ), we have

e it∆ f L r ≲ 1 |t| d(1/2-1/r) ∥f ∥ L r ′ . Lemma 2.7. For 1 ⩽ r ⩽ 2, f ∈ D(R d ), we have e it∆ f L r ≲ f (1 + t) M , for all M ∈ N and M > d/2 -d/r.
Proof. Let a be such that

1 r = 1 a + 1 2 .
Let M be a natural number such that M a > d.

We have

e it∆ f L r = F -1 (e -it|ξ| 2 f (ξ))(x) L r x = (1 + |x|) -M (1 + |x|) M F -1 (e -it|ξ| 2 f (ξ))(x) L r x ≲ (1 + |x|) -M L a (1 + |x|) M F -1 (e -it|ξ| 2 f (ξ))(x) L 2
x ≲ e -it|ξ| 2 f (ξ)

H M ξ ≲ f (t + 1) M . □

Local estimate

This section gives some useful tools for studying asymptotic behavior as t → +∞ of solutions of (1.1). First, we introduce some basic tools in studying of fractional derivative.

3.1. Basic tools of fractional derivative. We need the following results on fractional derivative for our analysis:

Lemma 3.1. Let -∞ < s 2 ⩽ s 1 < ∞ and 1 < p 1 ⩽ p 2 < ∞ with s 1 -d p1 = s 2 -d p2 .
Then we have the following embedding:

Ḣs1,p1 ⊂ Ḣs2,p2 , H s1,p1 ⊂ H s2,p2 .
Lemma 3.2 (Product chain rule 1). (see e.g [START_REF] An | Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in H s (R n ). Nonlinear Anal[END_REF] As a consequence of the above lemma, we have the following: Lemma 3.3 (Product chain rule 2). (see e.g [START_REF] An | Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in H s (R n ). Nonlinear Anal[END_REF][Corollary 2.3]) Let s ⩾ 0, q ∈ N (q ⩾ 1),

[Lemma 2.2]) Let s ⩾ 0, 1 < r, r 2 , p 1 < ∞, 1 < r 1 , p 2 ⩽ ∞ such that 1 r = 1 ri + 1 pi (i = 1, 2
1 < r, r i k < ∞, for 1 ⩽ i, k ⩽ q: 1 r = q i=1 1 r i k . Then q i=1 f i Ḣs,r ≲ q k=1   ∥f k ∥ Ḣs,r k k i̸ =k ∥f i ∥ r i k   . Lemma 3.4 (Fractional chain rule). (see e.g [1][Lemma 2.4]) Let G ∈ C 1 (C), s ∈ (0, 1), 1 < r, r 2 < ∞, and 1 < r 1 ⩽ ∞ satisfying 1 r = 1 r1 + 1 r2 , ∥G(u)∥ Ḣs,r ≲ ∥G ′ (u)∥ r1 ∥u∥ Ḣs,r 2 .
Lemma 3.5 (Gagliardo-Nirenberg inequality). (see [START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF]). Let

s 1 ⩽ s 2 , p 0 > 1, s = θs 1 + (1 -θ)s 2 , 1 p = θ p1 + 1-θ p0 . Then ∥u∥ H s,p ≲ ∥u∥ θ H s 1 ,p 1 ∥u∥ 1-θ H s 2 ,p 0 . Lemma 3.6 (Homogeneous Gagliardo-Nirenberg inequality). Let s 1 ⩽ s 2 , p 0 > 1, s = θs 1 + (1 - θ)s 2 , 1 p = θ p1 + 1-θ p0 . Then ∥u∥ Ḣs,p ≲ ∥u∥ θ Ḣs 1 ,p 1 ∥u∥ 1-θ Ḣs 2 ,p 0 . Lemma 3.7. (see [1][Lemma 3.2]) Let s > 0, 1 < p < ∞ and v = s -⌊s⌋. Then |α|=⌊s⌋ ∥D α f ∥ Ḣv p ≈ ∥f ∥ Ḣs p ,
where ⌊s⌋ is largest integer below s.

Lemma 3.8 (Leibniz rule). Let f ∈ C k be a real variable function and α

= (α 1 , α 2 , • • •, α d ) ∈ N d such that |α| ⩽ k. Then D α f (u)
is written as follows:

(3.1)

D α f (u) = |α| h=1 Λ h α C α,h f (h) (u) h i=1 D βi u, where C α,h ∈ N and Λ h α = {(β 1 , • • •, β h ) : for each i: β i ∈ N d , β 1 + • • • + β h = α, |β i | ⩾ 1}. 3.2.
Local theory in H s . In this subsection, we prove local theory for solutions in H s of (1.1)

Theorem 1.2. Dene G(f (u(t))) = -i t 0 S(t -τ )f (u(τ )) dτ.
We may rewrite (1.1) by

u(t) = S(t)ϕ + G(f (u(t))).
Before proving Theorem 1.2, we need some tools. Lemma 3.9 ([4][Lemma 4.1). ] We have for any (q, r) admissible:

∥G(f (u))∥ L q (0,T ) Ḣs,r (R d ) ≲ T δ ∥u∥ p+1 L γ (0,T ) Ḣs,ρ (R d ) + T γ-2 γ ∥u∥ L γ (0,T ) Ḣs,ρ (R d ) (3.2)
and

∥G(f (u)) -G(f (v))∥ L q (0,T )L r (R d ) ≲ T δ ∥u∥ p L γ (0,T ) Ḣs,ρ (R d ) + ∥v∥ p L γ (0,T ) Ḣs,ρ (R d ) ∥u -v∥ L γ (0,T )L ρ (R d ) + T γ-2 γ ∥u -v∥ L γ (0,T )L ρ (R d ) , (3.3) 
where δ = 1 -p+2 γ . Proof. Use the proof of Lemma 3.11 and note that Ḣs,ρ → L ρ * . Remark that in this proof, we only need the condition p even or p > ⌊s⌋.

□ Moreover, we have the following unique result. Proposition 3.10 ([4][Proposition 4.2). ] Let ϕ ∈ H s , and suppose u ∈ L γ (0, T ; H s,ρ ) is a solution of (1.1). Then u ∈ L q (0, T ; H s,r ) ∩ C([0, T ]; H s ) for every admissible pair (q, r). Furthermore, if v ∈ L γ (0, T ; H s,ρ ) is also a solution of (1.1), then u = v. Proof. By Lemma 3.9 and Strichartz, it is easy to prove that u ∈ L q (0, T ;

H s,r ) ∩ C([0, T ]; H s ). Assume u(t) ̸ = v(t) for some t ∈ [0, T ]. Let t 0 = inf{t ∈ [0, T ], u(t) ̸ = v(t)}.
Using Lemma 3.9, we have, for all t ∈ [t 0 , T ]:

∥u -v∥ L γ (t0,t);L ρ = ∥G(f (u)) -G(f (v))∥ L γ (t0,t);L ρ ⩽ C(t -t 0 ) δ ∥u∥ p L γ (t0,t); Ḣs,p + ∥v∥ p L γ (t0,t); Ḣs,p ∥u -v∥ L γ (t0,t);L ρ + ∥u -v∥ L γ (t0,t);L ρ (t -t 0 ) γ-2 γ .
Let t be close to t 0 , we give a contradiction. Thus, u(t) = v(t) for all t ∈ [0, T ], which is the desired result.

□ Proof Theorem 1.2. We use xed point argument to prove existence of solution of (1.1). Let M > 0, we dene

X = X (T, M ) = {u ∈ L γ (0, T ; H s,ρ ) : ∥u∥ L γ (0,T ; Ḣs,ρ ) ⩽ M }.
Endowed with the metric

d(u, v) = ∥u -v∥ L γ (0,T ;L ρ ) ,
X is a complete metric space. We wish to prove that the map

Fu = S(•)ϕ + G(f (u)).
is a contradiction map on X for suitable constants T, M . Let u ∈ X . Using (3.2), we have if

∥S(•)ϕ∥ L γ (0,T ; Ḣs,p ) +CT δ M p+1 +CT γ-2 γ M ⩽ M then Fu ∈ X . From (3.3), if 2CT δ M p +CT γ-2 γ < 1 then F is a strict contradiction on X . By Strichartz, F is a contradiction from X to X if (3.4) C ∥ϕ∥ Ḣs + 2CT δ M p+1 + CT γ-2 γ M ⩽ M.
Combining with Proposition 3.10, there exists a unique maximal solution of (1.1) u ∈ C(0, T max ; H)∩ L γ loc (0, T max ; H s,ρ ). Assume T max < ∞. Using (3.4) and by classical argument (see e.g [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), we have

lim t→Tmax ∥u(t)∥ Ḣs = ∞,
which completes the desired result. □ Lemma 3.11. Let p be even or p ⩾ ⌈s⌉ and u, v ∈ S s (I × R d ). We have the following estimates:

∥f 1 (u) -f 1 (v)∥ L q ′ 0 H s,r ′ 0 (I×R d ) ≲ |I| 1/q ′ 0 -1/q0 ∥u -v∥ L q 0 Ḣs,r 0 (I×R d ) ∥(u, v)∥ p L ∞ L Q 0 (I×R d ) + ∥u -v∥ L ∞ L Q 0 (I×R d ) ∥(u, v)∥ p-1 L ∞ L Q 0 (I×R d ) ∥(u, v)∥ L q 0 H s,r 0 (I×R d ) . ∥f 2 (u) -f 2 (v)∥ L q ′ 0 H s,r ′ 0 (I×R d ) ≲ V ∥u -v∥ L q 0 H s,r 0 |I| 1/q ′ 0 -1/q0 .
Proof. It suces to show the rst estimate. The second estimate is proved by using Hölder and

V ∈ D(R d ).
We only consider the case p ⩾ ⌈s⌉; in the case p even the conclusion is easily proved by using Hölder. By Hölder,

∥f 1 (u) -f 1 (v)∥ L q ′ 0 H s,r ′ 0 ≲ ∥f 1 (u) -f 1 (v)∥ L q 0 H s,r ′ 0 |I| 1/q ′ 0 -1/q0 .
Thus, we only need to prove that

∥f 1 (u) -f 1 (v)∥ L q 0 H s,r ′ 0 ≲ ∥u -v∥ L q 0 Ḣs,r 0 (I×R d ) ∥(u, v)∥ p L ∞ L Q 0 (I×R d ) + ∥u -v∥ L ∞ L Q 0 (I×R d ) ∥(u, v)∥ p-1 L ∞ L Q 0 (I×R d ) ∥(u, v)∥ L q 0 H s,r 0 (I×R d ) .
We have

(3.5) f 1 (u) -f 1 (v) = (u -v) 1 0 ∂ z f 1 (v + θ(u -v))dθ + u -v 1 0 ∂ z f 1 (v + θ(u -v))dθ.
By Hölder and using

|∂ z f 1 (u)| + |∂ z f 1 (v)| ≲ |u| p , ∥f 1 (u) -f 1 (v)∥ L q 0 L r ′ 0 ≲ ∥u -v∥ L ∞ L Q 0 sup θ∈[0,1] ∥|v + θ(u -v)| p ∥ L q 0 L a , ( where 1/a + 1/Q 0 = 1/r ′ 0 ) ≲ ∥u -v∥ L ∞ L Q 0 (∥|u| p ∥ L q 0 L a + ∥|v| p ∥ L q 0 L a ) ≲ ∥u -v∥ L ∞ L Q 0 ∥(u, v)∥ p-1 L ∞ L Q 0 ∥(u, v)∥ L q 0 L r 0 .
Thus, it remains to show that

∥f 1 (u) -f 1 (v)∥ L q 0 Ḣs,r ′ 0 ≲ ∥u -v∥ L q 0 Ḣs,r 0 (I×R d ) ∥(u, v)∥ p L ∞ L Q 0 (I×R d ) + ∥u -v∥ L ∞ L Q 0 (I×R d ) ∥(u, v)∥ p-1 L ∞ L Q 0 (I×R d ) ∥(u, v)∥ L q 0 Ḣs,r 0 (I×R d ) .
By Hölder, it suces to show:

(3.6) ∥f 1 (u) -f 1 (v)∥ Ḣs,r ′ 0 ≲ ∥u -v∥ Ḣs,r 0 ∥(u, v)∥ p L Q 0 + ∥u -v∥ L Q 0 ∥(u, v)∥ p-1 L Q 0 ∥(u, v)∥ Ḣs,r 0 .
By using (3.5) (with noting that the contribution of the rst term and the second term are similar) and product rule Lemma 3.2, we have

∥f 1 (u) -f 1 (v)∥ Ḣs,r ′ 0 ≲ ∥u -v∥ L Q 0 1 0 |∇| s ∂ z f 1 (v + θ(u -v))dθ L a + ∥u -v∥ Ḣs,r 0 1 0 ∂ z f 1 (v + θ(u -v))dθ L b (where 1/b + 1/r 0 = 1/r ′ 0 ). Since |∂ z f 1 (u)| ≲ |u| p , we have 1 0 ∂ z f 1 (v + θ(u -v))dθ L b ≲ ∥|u| p + |v| p ∥ L b ≲ ∥(u, v)∥ p L Q 0 ,
hence the second term is acceptable. Thus, to prove (3.6), it suces to show that, for g = ∂ z f 1 , for each u:

(3.7)

∥|∇| s g(u)∥ L a ≲ ∥u∥ p-1 L Q 0 ∥u∥ Ḣs,r 0 .
Since p > ⌈s⌉, the function g belongs to C ⌈s⌉ and satises

(3.8) |g (k) (u)| ≲ |u| p-k ,
for each 0 ⩽ k ⩽ ⌈s⌉ . By Lemma 3.7 and Leibniz rule Lemma 3.8, we only need to prove for each α

∈ N d , 1 ⩽ h ⩽ |α|, each 1 ⩽ i ⩽ h: β i ∈ N d , |β i | ⩾ 1: h i=1 β i = α:
(3.9)

g (h) (u) h i=1 D βi u Ḣv,a ≲ ∥u∥ p-1 L Q 0 ∥u∥ Ḣs,r 0 , (where v = s -⌊s⌋).
We have h ⩽ |α| ⩽ ⌊s⌋ ⩽ ⌈s⌉ < p. Using Lemma 3.3 and (3.8), we have

g (h) (u) h i=1 D βi u Ḣv,a ≲ g (h) (u) Ḣv,m 0 h i=1 D βi u L m i (3.10) + h k=1 |u| p-h L m0 D β k u Ḣv, mk h i=1,i̸ =k D βi u L m i ,
where m i and mi for i = 0, • • • , h are chosen such that

1 m i = θ i r 0 + 1 -θ i Q 0 , ( where 
θ i = |β i |/s) 1 m 0 = 1 a - h i=1 1 m i , m0 = Q 0 p -h , 1 mk = 1 a - p -h Q 0 - h i=1,i̸ =k 1 m i = (|β k | + v)/s r 0 + 1 -(|β k | + v)/s Q 0 ,
By the choice of m i and mi , using Gagliardo-Nirenberg inequality Lemma 3.6, we have

D βi u L m i ≲ ∥u∥ θi Ḣs,r 0 ∥u∥ 1-θi L Q 0 , D β k u Ḣv, mk ≲ D |β k |+v u L mk ≲ ∥u∥ θk Ḣs,r 0 ∥u∥ 1-θk L Q 0 , (where θk = (|β k | + v)/s).
Thus, the second term in (3.10) is acceptable. Consider the rst term. If s / ∈ N then ⌈s⌉ ⩾ h + 1 (since h ⩽ |α| = ⌊s⌋), using fractional chain rule Lemma 3.4, we have

g (h) (u) Ḣs,m 0 ≲ g (h+1) (u) L m ∥u∥ Ḣv,n ( where 1/m + 1/n = 1/m 0 ) ≲ |u| p-h-1 L m ∥u∥ Ḣv,n . Choosing m such that (p -h -1)m = Q 0 then 1/n = 1/m 0 -1/m = v/s r0 + ⌊s⌋/s Q0 . Using Gagliardo- Nirenberg inequality Lemma 3.6, we have ∥u∥ Ḣv,n ≲ ∥u∥ v/s Ḣs,r 0 ∥u∥ ⌊s⌋/s L Q 0 .
Thus, the rst term in (3.10) is acceptable. Then, (3.9) holds and the proof is completed. □ Remark 3.12. In the proof of the above lemma, the condition p > ⌈s⌉ is needed. Lemma 3.13 (Perturbation lemma). Let u 0 ∈ H, let I be a compact time interval containing t 0 , let A, μ1 > 0, and v : I → H be strong solution of the following NLS:

iv t + ∆ = f (v) + G where v, G satisfy ∥v∥ L q 0 H s,r 0 ∩C 0 H(I×R d ) + ∥v(t 0 ) -u 0 ∥ H ≲ A and e i(t-t0)∆ (v(t 0 ) -u 0 ) L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) ≲ μ1
and

∥G∥ L q ′ 0 H s,r ′ 0 (I×R d ) ≲ μ1 .
Then, if μ1 is small enough depending on A, |I| there exists a solution u : I → H of (1.1) with initial data u(t 0 ) = u 0 such that

∥u -v∥ L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) ≲ A,|I| μ1 . and ∥u -v∥ C 0 H ≲ A,|I| 1.
Proof. By local theory, u exists on I. Let w = u -v, then w solves the equation

iw t + ∆w = f (w + v) -f (v) -G; w(0) = v(t 0 ) -u 0 . Dene X = ∥w∥ L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) .
We have

X ≲ μ1 + ∥f (v + w) -f (v)∥ L q ′ 0 H s,r ′ 0 .
By Lemma 3.11, we have

X ≲ μ1 + |I| 1/q ′ 0 -1/q0 X((X + A) p + 1).
If |I| ⩽ C(A) (depending only on A) and μ1 is small enough depending on I, A, we conclude that X ≲ μ1 on I. Moreover,

∥u -v∥ C 0 H(I×R d ) ≲ A + ∥f (u) -f (v)∥ L q ′ 0 H s,r ′ 0 ≲ A 1.
Dividing I into |I|/C(A) interval I k , on each I k , we have

∥w∥ L q 0 H s,r 0 ∩L ∞ L Q 0 (I k ×R d ) ≲ μ1
and

∥w∥ C 0 H(I k ×R d ) ≲ A 1.
By inductive argument, the claim follows. 

∥u(t)∥ L q ≲ 1 for all 2 ⩽ q ⩽ 2d d -2s and t ∈ [0, +∞).
From Lemma 2.2, we have 

(3.13) ∥f (u)∥ H s,R ≲ 1 for all t ∈ [0, +∞).
∥u∥ L q H s,r (I) ≲ ⟨|I|⟩ 1 q
as well as the nonlinearity estimate

(3.15) ∥f (u)∥ L q ′ 0 H s,r ′ 0 (I) ≲ ⟨|I|⟩ 1 q ′ 0 .
Proof. By Theorem 1.2, there exist and uniqueness of solution u are proved. Moreover, u is global and u ∈ L q loc H s,r (R × R d ) for any (q, r) admissible. By subdividing I it suces to prove that if

|I| ≲ 1 then ∥u∥ L q H s,r (I) ≲ 1 and ∥f (u)∥ L q ′ 0 H s,r ′ 0 (I) ≲ 1. Dene X = ∥u∥ L q 0 (I)H s,r 0 (R d ) .
By Strichartz and Hölder inequality, we have

X ≲ ∥u∥ L ∞ H + ∥|u| p u∥ L q ′ 0 (I)H s,r ′ 0 + ∥V u∥ L 1 L 2 ≲ 1 + ∥|u| p u∥ L q ′ 0 (I)H s,r ′ 0 + ∥V ∥ L 1 L ∞ ∥u∥ L ∞ L 2 ≲ 1 + |I| 1 q ′ 0 -1 q 0 ∥u∥ p L ∞ L Q 0 X ≲ 1 + |I| 1 q ′ 0 -1 q 0 X, ( where we use ∥u∥ L ∞ L Q 0 ≲ ∥u∥ L ∞ H ≲ 1) ≲ 1 + 1 2 X,
if we make |I| small enough. This give X = O(1) and then ∥f (u

)∥ L q ′ 0 H s,r ′ 0 = O(1)
. This completes our proof.

□

The following result is useful to prove asymptotic localisation frequency of v: Proposition 3.15. (Local smoothing eect). We have the following result (3.16)

∥P N f (u)∥ L q ′ 0 (I)L r ′ 0 ≲ ⟨N ⟩ -s-η1 ⟨|I|⟩ 1 q ′ 0 .
Proof. It suces to prove Proposition 3.15 for |I| ⩽ 1. Indeed, assume Proposition 3.15 holds for

|I| ⩽ 1. Divide I into |I| subintervals I k such that |I k | ≈ 1.
On each I k , we have

∥P N f (u)∥ L q ′ 0 (I k )L r ′ 0 ≲ ⟨N ⟩ -s-η1 .
Summing the above inequality in k, we obtain (3.16). By Lemma 3.14, we may also assume N ⩾ 1.

For convenience, we shall omit the domain I × R d in all norms in this proof. Consider the case p is not even and p > ⌈s⌉. Our rst task is to show that (3.17)

∥D s P N f 1 (u)∥ L q ′ 0 L r ′ 0 ≲ N -η1 ,
where f 1 (u) = λ|u| p u. For convenience, in the proof of (3.17), we abbreviate f 1 by f . Using Lemma 3.7 and Lemma 3.8, we only need to prove that (3.18)

P N f (h) (u) h i=1 D βi u L q ′ 0 Ḣv,r ′ 0 ≲ N -η1 , where 1 ⩽ h ⩽ ⌊s⌋, β i , α ∈ N d , |β i | ⩾ 1, |α| = ⌊s⌋ and h i=1 β i = α.
We have

P N f (h) (u) h i=1 D βi u L q ′ 0 Ḣv,r ′ 0 ≲ P ≳N f (h) (u) h i D βi u L q ′ 0 Ḣv,r ′ 0 (3.19) + h k=1 f (h) (u)(P ≳N D β k u) h i=1;i̸ =k D βi u L q ′ 0 Ḣv,r ′ 0 , (3.20) 
where

P ≳N = P ⩾ N 1+⌊s⌋ . By Lemma 3.3, (3.19
) is controlled by the following

P ≳N f (h) (u) L q 1 Ḣv,r 1 h i D βi u L q 0 i L r 0 i + P ≳N f (h) (u) L q 2 L r 2 h k=1 D β k u L q k k Ḣv,r k k h i=1,i̸ =k D βi u L q k i L r k i ≲ P ≳N u L q 1 1 Ḣv,r 1 1 |u| p-h L q 2 1 L r 2 1 h i D βi u L q 0 i L r 0 i (3.21) + P ≳N u L q 1 2 L r 1 2 |u| p-h L q 2 2 L r 2 2 h k=1 D β k u L q k k Ḣv,r k k h i=1,i̸ =k D βi u L q k i L r k i , (3.22) 
where the above parameters satisfy, for each k ∈ [1, h]

1 q ′ 0 = 1 q 1 + h i=1 1 q 0 i , (3.23) 1 r ′ 0 = 1 r 1 + h i=1 1 r 0 i , (3.24) 
1 q ′ 0 = 1 q 2 + h i=1 1 q k i , (3.25) 1 r ′ 0 = 1 r 2 + h i=1 1 r k i .
(3.26)

In (3.21), the parameters are chosen such that, for each i ∈ [1, h]

2 q 0 i + d r 0 i = d 2 -(s -|β i |),
(3.27)

2 q 2 1 + d r 2 1 = (p -h) d 2 -s .
(3.28)

Let s 1 be such that 2

q 1 1 + d r 1 1 = d 2 -s 1 .
From (3.23), (3.24), (3.27), (3.28), we see that

s 1 = ⌊s⌋ -2 -p d 2 -s .
It is easy to check that 0 < s 1 and s 1 + v < s (using s > s p ⩾ 1). Thus, by Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

(3.21) ≲ D s1+v P ≳N u L q 1 1 L m 1 1 ∥D s u∥ p-h L (p-h)q 2 1 L m 2 1 h i=1 ∥D s u∥ L q 0 i L m 0 i ≲ N s1+v-s ∥D s u∥ L q 1 1 L m 1 1 ∥D s u∥ p-h L (p-h)q 2 1 L m 2 1 h i=1 ∥D s u∥ L q 0 i L m 0 i ≲ N -(2-p( d 2 -s)) ,
where it is easy to check that m 1 1 , m 2 1 , m 0 1 are such that (q 1 1 , m 1 1 ), ((p -h)q 2 1 , m 2 1 ), (q 0 i , m 0 i ) (for i ∈ [1, h]) are admissible pairs. In (3.22), the parameters are chosen such that, 

2 q 2 2 + d r 2 2 = (p -h) d 2 -s , (3.29) 
2 q k k + d r k k = d 2 -(s -|β k | -v), (3.30) 
2 q k i + d r k i = d 2 -(s -|β i |), for eachi ̸ = k, k ∈ [1, h]. (3.31) Let s 2 be such that 2 q 1 2 + d r 1 2 = d 2 -s 2 . From
(3.22) ≲ D s2 P ≳N u L q 1 2 L m 1 2 ∥D s u∥ p-h L (p-h)q 2 2 L m 2 2 h k=1 ∥D s u∥ L q k k L m k k h i=1,i̸ =k ∥D s u∥ L q k i L m k i ≲ N s2-s ∥D s u∥ L q 1 2 L m 1 2 ∥D s u∥ p-h L (p-h)q 2 2 L m 2 2 h k=1 ∥D s u∥ L q k k L m k k h i=1,i̸ =k ∥D s u∥ L q k i L m k i ≲ N -(2-p( d 2 -s)) ,
where m 1 2 , m 2 2 , m k i are such that (q 1 2 , m 1 2 ), (q 2 2 , m 2 2 ), (q k i , m k i ) (for i ∈ [1, h]) are admissible pairs. Combining the above, we have

(3.19) ≲ N -(2-p( d 2 -s)) .
Similarly, we have

(3.20) ≲ N -(2-p( d 2 -s)) .
This implies that

∥D s P N f (u)∥ L q ′ 0 Ḣv,r ′ 0 ≲ N -(2-p( d 2 -s)) .
Moreover, since s > s p , we have 2 -p d 2 -s > 0.

Our second task is to show the following (3.32)

∥D s P N (V u)∥ L q ′ L r ′ ≲ N -η1 ,
for all (q, r) admissible pair. To prove (3.32), we use the following results.

Lemma 3.16.

∥P ⩾N V ∥ L r ≲ V,k N -k for all k ⩾ 0.
Lemma 3.17. (See [START_REF] Fujiwara | Higher order fractional Leibniz rule[END_REF][Corollary 1.1]) Let p, p 1 , p 2 be such that 1 < p, p 1 , p 2 < ∞ and

1 p = 1 p1 + 1 p2 . The the following holds for all f, g ∈ S ∥D s (f g) -D s f g -D s gf ∥ L p ⩽ C ∥Df ∥ L p 1 D s-1 g L p 2 .
Denote P <N η 0 u = u lo and u hi = u -u lo . We have

∥D s P N (V u)∥ L r ′ = ∥D s P N (V lo u)∥ L r ′ + ∥D s P N (V hi u)∥ L r ′ = D s P N (V lo P >N/10 u) L r ′ + ∥D s P N (V hi u)∥ L r ′
Consider the second term. Using Lemma 3.16, Lemma 3.17 and Hölder inequality, we have

∥D s P N (V hi u)∥ L q ′ L r ′ = ∥D s P N (V hi u)∥ L q ′ L r ′ ⩽ ∥D s (V hi u)∥ L q ′ L r ′ ⩽ ∥D s (V hi )u∥ L q ′ L r ′ + ∥V hi D s u∥ L q ′ L r ′ + ∥DV hi ∥ L k 1 L h 1 D s-1 u L k 2 L h 2 ≲ ∥D s V hi ∥ L q 1 L r 1 ∥u∥ L q L r + ∥V hi ∥ L q 1 L r 1 ∥D s u∥ L q L r + ∥DV hi ∥ L q 1 L r 1 D s-1 u L q L r ≲ V N -η0 .
where (q 1 , r 1 ) is such that

1 q1 = 1 q ′ -1 q and 1 r1 = 1 r ′ -1
r . Thus, this term is acceptable. Consider the rst term. Using Lemma 3.17 and Hölder inequality, we have

D s P N (V lo P >N/10 u) L q ′ L r ′ ⩽ D s (V lo P >N/10 u) L q ′ L r ′ ⩽ D s V lo P >N/10 u L q ′ L r ′ + V lo D s (P >N/10 u) L q ′ L r ′ + ∥DV lo ∥ L q 1 L r 1 D s-1 (P >N/10 u) L q L r ⩽ ∥D s V lo ∥ L q 1 L r 1 P >N/10 u L q L r + V lo D s (P >N/10 u) L q ′ L r ′ + ∥DV lo ∥ L q 1 L r 1 D s-1 (P >N/10 u) L q L r .
The rst term and the third term are acceptable since P >N/10 u L q L r ≲ N -s D s (P >N/10 u) L q L r ≲ N -s and D s-1 (P >N/10 u) L q L r ≲ N -1 D s (P >N/10 u) L q L r ≲ N -1 . Consider now the second term. First, we have

V lo D s (P >N/10 u) L q′ L r′ (I×R d ) ≲ 1,
for all q, r is suciently close to q, r. Moreover, using Lemma 2.5 for 0 < δ < 1 2 , we have

V lo D s (P >N/10 u) L 2 t,x (I×R d ) ⩽ M <N η 0 dyadic, M >N/10 dyadic ∥V M D s u M ∥ L 2 t,x (I×R d ) ≲ M <N η 0 dyadic, M >N/10 dyadic M (d-1)/2-δ M -1/2+δ ⟨M ⟩ s ≲ M <N η 0 dyadic M (d-1)/2-δ N -1/2+δ ≲ N η0((d-1)/2-δ) N -1/2+δ ,
this is an acceptable term if we choose η 0 , δ ≪ 1. By interpolation, this implies that the term V lo D s (P >N/10 u) L q ′ L r ′ is also acceptable. Thus, (3.32) holds. Hence,

∥D s P N f (u)∥ L q ′ 0 (I)L r ′ 0 (R d ) ≲
N -η1 and the proof of Proposition 3.15 is completed.

□ Remark 3.18. In the above proof, the condition s > s p is used since we should have 2 > p d 2 -s . In the critical case s = s p , the situation is more complex and local smoothing eect can not hold.

Lemma 3.19 (Schur's test). If

sup x∈R d y∈R d |K(x, y)| r dy 1/r + sup y∈R d x∈R d |K(x, y)| r dx 1/r < C,
where r satises 1 Lemma 3.20 ([12][Lemma 5.1). ] Let u be a global solution of energy at most E. Then, e -it∆ u(t) is weakly convergent to u + ∈ H as t → +∞. Then there exists a unique decomposition (3.33) 

r = 1 -1 p -1 q , for some 1 ⩽ p ⩽ q ⩽ ∞, then the operator T f (x) = y∈R d K(x, y)f (y)dy extends to a continuous operator T : L p (R d ) → L q (R d ) with ∥T ∥ L p →L q ⩽ C.
u(t) = e it∆ u + + v(t),
where u + ∈ H with (3.34)

∥u + ∥ 2 H ⩽ E and (3.35) ∥v(t)∥ 2 H ⩽ 2E,
for all t ⩾ 0. We also have the following identities

(3.36) v(t) = e it∆ (u(0) -u + ) -i t 0 e i(t-t ′ )∆ f (u(t ′ ))dt ′ and (3.37) v(t) = iw-lim T →+∞ T t e i(t-t ′ )∆ f (u(t ′ ))dt ′ .
Remark 3.22. Assume that the solution u in Proposition 3.21 is almost periodic in sense that {u(t) : t ∈ R + } is pre-compact in H. Then u + = 0. Indeed, since e -it∆ u(t) weakly converges to u + in H, e -it∆ u(t) also weakly converges to u + in L 2 . We only need to show that for all ϕ ∈ D(R d ), we have

lim t→∞ u(t), e it∆ ϕ L 2 = 0.
Let ε > 0. By assumption, there exists

C ε > 0 such that ∥u(t, x)∥ 2 L 2 (|x|⩾Cε) ⩽ ε, ∀t ∈ R + .
We have

u(t), e it∆ ϕ L 2 2 ≲ u(t), e it∆ ϕ L 2 (|x|⩾Cε) 2 + u(t), e it∆ ϕ L 2 (|x|⩽Cε) 2 ≲ ∥u(t)∥ 2 L 2 (|x|⩾Cε) ∥ϕ∥ 2 L 2 + ∥u(t)∥ L ∞ t L 2 x |x|⩽Cε |e it∆ ϕ| 2 dx ≲ ε ∥ϕ∥ 2 L 2 + t -d C d ε ∥ϕ∥ 2 L 1
≲ ε, if t large enough. This implies that e -it∆ u(t) also weakly converges to 0 in L 2 , hence, u + = 0. This completes the proof.

Lemma 3.23 (Weakly bound component are approximate solutions, [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Lemma 5.6). ] Let T ∈ R and u, v be as in Proposition 3.21. Then for all t 0 large enough (depending on T, u), we have

S(T )v(t 0 ) = v(T + t 0 ) + o H (1)
where S(t) is the ow of (1.1) and o H (1) goes to zero in H norm as t 0 → +∞. Proof. Fix T , and let t 0 large enough. Dene I = [t 0 , t 0 + T ]. We see that v solves the following NLS:

Lv = f (v) + [f (v + e it∆ u + ) -f (v)].
As t 0 → +∞, we have

e it∆ u + L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) → 0.
Moreover,

e it∆ u + C 0 t H(I×R d ) ≲ 1.
By Lemma 3.14 and triangle inequality, we have

∥v∥ L q 0 H s,r 0 ∩C 0 t H(I×R d ) ≲ T 1. Let X = f (v + e it∆ u + ) -f (v) L q ′ 0 H s,r ′ 0 (I×R d ) .
By Lemma 3.11, we have

X ≲ |T | 1/q ′ 0 -1/q0 e it∆ u + L q 0 H s,r 0 (I×R d ) 1 + e it∆ u + L q 0 Ḣs,r 0 (I×R d ) (u, e it∆ u + ) p L ∞ L Q 0 (I×R d ) + e it∆ u + L ∞ L Q 0 (I×R d ) (u, e it∆ u + ) p-1 L ∞ L Q 0 (I×R d ) (u, e it∆ u + ) L q 0 H s,r 0 (I×R d ) ,
which go to zero as t 0 → +∞. Thus, by perturbation Lemma 3.13, the claim follows. 

Frequency localisation

In this section, we prove the following asymptotic localisation frequency of weakly bound component v of u: Proposition 4.1. Let u be a global solution of energy at most E and let v be the weakly bound component of u. Then, we have 

lim sup t→+∞ sup N ⩽1 N -η3 ∥P ⩽N v(t)∥ H ≲ 1 and (4.2) lim sup t→+∞ sup N ⩾1 N η3 ∥P ⩾N v(t)∥ H ≲ 1.
Proof. See [START_REF] Tao | A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations[END_REF][Proposition 6.1]. We sketch the proof here. The main idea is to use the double Duhamel formula (3.36) and (3.37)

. Fix ε > 0. Let u ε ∈ D(R d ) be such that u(0) -u + = u ε + O H (ε 2 ).
Hence, from (3.36), we have

(4.3) v(t) = e it∆ u ε -i t 0 e i(t-t ′ )∆ f (u(t ′ ))dt ′ + O H (ε 2 ).
To Prove (4.1), it suces to prove that (4.4)

∥P ⩽N v(t)∥ H ≲ N η3 + ε,
for t large enough (can depend on E, u, ε but is independent on N ) and N ⩽ 1.

Using (4.3) and (3.37), we have

∥P ⩽N v(t)∥ 2 H = ⟨P ⩽N v(t), P ⩽N v(t)⟩ H ⩽ iw-lim T →+∞ T t e i(t-t ′ )∆ P ⩽N f (u(t ′ ))dt ′ , P ⩽N e it∆ u ε -i t 0 e i(t-t ′′ )∆ P ⩽N f (u(t ′′ ))dt ′′ H + O(ε 2 ) ⩽ T t e i(t-t ′ )∆ P ⩽N f (u(t ′ )), P ⩽N e it∆ u ε H dt ′ + T t t 0 Y N (t ′ , t ′′ )dt ′′ dt ′ + O(ε 2 ),
for T large enough and Y N is dened by

Y N (t ′ , t ′′ ) = e i(t-t ′ )∆ P ⩽N f (u(t ′ )), e i(t-t ′′ )∆ P ⩽N f (u(t ′′ )) H .
For the rst integral, we have

P ⩽N e it ′ ∆ u ε H s,R ′ ≲ uε 1 |t ′ | d(1/R-1/2) . Since R < 2d
d+4 , the exponent of ⟨t ′ ⟩ is larger than 2, hence, the rst integral is bounded by O(ε 2 ) if t, T (t < T ) large enough (not depend on N ). The second integral is bounded by

∞ t t 0 |Y N (t ′ , t ′′ )| dt ′ dt ′′ .
Using Lemma 2.2, we have

|Y N (t ′ , t ′′ )| = P ⩽N f (u(t ′ ))), e i(t ′ -t ′′ )∆ P ⩽N f (u(t ′′ )) H ≲ ∥P ⩽N f (u(t ′ ))∥ H s,R e i(t ′ -t ′′ )∆ P ⩽N f (u(t ′ )) H s,R ′ ≲ ∥P ⩽N f (u(t ′ ))∥ L R ∥P ⩽N f (u(t ′′ ))∥ L R 1 |t ′ -t ′′ | d(1/R-1/2) ≲ 1 |t ′ -t ′′ | d(1/R-1/2) .
Moreover, using Lemma 2.2, Bernstein's inequality, we have

|Y N (t ′ , t ′′ )| ≲ ∥P ⩽N f (u(t ′ ))∥ H s ∥P ⩽N f (u(t ′′ ))∥ H s ≲ ∥P ⩽N f (u(t ′ ))∥ L 2 ∥P ⩽N f (u(t ′′ ))∥ L 2 ≲ N d(2/R-1) ∥f (u(t ′ ))∥ L R ∥f (u(t ′′ ))∥ L R ≲ N d(2/R-1) .
Combining all the above, we have

∞ t t 0 |Y N (t ′ , t ′′ )| dt ′ dt ′′ ≲ ∞ t t 0 min 1 t ′ -t ′′ , N 2 d(1/R-1/2) dt ′′ dt ′ . Since R < 2d d+4 , the exponent d(1/R -1/2) > 2,
hence, the claim (4.4) follows.

We now prove (4.2). As before, we have

∥P ⩾N v(t)∥ 2 H ≲ ε 2 + T t t 0 Z N (t ′ , t ′′ )dt ′′ dt ′ ,
for T large enough, where

Z N (t ′ , t ′′ ) = e i(t-t ′ )∆ P ⩾N f (u(t ′ )), e i(t-t ′′ )∆ P ⩾N f (u(t ′′ )) H .
Thus, it suces to show that

T t t 0 Z N (t ′ , t ′′ )dt ′′ dt ′ ≲ N -η3 .
Consider the region where t ′ ⩾ t + N η2 . We have

|Z N (t ′ , t ′′ )| ≲ |t ′ -t ′′ | -d(1/R-1/2) . Since d(1/R -1/2) > 2, the contribution of this term is ≲ t ′ >t+N η 2 t ′′ <t |t ′ -t ′′ | -d(1/R-1/2) dt ′′ dt ′ = O(N -η3 ),
where we use N -η2 ≪ N -η3 . Similar argument for the region t ′′ ⩽ t -N η2 . It remains to prove that

t+N η 2 t t max(0,t-N η 2 ) Z N (t ′ , t ′′ )dt ′′ dt ′ ≲ N -η3 .
By Hölder inequality, the left hand side is bounded by

∥P ⩾N f (u(t ′ ))∥ L q ′ 0 t ′ H s,r ′ 0 x ((t,t+N η 2 )×R d ) × t max(0,t-N η 2 ) e i(t ′ -t ′′ )∆ P ⩾N f (u(t ′′ ))dt ′′ L q 0 t ′ H s,r 0 x ((t,t+N η 2 )×R d )
.

By Strichartz, the left hand side is bounded by

∥P ⩾N f (u)∥ 2 L q ′ 0 H s,r ′ 0 ((max(t-N η 2 ,0),t+N η 2 )×R d ) ,
which by Proposition 3.15 and dyadic decomposition can be bounded by

O(N 2η2/q ′ 0 N -2η1 ),
this is acceptable. The proof is completed. □

Spatial localisation

In this section, we prove localisation in spatial of v and then the main result Theorem 1.3. First, we have the following localisation result: Theorem 5.1. Let E > 0, 0 < µ 0 < 1. There exist J, µ 4 (depending only on E, µ 0 ) with the following property: For each u is a forward-global solution of energy at most E, then there exists functions x 1 , x For each t, let x 1 (t), x 2 (t), • • • , x J(t) (t) be a set of points such that |x j (t) -x k (t)| > µ -1 3 for each j ̸ = k and (5.4)

|v med (t, x j (t))| ⩾ µ 1/η1 3 for all 1 ⩽ j ⩽ J(t).
By the rapid decay of the convolution kernel of P µ2<•<µ -1 2 and Hölder, we have

|v med (t, x j (t))| 2 ≲ µ -d 2 |x-xj (t)|⩽1/2µ -1 3 |v med (t, x)| 2 dx + O(µ 3/η1 3
) and thus

|x-xj (t)|⩽1/2µ -1 3 |v med (t, x)| 2 dx ≳ µ 2/η1 3 µ d 2 ≳ µ 2/η1+d 3
for all j. Thus, by uniformly bounded of H-norm of v, there exists J depending on E, µ 3 such that J(t) ⩽ J for all t. If J(t) < J then for each J(t) < j ⩽ J, we dene x j (t) = x 1 (t). By the above construction, for all t, there exist x 1 (t), x 2 (t), • • • , x J (t) such that (5.5)

|v med (t, x)| < µ 1/η1 3 whenever inf 1⩽j⩽J |x -x j (t)| ⩾ µ -1 3 .
5.2. Second step: L ∞ x spatial localisation on a time interval. Fix t 0 a sucient late time and

I = [t 0 -µ -1 1 , t 0 + µ -1 1 ]. Let D : R d → R + be the distance function D(x) = inf 1⩽j⩽J |x -x j (t 0 )|; thus |v med (t 0 , x)| ⩽ µ 1/µ1 3 whenever D ⩾ µ -1
3 . Let χ : R d → R + be a smooth cuto function which equals to one when D(x) ⩽ 2µ -1 3 , vanishes when D(x) ⩾ 3µ -1

3 and obeys the bounds

∇ k χ = O k (µ k 3 ) for k ⩾ 0.
We can let χ(x) = χ 1 (µ 3 x) and chose suitable function χ 1 .

We have the following result:

Lemma 5.2. We have lim sup t→+∞ e i(t-t0)∆ ((1 -χ)u(t 0 ))

L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) ≲ µ η3 2 .
Proof. Let ũ+ ∈ D(R d ) be such that

ũ+ = u + + O H (µ η3 
2 ), this gives

(1 -χ)u(t 0 ) = e it0∆ ũ+ + (1 -χ)v med (t 0 ) + O H (µ η3 2 ).
The contribution of the rst term on the right hand side is acceptable if we choose t 0 large enough.

For the second term on the right hand side, we have

(1 -χ)v med (t, x) = (1 -χ)P <100µ -1 2 (1 D⩾µ -1 3 v med (t 0 )) + (1 -χ)P <100µ -1 2 (1 D<µ -1 3 v med (t 0 ))
Using Lemma 6.3, the second term in the right hand side is acceptable. It remains to consider the rst term. We only need to prove that

e i(t-t0)∆ (1 -χ)P 100µ -1 2 (1 D⩾µ -1 3 v med (t 0 )) L q 0 H s,r 0 ∩L ∞ L Q 0 (I×R d ) ≲ µ η3 2 
for t 0 large enough. Using Lemma 6.2, the left hand side is bounded by

O µ1 (µ -1/η0 2 ) 1 D⩾µ -1 3 v med (t 0 ) L r 0 ∩L Q 0 .
From (5.5),

1 D⩾µ -1 3 v med (t 0 ) L ∞ ⩽ µ 1/η1 3 .
Interpolating this with bounded L 2 norm of v, we obtain the desired result.

□ the contribution of

P ⩽µ -1 2 (1 D⩽2µ -2 3 f (u(t ′ )χ 2 )) is acceptable.
It remains to consider the contribution of the term P ⩾µ -1 2 f (u(t ′ )χ 2 ). We have

1 D>µ -3 3 I ′ e i(t0-t ′ )∆ P ⩾µ -1 2 f (u(t ′ )χ 2 )dt ′ L 2 ≲ P ⩾µ -1 2 f (uχ 2 ) L q ′ 0 L r ′ 0 (I×R d ) ≲ µ s 2 ∥f (uχ 2 )∥ L q ′ 0 Ḣs,r ′ 0 (I×R d ) ≲ µ η3 2 .
this term is acceptable. This completes the proof. 3 , equals 0 when D ⩽ µ -3

3 and χ 3 has bounded derivatives. Then for t 0 large enough, we have

χ 3 v(t 0 ) = O L 2 (µ c 1 ),
for some c > 0.

Proof. From corollary 5.4, we have

χ 3 I ′ e i(t0-t ′ )∆ f (u(t ′ ))dt ′ = O L 2 (µ η3/2 2 
).

for all I ′ ⊂ I. Thus, by Duhamel's formula, we have

χ 3 v(t 0 ) = χ 3 e -iµ -1 1 ∆ v(t 0 + 1/µ 1 ) + O L 2 (µ η3/ 2 2 
) and

χ 3 v(t 0 ) = χ 3 e +iµ -1 1 ∆ v(t 0 -1/µ 1 ) + O L 2 (µ η3/2 2 )
This implies that

∥χ 3 v(t 0 )∥ 2 L 2 = χ 3 e -iµ -1 1 ∆ v(t 0 + 1/µ 1 ), χ 3 e +iµ -1 1 ∆ v(t 0 -1/µ 1 ) L 2 + O(µ η3/2 2 
).

Thus, it suces to show that

e -iµ -1 1 ∆ v(t 0 + 1/µ 1 ), χ 2 3 e +iµ -1 1 ∆ v(t 0 -1/µ 1 ) L 2 ≲ µ c 1 .
Let ϕ be a Schwartz function be such that u(0) -u + = ϕ + O L 2 (µ 2 ). Thus, by (3.36), we have

v(t 0 -1/µ 1 ) = e i(t0-1/µ1)∆ ϕ -i t0-1/µ1 0 e i(t0-µ1-t ′ )∆ f (u(t ′ ))dt ′ + O L 2 (µ 2 )
and hence

χ 2 3 e iµ -1 1 ∆ v(t 0 -1/µ 1 ) = e it0∆ ϕ -(1 -χ 2 3 )e it0∆ ϕ -iχ 2 3 t0-1/µ1 0 e i(t0-t ′ )∆ f (u(t ′ ))dt ′ + O L 2 (µ 2 ).
From dispersive estimate we see that (1 -χ

3 )e it0∆ ϕ = O L 2 (µ 2 ) for t 0 large enough. Using (3.37), it suces to show that (5.8)

+∞ t0+1/µ1 e i(t0-t ′ )∆ f (u(t ′ )), e it0∆ ϕ L 2 dt ′ ≲ µ 2c 1 ,

and

(5.9)

+∞ t0+1/µ1 t0-1/µ1 0 e i(t0-t ′ )∆ f (u(t ′ )), χ 2 3 e i(t0-t ′′ )∆ f (u(t ′′ )) L 2 dt ′′ dt ′ ≲ µ 2c 1 .
To prove (5.8), using (2.2) and Hölder, we have

e i(t0-t ′ )∆ f (u(t ′ )), e it0∆ ϕ L 2 = f (u(t ′ )), e it ′ ∆ ϕ L 2 ≲ e it ′ ∆ ϕ L R ′ ≲ ϕ |t ′ | -d(1/R-1/2)
. Since d(1/R -1/2) > 2, we obtain (5.8) for t 0 large enough. Now, we prove (5.9). Writing

χ 2 3 = 1 -(1 -χ 2 
3 ), we have (5.10)

e i(t0-t ′ )∆ f, χ 2 3 e i(t0-t ′′ )∆ g L 2 = e i(t ′′ -t ′ )∆ f, g L 2 - R d R d f (x)g(z)K t ′ ,t ′′ (x, z)dxdz, Consider the case M 3 ⩽ 1. Since |M 3 x 2 | ⩾ 10 and M 3 |y -x 2 | ⩽ 2 and |y -x 2 | + |y| ⩾ |x 2 |, we have |y| ≳ |x 2 |. Thus, Q 0 ≲ |x 2 | M M3|y-x2|⩽2 (1+|y| 2 ) -M/2 |y| -M dy ≲ M3|y-x2|⩽2 (1+|y| 2 ) -M/2 dy ≲ 1.
This completes the proof of Lemma 5.6.

Thus, K t ′ ,t ′′ (x, z) ≲ |t ′ -t ′′ | -d/2
. This implies that (5.10) is estimated by |t ′ -t ′′ | -d/2 ∥f ∥ L 1 ∥g∥ L 1 . Moreover, (5.10) is also estimated by ∥f ∥ L 2 ∥g∥ L 2 . Hence, by bilinear interpolation, (5.10) is estimated by |t ′ -t ′′ | -d(1/R-1/2) ∥f ∥ L R ∥g∥ L R . By the choice of R, d(1/R -1/2) > 2, hence (5.9) is proved. This completes the proof of Proposition 5.5. □ Theorem 5.1 is followed from Proposition 5.5. As a consequence of Theorem 5.1, we have the following spatial localisation result: Proposition 5.7. Let E > 0 and 0 < µ 0 < 1. Then there exists µ 5 = µ 5 (E, µ 0 ) depending on E, µ 0 (and on the other xed parameters) with the following properties: for any u radial global solution of energy at most E, we have (5.12) lim sup

t→+∞ |x|⩾1/µ5 |v(t, x)| 2 dx ≲ µ 2 0 ,
where v is the weak bound component of u.

Proof. Apply Theorem 5.1, for all t suciently large, there exist

x 1 (t), • • • , x J (t) such that R d 1 inf 1⩽j⩽J |x-xj (t)|⩾1/µ4 |v(t, x)| 2 dx ≲ µ 2 0 .
Since u is radial, u + and v are also radial. Thus, we may average the above estimate over rotation and obtain that

R d S d-1 1 inf 1⩽j⩽J ||x|ω-xj (t)|⩾1/µ4 dω |v(t, x)| 2 dx ≲ µ 2 0 .
In particular, we have

|x|⩾1/µ5   S d-1   1 - J j=1 1 ||x|ω-xj (t)|<1/µ4   dω   |v(t, x)| 2 dx ≲ µ 2 0 .
But if µ 5 is suciently small depending on µ 4 , by using |x| ⩾ 1/µ 5 , we have

S d-1 1 ||x|ω-xj (t)|<1/µ4 dω = S d-1 1 |ω-xj (t)/|x||< 1/µ 4 |x| dω ⩽ S d-1 1 |ω-x0|<µ5/µ4 dω (where x 0 = x j (t)/|x|) = Vol({||ω -x 0 | < µ 5 /µ 4 |} ∩ S d-1 ) ⩽ (µ 5 /µ 4 ) d-1 .
Thus, if µ 5 is small enough depending on both J and µ 4 , we have

S d-1   1 - J j=1 1 ||x|ω-xj (t)|<1/µ4   dω ⩾ 1 2 .
for all |x| ⩾ 1/µ 5 and the desired result is proved.

□

Combining the above analysis, we give the proof of the main result:

Proof of Theorem Let K E,rad be the closure of the set of all limit points lim tn→+∞ v(t n ), where t n ranges over sequences of times which converge to innity. Then, K E,rad is close and hence is a compact subset of K. Let us prove that K E,rad is also a attractor. Indeed, let t n → +∞. Since, dist H (v(t n ), K) → 0 as n → +∞, there exists k n ∈ K such that ∥v(t n ) -k n ∥ K → 0. By compactness of K, for each subsequence of (t n ) there exists φ ∈ K and a sub-sequence of (t n ) which for convenience still denotes by (t n ) such that ∥v(t n ) -φ∥ H → 0. Thus, φ ∈ K E,rad and hence, lim t→+∞ dist H (v(t), K E,rad ) = 0. By local theory and Lemma 3.23, K E,rad is invariant under S(t) for t small and hence for all t large also.

Finally, we show the uniqueness of u + . If ũ+ satises the same properties of u + then {e it∆ (u + -ũ+ ), t ⩾ 0} is pre-compact in H. Moreover, for 2 < p ⩽ 2d d-2s , e it∆ (u + -ũ+ ) L p → 0, as t → +∞.

Combining the above e it∆ (u + -ũ+ ) H → 0 as t → +∞. Thus, u + = ũ+ , which completes the proof. □

Appendix

In this section, we prove some useful results which is used in the proof of the main result. We rst study the graph of D in R d+1 i.e the set of elements of form (x, D(x)), x ∈ R d . For each j, the graph of |x -x j | is {(x, |x -x j |), x ∈ R d } ⊂ R d+1 , which is a co-dimension one surface having a critical point at x j . The graph of |x -x k | can be given by move the graph of |x -x j | by vector x j -x k . For each x j ̸ = x k , the intersection of the graph (x, |x -x j |) and (x, |x -x k |) is a co-dimension two surface: {(x, |x -x j |) : |x -x j | = |x -x k |}. Thus, the graph of D is a co-dimension one surface which is singular at each x j and at each co-dimension two surface {(x, |x -x j |) : |x -x j | = |x -x k |}. We can easily take a regular surface H close to the graph of D, which is graph of a smooth function D. We see that D ∈ C ∞ (R d ) and D satises the desired properties if we take H is close enough to the graph of D.

□

Let t 0 , t, t ′ , χ, µ 2 , µ 3 , v med be as in Subsection 5.2. We have the following results: Lemma 6.2. The operator ∇ k e i(t-t0)∆ (1 -χ)P ≲µ -1 2 have an operator norm of O µ1 (µ -c(k)

2

) on L r for 2 < r < 2d d-2s , c(k) depending on k and ∀k ∈ N. Similar result holds for D j e i(t-t0)∆ (1-χ)P ≲µ -1 2 for j = 0, s.

Proof. By density, we need only work on Schwartz functional space. We consider the case k = 0, the general case is obtained by bounded derivatives of χ and interpolation. Let ψ be smooth function such that ψ(ξ) = 1 if |ξ| ⩽ 1 and ψ(ξ) = 0 if |ξ| ⩾ 2.

For each t ∈ R and N dyadic, we have e it∆ P ≲N f = F -1 e -it|ξ| 2 ψ(ξ/N ) f (ξ) = F -1 (e -it|ξ| 2 ψ(ξ/N )) * f.

Thus, by Young inequality, for M > d an integer, the operator norm of e it∆ P ≲N f on L r is bounded by ≲ e -i(tN 2 )|ξ| 2 ψ(ξ)

F -1 (e -it|ξ| 2 ψ(ξ/N ))(x) L 1 = N d F -1 (e -itN
H M ξ ≲ (1 + |ξ|) M ψ(ξ) H M ξ (1 + |tN 2 |) M ≲ (1 + |tN 2 |) M .
Thus, the operator norm of e i(t-t0)∆ P ≲µ -1 2 on L r is bounded by

(1 + |t -t 0 | 2 µ -2 2 ) M = O µ1 (µ -2M 2 
).

It remains to prove that e i(t-t0)∆ (1 -χ)P ≲µ -1 2 has bounded operator on L r by O µ1 (µ -c 2 ) for some constant c > 0. The above expression is of form e it∆ (1 -χ)P ≲µ 

where d ⩾ 5 , 2 p

 52 λ = ±1, p ⩾ 4 d-2 , p is even or p > ⌈s⌉ and V ∈ C ∞ 0 (R d ). Let s p = d 2 -. Fix s such that d2 > s > s p , the energy is dened by(1.2) 

□ 3 . 3 .

 33 Fixed time estimate. From (1.2) and our convenience to suppress dependence on E we have(3.11) ∥u(t)∥ H ≲ 1 for all t ∈ [0, +∞) and hence by Sobolev embedding we have(3.12) 

3. 4 .

 4 Local-in-time estimates. Next we prove a local-in-time Strichartz estimate. Lemma 3.14. (Local Strichartz control). For any time interval I ⊂ [0, +∞) and any admissible pair of exponents (q, r) we have(3.14) 

  (3.25), (3.26), (3.29), (3.30), (3.31), we see that s 2 = s -2 -p d 2 -s . Moreover, by Sobolev embedding Lemma 3.1 and Lemma 3.14, we have

Proposition 3 .

 3 21([12][Proposition 5.2). ] Let u be a global solution of energy at most E > 0.

□

  

□ 5 . 3 .

 53 Third step: L 2 x localisation at xed time. We now prove the following result: Proposition 5.5. Let χ 3 : R d → R + be a smooth cuto function which equals 1 when D ⩾ 2µ-3 

Lemma 6 . 1 .

 61 Let x 1 , x 2 , • • • , x J ∈ R d and D(x) = inf 1⩽j⩽J |x -x j |. There exists a function D ∈ C 2 (R d ) such that D -D L ∞ ⩽ 1 and ∇ D, ∇ 2 D ≲ 1. Proof. We see that D ∈ C 0 (R d )∩C ∞ (R d )\A for some zero measure set A. Indeed, A = ∪ i {x i }∪ j̸ =k {x : |x -x j | = |x -x k |}. Moreover, D is small inside ∪ J i=1 B(x i , 1) and |∇D|, |∇ 2 D| ≲ 1 outside ∪ J i=1 B(x i , 1) ∪ j̸ =k {x : |x -x j | = |x -x k |}.

2 |ξ| 2 ψ 1 x=F 1 x= 1 ξ≲ ( 1 +

 21111 (ξ))(N x) L -1 (e -i(tN 2 )|ξ| 2 ψ(ξ))(x) L F(e -i(tN 2 )|•| 2 ψ(•))(ξ) L |ξ|) M F(e -i(tN 2 )|ξ| 2 ψ(ξ)) L 2 (1 + |ξ|) -M L 2

-1 2 =

 2 e i t∆ (1 -χ)Ψ(µ 2 D) for |t| ⩽ µ -1 1 and Ψ is a cut o function which vanishes in {ξ : |ξ| ⩾ 2}. Recall that e it∆ f (x) = 1 t d/2 e -i|x-y| 2 tf (y)dy (up to multiply by a constant).Thus,e it∆ (χf )(x) = 1 t d/2 e -i|x-y| 2 t χ(y)f (y)dy,which means that the Schwartz kernel of the operatorT 1 : f → e it∆ (χf ) is K 1 (x, y) = 1 t d/2 e-i|x-y| 2 t χ(y).

  and for any µ 0 > 0 there exists µ 1 > 0 such that we have the asymptotic frequency localisation estimate

	(1.4)	sup	lim sup
		u∈U	
		lim sup t→+∞	∥P 1/µ1 u(t)∥ H ≲ µ 0
		and the spatial localisation estimate
		lim sup t→+∞ |x|⩾1/µ1	|u(t, x)| 2 dx ≲ µ 2 0

t→+∞ ∥u(t)∥ H < ∞

  ). Then, ∥f g∥ Ḣs,r ≲ ∥f ∥ r1 ∥g∥ Ḣs,p 1 + ∥f ∥ Ḣs,r 2 ∥g∥ p2 .

  [START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF] 

  , • • • , x J : R + → R, such that First step: L ∞ x spatial localisation at xed times. Dene v med = P µ2<•<1/µ2 v. We exploit the frequency localisation of v med . From Proposition 4.1, we have(5.2) 

	5.1. ∥v(t) -v med (t)∥ H ≲ µ η3 2	
	and thus,		
	(5.3)	u(t) = e it∆ u + + v med (t) + O H (µ η3 2 ).
	(5.1)	lim sup t→+∞ inf 1⩽j⩽J |x-xj (t)|⩾1/µ4	|v(t, x)| 2 dx ≲ µ 2 0 .

  for all radial global bounded solution u of energy at most E.

1.3. By Proposition 1.7, Proposition 4.1 and Theorem 5.1, there exists a compact set K ⊂ H such that lim t→+∞ dist H (v(t), K) = 0

f (u(t ′ )χ 2 )). Using Lemma 6.4, and ∥f (u(t ′ ))∥ L R ≲ 1, we obtain

We have the following spatial decay: Lemma 5.3. We have

Proof. Let ũ be the solution of (1.1) with initial data ũ(t 0 ) = χu(t 0 ). From Lemma 3.13 and Lemma 5.2, we see that

and (5.6) ∥u -ũ∥ L q 0 H s,r 0 ≲ µ1 µ η3 2 .

Let W = 1 + µ 3 D be such that

⩽ 1 (see Lemma 6.1 for the choice of such D). We have ∇W, ∇ 2 W = O(µ 3 ) and W χ = χ + µ 3 Dχ + µ 3 ( D -D)χ = O(1). Thus, (5.7)

We have

By Strichartz and e it∆ f L q 0 L r 0 ≲ ∥f ∥ L 2 , we have

for any I ′ ⊂ I, t ′ ∈ I ′ . Denote the left hand side by X(I ′ ), by Hölder, we have

and hence (for I ′ small enough), we have

By iterating this using (5.7), we have

Thus,

and hence,

3 by the choice of D. Thus,

Combining with (5.6), we obtain the desired result.

□

As a consequence, we have local in time of Strichartz Duhamel:

Corollary 5.4. For t 0 large enough and any I ′ ⊂ I, we have

Proof. Let χ 2 : R d → R + be a smooth cuto such that

3 and χ 2 has bounded derivatives. We have

By Lemma 5.3, Hölder, we have

and hence this term is acceptable. Consider the term

for each test functions f, g and K t ′ ,t ′′ is dened by

for some constant c.

We prove that (5.11)

Without loss of generality, we assume supp(φ) ⊂ B(x 0 , 2µ -3

3 ) for some

We have:

)dy, (where

.

Thus, for some M ∈ N large enough chosen later,

))dy.

To prove (5.11), we only need to prove the following lemma Lemma 5.6. The following estimate holds for M ∈ N large enough:

Proof. For convenience, dene

By induction, we see that

Moreover,

Combing to uniform bounded of y k φ(y), using c k0 +c

, we only need to check the case h = 0 and h = M . Choosing M = 2d. The rst case is easy to estimate Q 0 . Consider the second case.

Similarly, using the inverse Fourier transform:

and thus the Schwartz kernel of the operator

Thus, the Schwartz kernel of f → e it∆ (χΨ(µD)f ) is

Then write K = K i + K e , where

We have

It remains to control K e . We have

After integration by part, we get:

By Schur's test 3.19, we get the desired result.

□ Lemma 6.3. We have

Proof. Since the convolution kernel of P <100µ -1 2 is a Schwartz function and the support of 1 -χ belongs to {|x| : D(x) > 2µ -1

3 }, we have kernel of (1 -χ)P <100µ -1

for any l > 0. Thus, from Young inequality and H s -norm bounded of v med we obtain the desired result.

□ Lemma 6.4. The operator 1 D>µ -3

3 ) for each t ′ ∈ I.

Proof Lemma 6.4. Let f ∈ L R . We have, for φ is a smooth cuto function which equals 1 in |ξ| ⩽ 1 and equals 0 in |ξ| ⩾ 2:

Thus, by Young inequality and using ∥f ∥ H s = (1 + |x|) s F -1 f (x) L 2 , we have

2 /2 F -1 e -i(t0-t ′ )µ -2

F -1 e -i(t0-t ′ )µ -2

(1 + |x|) M (1 + |x|) -M F -1 e -i(t0-t ′ )µ -2

O((µ 3 3 µ 2 ) l ) e -i(t0-t ′ )µ -2

for M > d and any l > 0

3 ), (for l large enough) This completes the proof. □