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Can one integrate by adding up lines? 

Tommy Dreyfus1, Dafna Elias1, Anatoli Kouropatov2 and Lia Noah-Sella1  

1Tel Aviv University, School of Education, Tel Aviv, Israel; TommyD@tauex.tau.ac.il   

2Levinsky-Wingate Academic College, Tel Aviv, Israel  

We present part of a project whose aim it is to investigate high school students’ meanings for 

fundamental concepts of calculus, including rate of change and accumulation. We focus on students’ 

reactions to a peer’s statement that an integral or accumulated quantity can be found by adding up 

vertical lines under the graph of the rate of change function being integrated. We present results of 

24 interviews with advanced level high school students after they studied integration. Our findings 

show that most of the interviewees consider the peer’s thinking as correct in principle. On the other 

hand, more than half of the interviewees state that the peer’s way of thinking is not close to their own. 

A tentative conclusion is that most of these advanced-level high school students proficiently carry out 

computations of integrals but fail to relate to the essence of a definite integral as a sum of products. 

Keywords: Accumulation, adding up lines, integration, ways of thinking.  

Introduction and background 

Learning calculus is an important part of high school and university mathematics curricula worldwide 

(e.g., Bressoud et al., 2016). However, researchers have argued that even high ability students rarely 

acquire comprehension regarding the central concepts of calculus but, in the best case, formal 

techniques allowing them to answer exercises (e.g., Thompson & Harel, 2021).  

According to Thompson and Silverman (2008) many processes in the real word are processes of 

change and when something changes, something accumulates; hence, the idea of accumulation is 

central to integration. In their recent review of research on integration, Jones and Ely (2022) have 

distinguished two approaches to accumulation, adding up pieces and accumulation from rate. A 

crucial aspect of the pieces that accumulate is that they usually products.  

Israel is in the process of introducing a new high school curriculum, whose section on integration is 

based on the idea of accumulation (Dreyfus et al., 2021). In this connection, students’ meanings for 

accumulation and for the bits that accumulate are of central interest. In the framework of a larger 

research project, we empirically investigate students’ personal meanings for fundamental concepts of 

calculus including accumulation and the bits that accumulate. The study presented here contributes 

to this line of research. Specifically, we investigate whether high school students, who have studied 

integration as part of their advanced level mathematics studies, (i) consider as correct and (ii) identify 

with ways of finding a definite integral as a sum of vertical lines under the graph of the integrand.  

Methodology: questionnaire and interviews 

In the framework of the larger research project, we built a questionnaire and an interview with the 

aim of examining how students relate to different ways of thinking about accumulation and 

integration. We named these different ways ‘Antiderivative’, ‘Area’, ‘Lines’, ‘Sum of products’, 
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‘Rectangle’, and so on. In this paper, we focus on the way of thinking called ‘Lines’; ‘Lines’ is 

presented in the questionnaire as having been proposed by a hypothetical student called Lina.  

We did not invent the different ways of thinking but distilled them from ways of thinking actual 

students expressed during a collection of close to 30 informal and progressively developing 

preliminary interviews on integration and accumulation. The idea for Lina was distilled from an 

interview with Nathan (Noah-Sella at al., 2022) who explained: 

Nathan:  My logic is that when Δ𝑥 approaches zero, or is even equal to zero, the size of the 
– I don’t want to say rectangle, it’s a line - it has no width. It’s just a line, and since 
its width is zero, when we add up all of these lines, we will get the area under the 
curve. 

Nathan also mentioned adding up the lengths of all lines and adding up the y-coordinates of the 

infinite number of points on the graph of the given rate function. When constructing Lina, we chose 

not to specify this but to leave open what precisely is being added up. Similarly, Nathan collapsed 

the x-dimension (Oehrtman, 2009); Lina, however, exhibits only the result of the collapse. The 

intention behind these choices was to examine how participants considered the lines, for example 

whether they attributed a width to them, and how they interpreted adding them up. 

The questionnaire including Lina’s and other ways of thinking presents a situation in eight versions: 

Two settings and four contexts in each setting (details below). One of these versions is presented in 

Figure 1.  

On Monday at 8 am the pool was empty. The employees started to fill it. The given function shows the 

flow of water into the pool on Monday during the first hour (3600 seconds), from 8:00 until 9:00 in the 

morning. The flow of water is measured in liters per second.     

𝑓(𝑥) = −
1

500,000
𝑥2 +

1

100
𝑥 + 2 

Alona said that with these givens it is possible to estimate the amount of water that accumulated in the pool 

from 8:00 to 9:00. The students discussed the meaning of what Alona said. Below, you will find the 

meanings proposed by some students.  

Figure 1: The situation - context pool (P) and setting quantity (Q) 

f(x) [liters per second] 

x [seconds] 



 

 

The situation was followed by several ways of thinking proposed by hypothetical students. One of 

these was Lina. Lina’s statement and the questions about it are presented in Figure 2. 

Lina To me, if we draw vertical lines between the function f(x) and the x-axis at each and every point and add 

them up we’ll get the amount of water that accumulated.  

 

 To what extent do you think Lina's 

claim is correct ? 

1 
Not at all 

correct 

2 
Not so 

correct 

3 
I don’t 

know 

4 
Pretty 

correct 

5 
Completely 

correct 

How close is Lina’s claim to your 

way of thinking? 

1 
Not at all close 

2 
Not so close 

3 
Pretty close 

4 
Very close 

Figure 2: Lina - context pool (P) and setting quantity (Q) 

We note that in terms of Jones and Ely (2022), Lina makes no reference to accumulation from rate, 

but she does add up pieces. We were interested in the properties that research participants attributed 

to the lines, how they thought about adding them up, and what they thought they were adding up. 

The two settings we used were I (for integral) and Q (for quantity); the situation in Figure 1 shows 

setting Q. In setting I, Alona’s statement about estimating the quantity of water was replaced by Alona 

asking what the meaning of the integral ∫ 𝑓(𝑥)𝑑𝑥
3600

0
 is. 

The four contexts we used were water flowing into a Pool (P), the distance covered by a bicycle rider 

in Motion (M), Area under the graph (A) and a formal setting introducing a function 𝑔 whose 

derivative is the function 𝑓 given in the situation (F). Below we will often group the contexts P and 

M under the heading ‘extra-mathematical context’, and similarly group the contexts A and F under 

the heading ‘mathematical context’.  

We now turn to the interviews. In this paper, we consider 24 individual interviews, three on each of 

the eight versions of the questionnaire. All interviewees were volunteers learning advanced level 

mathematics and had studied integration of polynomial and trigonometric functions. They were asked 

to respond to the questionnaire and were interviewed immediately afterwards. Respondents were 

asked what additional subjects they took at the advanced level (physics, chemistry, English, literature, 

etc.).  They were also asked whether they were familiar with the term accumulation and from where. 

The interview related to all ways of thinking presented in the questionnaire, but in this paper, we 

focus on the part pertaining to Lina’s way of thinking. 

f(x) [liters per second] 

x [seconds] 



 

 

The overall aim of the interview was to clarify the meanings interviewees hold about integration and 

accumulation by discussing with them their responses to the questions in Figure 2 and to 

corresponding questions about other ways of thinking. Interviewers were warned not to suggest ideas 

and to bring into the discussion as little of their own thinking as possible. Instead, they were asked to 

stimulate statements of opinion by the interviewees by asking about how the interviewee interprets 

the statements in the questionnaire, including Lina’s. Interviewers were familiar with the five criteria 

Distinct language, Repetition, Reasoning, Unexpectedness, and Statement of opinion (Noah-Sella et 

al., 2022) and instructed to question interviewees in depth, when one of these criteria applied.  

Here we consider specifically how interviewees thought about Lina’s statement, that is about the 

possibility of finding an integral or accumulated quantity by summing up lines. Interviewers asked 

how Lina’s statement refers to what Alona said; they also asked about similarities and differences 

between how Lina thinks and how the interviewee thinks. 

Findings 

In order to provide the reader with an overview, we begin by providing some numerical information 

on the questionnaire responses of the 24 interviewees, including to what extent their reaction to Lina 

depended on setting and context. We then use quotes from their interviews to answer the question 

how they interpret Lina, and why they consider her way of thinking correct or incorrect.  

Numerical overview of the results  

Among the 24 interviewees, 12 also took physics at the advanced level, whereas 11 did not (one did 

not answer that question). Of the 24 interviewees, 14 stated that they were somewhat familiar with 

the term accumulation (eight from mathematics, one from mathematics and physics, and five from 

chemistry), nine that they were not, and one did not answer that question.  

Table 1 shows how many interviewees answered positively or negatively to the question “To what 

extent do you think Lina’s claim is correct?” in the questionnaire (Figure 2). We remind the reader 

that interviewees were asked to answer on a scale of 1 to 5, with 3 meaning “I don’t know”. We group 

1 and 2 together as ‘incorrect’; and we group 4 and 5 together as ‘correct’. We also group the 

mathematical contexts (F, A) together and the extra-mathematical contexts (M, P) together. 

Table 1: Number of interviewees judging Lina’s statement as correct or incorrect 

 Total Setting Context 

Lina’s statement is  Integral Quantity  Mathematical (F, A) Extra-mathematical (M, P) 

Incorrect (1, 2) 10 5 5 6 4 

Don’t know (3) 2 2 0 0 2 

Correct (4, 5) 12 5 7 6 6 

Out of the 24 interviewees, 22 took a definite position, 12 of them accepting Lina’s statement as 

correct. This could be because their ‘mathematical culture’ made them hesitate to declare that they 

don’t know, but it could also suggest that Lina’s way of thinking is quite common. On the other hand, 

the numbers in Table 1 suggest that neither the setting nor the context have an influence on the 

interviewees’ judgment whether Lina’s statement was correct or not.  



 

 

Turning to the second questionnaire question, namely “How close is Lina’s statement to your own 

way of thinking?”, somewhat more than half of the participants answered ‘not close’, and somewhat 

less than half answered ‘close’. The corresponding results are presented in Table 2. Again, we group 

1 and 2 together as ‘not close’ and 3 and 4 together as ‘close’. 

Table 2: Number of interviewees judging Lina’s statement as close to their own way of thinking 

 Total Setting Context 

Lina’s statement is  Integral Quantity  Mathematical (F, A) Extra-mathematical (M, P) 

Not close (1, 2) 14 9 5 5 9* 

Close (3, 4) 10 3 7 7 3 

* Among the 9 interviewees in this cell, 6 answered the Integral setting and 3 the Quantity setting questionnaire. 

The lack of influence of setting and context did not carry over to the question to what extent Lina’s 

statement was close to the interviewee’s own way of thinking. While the numbers are too small to 

allow for definite conclusions, in the more familiar Integral setting, more interviewees thought 

differently from Lina’s way than in the Quantity setting. Similarly, in the familiar Motion and Pool 

contexts, many interviewees felt that Lina did not represent how they would themselves think.  

Interviewees’ interpretations of Lina’s way of thinking 

Out of ten interviewees marking Lina’s way of thinking as incorrect in the questionnaire, six gave 

explicit reasons for rejecting Lina’s way of thinking. We quote three of them (the other quotes were 

similar but less explicit); we mention the context of each interviewee’s questionnaire in parentheses. 

S1 (A): You can’t sum lines and define them as area, ‘cause in a given domain there can be 
lots of lines, in fact infinitely many. 

S14 (F): You can’t really do that because you don’t know the function values; and in 
mathematics, you shouldn’t use drawings and approximations but formulas. 

S16 (M): That’s wrong. You have to take rectangles; and even that gives you an 
approximation… You can’t take the values at each point… infinitely many points... 
you get infinity. 

Five of the six interviewees, including S1 and S16, rejected Lina’s way of thinking because of reasons 

related to infinity, either that one cannot sum infinitely many terms or that the result would be infinite 

(presumably implying that the infinite result could not possibly represent the finite area or distance). 

Two of these five interviewees, including S1 also referred to area; both their questionnaires used the 

area context. S16 clearly stated that rectangles would have to be used rather than lines; he was almost 

alone in mentioning rectangles (see below). S14 interpreted Lina’s “summing lines” as summing 

function values (which some other interviewees did as well; see below) and was bothered by not 

knowing these values; moreover, Lina’s use of graphics and approximation was at variance with 

S14’s view that doing mathematics means using formulas.  

Most of the interviewees who rejected Lina’s claim also stated that their own way of thinking differed 

from Lina’s. S1 is an exception to this; she explained that Lina’s statement is ‘pretty close’ to her 

own way of thinking because it helps her to relate to area in a certain way and split it into parts.  



 

 

The other four interviewees who marked Lina’s way of thinking as incorrect in the questionnaire, 

neither rejected nor accepted it in the interview. One of them only related to how complex Lina’s way 

was. The three others were more explicit; we quote two of them (the third argued similarly):  

S7 (F): There will always be some area missing… so it will be really close but not exact. 
S13 (M): Depends how many lines she makes. Mmm… if there are infinitely many lines, I 

suppose. But you can’t really get to infinity… it won’t be completely correct. 

The arguments of these three interviewees were close to those of another group of three interviewees, 

who also related to Lina’s way of thinking as being an approximation but were among the 12 

interviewees who considered Lina’s way of thinking as ‘pretty correct’ or ‘completely correct’. 

S17 (M): If you sum the length of the lines, then it depends on the number of lines how correct 
it is; if you assume infinitely many lines, then it’s precise. 

S19 (P): That’s correct in principle, but not exact… we can’t indicate infinitely many lines… 
it’s something like this that I did in my head… I interpret that in each second a 
certain quantity of water enters and the second symbolizes the point that we mark 
on the function… and to know the amount of water that accumulated, we sum, add 
all the values of these points. 

All three of these interviewees indicated in the questionnaire that Lina’s statement was close to their 

own way of thinking, although S17 changed his mind during the interview. Altogether, for seven 

interviewees, approximation was a salient aspect of Lina’s way of thinking (the six discussed right 

now, and S16 above). Among these seven interviewees, only two referred to approximation as a 

process, S13 and S17; S17 even stated that this process is exact in the limit. S19, when discussing 

how close Lina’s statement was to his own way of thinking, related to the question what exactly Lina 

adds up, namely the (y-)values of the points on the function (graph). We had intentionally left this 

point vague in the questionnaire; only five interviewees referred explicitly to what was being added 

up, among them S14 and S19 (quoted above), as well as 

S21 (P): At first, I didn’t think of an integral, but I rather thought of substituting x’s… That’s 
a much more complicated method but…  it is very correct… less efficient than an 
integral… If you draw a vertical line… that means if you substitute these x’s… it’s 
the same thing. 

These five interviewees all added up function values. In addition to them, only three others seemed 

to ask themselves what was being added up. Two of them mentioned rectangles, S16 above and S22 

who interpreted Lina’s lines as rectangles and thought in terms of adding up their areas: 

S22 (F): She computes the area in the integral; she, like, simply makes such little rectangles 
but they are vertical. 

The third one was the only one among the 24 interviewees who referred to units:  

S6 (M): The lines are between meter per second and time. So, each line is each meter that 
he passes per second, and if one adds them, that may give the distance… 
I don’t know how to compute the sum, the size of the lines; maybe do an integral… 
The integral will give the area, but I don’t think the area represents the distance; the 
lines represent the distance. 

S6 seems to add speeds (“each meter that he passes per second”) and get a distance as result. This 

justifies Lina’s statement for S6; she characterizes it as completely correct but not at all close to her 

own way of thinking. Moreover, she associates the lines with the distance but not the area. 



 

 

Discussion 

Although the setting and context of the questionnaires may have had some influence on interviewees’ 

thinking, the number of participants in our study is too small to draw any conclusions about such 

influence. We therefore ignore setting and context in the discussion.  

We remind the reader that the interviewers did not suggest ideas such as approximation or rectangles. 

Rather, only ideas suggested by the interviewees were discussed.  For example, only two interviewees 

mentioned rectangles. Some interviewees related to Lina’s way of thinking as an approximation 

whereas others did not; if an interviewee brought up approximation, the interviewer did not suggest 

increasing the number of lines; many interviewees considered a single static approximation, while 

only a few saw a process of approximation getting better as the number of lines increased. 

Out of 24 interviewees, only six rejected Lina’s statement consistently, six were undecided, and 12 

accepted Lina’s statement. On the other hand, only ten out of the 24 interviewees stated that Lina’s 

statement was close to their own way of thinking. This raises the question on what basis the 

interviewees accepted Lina’s way of thinking is, given that they stated it was not close to their own.  

In considering this question, area is a keyword. Nine interviewees mentioned area explicitly, and 

several others like S13 and S17 seemed to refer to area implicitly. Most, if not all of them strongly 

connected to the area meaning of the integral; this is supported also by what they said about the ‘Area’ 

way of thinking in another part of their interviews. On the other hand, with three exceptions (S6, S16 

and S22), they did not relate to the fact that lines are infinitely thin and that therefore even a countably 

infinite number of lines cannot add up to any area; put differently, they did not show awareness of 

the product nature of the bits that accumulate when integrating; differentials or ∆𝑥-intervals, whose 

importance for accumulation has been stressed by Jones and Ely (2022), were absent from their 

thinking. Lina’s way of thinking can be seen as the result of a collapse without the process of collapse 

identified by Oehrtman (2009); in their attempt to live in a world with infinitesimal quantities, many 

interviewees readily accepted this novel aspect of collapse. They ignore that adding up lengths of 

lines or values of the integrand does not produce a quantity with the same units as the integral. Most 

of them related to integral as area but failed to relate to the essence of a definite integral as a sum of 

products. Many of them seem to view an integral as something you carry out rather than something 

that carries meaning. Since these are students from at least 8 different schools, who had studies 

integration recently, this result may be due to the way integration is taught in many schools in Israel.  

On the other hand, many interviewees addressed technical aspects of Lina’s way of thinking: They 

were worried about possible infinities. They saw Lina as providing an approximation to the value of 

the integral and related to the efficiency of this approximation. For most this approximation was 

static; only S13 and S17 mentioned a process of approximation, and only S17 referred to the limit.  

The interviewees did not consider integration and accumulation as a process. Lina’s way of thinking 

does not suggest accumulation from rate in the sense of Jones and Ely (2022), but it does refer to 

adding up pieces. The nature of these pieces is left vague by the majority of the interviewees. What 

is closer to their thinking is that adding up pieces provides an approximation. But even this 

approximation is static for almost all of them. The only process they see is computational: how to 

compute the approximation.   



 

 

The participants in our research come from a population who learn mathematics at the advanced level. 

Students learning at the advanced level are being taught and often succeed to solve rather demanding 

computational exercises in calculus. In view of how they handled approximation and the relationship 

between lines and area, our findings suggest that despite their high achievements in mathematics, for 

most of them, the notion of integral remains linked to area but not to accumulation, not even in the 

sense of adding up pieces, and much less in the sense of accumulation from rate.  

Three directions for further research emerge from our study: 1. More data are needed to draw 

conclusions about the influence of setting and context. 2. Our data were collected among Israeli high 

school students; further research is needed to examine whether a similar situation pertains in other 

countries and with college and university students. 3. We wonder whether it is possible to didactically 

exploit a combination of approximation and collapse to find an entry to an “adding up (multiplicative) 

pieces” view of the definite integral.  

Acknowledgment 

This research has been supported by the Israel Science Foundation under grant 1743/19. 

References 

Bressoud, D., Ghedamsi, I., Martinez-Luaces, V., & Törner, G. (2016). Teaching and Learning of 

Calculus. ICME13 Topical Surveys: Springer Open. https://doi.org/10.1007/978-3-319-32975-8  

Dreyfus, T., Kouropatov, A., & Ron, G. (2021). Research as a resource in a high school calculus 

curriculum. ZDM Mathematics Education, 53(3), 679–693. https://doi.org/10.1007/s11858-021-

01236-3 

Jones, S. R., & Ely, R. (2022). Approaches to integration based on quantitative reasoning: Adding up 

pieces and accumulation from rate. International Journal for Research in Undergraduate 

Mathematics Education, 9, 8–35. https://doi.org/10.1007/s40753-022-00203-x  

Noah-Sella, L., Kouropatov, A., Dreyfus, T., & Elias, D. (2022). Manifestations of the collapse 

metaphor and their possible implications on personal meanings of integral and accumulation. In 

J. Hodgen, E. Geraniou, G. Bolondi & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of 

the European Society for Research in Mathematics Education (CERME12) (pp. 4773-4780). Free 

University of Bozen-Bolzano and ERME. https://hal.science/hal-03754712/document  

Oehrtman, M. C. (2009). Collapsing Dimensions, Physical Limitation, and Other Student Metaphors 

for Limit Concepts. Journal for Research in Mathematics Education, 40(4), 396–426. 

https://doi.org/10.5951/jresematheduc.40.4.0396  

Thompson, P. W., & Harel, G.  (2021). Ideas foundational to calculus learning and their links to 

students’ difficulties. ZDM – The International Journal of Mathematics Education, 53(3), 507–

519. https://doi.org/10.1007/s11858-021-01270-1  

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. Carlson 

& C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 

mathematics (pp. 43-52). Mathematical Association of America. 

https://doi.org/10.1007/978-3-319-32975-8
https://doi.org/10.1007/s11858-021-01236-3
https://doi.org/10.1007/s11858-021-01236-3
https://doi.org/10.1007/s40753-022-00203-x
https://hal.science/hal-03754712/document
https://doi.org/10.5951/jresematheduc.40.4.0396
https://doi.org/10.1007/s11858-021-01270-1

	Can one integrate by adding up lines?
	Introduction and background
	Methodology: questionnaire and interviews
	Findings
	Numerical overview of the results
	Interviewees’ interpretations of Lina’s way of thinking

	Discussion
	Acknowledgment
	References


