N

HAL

open science

Light Genericity

Beniamino Accattoli, Adrienne Lancelot

» To cite this version:

‘ Beniamino Accattoli, Adrienne Lancelot. Light Genericity. 2024. hal-04406343

HAL Id: hal-04406343
https://hal.science/hal-04406343

Preprint submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04406343
https://hal.archives-ouvertes.fr

Light Genericity

Beniamino Accattolil[0000-0003—4944-9944] » 14 Adrienne Lancelot!:2

! Inria & LIX, Ecole Polytechnique, UMR 7161, Palaiseau, France
{beniamino.accattoli,adrienne.lancelot}@inria.fr

2 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract. To better understand Barendregt’s genericity for the untyped
call-by-value A-calculus, we start by first revisiting it in call-by-name,
adopting a lighter statement and establishing a connection with contextual
equivalence. Then, we use it to give a new, lighter proof of maximality
of head contextual equivalence, i.e. that H* is a maximal consistent
equational theory. We move on to call-by-value, where we adapt these
results and also introduce a new notion dual to light genericity, that we
dub co-genericity. Lastly, we give alternative proofs of (co-)genericity
based on applicative bisimilarity.

Keywords: lambda-calculus - semantics - call-by-value.

1 Introduction

Barendregt’s genericity lemma [12, Prop. 14.3.24] is a classic result in the theory of
the untyped A-calculus. It expresses the fact that meaningless terms—also called
unsolvable terms, a notion generalizing the bad behaviour of the paradigmatic
looping term 2 := (Az.xzz)(Ax.zx)—are sort of black holes for evaluation: if
evaluation should ever enter them, it would never get out. This is specified
somewhat dually, saying that if a term ¢ containing a meaningless term u evaluates
to a normal form, that is, if ¢ is observable, then replacing v with any other term
in ¢ gives a term ¢’ that is also observable. Roughly, if one can observe a term
containing a black hole then evaluation never enters the black hole.

Genericity is arguably more than a lemma, but it is so labeled because its
main use is as a tool in Barendregt’s proofs of collapsibility of meaningless terms,
that is, the fact that the equational theory H equating all meaningless terms
is consistent, i.e. it does not equate all terms. Such collapsibility is one of the
cornerstones of the semantics of the untyped A-calculus.

Recap about Meaningless Terms. Meaningless terms were first studied in the 1970s,
by Wadsworth [13,14] and Barendregt [10,11], while working on denotational
models and the representation of partial recursive functions (PRFs). The starting
point is that the natural choice of representing the being undefined of PRFs—
considered as the paradigmatic meaningless computation—with terms not having
a normal form leads to a problematic representation of PRFs. The issue is visible
also at the equational level, as all theories collapsing all diverging terms are
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inconsistent. Wadsworth and Barendregt then identify the class of unsolvable
terms as a better notion of meaningless terms: the representation of PRFs using
them as undefined terms is better behaved, they are collapsible, and in particular
they are identified in Scott’s first D, model of the untyped A-calculus.
Unsolvable terms are defined via a contextual property, but they are also
characterized as being diverging for head p-reduction —y,, rather than plain
B-reduction —3. The dual notion of solvable terms, which are terminating for
head reduction, are taken as the right notion of defined term, replacing the natural
but misleading idea that S-normal forms are the right notion of defined term.
Barendregt classic book from the 1980s [12] is built around the concept of
(un)solvability. Visser and Statman noted that (un)solvability is not the only
partition of terms providing good representations of PRFs and being collapsible,
as summarized by Barendregt [13]. Typically, (in)scrutable terms, first studied
by Paolini and Ronchi della Rocca [36,34,39] (under the name (non-)potentially
valuable terms), provide an alternative good partition. In call-by-name (CbN),
(in)scrutable terms correspond to weak head normalizing/diverging terms.

This Paper. The work presented here stems from the desire to obtain genericity
for the untyped call-by-value A-calculus. Perhaps surprisingly, the call-by-value
(shortened to CbV) A-calculus behaves quite differently with respect to meaning-
less terms. Accattoli and Guerrieri’s recent study of meaningless terms in CbV [(]
indeed stresses two key differences: genericity fails in CbV, and collapsibility fails
as well, as any equational theory equating CbV meaningless terms is inconsistent,
if one considers as meaningless the CbV analogous of unsolvable terms. Accattoli
and Guerrieri also show that collapsibility can be recovered by adopting a different
notion of meaningless terms, namely CbV inscrutable terms, but they do not
prove genericity for them.

In this paper, we do prove a genericity result for inscrutable terms, and also
provide a new proof of their collapsibility. These results, however, are only a
small part of the contributions of this paper.

Contribution 1: the Very Statement of Genericity. We start by focussing on the
statement of genericity. The literature contains various versions. The one used
by Barendregt for proving collapsibility is the following (where unsolvable terms
are identified with —y-diverging terms), here dubbed as heavy:

Heavy genericity: let u be —y-diverging and C be a context such that
C(u) =% n with n B-normal. Then, C(t) —% n for all t.

In Takahashi’s elegant proof of heavy genericity [12]—which is an inspiration for
our work—the following statement is called fundamental property of unsolvable
A-terms, which we here consider as an alternative, lighter statement for genericity:

Light genericity: let u be —y-diverging and C be a context such that C{u) is
—p-normalizing. Then, C(t) is —y-normalizing for all t.

We adopt the lighter statement as the proper one for genericity for three reasons:



Light Genericity 3

1. Powerful enough. We show that the collapsibility of unsolvable terms follows
already from the light notion: there is no need to consider reductions to
B-normal form, nor the fact that the normal forms of C(u) and C(t) coincide.

2. Economical and natural. The light version involves less concepts and it is
more in line with the motivations behind (un)solvability: if the right notion
of defined terms is head normalizable terms, it is somewhat odd to state
genericity with respect to S-normal forms.

3. Modularity. In CbV, it is less clear what notion of normal form to use for
the heavy statement, as shall be explained below. The light version, instead,
adapts naturally. It is also impossible to have a heavy form of the co-genericity
property given below, since the involved terms have no (full) normal form.

We then adapt Takahashi’s proof of heavy genericity to the light case.

Contribution 2: (Open) Contestual Equivalence/Pre-Order. Once one adopts
the light statement, a connection with contextual equivalence becomes evident.
Precisely, consider the contextual pre-order (that is, the asymmetric variant of
contextual equivalence) induced by head reduction:

Head contextual pre-order: t 3¢ u if C(t) —y-normalizing implies C(u)
—n-normalizing, for all closing contexts C.

Light genericity seems to rephrase that —-diverging terms are minimum terms
with respect to 3B. There is however a small yet non-trivial glitch: contextual
pre-orders/equivalences are defined using closing contexts, while genericity is
defined using arbitrary, possibly open contexts. Is the closing requirement essential
in the definition of contextual notions? To our knowledge, this question has not
been addressed in the literature. In fact, there is no absolute answer for all cases,
as it depends on the notion of observation and on the underlying calculus.

We show that, for head reduction, open and closed contextual notions do
coincide, what we refer to as the fact that head reduction is openable. As it is
often the case with behavioral notions, proving head reduction openable cannot
be done by simply unfolding the definitions, and requires some work.

The proof that we provide is—we believe—particularly elegant. It is obtained
as the corollary of a further contribution, the revisitation of another classic result
from the theory of the untyped A-calculus, described next.

Contribution 3: Mazimality. Barendregt proves that open head contextual
equivalence—what he denotes as the equational theory H*—is maximal among
consistent equational theories, i.e. any extension of H* is inconsistent (moreover,
H* is the unique mazimum theory among those collapsing unsolvable terms). His
proof uses Béhm theorem, an important and yet non-trivial result. We give a
new proof based only on light genericity, which is an arguably simpler result than
Bohm theorem, obtained adapting a similar result for CbV by Egidi et al. [17].

Contribution 4: Call-by-Value. Finally, we study the CbV case, adopting in-
scrutable terms as notion of meaningless terms. In Plotkin’s original CbV calculus
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[38], however, these terms cannot be characterized as diverging for some strategy.
Moreover, in Plotkin’s calculus evaluation is not openable, that is, open and
closed contextual notions do not coincide. In both cases, the issue is connected
to the management of open terms.

We then adopt Accattoli and Paolini’s value substitution calculus (VSC) [3],
which is an extension of Plotkin’s calculus solving its well-known issues with open
terms and having the same (closed) contextual equivalence. Therein, inscrutable
terms are characterized as those diverging for weak evaluation —.

For the VSC, we prove light genericity for —,-diverging terms. We use a
different technique with respect to the CbN case, namely we rely on Ehrhard’s
CbV multi types [18] (multi types are also known as non-idempotent intersection
types), because Takahashi’s technique does not easily adapt to the CbV case. We
also give a proof of maximality (essentially Egidi et al. [17]’s argument used as
blueprint for the CbN case) from which it follows that evaluation in the VSC is
openable, in contrast with evaluation in Plotkin’s calculus.

As hinted at above, it is relevant that in CbV we study light genericity rather
than the heavy variant because the notion of full normal form in the CbV case is
less standard. Firstly, it differs between Plotkin’s calculus and the VSC. Secondly,
it also differs between various refinements of Plotkin’s calculus that can properly
manage open terms, as discussed by Accattoli et al. [7].

Contribution 5: Co-Genericity. A difference between the head CbN case and
weak CbV case is given by an interesting class of terms, those evaluating to an
infinite sequence of abstractions, that is, such that ¢ -5 Az.t' with ¢’ having
the same property. Such terms are —,-diverging (thus head CbN meaningless),
but —y-normalizing (CbV meaningful), and hereditarily so. We prove that these
—y-super (normalizing) terms are maximum elements of the CbV contextual
pre-order, and the statement of this fact is a new notion of co-genericity:

Co-Genericity: let t be —-super and C be a context such that C(u) is
—y-normalizing for some w. Then, C(t) is —y-normalizing.

We then show a strengthened collapsibility result: all —-diverging terms and all
—u-super terms can be consistently collapsed.

Contribution 6: Alternative Proofs via Applicative Bisimilarity. Lastly, we show
a different route to proving light genericity and co-genericity—in CbV, but the
technique is general—by exploiting the link with contextual pre-orders. Namely,
we give a second proof that weak CbV evaluation is openable in the VSC
without using light genericity, and then we use the soundness of CbV applicative
bisimilarity with respect to the (closed) contextual pre-order for giving very
simple proofs of light genericity and co-genericity.

Related Work. There are many proofs of CbN genericity in the literature (but
they do not all prove the same statement®): a topological one by Barendregt |12,

3 Sometimes, one finds the following genericity as application statement: let u be
—n-diverging and s be such that su —j5 n with n B-normal. Then, st =% n for all
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Prop. 14.3.24], via intersection types by Ghilezan [22], rewriting-based ones by
Takahashi [12], Kuper [28], Kennaway et al. [26], and Endrullis and de Vrijer [19],
and via Taylor expansion by Barbarossa and Manzonetto [9]. Salibra studies a
generalization to an infinitary A-calculus [41]. Garcia-Pérez and Nogueira prove
partial genericity for Plotkin’s CbV A-calculus [21] using a different notion of
meaningless terms, not as well-behaved as CbV inscrutable terms.

The most famous application of genericity is the collapsibility of meaningless
terms. Another application is Folkerts’s invertibility of terms for An [20].

Independently, Arrial, Guerrieri, and Kesner developed an alternative study
of genericity in both CbN and CbV.

Proofs. Most proofs are omitted and can be found in the Appendix.

2 Preliminaries

In this paper, we consider two languages, the A-calculus and the value substitution
calculus. Here we give abstract definitions that apply to both. We then refer to a
generic language £ of host reduction —,C £ x L together with an evaluation
strategy discussed below. Terms of both languages are considered modulo a-
renaming. Capture-avoiding substitution is noted t{x+u}.

Evaluation Strategies. An evaluation strategy for us is a relation —;C—, which
is either deterministic or has the diamond property, which, according to Dal Lago
and Martini [16], is defined as follows: a relation —, is diamond if uy + t —, usg
and u; # ug imply u; —, § ¢ ug for some s. If —, is diamond then it is confluent,
all its reductions to normal form (if any) have the same length, and if there is one
such reduction from ¢ then there are no diverging reductions from ¢; essentially,
the diamond property is a weakened notion of determinism.

We refer to a generic evaluation strategy with —5 or simply with s, and
we also simply call it a strategy, and usually we omit the underlying language.
The conversion relation =g associated to a strategy s is the smallest equivalence
relation containing —5. We say that ¢ is:

s-normal: if t Ay;
— s-normalizing: if there exists v such that ¢ =% « and v is s-normal;
— s-diverging: if t is not s-normalizing.

We say that s is:

— Consistent: if there exist two closed terms ¢ and w such that ¢ is s-normalizing
and u is s-diverging;

— Normalizing: if t =} w with u s-normal implies that ¢ is s-normalizing;

— Stabilizing: if t s-normal and ¢ —7 v imply u s-normal;

— Weak: if there are no s-redexes under abstraction.

t. Genericity as application is weaker than heavy/light genericity, and cannot be
directly used to infer the collapsibility of —4-diverging terms.
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Conterts. An essential tool in our study shall be contexts, which are terms where
a sub-term has been replaced by a hole (-). For instance, for the A-calculus
they are defined as follows: C,C’ == (-) | tC' | Ct | Az.C. The basic operation
on contexts is the plugging C(t) of a term ¢ in C, which simply replaces (-)
with ¢ in C, possibly capturing variables. For instance, (Az.(-)){zy) = Az.zy.
Note that plugging cannot be expressed as capture-avoiding substitution since
(Ax.2){zezy} = Ao’ .xy # \x.xy.

Conteztual Equivalences and Pre-Orders. The standard of reference for program
equivalences is contextual equivalence. The following definition slightly generalizes
the standard one as to catch also the open case studied in this paper.

Definition 1 (Open and Closed Contextual Pre-Order and Equivalence).
Given an evaluation strategy s, we define the open contextual pre-order <&, and
open contextual equivalence ~%, as follows:

—t 330 t'if, for all contexts C, C(t) is s-normalizing implies that C(t') is
s-normalizing;
—t ~%, t' is the equivalence relation induced by 3%, that is, t ~%, t' if

t 350t and t’ S3o t.
The closed variants, simply called contextual pre-order 3% and contextual equiv-

alence ~%, are defined as above but restricting to contexts C' such that C(t) and
C(t') are closed terms. We say that s is openable if 35, and S coincide.

It follows from the definitions that 3%, C 3%, and similarly for the equivalences,
while the other direction is not obvious, and can indeed fail. For instance, if p,
is weak evaluation in Plotkin’s CbV A-calculus (to be defined in Sect. 5) and
§ = Az.zz then we have (2, := (Az.6)(yy)d 35 66 =: 2 but 2 £, 2. That is,

Pw is not openable. To our knowledge, the notion of openable strategy is new.

(In)Equational Theories. A relation is compatible if t R w implies C(t) R C{u)
for any context C and any terms ¢ and u. A term ¢ is minimum for a pre-order <
if for all u € £, t < u. We denote abstract inequational theories with the symbol
<7 to distinguish them from known program pre-orders, denoted with =p.

Definition 2 (Inequational s-theory). Let s be an evaluation strategy. An in-
equational s-theory <5 is a compatible pre-order on terms containing s-conversion.
An inequational s-theory <% is called:

— Consistent: whenever it does not relate all terms;
— s-ground: if s-diverging terms are minimum terms for <%-;
— s-adequate: if t <5 u and t is s-normalizing implies u is s-normalizing.

The notions of s-ground and s-adequate theories generalize to an abstract and
inequational framework the A-calculus notions of sensible and semi-sensible
theories (whose non-abstract inequational versions are studied in particular in the
recent book by Barendregt and Manzonetto [14]), up to a very minor difference:
the definitions in the literature sometimes also ask for consistency which we treat
independently. An equational theory is a symmetric inequational theory.
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Remark 1. Any open contextual pre-order 32, is s-adequate: if ¢ 3%, w then, by
considering the empty context, ¢t s-normalizing implies u s-normalizing. Closed
contextual pre-orders, instead, are not necessarily adequate: for weak evaluation
pw in Plotkin’s calculus, 2; 3 <p“ 2, {21 is py-normal, and (2 is p,-diverging.

Lastly, we show under which conditions the contextual pre-orders 3%, and
2% are consistent inequational s-theories.

Proposition 1. Let L be a confluent language and s be a normalizing and
stabilizing strategy. Then 5. and 33 (resp. ~%, and ~%) are inequational
(resp. equational) s-theories. Moreover, if s is consistent then Z3yn, 38, >80,
and ~¢ are consistent.

3 Light Genericity and Collapsibility

As working notion of genericity, we adopt the following abstract light version.

Definition 3 (Light genericity). Let s be an evaluation strategy. Light s-
genericity is the following property: if u is s-diverging and C is a context such
that C(u) is s-normalizing, then C(t) is s-normalizing for all t. Concisely: s-
diverging terms are minimums for 3%.. Very concisely: 3% . is s-ground.

We now show that light genericity is enough to obtain the main application of
Barendregt’s heavier notion, that is, that s-diverging terms can be consistently
equated (when s is consistent, which is a very mild hypothesis verified by all
strategies of interest), by showing that they are contextually equivalent. In both
the closed and open variants, independently of whether the strategy is openable.

Proposition 2 (Collapsibility). Let s be a consistent evaluation strategy sat-
isfying light genericity. Then:

1. Open: ~%, equates all s-diverging terms and it is consistent;
2. Closed: ~¢ equates all s-diverging terms and it is consistent.

Proof. 1. By light genericity, s-diverging terms are minimums for 3%,. Since
then any two s-diverging terms are 3%,-smaller than each other, s- dlverglng
terms are ~%,-equivalent. Since s is consistent, ~%, is consistent by Prop. 1.

2. Since 3%, C 32, we obtain that light genericity implies that s-diverging terms
are minimums for 3%, and so ~¢ equates all s-diverging terms. Since s is
consistent, ~% is consistent by Prop. 1. O

Proposition 3 (Characterization of minimum terms for 3§,). Let s be
a consistent evaluation strategy satisfying light genericity. Then the minimum
terms for Z8x are exactly the s-diverging terms.

Proof. By light genericity, s-diverging terms are minimums for 3. Conversely,
by COHSlstency of s there exists a s-diverging term ¢. Let u be a minimum for
Z20- Then u 28, t, hence u is s-diverging by s-adequacy of 3%, (given by
Remark 1). O

Proofp. 23
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LANGUAGE BETA RULE

TERMS A3 tu,s == z|Axt|tu (Azt)u g t{zeu}

HeEAD REDUCTION

WEeak HEAD CONTEXTS P = () | Pt tgt
HeaDp CoONTEXTS H == Az.H | P H(t) —n H{t')
RiciD TERMS 7,7 == z |1t Heap NorMAL ForMS h,h' = Az.h|r

Fig. 1. Call-by-Name calculus.

The characterization of minimum terms does not hold in the closed case,
because the closed contextual pre-order is not necessarily adequate (Remark 1).
For weak evaluation p, in Plotkin’s calculus, indeed, {2; is a minimum term for
<P and it is py-normal. The characterization lifts when s is openable.

4 The Head Call-by-Name Case

Here we revisit two results from the theory of the A-calculus, and use them to
prove that head evaluation is openable. The first result is genericity for unsolvable
terms—that is, head-diverging terms—for which we give a proof of light genericity.
The second result is the maximality of the open head contextual pre-order.

The host language £ here is the A-calculus and the evaluation strategy s is
the head strategy h. Both are defined in Fig. 1.

Solvability and Head Reduction. In the literature, the original notion of meaningful
terms are the solvable ones, characterized by Wadsworth as those terminating
for head reduction [14]; meaningless terms are their complement.

Definition 4 ((Un)Solvable terms). A term t is solvable if there is a head
context H such that H(t) —% I = Az.z, and unsolvable otherwise.

Theorem 1 (Operational characterization of solvability, [44]). ¢ is solvable
(resp. unsolvable) if and only if t is h-normalizing (resp. h-diverging).

Apart from the proof of Thm. 4.1 below, we shall always use the operational
characterization and never refer to solvability itself.

Head Contextual Pre-Orders are Inequational. It is well-known that the -
calculus is confluent, that head normal forms are stable by reduction (that is, h
is stabilizing), and that the following normalization theorem holds (for a recent
simple proof of this classic result see Accattoli et al. [3]). These facts and Prop. 1
give that the contextual pre-orders are inequational h-theories.

Theorem 2 (Head normalization). Ift —% ' and t' is h-normal then t is
h-normalizing.

Proposition 4. The head pre-orders 28, and 28 are inequational h-theories.
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Proofs of Genericity. In his book [12], Barendregt gives two proofs that h-
diverging terms can be consistently equated, both using heavy genericity (defined
in the introduction). A first one [12, Lemma 16.1.8-thm 16.1.9] uses it to show
that the minimal equational theory equating them, noted #, is consistent. This
proof is where the heavy part of genericity is used. A second proof [12, Lemma
16.2.3] exploits the consistency of ~8, (noted H* in [12]), which is trivial, and
uses genericity to show that H C~8 ,, i.e. that ~&, equates all h-diverging terms.

The second proof in [12] uses heavy genericity, but the heavy aspect is in fact
not needed for the proof to go through. The abstract result of the previous section,
indeed, follows essentially the same reasoning and uses only light genericity.

We now prove light genericity for head reduction, via a direct proof, using
the rewriting properties of head reduction.

Head Light Genericity via Takahashi’s Technique. Our proof of light genericity
adapts Takahashi’s simple technique for heavy genericity [42]. We stress that two
standard and crucial properties of head reduction are at work in Takahashi’s proof,
despite the fact that she does not point them out, namely the head normalization
theorem (Theorem 2) and the following property.

Proposition 5 (Head substitutivity). If ¢ —; u then t{z<s} —; u{z<s},
for all t,u,s.

Firstly, we prove genericity for h-normal forms, via a simple induction on the
structure of normal forms, using an auxiliary lemma in the Appendix.

Proposition 6 (Normal genericity). Letu be h-diverging and s be any term.

1. If r is a rigid term and r{x<u} is h-normalizing then r{x+s} is a rigid term.
2. If h is h-normal and h{z+<u} is h-normalizing then h{x<s} is h-normal.

We can now prove (light) genericity, which is done in two steps. The first one
simply lifts h-normal genericity to non-h-normal terms, obtaining a substitution-
based version of genericity. The second one turns the substitution-based state-
ment into a context-based statement, and its proof is what we shall refer to as
Takahashi’s trick. For the sake of clarity, note that the two statements are not
immediately equivalent, since substitution is a capture-avoiding operation while
context plugging may capture free variables.

Theorem 3 (Light genericity). Let u be h-diverging and s be any term.

1. Light genericity as substitution: if ¢ is a term and t{x<u} is h-normalizing
then t{x<s} is h-normalizing.

2. Light genericity as context: if C is a context and C{u) is h-normalizing then
C(s) is h-normalizing.

Proof. 1. It follows from Prop. 5 (precisely, via Lemma 4 in the Appendix),
that if ¢{z<u} is h-normalizing then so is t. Then ¢t — h for some h-
normal h. Again, by stability of head reduction under substitutions, we
have both t{x<u} —; h{z<u} and t{z<s} —; h{z+<s}. Note that t{z<u}
h-normalizing implies h{x<u} h-normalizing. By normal genericity (Prop. 6),
h{z«<s} is h-normal. Therefore, t{z+s} is h-normalizing.

Proofp. 24

Lemma 4 is at page 23.
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2. Let fv(u) Ufv(s) = {z1,...,z}, and y be a variable fresh with respect to
fv(u) Ufv(s) Ufv(C) and not captured by C. Note that @ := Ax;.... Azp.u
is a closed term. Consider ¢ :== C(yz; ...xy), and note that:

tH{y<a} = Cluxy ... xg) = C{(Axy. ... Axp.u)xy ... o)) —>§ C(u).

The fact that w is h-diverging implies that @ is also h-diverging. If C{u)
is h-normalizing then so is t{y<u} by the h-normalization theorem (Theo-
rem 2). By genericity as substitution, t{y<s’'} is h-normalizing for every s’.
In particular, take s’ := 5 = Azy.... Axg.s, then t{y<35} h-normalizes to some
h and note that t{y«5s} —7% C(s). Since 3 is confluent and h is stabilizing,
there exists a h-normal form A such that h —% h' and C(s) =7 h'. By the
h-normalization theorem (Theorem 2), C(s) is h-normalizing. O

Mazimality of 3%,. Barendregt shows that ~5, is a mazimal consistent theory,
that is, that equating more terms would yield an inconsistent theory [12, Thm
16.2.6]. Later on, Barendregt and Manzonetto refine the result for 38, [ |, by
using the same technique, which relies on Béhm theorem. We present here a
new proof of maximality based only on light genericity and not needing B6hm
theorem, which is a heavier property, thus obtaining an arguably simpler proof.
It is inspired by the proof of maximality for CbV by Egidi et al. [17].

Theorem 4. 1. Let T be an inequational h-theory that is h-ground but not
h-adequate. Then T is inconsistent.
2. Maximality of ZB,: 28, is a mazimal consistent inequational h-theory.

Proof. 1. Since T is not h-adequate, there are ¢ h-normalizing and u h-diverging
such that ¢t <7 wu. Since t is h-normalizing, by solvability there is a head
context H sending it to the identity I. By the definition of inequational
theory, we have I =7 H(t) <7 H{u). Now, let s be a term. Then s =7 Is
because =gC T by definition of inequational theory. By the context closure
of theories and I <7 H(u), we obtain Is <7 H({(u)s. Since u is h-diverging,
thus unsolvable, H(u) is h-diverging. Since 7 is h-ground and both H(u)
and H(u)s are h-diverging, H(u)s =7 H(u). Summing up, s =7 Is <y
H({u)s =7 H{u) and, by the fact that T is h-ground, H(u) <7 s. Hence,
s =7 H{u) for every term s that is, 7 is inconsistent.

2. Any theory T extending 3B, is such that ¢ <7 u with ¢ 22, u, i.e. such that
C(t) is h-normalizing and C(u) is h-diverging for some C. By compatibility of
T, C(t) <7 C(u). Hence T is not h-adequate. Since ‘<CO 1s h-ground by head
light genericity (Theorem 3), every theory 7 extending <3, is also h-ground.
Then 7 is h-ground and not h-adequate. By Point 1, T is inconsistent. O

Mazimality and Head is Openable. From maximality of =B, it elegantly follows
that 3B, and 3¢ coincide. To our knowledge, there is no such result in the
literature but it is folklore for CbN. Note that, despite the apparently trivial
proof that we provide below, the equivalence of <co and 38 is not a trivial fact,
as the crucial inclusion 3% C =8, cannot be proved directly from the definitions
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Fig. 2. Plotkin’s CbV and Weak Evaluation py.

of the pre-orders—in our proof, the non-trivial aspect is encapsulated in the
use of maximality. Paolini proves that closed theories can be uniquely extended
to open terms [35], but this does not imply that the extension of the closed
contextual pre-order coincides with the open contextual pre-order.

Proposition 7 (Head evaluation is openable). Open and closed head con-
textual pre-orders coincide: 3o =S8.

~

Proof. Firstly, 3%, C 3 follows from the definitions. Secondly, by maximality

of 3B, (Theorem 4) and since 38 is consistent (because I 2% (2), we have that
the two pre-orders must coincide, i.e. ZB, = Z8. O

5 Weak Call-by-Value and the VSC

We now turn our attention to the CbV case, for which the literature has already
extensively discussed two issues that arise when adapting the CbN case to
Plotkin’s CbV A-calculus, recalled after the definition of the calculus.

Plotkin’s CbV A-calculus. Plotkin’s CbV A-calculus is defined in Fig. 2, following
the modern presentation by Dal Lago and Martini [16] rather than Plotkin’s
original one [38]. We also define its weak evaluation strategy —, .

Issue 1: CbV unsolvable terms are not collapsible. As pointed out by Accattoli and
Guerrieri [6], the CbV variant of unsolvable terms does not provide a good notion
of meaningless terms, as their identification induces an inconsistent equational
theory. The solution amounts to switching to a different notion of meaningless
terms, the inscrutable ones (which coincide with the non-potentially valuable
terms of Paolini and Ronchi della Rocca [36,34,39]), which are collapsible [6].

Definition 5 (Testing contexts). Testing contexts are defined by the following
grammar T == (-) | Qx.T)t | Tt.

Definition 6 ((In)Scrutable terms). A term t is scrutable if there is a testing
contezt T' and a value v such that T(t) —% v, and inscrutable otherwise.
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Fig. 3. Weak Value Substitution Calculus.

Issue 2: CbV inscrutable terms have no operational characterization in Plotkin’s
CbV. The term §2; :== (Az.0)(yy)d is inscrutable but — g, -normal. Therefore, in
Plotkin’s CbV there cannot be any operational characterization of inscrutable
terms via a notion of divergence, as instead happens in CbN (Thm. 1). This
fact is a real drawback, and boils down to the well-known inability of Plotkin’s
calculus to deal with open terms, which is also the reason why—as we have
pointed out in Sect. 2—the closed and open contextual notions induced by weak
evaluation in Plotkin’s calculus do not coincide.

The solution amounts to switching to a refined CbV A-calculus, extending
Plotkin’s as to better deal with open terms while retaining the same notion of
contextual equivalence, as we now explain.

The VSC. Accattoli and Paolini’s value substitution calculus (VSC) [8], defined
in Figure 3, is exactly one such framework.

Intuitively, the VSC is a CbV A-calculus extended with let-expressions, as is
common for CbV A-calculi such as Moggi’s one [31,32]. We do however replace a
let-expression let z = w in t with a more compact explicit substitution (ES for short)
notation ¢[x«<u], which binds  in ¢ and that has precedence over abstraction and
application (that is, Az.t[y<u| stands for Az.(t[y<u]) and ts[y<u] for t(s[y<ul)).
Moreover, our let/ES does not fix an order of evaluation between ¢ and u, in
contrast to many papers in the literature (e.g. Sabry and Wadler [40] or Levy et
al. [30]) where u is evaluated first.

The reduction rules of VSC are slightly unusual as they use contexts both
to allow one to reduce redexes located in sub-terms, which is standard, and to
define the redexes themselves, which is less standard—these kind of rules is called
at a distance. The rationale is that the rewriting rules are designed to mimic cut-
elimination on proof nets, via Girard’s CbV translation (A = B)” =!(AY — B")
of intuitionistic logic into linear logic [23], see Accattoli [2].
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Examples of steps: (Az.y)[y<tlu —m ylz—u][y<t] and (\z.xz)[z<y[y<t]] —e
(Az.yy)[y<t]. One with on-the-fly a-renaming is (Az.y)[y<tly —m z[x<y][z<t].

A key point is that S-redexes are decomposed via ESs, indeed — g, is simulated
as (Az.t)v —m tlrev] e t{z<v}. Note that the by-value restriction is on ES-
redexes, not on B-redexes, because only values can be substituted. The VSC is
a conservative refinement for both closed and open terms: its weak evaluation
on closed terms terminates if and only if Plotkin’s —p, does, hence the closed
contextual pre-orders coincide (Prop. 8.3 below). On open terms, the VSC can
simulate every —, step, but not vice-versa (which is why we adopt the VSC).

The Characterization of Inscrutable Terms. In the VSC, (in)scrutable terms
admit an operational characterization, due to Accattoli and Paolini [3].

Theorem 5 (Operational characterization of (in)scrutability, [8]). t is
scrutable (resp. inscrutable) if and only if t is w-normalizing (resp. w-diverging).

Apart from the proof of Thm. 8 below and Prop. 15 in Section 10, we shall
always use the operational characterization and never refer to scrutability itself.

Weak Contextual Pre-Orders are Inequational. The VSC is confluent and its
weak strategy w is diamond [3]. Moreover, w is stabilizing and the normalization
theorem below holds. These facts and Prop. 1 give that the contextual pre-orders
are inequational w-theories. Moreover, the closed pre-order coincides with the
one on Plotkin’s calculus?.

*

*o t and t' is w-normal then

Proposition 8. 1. Weak normalization, [0]: if t —
t is w-normalizing.
2. Inequational theories: 3%, and 3% are inequational w-theories.

3. VSC and Plotkin’s contextual pre-orders coincide, [6]: on A-terms, j"é:jg".

6 Light Genericity for Weak Call-by-Value

Here, we prove a new result: light genericity for weak evaluation in the VSC.

Takahashi’s Technique Does Not Really Scale Up. Proving CbV light genericity
via Takahashi’s technique is not as elegant as for CbN. We did develop such
a proof, but it is considerably more involved than for CbN. There are various
reasons. Firstly, the substitutivity property of Prop. 5 does not hold in CbV.
Substitutivity for values does hold, but one really needs general substitutivity.
Secondly, Takahashi’s trick lifting genericity as substitutions to genericity as
contexts also breaks, because it is based on adding abstractions, which do not
change unsolvability but do affect inscrutability. Thirdly, head reduction reduces
only on the head, while weak reduction reduces in all sub-terms out of abstractions,
which raises additional difficulties. Therefore, we follow a different approach.

4 The closed CbV contextual pre-order in Carraro and Guerrieri’s shuffling calculus
[15], studied by Kerinec et al. in [27], also coincides with 3¢=3%". Moreover, the
open pre-order of the shuffling calculus coincides with the one of the VSC. These
facts follow easily from results relating the three calculi in [24,4,6].
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Fig. 4. Call-by-Value Multi Type System for VSC.

Light Genericity via Multi Types. We provide a proof of light genericity relying on
Accattoli and Guerrieri’s characterization of w-diverging terms [6] via Ehrhard’s
CbV multi types [18] (multi types are also known as non-idempotent intersection
types). The idea behind the proof is very simple: we show that multi types induce
a pre-order Sty pe contained in the open contextual pre-order, that is, Ziype C 380,
and that w-diverging terms are minimum elements for Zype, which implies that
they are minimums for 3%,. The proof itself is very simple as well. What is less
simple is the characterization of w-diverging terms via multi types, which however
we use as a black box from the literature. The same technique can be used also
in CbN, since h-diverging terms can also be characterized via multi types.

Our argument via multi types is similar to Ghilezan’s one based on intersection
types for CbN [22], even if the details are quite different: she proves a different
statement, namely heavy genericity in its as-application variant (see the footnote
at page 5), and she uses intersection types (which are idempotent, or non-linear).
We use multi types because the result from the literature that we exploit is based
on them, but the proof technique could also be based on intersection types (once
the result from the literature is adapted, which is possible).

CbV Multi Types. We introduce the bare minimum about CbV multi types, since
here they are used only as a tool, not as an object of study. For more, see [5,0].

The definition of the multi type system for the VSC is in Figure 4. Multi types
M are defined by mutual induction with linear types L. Multi types are finite
multi-sets [Lq, ..., L,], which intuitively denote the intersection Li N...N Ly,
where the intersection N is a commutative, associative and non-idempotent
(AN A # A) operator, the neutral element of which is [ ], the empty multi set.
Note that there is no ground type, its role is played by the empty multi type [ ].

Typing judgments have shape I' - ¢:T where T is a linear or a multi type
and I is a typing context, that is, an assignment of multi types to a finite set of
variables (I" = x1: My, ..., x,:M,). A typing derivation 7 > I' - ¢t: M is a tree
built from the rules in Figure 4 which ends with the typing judgment I" F ¢: M.

Typing Rules. Linear types only type values, via the rules ax and \. To give a
multi type to value v, one has to use the many rule, turning an indexed family of
linear types for v into a multi type. Note that any value can be typed with the
empty multi type [ |. The symbol W is the disjoint union operator on multi sets
(corresponding to the intersection operator when intersections are multi-sets).
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Characterization of Termination. The key property of CbV multi types is that
typability characterizes termination with respect to weak evaluation —; therefore
w-diverging terms are simply the untypable ones. The characterization is proved
via subject reduction and expansion.

Theorem 6 (Characterization of termination, [6]).

1. Subject reduction and expansion: let t —>ysc u. Then I't: M iff I' = u: M.
2. t is —y-normalizing if and only if there exists I' and M such that I' - 1t: M.

Type Pre-order. The type pre-order is defined as follows.

Definition 7 (Type pre-order). The type pre-ordert Ziype t' holds if ' = t: M
implies ' =t : M for all I’ and M.

Point 2 of Thm. 6 ensures that Z4ype is both w-ground—which is the key
point of the proof technique—and w-adequate. We also show that Z;ype is an
inequational w-theory. Point 1 of Thm. 6 implies that Zype contains w-conversion.
Compatibility holds because Zype is defined via a compositional type system.

Proposition 9. The type pre-order Ziype s a w-ground, w-adequate, and con-
sistent inequational w-theory.

Adequacy and compatibility of Z¢ype imply that Siype C38o, hence minimum
elements of Sy, are minimum for 3p,.

Theorem 7. Light genericity for w: g o is w-ground.

7 CbV Maximality

Here, we use light genericity to prove maximality of 3%, and the fact that w is
openable, adapting the proofs for the head case.

Mazimality of Zp». The following result adapts to our setting a result of Accattoli
and Guerrieri [6, Thm 6.5], itself adapting a result by Egidi et al. [17, Prop 35].

Theorem 8. 1. Any w-ground inequational theory T that is not w-adequate is
inconsistent.
2. Maximality of Z3n: Zpo 95 a mazimal consistent inequational theory.

Proof. 1. Since T is not w-adequate, there are ¢ w-normalizing and u w-diverging
such that ¢ <7 u. Since t is w-normalizing, ¢ is scrutable, that is, there is a
testing context T sending it to a value v. By the definition of inequational w-
theory, we have v =7 T(t) <7 T(u). Now, let s be a term and y ¢ fv(s). Then
s =71 (M\y.s)v because =y C=7 by definition of inequational theory. By the
compatibility of theories and v <7 T'(u), we obtain (Ay.s)v <7 (Ay.s)T(u).
Since u is w-diverging, thus inscrutable, T'(u) is also w-diverging. Since T is
w-ground and both T'(u) and (Ay.s)T (u) are w-diverging, (Ay.s)T(u) =7 T(u).
Summing up, s =7 (Ay.s)v <7 (Ay.s)T{(u) <7 T(u) and, since T is w-ground,
T(u) <7 s. Hence, s =7 T'(u) for every term s, that is, 7 is inconsistent.

Proofp. 26

Proofp. 26
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2. From Point 1 and CbV light genericity (Thm. 7.3), as in the head case. O

The proof of Thm. 8.1 is similar to the one of the CbN case, but it is not the
same argument: the CbN one relies on solvability, reduction to the identity, and
head context closure; the CbV one relies on scrutability, reduction to a value, a
different context closure, and on the fact that diverging arguments cannot be
erased in CbV. Therefore, our proofs of maximality cannot be done abstractly.

The fact that weak evaluation is openable then follows as in the head case.

Proposition 10 (Weak evaluation is openable in the VSC). Open and
closed weak contextual pre-orders coincide: Jpo =38

8 Co-Genericity
Here, we study a new notion dual to light genericity, which we dub co-genericity.

s-Super Terms. In the A-calculus (both in CbN and CbV) there are terms
reducing to an infinite sequence of abstractions using strong evaluation. For
instance, let dy = Az.Ay.xx, then (2 = §,0, is one such term. Indeed its weak
evaluation gives {2y — g, Ay.f2\. Now, the new copy of (2, shall itself (strongly)
reduce to Ay.f2y, and so on, producing Ay.Ay.\y. . ... Such a behavior, when seen
with respect to weak evaluation, is a form of hereditary, or super normalization.

Note that the example can be generalized by using 0y = Az.Ay;. ... A\yg.xx
instead of Jy, obtaining a family of terms {2 := dx0xx all producing infinitely
many head abstractions and with no (finite) reduct in common. As for meaningless
terms, it is natural to wonder whether these super meaningful terms can all
be consistently collapsed. In the literature, super terms appear in weak CbN

as maximum (T) elements in Lévy-Longo trees [29]—but we are not aware of
a proof that these T-enriched Lévy-Longo trees induce a consistent equational
theory—and in the hierarchy of unsolvable terms [33,1] as unsolvable terms of

order co. In CbV, we believe that super terms have not been studied.

Here we connect the collapsibility of super terms to a sort of dual variant
of light genericity. We start by setting up the concept of super normalization
abstractly. It is specific to weak strategies and makes sense also for weak CbN.

Definition 8 (s-super terms). Let s be a weak strategy. A term t is s-super
(normalizing) if, co-inductively, t —% Ax.t' and t' is s-super.

Co-genericity is the property stating that s-super terms are maximum elements
for 2%, that shall be captured by the following notion of being s-roof. As
expected, a term ¢ is maximum for a pre-order < if for all u € £, u < t.

Definition 9. Let s be a weak strategy. An inequational s-theory <5 is called:

1. s-roof: if s-super terms are mazimum terms for <%-;
2. Super s-adequate: if t <5 u and t is s-super entails u is s-super.
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Definition 10 (Co-genericity). Let s be a weak strategy. Co-s-genericity is
the following property: if u is s-super and C is a context such that C(t) is s-
normalizing for some t, then C{u) is s- normalizmg Concisely: s-super terms are
mazimum for 3&n. Very concisely: 38 is s-roof.

Note that there cannot be a heavy co-genericity property mentioning strong
normal forms because s-super terms are diverging for strong s-evaluation, by def-
inition. Co-genericity is thus enabled by the switch from heavy to light genericity.

As for light genericity, co-genericity is enough to prove that s-super terms
can be consistently equated (as soon as s is consistent).

Proposition 11 (Co- collapsibility). Let s be a consistent weak strategy sat-
isfying co-genericity. Then ~%, equates all s-super terms and it is consistent.

A weak strategy s is super consistent if there exists a s-super term.

Proposition 12 (Characterization of maximum terms for 3%,). Let
s be a super consistent weak strategy Satzsfymg co-genericity. If KCO s super
s-adequate then the mazimum terms for 3%, are exactly the s-super terms.

Proof. By co-genericity, s-super terms are maximal for 3%,. For the other
direction, let t be a s-super term which exists by super consistency of s, and let
u be maximal for Z3,. Then t 3%, u. By super s-adequacy, u is s-super. a

The two following sections present independent proofs of co-genericity for
weak evaluation in the VSC. We do not use multi types for good reasons: w-super
terms are not maximum for JSiype, see Prop. 18 in the Appendix.

9 CbV Co-Genericity via Takahashi’s Technique

In this section, we prove co-genericity for weak evaluation in the VSC adapting
Takahashi’s technique for genericity.

Co-Genericity via Normal Forms. The proof of co-genericity for CbV is based
on a key property of w-super terms with respect to w-normal forms, akin to
the normal genericity lemma of the CbN case. Then co-genericity follows via
Takahashi’s trick, which is not problematic here, since w-super terms are stable
by adding head abstractions. Another difficulty arises in CbV, however, which is
discussed in the Appendix before the proof of the following lemma.

Lemma 1 (Key property of w-super terms). Let s be a w-super term. If n
is a w-normal form then n{x<s} is w-normalizing.

As CbV evaluation only validate value-substitutivity (substitutivity restricted
to values: if t —, u then for all v t{z<v} —, u{z<wv}), the statement of co-
genericity as substitution is split into two points.

Lemma 2 (Co-genericity). Let u be any term, s be a w-super term, v be any
value, and v’ be a w-super value.
1. Co-genericity as v-substitution: if t{x<v} is w-normalizing then so is t{x<v'}.
2. Co-genericity as substitution: if t{z<u} is w-normalizing then so is t{xz<s}.
3. Co-genericity as context: if C'(u) is w-normalizing then so is C{s).

Proofp. 26

Proofp. 27

Proofp. 30
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Super w-Adequacy for 3¢ ». Co-genericity states that w-super terms are maximal
for =g, For the full characterization (Prop. 12), we need super adequacy and
super consistency. Super consistency is easily verified as (2 exists.

Proposition 13 (Super w-Adequacy).

1. Super adequacy: Z5, is super w-adequate.
2. Characterization of maximum terms for 3¢, : mazimum terms for Jgo are
exactly w-super terms.

10 CbV (Co-)Genericity via Applicative Similarity

In this section, we present alternative proofs of genericity and co-genericity
for weak evaluation in the VSC. We use a well-known tool developed to study
Plotkin’s CbV contextual equivalence ~%°, namely the CbV variant [25,37] of
Abramsky’s applicative (bi)similarity [1].

The following definition differs slightly from the literature on two points.
Firstly, we use a well known equivalent definition that does not ask that the
results of evaluation are similar (which is a fact needed for the definition of
applicative simulations, but not for applicative similarity). Secondly, we replace
Plotkin’s CbV by the VSC, which are equivalent for closed terms.

Definition 11 (Applicative similarity [1]). Applicative similarity t X% ¢ u
is the relation on closed terms defined by: if tvy...v, is w-normalizing then
UL ...V, 18 Ww-normalizing, for allm € N and vy, ..., v, closed values. Applicative
similarity is extended to open terms via closing substitutions: t 3% ¢ u if to S¥g
uo for all substitutions of values o closing t and u.

From the following lemma, it follows easily that w-diverging and w-super terms
are minimum and maximum for 3% .

Lemma 3. Ift is w-diverging (resp. w-super) then so are t{z<v} and tv.

Proposition 14. 1. Minimums: w-diverging terms are minimum for 3%.
2. Maximums: w-super terms are mazimum for 3% .

Proof. 1. Let t be a w-diverging term and u any term. Then by Lemma 3, for
any closing substitution ¢ of ¢t and w and for any n and any vy, ..., v, we still
have that to v, .., v, is w-diverging. Hence t 3% ¢ u for any term w, that is,
t is a minimum term for 3% .

2. Let t be a w-super term and u any term. For any closing substitution o of ¢

and v and for any n and values vy, ..., v,, either uoc vy, ..., v, is w-diverging

or uo vy, ..., 0, is w-normalizing. In both cases, by Lemma 3, we still have
. . W

that tovi,..., v, is w-super, hence w-normalizing. Thus, u 3% ¢ t. a

Proving (co- )genericity amounts to show that the results of the previous
proposition transfer to % .. This can be done by showing =% (CZ8, via
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1. The soundness of applicative similarity <% ¢ for Plotkin’s pre-order 35, that
is, that 3% (C3M (completeness holds as well, but it is not useful here);

2. The equivalence ‘<p" =3¢, given by Prop. 8.3;

3. The openability of w-evaluation, that is, 3x==30.

Soundness of 3% is a non-trivial result in the literature, established by Howe’s
method [25,37], which we here use as a black box. About openability, we proved
it in Sect. 7 but that proof uses light genericity (and maximality), which is our
goal here, so we have to re-prove openability without using light genericity.

w is Openable without Light Genericity. We know that 3%,C38, thus we only
have to show the other inclusion, which follows from w-adequacy of 3%

Proposition 15. The inequational theory 3% is w-adequate, hence w is openable.

Proof. The proof is in the Appendix, here we only give the idea for w-adequacy.

Let t ¢ u with ¢ w-normalizing. Then, we use the operational characterization of
scrutability (Thm. 5) to build a closing context C' such that C(t) is w-normalizing
and such that if u were w-diverging, so would be C(u). O

(Co-)genericity via Applicative Similarity. The three points above are established,
and so we obtain new proofs of light genericity and co-genericity.

Proposition 16 (CbV light (co-)genericity). 3%, is w-ground and w-roof.

11 Conclusions

We develop in this paper a theory of light genericity, which is as powerful as heavy
genericity for proving the collapsibility of meaningless terms, it is connected to
contextual pre-orders, and dualizable as co-genericity.

We also provide light proofs of the mazimality of open contextual pre-orders,
which in turn provide an elegant proof of the fact that the closed and open
contextual pre-orders coincide. Lastly, we show that CbV applicative similarity
can be used for alternative simple proofs of light (co-)genericity. These simple
proofs via applicative similarity are easily adaptable to the (weak) CbN case.

Summing up, our work paints Barendregt’s genericity with a fresh, modern
hue, connecting it to program equivalences and maximality, following an abstract
approach and providing neat proofs.

Acknowledgements. To Giulio Manzonetto and Gabriele Vanoni for feedback on
a first draft, and to Victor Arrial for helpful discussions about genericity.

Proofp. 32
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A Removed Proofs for Section 2 (Preliminaries)

Proposition 1. Let £ be a confluent language and s be a normalizing and
stabilizing strategy. Then 3%o and 3§ (resp. ~%» and ~§) are inequational
(resp. equational) s-theories. Moreover, if s is consistent then Z34, 3%, >80,
and ~¢ are consistent.

Proof. Compatibility of 3%, and 3% follows from their definitions via contexts:
if t 2o u (resp. t 3% u) then for any context C' we show that C(t) S8, C(u)
(resp. C(t) =& C(u)). Let C’ be a context (resp. a context such that C'(C(t))
and C'(C(u)) are closed terms), then if C'(C(t)) is s-normalizing so is C’'{C(u))
by t 3% u (resp. t 3% u). Hence C(t) 23 C(u).

For the inclusion of s-conversion, let t —5 u. We have to prove that C(t) ~%,
C(u) and C(t) ~% C(u). We show C(t) ~%, C(u); the same reasoning works for
~z.

- C(t) 320 Cu): let C(t) =% s with s s-normal. Since C(t) —, C(u), by
confluence there is p such that s =% p and C(u) =7 p. Since s is stabilizing

p is s-normal. Since s is normalizing, C(u) is s-normalizing.

— C(u) 280 C(t): let C{u) —7% s with s s-normal. Since C(t) =, C(u), we
have that C(t) —7 s. Since s is normalizing, C(t) is s-normalizing.

Consistency of 38, and $& follows from the two witnesses of the consistency of
s (which are closed) and the empty context.

Proofs for the symmetric variants (~%. and ~%) derive by symmetry. Baren-
dregt and Manzonetto prove that the equivalence relation induced by an inequa-
tional theory is an equational theory (the proof is for CbN but the argument is
independent) [14]. If a pre-order is consistent, i.e. does not relate all terms, then
the induced equivalence cannot relate everything, hence is also consistent. 0O

B Removed Proofs from Section 4 (The Head
Call-by-Name Case)

Lemma 4 (Head normalization and sub-terms).

1. If Ax.t is h-normalizing then so is t.
2. If t{a<u} is h-normalizing then so is t.
8. If tu is h-normalizing then so is t.

Proof. 1. Immediate.
2. By contraposition. If ¢ is h-diverging then t{z«wu} is h-diverging by stability
of —y, under substitution (Prop. 5).
3. By induction on k, for tu —F h where h is h-normal.
— k =0, the result is immediate by the structure of h-normal forms.
— k>0, two cases:
e ¢ is an abstraction, that is, ¢ = Az.t’. Then tu —y, ¢ {x<u} which
is still head normalizing. By Point 2, we obtain that ¢’ is head
normalizing, hence so is \x.t’ = t.

Link to the original
position of proposition 1,
p. 7
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e t is not an abstraction. Then t —y t' and t'u —>1’f_1 h. By i.h., t' is
h-normalizing, hence so is ¢. ad

_ Link to the original ~ Proposition 6 (Normal genericity). Let u be h-diverging and s be any term.
position of proposition 6,

9
P 1. If r is a rigid term and r{z<u} is h-normalizing then r{x<s} is a rigid term.

2. If h is h-normal and h{z+<u} is h-normalizing then h{x<s} is h-normal.

Proof. 1. By induction on r. Cases of r:
— Variable, that is, r = y. Then y # x otherwise r{z+u} = u would be
h-diverging. Then r{z+s} = y{x<s} = y is h-normalizing and rigid.
— Application, that is, r = r't. Then r{z<u} = r'{z<u}t{r<u}. By Point
3 of Lemma 4, ’{z<u} is h-normalizing. By i.h., r'{z<s} is a rigid term
for every term s. Then r{z«<s} = r’{z<s}t{z+s} is a rigid term.
2. By induction on h. Cases of h:
— Rigid, that is, h = r. It follows from the previous point.
— Abstraction, that is, h = Ay.h’. By Point 1 of Lemma 4, h/{z<t} is
h-normalizing. By i.h., h'{x<s} is a h-normal form for every term s.
Then h{z<s} = Ay.h'{z<s} is a h-normal form. O

C Removed Proofs from Section 5 (Weak Call-by-Value
and the VSC)

We present here the omitted grammar of normal forms from the Value Substitution
Calculus, which is helpful to prove results by induction on normal forms.

NORMAL FORMS

CBV HEAD TERMS i,i" = |in|ifzei] where i' # L;(z)
NORMAL SUB. CTXS L; = ()| Li[z<i] where i’ # L;(x)
WEAK NORMAL FORMS n,n/ 1= v |i|nfz<i] where i # L;(x)

Proposition 17. For any term t, t is a —y-normal form iff t = n where n
belongs to the grammar described above.

Proof. (<): By induction on the grammar, we show that n is a normal form.

— n = v, trivial.
— n = n/[y«<i’] where i # L;(x). We have that ¢’ # L;{v) and there are no
redex inside n’ or ¢’ by induction, hence n is normal.
— n =1, three subcases:
e | = x, trivial.
e i =1i'n’. We have that ¢’ # L;(Az.u) and there are no redex inside n’ or
7' by induction, hence 7 is normal.
o j =i"[y<i'] where ¢’ # L;{x). We have that ¢’ # L;(v) and there are no
redex inside 7" or 7’ by induction, hence i is normal.
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(=): By induction on terms ¢, we show that if ¢ is normal then ¢t = n for some
n in the grammar.

—t=ux,thent=1i=ux.
t = Azr.u then t =v = n.
— t = us, then by ih w = ny and s = ny. Furthermore, u # L;{Az.u’) hence

u = ’il.
— t = uly<s], then by ih u = ny and s = ny. Furthermore, s # L;(v) hence
u = 47 such that iy # L;(x). O

D Removed Proofs from Section 6 (Light Genericity for
Weak Call-by-Value)

Here we show that the type pre-order is compatible. The proof is quite trivial,
as the type pre-order is somehow compositional. We first prove a lemma about
compositionality of syntax, then compatibility follows by an induction on contexts.

Lemma 5. Type pre-order verifies:

— (applicative) t Siype t' & U Siype U = tu Seype '

— (abstractive) t Ziype U = ATt Siype AT.U.
— (explicitly substitutive) ¢ Siype t' & u Zpype v = tzeu] Siype t'[ru].

Proof. Th (applicative), (explicitly substitutive) and (abstractive) properties can
be proved by reasoning directly on type derivations since they are syntax driven.
We detail the (ES) case to sketch the idea:

Let 7 be a type derivation for t[z<u], m: I' F t[z<u]: M.

We show that there exists a type derivation «’ such that 7’ : I' - /[z<u/]: M.

Since the term ¢[z«<u]| is not a value, there is only one possibility for the last
rule of the derivation: (es).

I,z2NFt:M IskFu:N
I'btlzeu]: M

€s

where F:F1 L‘!‘JFQ.

Since t is type equivalent to ¢’ and u is type equivalent to u’, there exists
two derivations I ' : N and Iy,z: N = t': M. Hence we can construct the
appropriate derivation 7’ for t'[z<u/].

I,z2NFt':M I,kFu':N
es
I'+tzeu]: M

Hence t[z<u] Ziype t'[z<u].
O

Proposition 9. The type pre-order Ziype is a w-ground, w-adequate, and con-
sistent inequational w-theory.

Link to the original
position of proposition 9,
p- 15
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position of theorem 7, p.
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Link to the original
position of proposition 11,
p. 17
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Proof. 1. Pre-order: trivial.
2. The type pre-order is compatible: by induction on C.
-C= < > jtype t'.
— C Ziype uC’, then by induction C'(t) Ziype C'(t') and obviously u Ziype
u, hence uC’(t ( > Stype uC’(t') by the (applicative) property of Lemma 5.
— C = C'u, C Ziype C'lz—u] and C Zyype ulz<C’] are similar to the
previous case.
— C = Xz.C’ then by induction C’(t) Ziype C'(t'), hence Ax.C'(t) Ziype
Az.C'(t') by the (abstractive) property of Lemma 5.

Conversion: Point 1 of Theorem 6 ensures that it includes s-conversion.

4. Groundness: Point 2 of Theorem 6 implies that diverging terms are exactly
untypable terms and we have that by definition untypable terms are minimal
for Ztype-

5. Adequacy: Point 2 of Theorem 6 implies that normalizing terms are exactly
typable terms and we have that by definition if ¢ Z;yp. v and ¢ is typable
then u is typable.

6. Consistency: {2 is not typable but I is, hence I Ziype £2. O

@

Theorem 7. Light genericity for w: ¢ is w-ground.

Proof. The fact that Ziype is included in Z3, follows easily by compatlblhty
and adequacy. As Ziype is w-ground and Ziype C 38 H, we have that Zj, is also
w-ground, i.e. light genericity for w. a

E Removed Proofs from Section 8 (Co-Genericity)

Proposition 11 (Co-collapsibility). Let s be a consistent weak strateqy sat-
isfying co-genericity. Then ~g. equates all s-super terms and it is consistent.

Proof. By co-genericity, super s-normalizing terms are maximal for 3%,. Since
then any two such terms are 3% ,-bigger of each other, super s- normahzlng terms
are ~¢ -equivalent. Since s is consistent, ~3, is consistent. O

F Removed Proofs from Section 9 (Call-by-Value
Co-Genericity via Takahashi’s Technique)

The following statement shows that one cannot prove co-genericity for call-by-
value using the type pre-order.

Proposition 18. The type pre-order Ziype s not w-roof.

Proof. We consider {21, which is a w-super term. £21y — Az.£21), hence £21\ ~ype
)\Z.Ql)\.

We now prove that zy Zeype A2.821.

Indeed, z:[[] — []],y:[ ] F zy:[], gives us a typing for zy.
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However, for any value if I' - v:[ ] then I" = (). In particular for v = Az.02y,

we have that such a term cannot be typed by (z:[[] — []],y:[],[])- Hence
xY Liype A2-0210 Ziype 1.
Hence w-super terms are not maximal for Z¢ype. O

Proposition 19 (Weak normalization and sub-terms).

1. If t{x<v} is w-normalizing then so is t.
2. If tlx<u] is w-normalizing then so are t and u.
8. If tu is w-normalizing then so are t and u.

Proof. Point 1 is shown by value-substitutivity of the reduction —,, which is the
fact that if ¢ —, u then for any value v t{x<v} —y u{x<v}. Point 2 and 3 are
shown by contraposition using weak evaluation contexts.

Lemma 6.

1. If t is w-super then t{x<v} is w-super for every x and v.
2. t is w-super iff Ax.t is w-super.

Proof. 1. Let t a w-super term, i.e. t =} Az.u and u is w-super. By stability of
the reduction —, under any value substitution, t{z<v} —* Az.u{z<v}. By
coinduction, we have that t{z«<wv} is w-super.

2. Trivial using the coinductive definition. a

Key Property of w-Super Terms. The statement of Lemma 1 is simplified in the
main text, we provide here in the Appendix the full statement in Lemma 7 below.
We briefly explain the difficulty in CbV.

In CbV, the lemma about normal forms is less easy than in CbN: in CbN, the
substitution in the statement is simply propagated through the term structure,
while in CbV it can enter an ES and generate a new substitution, different from
the initial one. We handle such a complication via a measure, the open size of
terms defined next, providing a more flexible induction principle.

The open size |t|, of a term t is its number of applications and explicit
substitutions outside of abstractions, i.e. it is defined inductively by:

|z|o =0 |Az.t], =0 [tulo = [to + ulo + 1 [treu]lo = [tlo + |ulo + 1

To reason on normal forms, we also use a grammar which describes exactly
weak normal forms for the VSC, see Proposition 17.

Lemma 7 (Key property of w-super terms). Let s be a w-super term.

1. CbV Head Term: if i is a CbV head term, then either:
(a) Reducing to a CbV head term: i{z<s} —% i1 such that |ir], < |ilo.
Moreover, if iy = L;(z) then i= Li{y). Or,
(b) Reducing to an abstraction: i{x<s} =% L;(\z.t1) where \z.ty is w-super
and such that |L;{Az.t1)|o < |i]o.
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2. Weak normal form: if n is a w-normal form then n{x<s} is w-normalizing to
ny such that nq|e < |ne-

Proof. We prove all the points simultaneously, by induction on the open size of
normal forms. Note that (grammar induced) sub-normal forms of normal forms
have a smaller open size.

1. Head terms: By case analysis on Ii.
— Variable, i.e. i = y. Two sub-cases:

e y # x hence j{z+s} = y which satisfies case (a).

e y = z hence j{z<s} = s. Case (b) is satisfied as s is w-super and
[slo =0 = |z,

— Application, i.e. i = i'n’. We apply the i.h. to I, two sub-cases:

o i"{x<s} =% i} such that |i}|, <|i’|,. We apply Point 2 to n’, hence
n'{x<s} =¥ n} such that |n}|, < n'. Hence, i{z<s} —* i\n} with
li1nilo < lifo-

o i"{xes} =¥ Liy(Az.ty) with Ax.ty w-super and |L;(Az.t1)]o < []o.
We apply Point 2 to n’, two sub-cases:

x n'{xes} =% iy (and ia # L;{y)) such that [iz|, < |n'|,. Let
to such that t; =3 Ay'.to. Hence this sub-case is concluded as
i{rxes} =% Lin(Az.t1)ia =y Lin (MY .t2)[z<i2]) with to w-super
(by Lemma 6) and |L;1 (MY .t2)[z<i2])]o < [0/]o + [']o + 1 = [i]o-

x n'{zest =% Lio(vs) such that |Lio(va)|, < |n|,. Let to such that
t1 = Ay .to. Thus, we have the following evaluation sequence:

{zes} =7 L (A t2) [z Lia(v2)]) —4
Lir(Li2((A\y' t2){z<v2}))
Hence this sub-case is concluded as t; is w-super by Lemma 6
and |Liy(Lis (' )Lz 0o < [ ]o + 1[0+ 1 = fil,
— Eaxplicit Substitution, i.e. i = '[y«i"]. By i.h., i{z+<s} is w-normalizing,
two sub-cases:

o i"{zes} =k i such that |if|, < |i”|,, moreover if if = L;; (y) then
i” = L},(z). Note that since I'[y«<i"] is a normal form, it is necessary
that if # Li1(y). By 4.h. on I', we get that i’{z<s} is w-normalizing,
two sub-sub cases:

* i"{x<s} =¥ iy such that [is|, < |i’],, moreover if i = L;(y)
then i’ = L}, (z). ia[y<i{] is the normal form of i{x<s} with
lia[y<i{]lo < |ilo, which satisfies case (a) and concludes this sub-
sub case.

x 1"{zes} =% Lio(Aw.p1) such that Aw.p; is w-super and | Lo (Aw.p1)|, <
[i"l,. Then Lio(Aw.p;)[y<i{] is the normal form of i{z«<s} with
| Lio{(Aw.p1)[y<i{]lo < |ilo, which satisfies case (b) and concludes
this sub-sub case.

o i"{zes} =¥ L;1(Az.t1) such that Az.ty is w-super such that |L;; (Az.t1)], <
|i”|o~
We apply the i.h. to i’, hence iI'{z+<s} is w-normalizing, two sub-sub-
cases:
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* I'{zes} —% ip such that |iz|, < |I'|o, moreover if iy = La(x’)

then i = L}, (z").

We can apply the induction hypothesis on iz as |iz], < [i'|o < |ilo-

Two sub-sub-cases:

< ig{y<Az.t1} =% i3 such that |is|, < liz]o, moreover if i3 =
L;{y") then iy = L}(z'). Hence L;;(i3) is the normal form
of i{z<s} such that |L;1{is)e = |Lit{(Az.t1)|o + lizlo < lilo
and, moreover, if L;;(i3) = L;3(z"’) then i’ = Li;(x"), which
concludes this sub-sub-case.

- Ifig{y<Az.t1} =% Lis(Az'.t2) such that \z’.t2 is w-super and
|Lis(\z"t2)|o < |ia]o. Hence L;1{L;3(A\z’.t2)) is the normal form
of i{x<s} such that \z’.ty is w-super and |L;1 (Liz(A\2"t2))]o <
lia]o + |i”|o + 1 < i],, which concludes this sub-sub case.

x 1"{zes} =% Lio(Aw.p1) such that Aw.p; is w-super and | Lo (Aw.p1)|, <

[i"]5. Then L;1 (Lo (Aw.p1{y<Az.t1})) is the normal form of i{z+s}
such that, by Lemma 6, Aw.p; {y<Az.t1} is w-super and

|Li1 (Lio(Aw.pr{y<Az.t1}))|o < |Li2(Aw.p1)|o+|Li1 (Az.t1)]o < lilo

which satisfies case (b) and concludes this sub-sub case.
2. Weak normal forms: By case analysis on n. Suppose n{x+<s} is w-normalizing,.
— Values, variables are dealt with Point 1 so we only consider abstractions,
which trivially converge and for which the open size is 0.
— Head terms, apply Point 1.
— Ezplicit Substitution, i.e. n = n'[y<i’]. We apply Point 1 to i, two
sub-cases:
o i"{x—s} =X i} such that |i{|, < |i'|o, moreover, if i{ = L;;1(y) then
i = L}, (z). Note that, since n’[y«1’] is a normal form, it is necessary
that iy # L (y).
By i.h. on n’, we get that n'{x<s} —% n] such that |n}|, < |n/|,.
Hence, n [y«i}] is the normal forms of n{z+s} such that |n}[y<i}]|, <
li|o, which concludes this sub-case.
o i"{x—s} =% L;1(Az.t1) such that Az.t; is w-super and |L;1 (Az.t1)|, <
]
By i.h. on 0/, n’{x<s} —¥ ny such that |n1], < |n|,.
Now we can apply the i.h. to ny as |ni1|, < |n'|, < n, hence
ny{y<Az.t1} =% ny such that |ns|, < |nio.
Hence, L;1(ns) is the normal form of n{z<s} such that |L;;(na)|, <
["|o + |n'|o + 1 = |i|o, which concludes this sub-case. O

Lemma 2 (Co-genericity). Let u be any term, s be a w-super term, v be any
value, and v’ be a w-super value.

1. Co-genericity as v-substitution: if t{x<v} is w-normalizing then so is t{x<v'}.
2. Co-genericity as substitution: if t{z<u} is w-normalizing then so is t{x<s}.
3. Co-genericity as context: if C'(u) is w-normalizing then so is C{s).

Link to the original
position of lemma 2, p. 17
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Proof.

1. Suppose t{z+wv} is w-normalizing. Then, by Point 1 of Prop. 19 (applicable
because v is a value), ¢ is w-normalizing. By the key property of w-super terms
(Lemma 7), t{x+<v'} is w-normalizing.

2. The idea of the proof is to reduce the statement to the previous point,
by noting that t{x«<u} is essentially equivalent to t{z<yz}{y<Az.u}, when
y ¢ £v(t), because t{z—yz{y<Az.u} =i, t{x<u}. Let t; = t{z<yz}. By
w-normalization (Point 1 of Proposition 8), the hypothesis that t{z«<u} is
w-normalizing, and the fact that t;{y<Az.u} —%,. t{z<u}, we have that

t1{y<Az.u} is w-normalizing. Then, by Point 1 (as Az.u and Az.s are values)

t1{y<Az.s} is w-normalizing, that is, there is a w-normal form n such that

t1{y<Az.s} =% n. Note that t1{y<Az.s} = . t{x<s}. By confluence, there

is p such that n —%,. p and t{z<s} —*,. p. Since n is —,-normal and v is
stabilizing, we have that p is w-normal. That is, t{x<s} is w-normalizing.

3. Let fv(u) Ufv(s) = {z1,...,2r}, and y be a variable fresh with respect to
fv(u) U fv(s) Ufv(C) and not captured by C. Note that @ = Azy.... A\zj.u
is a closed term. Consider p := C(yz; ...z), and note that:

ply<ul = Cluzy ... x1) = C{(Axy. ... Avpu)wy ... xp) =k, Clu).

vsc

If C'(u) is w-normalizing then so is p{y<u} (by the w-normalization, Point 1
of Proposition 8). By co-genericity as substitution, p{y«<s’} is w-normalizing
for every s’ w-super. By Lemma 6.2, 5 := Azy....Azg.s is w-super. Then
p{y« 3§} is w-normalizing, and note that

Ply=5} —5sc C(s).

Then p{y«<S§} w-normalizes to n and p{y«<5} —i,. C(s). Since —>ysc is conflu-

ent and w is stabilizing, there exists a w-normal form n’ such that n —*__ n’

and C(s) =i n'. By w-normalization (Point 1 of Proposition 8), C(s) is

vsc
w-normalizing. ]
CbV evaluation is super adequate.

Lemma 8. Lett and u two terms. If \x.t Zpo Ax.u then t Zfo u.

Proof. Let C any context such that C(t) is w-normalizing. Then C(t) is equal
up to alpha-conversion to C((Az.t)y). Hence by Az.t 3%, Az.u, we know that
C{(Az.u)y) is w-normalizing, which is equal up to alpha-conversion to C(u).
Hence C(u) is w-normalizing, which concludes the proof.

Lemma 9. Let n be a weak normal form. Then either n is a value v or a stuck
normal form of the shape E(ys) where y is free in n.

Proof. We introduce a subset of the F weak contexts, defined by the following
grammar.

F o= ()| Ft| vF | t{zF]
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Let n be a normal form, we show by induction the grammar of normal form
the statement:

— n = v, then the statement is trivially true.
— n = n/[x«i], we can easily conclude by applying the 7.h. on i.

— n =i, sub-cases:
e i =z, already discussed.
e i =i'n’, we conclude by applying the i.h. on i’ if i’ #  or on n’ otherwise.
e i =i'[y<i"], we can conclude by applying the i.h. on i”.
By construction, for a term ¢t = F(ys), y must be free in t. O

Proposition 13 (Super w-Adequacy).

1. Super adequacy: Z5y is super w-adequate.
2. Characterization of maximum terms for 3¢ : mazimum terms for Zgeo are
exactly w-super terms.

Proof. 1. We rather show the contrapositive statement: if ¢ is w-super and u is
not w-super then t A%, u.

Let t w-super and u non w-super. Then there exists a k£ such that v —*
!/

Ax1. ... A\xg.u’ and u does not converge to a term of the shape A\xy. ... Azpq.u”.

As ¢t is w-super, t —* Az1.... Azy.t". To show that ¢ 2%, u, it suffices to show
that t/ 23, «' (by contraposition of Lemma 8).
As v/ does not converge to an abstraction, there are two cases:
— u’ diverges, then for C' = (-) we have that C(t') w-normalizes but C(u’)
does not, hence ¢ Zg, v
— o' normalizes to a normal form n’ which, by Lemma 9, is either equal to
a variable y or to a stuck term of the shape E(ys) where y is free in u'.
It is then easy to find C such that C(t’) is w-normalizing and C(u') is
not w-normalizing: C' = ((Ay.(-))(Az.82))I or C = (A\y.({-))(Az.£2) work
for each case. O
2. By Point 1, Lemma 2 and Proposition 12, we have that maximum terms for
;jgo are exactly w-super terms.

G Removed Proofs from Section 10 (Call-by-Value
(Co-)Genericity via Applicative Similarity)

Lemma 3. Ift is w-diverging (resp. w-super) then so are t{z<v} and tv.

Proof. 1. If t is w-diverging, so is t{x<v} by substitutivity and so is tv as (-)v
is a weak evaluation context.

2. If t is w-diverging, so is t{xz«<v} by substitutivity and so is tv as tv =% t'{z<v}

where t' is w-super. O

Definition 12. A context E is evaluating for s when if for any t and u such
that t —s u, we have that E(t) —¢ - =5 E(u).

Link to the original
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Theorem 9. Let s a strategy such that for every s-normalizing term t and every
term u, there exists an evaluating context E such that E(t) and E{u) are closed
and E(t) is s-normalizing. Then s is s-adequate.

Proof. Let t Z¢ u such that ¢ is w-normalizing. By closability of s, there exists
an evaluating closing context C' such that C(t) is w-normalizing and such that if
u were w-diverging, so would be C(u) by the fact that E' is evaluating. Hence u
is s-normalizing. O

Proposition 15. The inequational theory Zf is w-adequate, hence w is openable.

Proof. We know that 32,C3%, we now show the other inclusion. To prove
that 32 C 220, it suffices show that 2% is a compatible and w-adequate relation.
Compatibility has been shown previously in 1.

We show adequacy by Theorem 9, hence we show that w satisfies the hypothesis
of the theorem.

Let ¢ be a w-normalizing term, thus scrutable by the operational char-
acterization of scrutability (Thm. 5). By scrutability, there exists a testing
context T' such that T'(t) is w-normalizing to a value v. For any u and for

any free variables x1,...,x in T(t) or T(u), we extend the testing context
T to Ty = (Az1.(... Azg.T)I)...)I. Now Tyi(t) = T(t)[xp<I]...[x1<I] —*
v[zgeI]. . [z<I] =f v{zp<I} ... {z1<I} where v{zp<I}...{z1<I}isa closed

value, hence Tj(t) is w-normalizing. We also have clearly that T3 (u) is a closed
term. It is easy to see that testing contexts are evaluating. a
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