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Abstract

Following White’s approach of robust multiple linear regression [15], we give asymptotic confidence
intervals for the multiple correlation coefficient R2 under minimal moment conditions. We also give
the asymptotic joint distribution of the empirical estimators of the individual R2’s. Through different
sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving
the near exact distribution of the empirical estimator of R2 is the multivariate Gaussian case) and can
be also applied to count linear regression.
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1 Introduction

Let (Y,X(1), . . . X(p)) be a random vector with value in Rp+1. The variable Y is the response variable, and
(X(1), . . . , X(p)) is the vector of explanatory variables. Assume that all the variables are square integrable.
The multiple correlation between Y and (X(1), . . . , X(p)) can be expressed using the orthogonal projection
of Y onto the L2-subspace V generated by the variables (X(0), X(1), . . . , X(p)), where we denote by X(0)

the constant variable X(0) ≡ 1. Let then ProjV (Y ) be the orthogonal projection of Y onto V . The
response variable Y is uncorrelated to the vector (X(1), . . . , X(p)) if and only if ProjV (Y ) = E(Y ).

To measure the strength of the correlation between Y and (X(1), . . . , X(p)), the usual measure is the
coefficient R2 defined by (assuming that Var(Y ) > 0):

R2 =
Var(ProjV (Y ))

Var(Y )
.

The coefficient R2 is often referred as “the population variance-accounted-for effect size”. As we see, it is
defined as the proportion of the variance of Y that is explained by the best linear predictor in L2 based
on the variables 1, X(1), . . . , X(p).
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In this paper, we consider the empirical estimator R̂2 of the coefficient R2 based on n independent

copies (Yi, X
(1)
i , . . . , X

(p)
i )1≤i≤n of the vector (Y,X(1), . . . , X(p)). We prove its consistency, asymptotic

normality, and we give an asymptotic confidence interval for R2. Our approach is a robust one: we
will make no additional assumptions on the distribution of the vector (Y,X(1), . . . , X(p)), except moment
assumptions necessary for the Central Limit Theorem (CLT) to hold, and to estimate consistently the
limiting variance.

Most of the existing literature on the distribution of R̂2 deals with the case where the vector
(Y,X(1), . . . X(p)) is normally distributed. In this context, Fisher (1928) [3] obtained the first exact
expression of the density function of R̂2, involving a Gauss hypergeometric series. Other exact expres-
sions for the distribution and the cumulative distribution were given by Lee [8]. An exact expression
of the cumulative distribution in terms of a series of Gamma distributions is given in Muirhead (1982,
Theorem 5.2.5) [10]. The first two principal terms of the latter development were given earlier by Lee
[8]. Some quantile tables were derived by Lee [9] from this second-order approximation of the cumulative
distribution function. Lee’s results were then implemented by Kelley [6] in his R MBESS package.

In the non-Gaussian case, there are relatively few results. Let us cite Muirhead [10] Theorem 5.1.6,
who gave the asymptotic normality of R̂2 assuming that (Y,X(1), . . . X(p)) has an elliptical distribution.
The paper closest to ours is that of Ogasawara [11], who gave an Edgeworth expansion for

√
n(R̂2−R2),

under some conditions on the distributions of the variables, assuming in particular that all the variables
Y,X(1), . . . X(p) have a moment of order 8. We will compare our result to that of Ogasawara in more
details in Remark 3.1 of Section 3. Let us also mention the results of Ogasawara (2008) [12] for partial
correlation.

The article is organised as follows: in Section 2, we recall White’s results [15] concerning the least
squares estimator of the coefficients of the orthogonal projection ProjV (Y ) = α0 +α1X

(1) + · · ·+αpX
(p)

(consistency, asymptotic normality and estimation of the limiting covariance matrix). This serves two
purposes: it recalls the robust procedure described by White [15] in the linear model (without the as-
sumption of normality or homoscedasticity), and it gives an initial idea of the proofs that will enable us
to obtain an asymptotic confidence interval for R2. In Section 3 we prove the consistency and asymptocic
normality of R̂2. We also give an estimator of the limiting variance, which together with asymptotic nor-
mality provide an asymptotic confidence interval for R2. In Section 4, we give the asymptotic distribution
of the joint law of the estimators of the individual R2’s. In Section 5, we evaluate the performance of our
confidence interval on different sets of simulations, and we compare this performance with that of the
confidence interval that assumes that the vector (Y,X(1), . . . X(p)) is Gaussian. Finally, in Section 6, we
give the extension of our procedure to the case of vector-valued random variables, and we briefly discuss
the connections between our results and sensitivity analysis or screening methods.

2 Previous known results

Let Vi be the L2-subspace generated by the variables (X
(0)
i , X

(1)
i , . . . , X

(p)
i ). Let ε = Y − ProjV (Y ) and

εi = Yi − ProjVi(Yi). We can then write

Yi = ProjVi(Yi) + εi.

where the variables εi are such that E(X
(j)
i εi) = 0 for any j ∈ {0, . . . , p}.

Consider the following assumption:
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Assumption 2.1. Assume that 1, X(1), . . . , X(p) are linearly independent (as a family of random vari-
ables in L2).

Under Assumption 2.1 one can uniquely write

Yi = α0 + α1X
(1)
i + · · ·+ αpX

(p)
i + εi .

Let α0:p = (α0, α1, . . . , αp)
t ∈ Rp+1, and X be the matrix whose jth column is

X(j) = (X
(j)
1 , . . . , X(j)

n )t.

Let Y = (Y1, . . . , Yn)t and ε = (ε1, . . . , εn)t. One can write

Y = Xα0:p + ε.

Let M be the matrix such that Mj,` = E(X(j)X(`)). By Assumption (2.1) the matrix M is invertible
and one can easily show that

α0:p = M−1(E(Y ),E(X(1)Y ) . . . ,E(X(p)Y ))t .

2.1 Least square estimator of α0:p

Let

M̂ =
1

n
Xt X .

By the strong law of large numbers

lim
n→∞

M̂ = M almost surely. (2.1)

Under Assumption 2.1, M is invertible and for large enough n, Xt X is also invertible, and one can define

α̂0:p = (α̂0, . . . , α̂p)
t = (Xt X)−1 Xt Y.

Let Vp+1 be the sub-space of Rn generated by the p + 1 columns X(0),X(1), . . . ,X(p) of the matrix X,
and ΠVp+1(Y) be the orthogonal projection of Y on Vp+1 (with respect to the euclidean norm). We have

α̂0 X(0) +α̂1 X(1) + · · ·+ α̂p X(p) = ΠVp+1(Y),

and

α̂0:p −α0:p = (α̂0, . . . , α̂p)
t − (α0, . . . , αp)

t = (Xt X)−1 Xt ε = M̂−1 1

n
Xt ε . (2.2)

2.2 Consistency and asymptotic normality of α̂0:p

Following White [15], we obtain the consistency and asymptotic normality of the least square estimators.
The proofs of these results being simple and enlightening, we have chosen to recall them because they
may make it easier to understand the proofs of Section 3.

Proposition 2.1. Under Assumption 2.1, α̂0:p converges almost surely to α0:p as n→∞.
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Proof of Proposition 2.1. From (2.1), we get that

lim
n→∞

M̂−1 = M−1 almost surely. (2.3)

Starting from (2.2) and using (2.3), it suffices to show that

lim
n→∞

1

n
Xt ε = 0 almost surely. (2.4)

By definition of ε, for any j ∈ {0, . . . , p}, E(X(j)ε) = 0. Applying the strong law of large numbers to the
jth coordinate of n−1 Xt ε, we get

lim
n→∞

(
1

n
Xt ε

)
j

= lim
n→∞

1

n

n∑
i=1

X
(j)
i εi = 0 almost surely. (2.5)

To prove the asymptotic normality, we need moment assumptions.

Assumption 2.2. Assume that E(X(j)2ε2) <∞ for all j = 0, . . . , p.

Proposition 2.2. Under Assumptions 2.1 and 2.2, let M(ε) be the matrix defined by

M(ε)j,` = E(X(j)X(`)ε2) for any 0 ≤ j, ` ≤ p. (2.6)

Then √
n(α̂0:p −α0:p)

L−→
n→∞

Np+1(0,M
−1M(ε)M−1).

Remark 2.1. Assume that ε2 − E(ε2) is orthogonal to the space S generated by the variables X(j)X(`)

for all 0 ≤ j ≤ ` ≤ p (which is true, for instance, if ε is independent of (X(1), . . . , X(p))). Then the
limiting variance matrix in Proposition 2.2 writes

M−1M(ε)M−1 = E(ε2)M−1 ,

and is the same as in the case where the conditional distribution of Y given (X(1), . . . , X(p)) is Gaussian
with Var(Y |X(1), . . . , X(p)) = σ2 (homoscedastic case; in that case E(ε2) = σ2). This simple observation
enabled White [15] to formulate his famous homoscedasticity test, which in fact consists of testing whether
ε2 − E(ε2) is orthogonal to S (H0 hypothesis) or not.

Proof of Proposition 2.2. Starting from (2.2) and using (2.3), it suffices to prove that

1√
n

Xt ε
L−→

n→∞
Np+1(0,M(ε)). (2.7)

Now (2.7) follows from a direct application of the central limit theorem in Rp+1, since for any 0 ≤ j ≤ p,
E(X(j)ε) = 0 and since Assumption 2.2 holds.
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2.3 Estimation of the limiting covariance matrix

Under Assumption 2.2, by the strong law of large numbers, for any j, ` ∈ {0, . . . , p},

lim
n→∞

1

n

n∑
i=1

X
(j)
i X

(`)
i ε2i = M(ε)j,` almost surely. (2.8)

Of course, the quantity on right hand is not an estimator of M(ε)j,` since the εi’s are not observed. White
[15] proposed then to replace the εi’s by the residuals.

ε̂i = Yi − (Xα̂0:p)i = Yi − α̂0X
(0)
i − · · · − α̂pX

(p)
i .

Let then

M̂(ε)j,` =
1

n

n∑
i=1

X
(j)
i X

(`)
i ε̂2i .

To prove the consistency of M̂(ε)j,`, we shall assume that Assumption 2.2 holds and that:

Assumption 2.3. E(X(j)4) <∞ for all j ∈ {0, . . . , p}.

Proposition 2.3. Under Assumptions 2.2 and 2.3, for any j, ` ∈ {0, . . . , p},

lim
n→∞

M̂(ε)j,` = M(ε)j,` almost surely.

Consequently, under Assumptions 2.1-2.3,

lim
n→∞

M̂−1M̂(ε)M̂−1 = M−1M(ε)M−1 almost surely.

Remark 2.2. The Assumptions 2.2 and 2.3 are equivalent to: E(X(j)2Y 2) <∞ and E(X(j)4) <∞ for
any j ∈ {0, . . . , p}.

Remark 2.3. As usual, Propositions 2.2 and 2.3 enable to obtain confidence regions or test procedures
for the coefficients αi. For instance, if one wants to test

H0 : αi1 = · · · = αik = 0 for some 0 ≤ i1 < i2 < · · · < ik ≤ p

one can proceed as follows. Let Ck be the matrix with k rows and p columns, such that all coordinates of
the jth row are 0 except the coordinate ij which is equal to 1. Then, by Proposition 2.2,

√
n((α̂i1 , . . . , α̂ik)t − (αi1 , . . . , αik)t)

L−→
n→∞

Nk(0,CkM
−1M(ε)M−1Ct

k).

Now, under Assumptions 2.1-2.3, by applying Proposition 2.3

V̂k = CkM̂
−1M̂(ε)M̂−1Ct

k converges almost surely to CkM
−1M(ε)M−1Ct

k .

If M(ε) is invertible, then the matrix CkM
−1M(ε)M−1Ct

k is also invertible and V̂
−1/2
k is well defined

(for n large enough). Let then (ξ1, . . . , ξk)
t =
√
nV̂
−1/2
k (α̂i1 , . . . , α̂ik)t. Under H0, we see that the test

statistic
∑k

i=1 ξ
2
i is such that

k∑
i=1

ξ2i
L−→

n→∞
χ2(k) .
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Proof of Proposition 2.3. Write ε̂2i = ε2i +Ri, with Ri = 2εi(ε̂i− εi) + (ε̂i− εi)2. The following upper
bound holds

|Ri| ≤ 2

p∑
j=0

|(α̂j − αj)X(j)
i εi|+ (p+ 1)

p∑
j=0

(α̂j − αj)2X(j)
i

2
.

Tacking into account (2.8), to prove Proposition 2.3, it suffices to show that, for 1 ≤ j, k ≤ p and
1 ≤ i ≤ n,

lim
n→∞

1

n

n∑
i=1

|X(j)
i X

(k)
i Ri| = 0 almost surely. (2.9)

Since |α̂i − αi| converges almost surely to 0, (2.9) will be satisfied provided, for 1 ≤ j, k, ` ≤ p,

lim sup
n→∞

1

n

n∑
i=1

|X(j)
i X

(k)
i X

(`)
i εi| <∞ and lim sup

n→∞

1

n

n∑
i=1

|X(j)
i X

(k)
i X

(`)
i

2
| <∞ almost surely,

which is true by applying once again the strong law of large numbers under Assumptions 2.2 and 2.3.

3 Confidence interval for R2

Assuming that Var(Y ) > 0, the mutliple correlation coefficient R2 is defined by:

R2 =
Var(ProjV (Y ))

Var(Y )
.

For εi = Yi − ProjVi(Yi), recall that, under Assumption 2.1,

Yi = ProjVi(Yi) + εi = α01 + α1X
(1)
i + · · ·+ αpX

(p)
i + εi.

For any vector z = (z1, . . . , zn)t in Rn, the empirical variance of z is given by

Varn(z) =
1

n

n∑
i=1

(zi − z)2.

Let 1n = (1, . . . , 1)t and let ΠE be the orthogonal projection (with respect to the the euclidean norm)
on a subspace E of Rn. Let Vp+1 be the subspace of Rn generated by (1n,X

(1), . . . ,X(p)). The empirical

estimator R̂2 of R2 is then

R̂2 =
Varn(ΠVp+1(Y))

Varn(Y)
. (3.1)

Our first goal is to give a simple expression of this estimator. Let α1:p = (α1, . . . , αp)
t and α̂1:p =

(α̂1, . . . , α̂p)
t; for the sake of simplicity, we shall omit the indexes and write α = α1:p and α̂ = α̂1:p. Let

also θ = (θ1, . . . , θp)
t and θ̂ = (θ̂1, . . . , θ̂p)

t, where

θk =
Cov(Y,X(k))

Var(Y )
and θ̂k =

∑n
i=1(Yi −Y)(X

(k)
i −X

(k)
)∑n

i=1(Yi −Y)2
. (3.2)

The following lemma gives the expression of R2 and R̂2 in terms of θ, α, θ̂ and α̂.
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Lemma 3.1. Under Assumption 2.1, R2 = θtα and R̂2 = θ̂tα̂.

Proof of Lemma 3.1. We prove the second point, the first point being proved in the same way. Write

ΠVp+1(Y)−ΠVp+1(Y)1n = α̂1(X
(1)−X

(1)
1n) + · · ·+ α̂p(X

(p)−X
(p)

1n) .

Now, if Sp is the subspace of Rn generated by ((X(1)−X
(1)

1n)), . . . , (X(p)−X
(p)

1n))) it is easy to check
that

α̂1(X
(1)−X

(1)
1n)) + · · ·+ α̂p(X

(p)−X
(p)

1n)) = ΠSp(Y−Y1n).

Since by Assumption 2.1 the variables 1, X(1), . . . , X(p) are linearly independent in L2, the variance
matrix M0 of (X(1), . . . , X(p))t defined by

(M0)j,` = Cov(X(j), X(`)) j, ` ∈ {1, . . . , p} (3.3)

is invertible. Denote by X0 the matrix defined by

X0 = ((X
(j)
i −X

(j)
))1≤i≤n,1≤j≤p . (3.4)

By the strong law of large numbers

lim
n→∞

1

n
Xt0X0 = M0 almost surely.

Since M0 defined in (3.3) is invertible, it follows that Xt0X0 is also invertible for n large enough, in such
a way that

α̂ = (Xt0X0)
−1Xt0(Y −Y1n), (3.5)

and
ΠSp((Y−Y1n)) = X0(Xt0X0)

−1Xt0(Y−Y1n).

Let ‖ · ‖eu be the euclidean norm on Rn. The following equality hold:

nVarn(ΠVp+1(Y)) =
∥∥ΠSp(Y−Y1n)

∥∥2
eu

= (Y−Y1n)tX0(Xt0X0)
−1Xt0X0(Xt0X0)

−1Xt0(Y−Y1n)

= (Y−Y1n)tX0(Xt0X0)
−1Xt0(Y−Y1n)

= (Y−Y1n)tX0α̂ . (3.6)

The result follows from (3.1), (3.6) and (3.7) since

(Y−Y1n)tX0

nVarn(Y)
= θ̂t . (3.7)

�

Now, to build a confidence interval for R2, we need to describe the asymptotic distribution of

√
n
(

[α̂ : θ̂]− [α : θ]
)

:=
√
n
(

(α̂1, . . . , α̂p, θ̂1, . . . , θ̂p)
t − (α1, . . . , αp, θ1, . . . , θp)

t
)
.
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Let us then define the two matrices involved in this asymptotic distribution. For k ∈ {1, . . . , p}, let

e(k) = X(k) − ProjW (X(k)) and e
(k)
i = X

(k)
i − ProjWi

(X
(k)
i ), (3.8)

where W is the subspace of L2 generated by 1 and Y , and Wi is the subspace of L2 generated by 1 and

Yi. Let also e(k) = (e
(k)
1 , . . . , e

(k)
n )t.

Assumption 3.1. E((X(j) − E(X(j)))2ε2) <∞ and E((Y − E(Y ))2e(j)
2
) <∞ for all j ∈ {1, . . . , p}.

Let then A be the 2p× 2p symmetric matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then

Aj,k = E((X(j) − E(X(j)))(X(k) − E(X(k)))ε2);

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Aj,k = E((Y − E(Y ))2e(j−p)e(k−p));

• (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Aj,k = E((X(j) − E(X(j)))(Y − E(Y ))εe(k−p)).

Let δj,k = 0 if j 6= k and δj,j = 1 and let B be the 2p× 2p symetric matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then Bj,k = (M−1
0 )j,k (see (3.3) for the definition of M0);

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then Bj,k = (Var(Y ))−1δj,k;

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then Bj,k = 0.

Proposition 3.1. Under Assumptions 2.1 and 3.1

√
n
(

[α̂ : θ̂]− [α : θ]
)

L−→
n→∞

N2p(0,BAB).

Proof of Proposition 3.1. Let B̂ be the 2p× 2p symetric matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then B̂j,k = n(Xt0X0)
−1
j,k ;

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then B̂j,k = (Varn(Y))−1δj,k;

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then B̂j,k = 0.

Starting from (3.2) and (3.5), and noting that

Yi −Y = α1(X
(1)
i −X

(1)
) + · · ·+ αp(X

(p)
i −X

(p)
) + (εi − ε) ,

(X
(k)
i −X

(k)
) = θk(Yi −Y) + (e

(k)
i − e

(k)) for k ∈ {1, . . . , p} ,
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we see that √
n
(

[α̂ : θ̂]− [α : θ]
)

= B̂
1√
n

(εtX0, (Y−Y1n)tE)t , (3.9)

where E is the n× p matrix such that, for (i, j) ∈ {1, . . . , n} × {1, . . . p}, (Ei,j) = e
(j)
i .

Denote by X̃0 the matrix defined by

X̃0 = (X
(j)
i − E(X(j)))1≤i≤n,1≤j≤p . (3.10)

One can easily check that

1√
n

(
(εtX0, (Y1 −Y, . . . , Yn −Y)E)t − (εtX̃0, (Y1 − E(Y ), . . . , Yn − E(Y ))E)t

)
P−→

n→∞
0 . (3.11)

Now, by the multivariate central limit theorem,

1√
n

(εtX̃0, (Y1 − E(Y ), . . . , Yn − E(Y ))E)t
L−→

n→∞
N2p(0,A). (3.12)

The result follows from (3.9), (3.11) and (3.12), since by the strong law of large numbers,

lim
n→∞

B̂ = B almost surely. (3.13)

�

As a consequence, we get

Proposition 3.2. Under Assumptions 2.1 and 3.1

√
n
(
R̂2 −R2

)
L−→

n→∞
N (0, V ).

where
V = (θ1, . . . , θp, α1, . . . , αp)BAB(θ1, . . . , θp, α1, . . . , αp)

t . (3.14)

Remark 3.1. Ogasawara [11] has given an Edgeworth expansion of
√
n(R̂2−R2), which is a more precise

result than Proposition 3.2, but requires some conditions on the distribution of (Y,X(1), · · · , X(p)). In
particular, he required that the all the variables have a moment of order 8. Note that, if we do not look for
an Edgeworth expansion, the method of Ogasawara consists in expressing R2 as a differentiable function
of S = ((Cov(X(i), X(j)))1≤i≤j≤p, (Cov(Y,X(i)))1≤i≤p,Var(Y )), proving the CLT for

√
n(Ŝ−S) (Ŝ being

the empirical estimator of S), and applying the delta method. The differences with our approach are the
following :

• To prove the CLT for
√
n(Ŝ − S), one needs moments of order 4 for all variables, which is a more

restrictive condition than the moment conditions of our Proposition 3.2.

• Applying the delta method to a function of S implies that the limiting variance V will be expressed
as a function of a q × q matrix, where q = (p + 1)(p + 2)/2 (the matrix Ω in [11]), while we can
express V as a function of a 2p × 2p matrix (the matrix BAB, see (3.14)). Note that, with our
expression of V we are able to give simple sufficient conditions ensuring that V > 0 (see Lemma
3.2 below).
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• Finally our approach can be easily extended to the the case where the variables Y,X(1), · · · , X(p)

are vector-valued (see Section 6.1).

Proof of Proposition 3.2. Starting from Lemma 3.1 and Proposition 3.1, it suffices to apply the
delta-method to the function φ : Rp × Rp → R defined by

φ(x, y) = xty .

The proof Proposition 3.2 is complete by evaluating the differential Dφx,y of φ at point (x, y):

Dφx,y(h1, h2) = yth1 + xth2 = (y, x)t(h1, h2) . �

To build a confidence interval for R2, it remains to find a consistent estimator of V . We shall simply
replace each element in the definition of V by its empirical counterpart.

Let then Â be the 2p× 2p symmetric matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then

Âj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(X

(k)
i −X

(k)
)ε̂2i ;

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Âj,k =
1

n

n∑
i=1

(Yi −Y)2ê
(j−p)
i ê

(k−p)
i ,

where ê
(k−p)
i = (X

(k−p)
i −X

(k−p)
)− θ̂k−p(Yi −Y);

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Âj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(Yi −Y)ε̂iê

(k−p)
i .

Proposition 3.3. Let

V̂n = (θ̂1, . . . , θ̂p, α̂1, . . . , α̂p)B̂ÂB̂(θ̂1, . . . , θ̂p, α̂1, . . . , α̂p)
t . (3.15)

Under Assumptions 2.1 and 2.3 and E(Y 4) <∞, we have

lim
n→∞

V̂n = V almost surely.

Proof of Proposition 3.3. Recall that, by the strong law of large numbers,

lim
n→∞

(α̂1, . . . , α̂p, θ̂1, . . . , θ̂p)
t = (α1, . . . , αp, θ1, . . . , θp)

t almost surely,

and
lim
n→∞

B̂ = B almost surely.

Hence, it remains to prove that Â converges to A almost surely.
To prove this point, we first introduce the matrix Ã defined as follows:
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• If (j, k) ∈ {1, . . . , p}2 then

Ãj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(X

(k)
i −X

(k)
)ε2i ;

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Ãj,k =
1

n

n∑
i=1

(Yi −Y)2e
(j−p)
i e

(k−p)
i ;

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Ãj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(Yi −Y)εie

(k−p)
i .

Since E(Y 4) <∞ and E(X(j)4) <∞, we deduce from the strong law of large numbers that

lim
n→∞

Ã = A almost surely.

Let us now prove that, for (j, k) ∈ {1, . . . , p}2,

lim
n→∞

|Âj,k − Ãj,k| = 0 almost surely.

We write ε̂2i = ε2i +Ri, with Ri = 2εi(ε̂i − εi) + (ε̂i − εi)2. One can easily see that

|Ri| ≤ 2

p∑
`=0

|(α̂` − α`)X
(`)
i εi|+ (p+ 1)

p∑
`=0

(α̂` − α`)2X
(`)
i

2
. (3.16)

Moreover

|Âj,k − Ãj,k| ≤
1

n

n∑
i=1

|(X(j)
i −X

(j)
)(X

(k)
i −X

(k)
)Ri| . (3.17)

Combining (3.16) and (3.17), and using that |α̂j−αj | converges almost surely to 0, we infer that Âj,k−Ãj,k

converges almost surely to 0 as soon as

lim sup
n→∞

1

n

n∑
i=1

|X(j)
i X

(k)
i X

(`)
i εi| <∞ and lim sup

n→∞

1

n

n∑
i=1

|X(j)
i X

(k)
i X

(`)
i

2
| <∞ almost surely,

which is true (applying once again the strong law of large numbers) since E(Y 4) <∞ and E(X(j)4) <∞
for any j ∈ {1, . . . , p}.

Let us now prove that, for (j, k) ∈ {p+1, . . . , 2p}2, Âj,k−Ãj,k converges almost surely to 0 as n→∞.

We write ê
(j−p)
i ê

(k−p)
i = e

(j−p)
i e

(k−p)
i + Ti, with

|Ti| ≤ |e(j−p)i (ê
(k−p)
i − e(k−p)i )|+ |e(k−p)i (ê

(j−p)
i − e(j−p)i )|

+
1

2
(ê

(k−p)
i − e(k−p)i )2 +

1

2
(ê

(j−p)
i − e(j−p)i )2 . (3.18)
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For ` ∈ {1, . . . , p}, let β` = E(X`)− θ`E(Y ) and β̂` = X
(`) − θ̂`Y. With these notations

X
(`)
k = β` + θ`Yk + e

(`)
k and X

(`)
k = β̂` + θ̂`Yk + ê

(`)
k . (3.19)

From (3.18) and (3.19), we infer that

|Ti| ≤ |e(j−p)i (β̂k−p − βk−p)|+ |e
(j−p)
i Yi(θ̂k−p − θk−p)|

+ |e(k−p)i (β̂j−p − βj−p)|+ |e(k−p)i Yi(θ̂j−p − θj−p)|

+ (β̂k−p − βk−p)2 + (β̂j−p − βj−p)2

+ (θ̂k−p − θk−p)2Y 2
i + (θ̂j−p − θj−p)2Y 2

i . (3.20)

Moreover

|Âj,k − Ãj,k| ≤
1

n

n∑
i=1

|(Yi −Y)2Ti| . (3.21)

Combining (3.20) and (3.21), and using that |β̂` − β`| and |θ̂` − θ`| converge almost surely to 0, we infer
that Âj,k − Ãj,k converges almost surely to 0 as soon as, almost surely

lim sup
n→∞

1

n

n∑
i=1

|Y 2
i e

(j−p)
i | <∞, lim sup

n→∞

1

n

n∑
i=1

|Y 3
i e

(j−p)
i | <∞, and lim sup

n→∞

1

n

n∑
i=1

Y 4
i <∞,

which is true (applying once again the strong law of large numbers) since E(Y 4) <∞ and E(X(j)4) <∞
for any j ∈ {1, . . . , p}.

The fact that, for (j, k) ∈ {1, . . . , p} × {p + 1, . . . , 2p}, Âj,k − Ãj,k converges almost surely to 0 as
n→∞ may be proved exactly in the same way.

As an immediate Corollary, we get

Corollary 3.1. Assume that Assumptions 2.1 and 2.3 hold, and that E(Y 4) < ∞. Assume also that
V > 0, where V is defined by (3.14). For δ ∈ (0, 1), let c1−(δ/2) be the quantile of order 1 − δ of the

N (0, 1)-distribution, and let V̂n be defined by (3.15). ThenR̂2 −
c1−(δ/2)

√
V̂n√

n
, R̂2 +

c1−(δ/2)

√
V̂n√

n


is an asymptotic confidence interval for R2 of level 1− δ.

Remark 3.2. As is sensitivity analysis, one can also define

R2
Ti = 1−

Var(ProjV(−i)(Y ))

Var(Y )
,

where V(−i) is the linear space of L2 generated by the variables 1, X(1), . . . , X(i−1), X(i+1), . . . , X(p). Then
R2
Ti

is the proportion of the variance of Y that is not explained by the best linear predictor based on the

12



variables 1, X(1), . . . , X(i−1), X(i+1), . . . , X(p). Denoting by R2
(−i) the proportion of the variance of Y that

is explained by the best linear predictor based on 1, X(1), . . . , X(i−1), X(i+1), . . . , X(p), we immediately see
that R2

Ti
= 1 − R2

(−i). Consequently, a confidence interval for R2
Ti

is directly obtained from a confidence

interval for R2
(−i).

To be complete, we discuss the positivity of the variance term V .

Lemma 3.2. Assume that M0 is invertible, that E((X(j)−E(X(j))2ε2) <∞ and Assumption 3.1 holds.

1. If R2 = 1 then R̂2 = 1 almost surely, and V = 0.

2. If R2 = 0 then V = 0, and nR̂2 converges in distribution to (G1, . . . , Gp)(Gp+1, . . . , G2p)
t, where

(G1, . . . , G2p) is the Gaussian random vector with covariance matrix BAB.

3. If R2 > 0 and if the family

((Y −E(Y ))2, ((Y −E(Y ))(X(j)−E(X(j))))1≤j≤p, ((X
(j)−E(X(j)))(X(j)−E(X(j))))1≤i≤j≤p) (3.22)

is linearly independent, then V > 0.

Remark 3.3. The fact that the family (3.22) is linearly independent implies that (Y,X(1), . . . , X(p)) is
also linearly independent, so that R2 < 1.

Remark 3.4. Note that one can easily check that the variable (G1, . . . , Gp)(Gp+1, . . . , G2p)
t of Item 2 is

non negative. Indeed, in that particular case, (G1, . . . , Gp)
t = M−1

0 (Z1, . . . , Zp)
t and (Gp+1, . . . , G2p)

t =
(Var(Y ))−1(Z1, . . . , Zp)

t, where (Z1, . . . , Zp)
t is a Gaussian vector with covariance matrix (Ai,j)1≤i,j≤p.

The asymptotic distribution of Item 2 may be used to test H0 : R2 = 0 against H1 : R2 6= 0, but it
is simpler to test the equivalent hypothesis H0 : α1 = · · · = αp = 0 against H1 : αi 6= 0 for some
i ∈ {1, . . . , p} (see Remark 2.3).

Proof of Lemma 3.2. Item 1 is clear: R2 = 1 if and only if Y = α0 + α1X
(1) + · · · + αpX

(p)

almost surely. In that case R̂2 = 1 almost surely. Consequently R̂2 − R2 = 0 almost surely, and
V = 0. We now prove Item 2. R2 = 0 if and only if Y − E(Y ) is orthogonal to the space generated by
(X(1) − E(X(1)), . . . , (X(p) − E(X(p))). This is equivalent to α1 = · · · = αp = 0, which is also equivalent
to θ1 = · · · = θp = 0. This implies that V = 0. Applying Proposition 3.1, we see that

√
n(α̂1, . . . , α̂p, θ̂1, . . . , θ̂p)

t L−→
n→∞

N2p(0,B A B).

The last assertion of Item 2 follows by noting that

nR̂2 =
(√

n(θ̂2, . . . , θ̂p)
) (√

n(α̂2, . . . , α̂p)
)t
.

We now prove Item 3. Since R2 > 0, it follows that the two vectors (α1, . . . , αp)
t and (θ1, . . . , θp)

t are
not equal to (0, . . . , 0)t. Let

(a1, . . . , ap, b1, . . . , bp)
t = B(θ1, . . . , θp, α1, . . . , αp)

t .
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By definition of the matrix B, and since M0 is invertible, we infer that the two vectors (a1, . . . , ap)
t and

(b1, . . . , bp)
t are not equal to (0, . . . , 0)t.

Now, by definition, V = (a1, . . . , ap, b1, . . . , bp) A(a1, . . . , ap, b1, . . . , bp)
t. Since A is the covariance

matrix of the vector(
(X(1) − E(X(1)))ε, . . . , (X(p) − E(X(p)))ε, (Y − E(Y ))e(1), . . . , (Y − E(Y ))e(p)

)t
,

we can write

V = Var
(
a1(X

(1) − E(X(1)))ε+ · · ·+ ap(X
(p) − E(X(p)))ε+ b1(Y − E(Y ))e(1) + · · ·+ bp(Y − E(Y ))e(p)

)
.

Hence V = 0 if and only if

a1(X
(1)−E(X(1)))ε+· · ·+ap(X(p)−E(X(p)))ε = −(b1(Y−E(Y ))e(1)+· · ·+bp(Y−E(Y ))e(p)) almost surely.

(3.23)
Recall now that

ε = (Y − E(Y ))− α1(X
(1) − E(X(1)))− · · · − αp(X(p) − E(X(p)))

e(k) = (X(k) − E(X(k)))− θk(Y − E(Y )) for k ∈ {1, . . . , p}.

Without loss of generality, assume that α1 6= 0. Then, on the left side of (3.23) the terms

− a1α1(X
(1) − E(X(1)))2,−a2α1(X

(1) − E(X(1)))(X(2) − E(X(2))),

. . . ,−apα1(X
(1) − E(X(1)))(X(p) − E(X(p)))

appear, but they do not appear in the right side of (3.23). Since we assumed that the family (3.22) is
linearly independent, we infer that V = 0 implies a1 = · · · = ap = 0. Since we know that (a1, . . . , ap)

t is
not equal to (0, . . . , 0)t, we conclude that V > 0.

4 Asymptotic joint distribution of individual R2’s

For k ∈ {1, . . . , p}, let U (k) be the L2-subspace generated by 1 and X(k), and let (assuming that Var(Y ) >
0)

R2
(k) =

Var(ProjU(k)(Y ))

Var(Y )
.

From Lemma 3.1, we have R2
(k) = τkθk, where θk is defined by (3.2) and

τk =
Cov(Y,X(k))

Var(X(k))
. (4.1)

The empirical estimator of R2
(k) is then

R̂2
(k) = τ̂kθ̂k, where τ̂k =

∑n
i=1(Yi −Y)(X

(k)
i −X

(k)
)∑n

i=1(X
(k)
i −X

(k)
)2

. (4.2)
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The asymptotic distribution of
√
n(R̂2

(k) − R
2
(k)) is given in Proposition 3.2. In this section, we give the

asymptotic joint distribution of

√
n
(

(R̂2
(1) . . . , R̂

2
(p))

t − (R2
(1), . . . , R

2
(p))

t
)
.

Let τ = (τ1, . . . , τp)
t and τ̂ = (τ̂1, . . . , τ̂p)

t. The first step is to identify the limit distribution of

√
n
(

[τ̂ : θ̂]− [τ : θ]
)
.

Let us then define the two matrices involved in this asymptotic distribution. For k ∈ {1, . . . , p}, let

ε(k) = Y − ProjU(k)(Y ) and ε
(k)
i = Yi − Proj

U
(k)
i

(Yi),

where U
(k)
i is the subspace of L2 generated by 1 and X

(k)
i . Let also ε(k) = (ε

(k)
1 , . . . , ε

(k)
n )t. Recall that

e(k) and e
(k)
i have been defined in (3.8).

Assumption 4.1. E((X(j) − E(X(j)))2ε(j)
2
) <∞ and E((Y − E(Y ))2e(j)

2
) <∞ for all j ∈ {1, . . . , p}.

Let then C be the 2p× 2p symmetric matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then

Cj,k = E((X(j) − E(X(j)))(X(k) − E(X(k)))ε(j)ε(k)); (4.3)

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Cj,k = E((Y − E(Y ))2e(j−p)e(k−p));

• (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Cj,k = E((X(j) − E(X(j)))(Y − E(Y ))ε(j)e(k−p)).

Let D be the 2p× 2p diagonal matrix defined as follows :

• If j ∈ {1, . . . , p} then Dj,j = (Var(X(j)))−1.

• If j ∈ {p+ 1, . . . , 2p} then Dj,j = (Var(Y ))−1.

Proposition 4.1. Under Assumption 4.1 and assuming that Var(X(j)) > 0 for all j ∈ {1, . . . , p}, we
have √

n
(

[τ̂ : θ̂]− [τ : θ]
)

L−→
n→∞

N2p(0,DCD).

Proof of Proposition 4.1. Let D̂ be the 2p× 2p diagonal matrix defined as follows :

• If j ∈ {1, . . . , p} then D̂j,j = (Varn(X(j)))−1.

• If j ∈ {p+ 1, . . . , 2p} then D̂j,j = (Varn(Y))−1.
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Starting from (3.2) and (3.5), and noting that, for k ∈ {1, . . . , p},

Yi −Y = τk(X
(k)
i −X

(k)
) + (ε

(k)
i − ε

(k)) ,

(X
(k)
i −X

(k)
) = θk(Yi −Y) + (e

(k)
i − e

(k)) ,

we see that (recall that X0 and X̃0 have been defined in (3.4) and (3.10))

√
n
(

[τ̂ : θ̂]− [τ : θ]
)

= D̂
1√
n

(ε(1)
t
X(1)
0 , . . . , ε(p)

t
X(p)
0 , (Y−Y1n)te(1), . . . , (Y−Y1n)te(p))t . (4.4)

One can easily check that

1√
n

(
(ε(1)

t
X(1)
0 , . . . , ε(p)

t
X(p)
0 , (Y−Y1n)te(1), . . . , (Y−Y1n)te(p))t

− (ε(1)
t
X̃(1)
0 , . . . , ε(p)

t
X̃(p)
0 , (Y−E(Y )1n)te(1), . . . , (Y−E(Y )1n)te(p))t

)
P−→

n→∞
0. (4.5)

Now, by the multivariate central limit theorem,

1√
n

(ε(1)
t
X̃(1)
0 , . . . , ε(p)

t
X̃(p)
0 , (Y−E(Y )1n)te(1), . . . , (Y−E(Y )1n)te(p))t

L−→
n→∞

N2p(0,C). (4.6)

Moreover, by the strong law of large numbers,

lim
n→∞

D̂ = D almost surely (4.7)

The result follows from (4.4), (4.5), (4.6) and (4.7). �

Let H be the matrix with p rows and 2p column such that

• If (i, j) ∈ {1, . . . , p}2 then Hi,j = θiδi,i.

• If i ∈ {1, . . . , p} and j ∈ {p+ 1, . . . , 2p} then Hi,j = τiδi,p+i.

As a consequence of Proposition 4.1, we have

Proposition 4.2. Under Assumption 4.1 and assuming that Var(X(j)) > 0 for all j ∈ {1, . . . , p}, we
have √

n
(

(R̂2
(1) . . . , R̂

2
(p))

t − (R2
(1), . . . , R

2
(p))

t
)

L−→
n→∞

N (0,HDCDHt).

Remark 4.1. Other quantities of interest are

S2
(k) =

Var(ProjU(k)(Y ))

Var(ProjV (Y ))
for k ∈ {1, . . . , p},

which are the proportions of the variance of ProjV (Y ) that are explained by the best linear predictors in
L2 based on the variables 1, X(k). Note that

S2
(k) =

R2
(k)

R2
=
τkθk
θtα

.

Then, the asymptotic distribution of
√
n
(

(Ŝ2
(1) . . . , Ŝ

2
(p))

t − (S2
(1), . . . , S

2
(p))

t
)

may be derived from the

asymptotic distribution of
√
n
(

[τ̂ : θ̂ : α̂]− [τ : θ : α]
)

via the delta method.
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Proof of Proposition 4.2. Let φ : R2p → Rp be such that φ(x1, . . . , xp, y1, . . . , yp) = (x1y1, . . . , xpyp)
t.

Since (
(R̂2

(1) . . . , R̂
2
(p))

t − (R2
(1), . . . , R

2
(p))

t
)

= φ([τ̂ : θ̂])− φ([τ : θ]) ,

it suffices to apply the delta method to the function φ. The results follows from Proposition 4.1 and the
fact that the differential Dφτ ,θ of φ at point (τ ,θ) is given by

Dφτ ,θ(h) = Hh . �

To conclude this section, let us a give a consistent estimator of the matrix HDCDHt. We shall
simply replace each matrix by its empirical counterpart.

Let then Ĉ be the 2p× 2p symmetric matrix defined as follows:

• If (i, j) ∈ {1, . . . , p}2 then

Ĉj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(X

(k)
i −X

(k)
)ε̂

(j)
i ε̂

(k)
i ,

where ε̂
(k)
i = (Yi −Y)− τ̂k(X

(k)
i −X

(k)
);

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Ĉj,k =
1

n

n∑
i=1

(Yi −Y)2ê
(j−p)
i ê

(k−p)
i ;

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Ĉj,k =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)(Yi −Y)ε̂

(j)
i ê

(k−p)
i .

Proposition 4.3. Assume that Var(X(j)) > 0, that E(Y 4) < ∞ and that E(X(j)4) < ∞ for any j ∈
{1, . . . , p}. Then

lim
n→∞

ĤD̂ĈD̂Ĥt = HDCDHt almost surely.

Proof of Proposition 4.3. By the strong law of large numbers, Ĥ and D̂ converge almost surely to H
and D respectively. Hence, it remains to prove that Ĉ converges to C almost surely, which can be done
as in the proof of Proposition 3.3.

5 Simulations

We shall consider different models. For each model, we shall estimate the coverage level of two confidence
intervals of level 95% for the R2, for n = 200 to n = 1000, via a basic Monte-Carlo procedure (with
N = 3000 repetitions).
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n 200 300 400 500 600 700 800 900 1000

CI1 0.942 0.945 0.952 0.949 0.951 0.947 0.947 0.952 0.95

CI2 0.949 0.952 0.954 0.95 0.953 0.951 0.949 0.951 0.951

Table 1: Estimated coverage levels of CI1 and CI2 at level 95% for model (5.1) with ε ∼ N (0, 1) and
ProjV (Y ) = 0.5 + 0.5X(1) +X(2).

n 200 300 400 500 600 700 800 900 1000

CI1 0.934 0.937 0.941 0.942 0.947 0.949 0.95 0.945 0.95

CI2 0.936 0.932 0.933 0.936 0.937 0.936 0.939 0.935 0.934

Table 2: Estimated coverage levels of CI1 and CI2 at level 95% for model (5.1) with ε ∼ St(10) and
ProjV (Y ) = 0.5 + 0.5X(1) +X(2).

The first confidence interval (CI1) is the one described in Corollary 3.1 (with the small change that
we take the quantile tn,0.975 of the Student distribution St(n) instead of the quantile c0.975; this has no
theoretical justification, but can improve a bit the coverage level for small n). The second confidence
interval (CI2) is the non-asymptotic confidence interval ci.R2 of the R package MBESS, as described by
Kelley [6], and based on a precise approximation of the distribution of R̂2 given by Lee [8], [9], when the
vector (Y,X(1), . . . , X(p)) is Gaussian. It is clearly indicated in Kelley [7] (Discussion, page 552-553) that
CI2 is not robust to the non-normality of (Y,X(1), . . . , X(p)), which will be confirmed by the simulations.

5.1 An example where (Y,X(1), X(2)) is Gaussian

We consider here the model
Y = 0.5 + 0.5X(1) +X(2) + ε , (5.1)

where X1, X2, ε are i.i.d. with N (0, 1) distribution. Let V be the sub-space of L2 generated by
1, X(1), X(2), so that ProjV (Y ) = 0.5 + 0.5X(1) +X(2). One can then easily check that R2 = 5/9.

The estimated coverage levels for CI1 and CI2 are given in Table 1 below.
We see that the estimated coverage level of CI2 is always close to 0.95, which is not a surprise since

CI2 is based on a precise approximation of the distribution of R̂2 in the case where (Y,X(1), X(2)) is
Gaussian. We see that CI1 also gives very good results, with estimated coverage levels between 0.945
and 0.952 as soon as n ≥ 300.

5.2 An example where the error term has a Student distribution

We consider here a slight modification of the model (5.1), where ε ∼ St(10). Again, V is the sub-space of
L2 generated by 1, X(1), X(2), so that ProjV (Y ) = 0.5 + 0.5X(1) +X(2). One can then easily check that
R2 = 0.5.

The estimated coverage levels for CI1 and CI2 are given in Table 2 below.
We see that the estimated coverage level of CI2 is always between 0.932 and 0.94, and is not getting

closer to 0.95 as n increases. This confirms that CI2 is not robust to non normality, even when the
distribution of the error is symmetric. We see that CI1 is always better than CI2 as soon as n ≥ 300,
with a coverage level between 0.94 and 0.95 when n ≥ 400.
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n 200 300 400 500 600 700 800 900 1000

CI1 0.91 0.926 0.928 0.935 0.937 0.939 0.944 0.944 0.946

CI2 0.878 0.878 0.878 0.877 0.877 0.887 0.884 0.885 0.887

Table 3: Estimated coverage levels of CI1 and CI2 at level 95% for the heteroscedastic model (5.2) with
ProjV (Y ) = 0.5 + 0.5X(1) +X(2).

n 200 300 400 500 600 700 800 900 1000

CI1 0.935 0.941 0.943 0.943 0.943 0.948 0.947 0.945 0.947

CI2 0.875 0.871 0.885 0.868 0.861 0.87 0.866 0.874 0.878

Table 4: Estimated coverage levels of CI1 and CI2 at level 95% for model (5.3) with ProjV (Y ) '
−0.752 + 2.196|X|.

5.3 An heteroscedastic example

We continue with a modification of the model (5.1). We consider the model

Y = 0.5 + 0.5X(1) +X(2) +

(√
0.2 + 0.8X(1)2

)
e , (5.2)

where X(1), X(2), e are i.i.d. with N (0, 1) distribution. Let V be the sub-space of L2 generated by
1, X(1), X(2), so that ProjV (Y ) = 0.5 + 0.5X(1) +X(2). Again, one can easily check that R2 = 5/9.

The estimated coverage levels for CI1 and CI2 are given in Table 3 below.
We see that the estimated coverage level of CI2 is always around 0.88. Again, this confirms that CI2

is not robust to non normality. We see that CI1 is always better than CI2, with a coverage level greater
than 0.935 for n ≥ 500, and greater than 0.94 for n ≥ 800.

5.4 An example where the model is misspecified

We consider the model
Y = X2 + e , (5.3)

where X ∼ N (0, 1), e ∼ N (0, 1) and e is independent of X. Let V be the sub-space of L2 generated by
1, X, |X|. Elementary computations show that ProjV (Y ) = α0 + α1X + α2|X| with α0 ' −0.752, α1 =
0, α2 ' 2.196, and R2 ' 0.584. The model is misspecified in the sense that X2 does not belong to V . It
follows that the error term ε = Y − ProjV (Y ) is such that

E(ε|X) = X2 − α0 − α2|X| 6= 0 .

The estimated coverage levels for CI1 and CI2 are given in Table 4 below.
We see that the estimated coverage level of CI2 is always around 0.87. Again, this confirms that CI2

is not robust to non normality. We see that CI1 is always better than CI2, with a coverage level greater
than 0.94 for n ≥ 300.
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n 200 300 400 500 600 700 800 900 1000

CI1 0.914 0.926 0.927 0.933 0.934 0.939 0.94 0.94 0.942

CI2 0.75 0.755 0.752 0.751 0.754 0.759 0.74 0.755 0.746

Table 5: Estimated coverage levels of CI1 and CI2 at level 95% for model (5.3) with ProjV (Y ) = X2.

n 200 300 400 500 600 700 800 900 1000

CI1 0.922 0.932 0.933 0.936 0.94 0.941 0.946 0.943 0.943

CI2 0.872 0.863 0.857 0.861 0.863 0.853 0.862 0.858 0.861

Table 6: Estimated coverage levels of CI1 and CI2 at level 95% for The Poisson regression model with
ProjV (Y ) = 0.5 +X(1) +X(2).

5.5 An example of polynomial regression

We consider again the model (5.3), but now V is the sub-space of L2 generated by 1, X,X2. It is then
obvious that ProjV (Y ) = α0 + α1X + α2X

2 with α0 = 0, α1 = 0, α2 = 1, and R2 = 2/3.
The estimated coverage levels for CI1 and CI2 are given in Table 5 below.
We see that the estimated coverage level of CI2 is always around 0.75. Again, this confirms that CI2

is not robust to non normality. We see that CI1 is always much better than CI2, with a coverage level
greater than 0.93 for n ≥ 500 and greater than 0.94 for n ≥ 800.

5.6 An example of Poisson regression

In this example, V is the subspace of L2 generated by 1, X(1), X(2), where X(1), X(2) are independent,
X(1) is uniformly distributed over [0, 1], and X(2) is exponentially distributed with parameter 1. The
response variable Y is a count variable, whose conditional distribution given X(1), X(2) is a Poisson
distribution with parameter 0.5 + X(1) + X(2). In that case, we have ProjV (Y ) = E(Y |X(1), X(2)) =
α0 + α1X

(1) + α2X
(2) with α0 = 0.5, α1 = 2, α2 = 1, and R2 = 13/37. Note that this is again an

heteroscedastic model, since

Var(ε|X(1), X(2)) = Var(Y − ProjV (Y )|X(1), X(2)) = 0.5 +X(1) +X(2) .

The estimated coverage levels for CI1 and CI2 are given in Table 6 below.
We see that the estimated coverage level of CI2 is always around 0.86. Again, this confirms that CI2

is not robust to non normality. We see that CI1 is always much better than CI2, with a coverage level
greater than 0.93 for n ≥ 300 and greater than 0.94 for n ≥ 600.

6 Extension to higher dimension and discussions

6.1 Extension to vector-valued random variables

In this section, we assume that (Y,X(1), . . . X(p)) is a random vector with value in Hp+1, where H is a
real separable Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖H. Let L2(H) be the space of H-valued
random variables Z such that E(‖Z‖2H) <∞, and recall that L2(H) is also a separable Hilbert space with
inner product E(〈·, ·〉).
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We assume in the following that all the variables Y,X(1), . . . X(p) belong to L2(H). Let V be the
subspace of L2(H) generated by the variables (X(1), . . . , X(p)), and let ProjV (Y ) be the orthogonal
projection of Y onto V . To measure the quality of approximation of Y by ProjV (Y ), one can consider
the coefficient R2 defined by (assuming that E(‖Y ‖2H) > 0):

R2 =
E
(
‖ProjV (Y )‖2H

)
E
(
‖Y ‖2H

) .

Let (Yi, X
(1)
i , . . . X

(p)
i )1≤i≤n be n independent copies of the vector (Y,X(1), . . . X(p)), and let Vi be

the L2(H)-subspace generated by the variables (X
(1)
i , . . . , X

(p)
i ). Let ε = Y − ProjV (Y ) and εi = Yi −

ProjVi(Yi). We can then write
Yi = ProjVi(Yi) + εi.

where the variables εi are such that E(〈X(j)
i , εi〉) = 0 for any j ∈ {0, . . . , p}.

Assume that X(1), . . . , X(p) are linearly independent (as a family of random variables in L2(H)). Then
one can uniquely write

Yi = α1X
(1)
i + · · ·+ αpX

(p)
i + εi .

Let α = (α1, . . . , αp)
t ∈ Rp, and M be the matrix such that

Mj,` = E(〈X(j), X(`)〉) . (6.1)

Since X(1), . . . , X(p) are linearly independent, M is invertible and one can easily show that

α = M−1(E(〈X(1), Y 〉) . . . ,E(〈X(p), Y 〉))t .

Let now M̂ be the matrix such that M̂j,` = n−1
∑n

i=1〈X
(j)
i , X

(`)
i 〉. By the strong law of large numbers

lim
n→∞

M̂ = M almost surely. (6.2)

Since M is invertible, for n large enough, M̂ is invertible. Consequently, one can define

α̂ = (α̂1, . . . , α̂p)
t = M̂−1

(
1

n

n∑
i=1

〈X(1)
i , Yi〉, . . . ,

1

n

n∑
i=1

〈X(p)
i , Yi〉

)t
.

It follows that

α̂−α = (α̂1, . . . , α̂p)
t − (α1, . . . , αp)

t = M̂−1

(
1

n

n∑
i=1

〈X(1)
i , εi〉, . . . ,

1

n

n∑
i=1

〈X(p)
i , εi〉

)t
. (6.3)

Then, proceeding as in Section 2.2, we see that α̂ converges almost surely to α, and that: if for any
j ∈ {0, . . . , p}, one has E(〈X(j), ε〉2) <∞, then

√
n(α̂−α)

L−→
n→∞

Np(0,M−1M(ε)M−1) ,

where M(ε) is the matrix defined by M(ε)j,` = E(〈X(j), ε〉〈X(`), ε〉) for any 0 ≤ j, ` ≤ p.
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One can then estimate the matrix M(ε) as in Section 2.3. Define the residuals ε̂i by:

ε̂i = Yi − α̂1X
(1)
i − · · · − α̂pX

(p)
i .

Let then

M̂(ε)j,` =
1

n

n∑
i=1

〈X(j)
i , ε̂i〉〈X(`)

i , ε̂i〉 .

As in Proposition 2.3, the following consistency result holds: assume that E(‖X(j)‖2H‖ε‖2H) < ∞ and
E(‖X(j)‖4H) <∞ for any j ∈ {0, . . . , p}. Then, for any j, ` ∈ {0, . . . , p},

lim
n→∞

M̂(ε)j,` = M(ε)j,` almost surely.

Consequently, since M is invertible,

lim
n→∞

M̂−1M̂(ε)M̂−1 = M−1M(ε)M−1 almost surely.

The empirical estimator of R2 is

R̂2 =

∑n
i=1 ‖ProjVi(Yi)‖

2
H∑n

i=1 ‖Yi‖2H
.

Let θ = (θ1, . . . , θp)
t, with θ̂ = (θ̂1, . . . , θ̂p)

t

θj =
E(〈X(j), Y 〉)
E(‖Y ‖2H)

and θ̂j =

∑n
i=1〈X

(j)
i , Yi〉∑n

i=1 ‖Yi‖2H
for j ∈ {1, . . . , p}.

Then, as in Lemma 3.1 one can prove that R2 = θtα and R̂2 = θ̂tα̂. Let

e(k) = X(k) − ProjW (X(k)) and e
(k)
i = X

(k)
i − ProjWi

(X
(k)
i ), (6.4)

where W is the subspace of L2(H) generated by Y , and Wi is the subspace of L2(H) generated by Yi. Let

also e(k) = (e
(k)
1 , . . . , e

(k)
n )t. As in Proposition 3.2, one can prove the following result: if E(〈X(j), ε〉2) <∞

and E(〈Y, e(j)〉2) <∞ for all j ∈ {1, . . . , p}. Then

√
n
(
R̂2 −R2

)
L−→

n→∞
N (0, V ).

where
V = (θ1, . . . , θp, α1, . . . , αp)BAB(θ1, . . . , θp, α1, . . . , αp)

t .

Here, the matrices A and B are as follows:

• If (j, k) ∈ {1, . . . , p}2 then
Aj,k = E(〈X(j), ε〉〈X(k), ε〉);

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then

Aj,k = E(〈Y, e(j−p)〉〈Y, e(k−p)〉);
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• (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then

Aj,k = E(〈X(j), ε〉〈Y, e(k−p)〉).

Let δj,k = 0 if j 6= k and δj,j = 1 and let B be the 2p× 2p matrix defined as follows:

• If (j, k) ∈ {1, . . . , p}2 then Bj,k = (M−1)j,k (see (6.1) for the definition of M);

• If (j, k) ∈ {p+ 1, . . . , 2p}2 then Bj,k = (E(‖Y ‖2H))−1δj,k;

• If (j, k) ∈ {1, . . . , p} × {p+ 1, . . . , 2p} then Bj,k = 0.

Now the matrices A and B can be consistently estimated by their empirical counterparts based on the
residuals, provided E(‖Y ‖4H) < ∞ and E(‖X(j)‖4H) < ∞ for any j ∈ {1, . . . , p} (as done in the proof
Proposition 3.3). As in Proposition 3.3 this provides a consistent estimator of the limiting variance V .

6.2 An alternative to the usual sensitivity analysis

In sensitivity analysis, one usually assumes that

Y = m(X(1), . . . , X(p)) (6.5)

(or that Y = m(X(1), . . . , X(p)) + ε as in [4]) where (X(1), . . . , X(p)) is a p random vector with a known
distribution = P1 ⊗ · · · ⊗ Pp on a compact subset X of Rp. The number of variables p may be large,
and the function m is an unknown function from Rp to R, which may present strong non-linearities and

high order interaction effects between its coordinates. On the basis of a n-sample (Yi, X
(1)
i , . . . , X

(p)
i ),

for i = 1, . . . , n, we want to measure the impact of the main effects or interactions, i.e. to determine
the influence of each variable or group of variables on the output variable Y . The usual sensitivity
analysis is mainly based on Hoeffding’s decomposition, strongly related to the independency between
the inputs variables X(1), . . . , X(p). In that latter case, if m is square integrable, one may consider the
classical Hoeffding-Sobol decomposition [14] that leads to write m according to its ANOVA functionnal
expansion:

m(X(1), . . . , X(p)) = m0 +
∑

i1 < i2 < · · · < ik,
ii, . . . , ik ∈ {1, . . . , p}

mi1,...,ik(X(i1), . . . , X(ik)) (6.6)

where the functions mi1,...,ik are centered and orthogonal in L2 involving conditional expectation that is

m0 = E(m(X(1), . . . , X(p))), mj(X
(j)) = E(m(X(1), . . . , X(p))|X(j))−m0

mj,k(X
(j), X(k)) = E(m(X(1), . . . , X(p))|X(j), X(k))−mj(X

(j))−mk(X
(k))−m0, . . .

Under the assumption of independence on the X(j)’s this decomposition is unique, with

E(mi1,...,ik(X(i1), . . . , X(ik))) = 0

and for all (i1, . . . , ik) 6= (i′1, . . . , i
′
`),

E
(
mi1,...,ik(X(i1), . . . , X(ik))mi′1,...,i

′
`
(X(i′1), . . . , X(i′`))

)
= 0 .
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This leads to the following variance decomposition:

Var(Y ) =
∑

i1 < i2 < · · · < ik,
ii, . . . , ik ∈ {1, . . . , p}

Var
(
mi1,...,ik(X(i1), . . . , X(ik))

)
.

The Sobol sensitivity indices introduced by Sobol [14] are defined for any group (X(i1), . . . , X(ik)) by

Si1,...,ik =
Var

(
mi1,...,ik(X(i1), . . . , X(ik))

)
Var (Y )

.

They quantify the contribution of a subset of variables (X(1), . . . , X(p)) to the output Y . Several ap-
proaches are available for estimating these sensitivity indices, see for example Iooss and Lemâıtre [5] for
a recent review.

An alternative approach, which is much less computationally expensive, is as follows. Recall that the
X(i)’s are bounded and let X̃(i) = X(i) − E(X(i)) (this centering may be done, since the distribution of
(X(1), . . . , X(p)) is known). Since the variables X(j)’s are independent, the family

F =
{
X̃(i1)X̃(i2) · · · X̃(ik), i1 < · · · < ik

}
is an orthogonal family of L2. We can then compute the individual R2’s for this family, that is

R2
i1,...,ik

=
Var

(
ProjV (i1,...,ik)(Y )

)
Var (Y )

.

where V (i1,...,ik) is the subspace of L2 generated by the product X̃(i1)X̃(i2) · · · X̃(ik).
The main difference between the two approaches is that the sum of all the indices Ri1,...,ik is not equal

to 1, unless Y belongs to the subspace VF of L2 generated by the family F . More precisely, we have that∑
i1 < i2 < · · · < ik,

ii, . . . , ik ∈ {1, . . . , p}

R2
i1,...,ik

=
Var

(
ProjVF (Y )

)
Var (Y )

.

The advantage of using these R2’s is that they are very easy to estimate (based on n independent

observations (Yi, X
(1)
i , . . . , X

(p)
i )1≤i≤n). In addition, as we have seen, we can give confidence intervals for

these quantities.

6.3 A first step toward robust screening

In this section, we outline a strategy for robust screening based on the results of Section 4.

Quick context The basic idea of screening is to find, among a set of covariates X(1), . . . , X(p), the ones
having an association with an outcome Y . One usual way which is often cited consists in computing the
p correlations:

cor(Y,X(j)) for 1 ≤ j ≤ p.
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Then, given a threshold γn we keep the covariates such that:

|cor(Y,X(j))| ≥ γn.

To assess the performance of a screening method, whether it is based on computing p correlations as we
mentioned or not, one has to ask two questions:

1. Is the method able to retrieve all the covariates that are associated with the outcome Y ? This
question is known in the literature as the Sure Screening Property (see Fan and Lv [1]).

2. Is the method specific enough, i.e. can we ensure that not too many covariates are wrongly selected?
This question directly relates to the control of the False Discovery Rate (FDR).

The questions of the sure screening property and the control of the FDR in a model-free environment is
a growing field of research (see for instance Fan and Lv [1], Zhao and Li [16], Fan and Song [2], W. Pan,
X. Wang, W. Xiao, H. Zhu [13]) To answer both questions, the choice of the threshold γn is crucial. One
paper which is often cited is the paper by Fan and Lv [1]. Their context is the following: they suppose
a true joint linear model:

Y =

p∑
j=1

X(j)β?j + ε

where ε is a standard Gaussian error. Moreover, they suppose that for each j = 1, . . . , p, the X
(j)
i are i.i.d

(respectively to i = 1, . . . , n). They also suppose that X(j) are standardized with mean 0 and standard
deviation 1. They consider the screening set:

M̂ =
{
j : |cor(Y,X(j))| ≥ n

log(n)

}
.

Ensuring the Sure Screening Property in that specific case consists in showing that the support of β? is
at least included in M̂ with a probability close to one. However, the threshold chosen γn = n/ log(n)
does not limit the number of false positives, i.e., the covariates that are not in the support of β? but
are selected marginally. This threshold, although not having any theoretical support for controlling the
FDR, is widely used in the screening literature.

The two questions 1. and 2. above are addressed for instance in Zhao and Li [16] in the context of
the Cox model. In this paper the authors propose to choose

M̂ =

{
j :

√
n|α̂j |√
v̂j
≥ γ

}
,

where α̂j corresponds to the estimator in the marginal (and possibly misspecified) model, and v̂j is a
consistent estimator of the asymptotic variance of

√
n(α̂j −αj). According to Zhao and Li [16], denoting

by Φ the distribution function of a standard Gaussian and by q the expected false positive rate, the idea
is to choose

γ = Φ−1
(

1− q

2

)
.

It is common in papers dealing with screening to consider that independence beetwen X(j) being truly
associated with Y in the joint model is equivalent to being associated with Y marginally (see Condition
3 in [1] and Assumption 8 in Zhao and Li [16])). However, if we are working in a model-free context as
in Section 4, these assumptions are unnecessary and it seems possible to define a threshold γ using the
distribution function Φ.

25



Our idea. First, we highlight the fact that even in a model-free context, the question of screening the
covariates is still relevant as a lowering dimension step before trying to fit a joint association between
the remaining covariates and the outcome.

Recall from Section 4 the expression of τj and τ̂j given in Equation (4.1) and (4.2)

τj =
Cov(Y,X(j))

Var(X(j))
and τ̂j =

∑n
i=1(Yi −Y)(X

(j)
i −X

(j)
)∑n

i=1(X
(j)
i −X

(j)
)2

.

Then, Proposition 4.1 gives √
n(τ̂j − τj)

L−→
n→∞

N (0, vj)

where

vj =
E((X(j) − E(X(j)))2ε(j)

2
)

(Var(X(j)))2
.

Moreover, it has been shown in Section 4 that if we let

v̂j =
1

n

n∑
i=1

(X
(j)
i −X

(j)
)2

(Varn(X(j)))2

then, for all j = 1, . . . , p,
lim
n→∞

v̂j = vj almost surely.

Similarly to Zhao and Li [16], a reasonnable screening set rule should be

M̂ =

{
j :

√
n|τ̂j |√
v̂j
≥ γ

}
with γ = Φ−1

(
1− q

2

)
.

The next step is to show that this rule does indeed allow us to obtain the sure screening property, as
well as satisfactory control of the FDR. We believe that moment assumptions on the variables should be
sufficient to show these two properties, and we plan to study these issues in future work.
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