

Celullar Economics in Cell-Free

Olivier Borkowski

▶ To cite this version:

Olivier Borkowski. Celullar Economics in Cell-Free. Master. Université paris-saclay, France. 2024. hal-04405950

HAL Id: hal-04405950

https://hal.science/hal-04405950

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Celullar Economics in Cell-Free

Olivier Borkowski, PhD

Permanent researcher in Synthetic Biology Institut Micalis, INRAE - AgroParisTech - Univ. Paris-Saclay, France SyBER team

Email: Olivier.Borkowski@inrae.fr

Micalis Institute

21 Research Teams

- 340 people

- 130 scientists and engineers 140 PhD students and post-docs 70 scientific and administrative personnel

Themes

- (1) Emergence, control, and adaptation of pathogenic microorganisms
- (2) Microbial food and intestinal ecosystems(3) Synthetic and systems biology

Understand and use the relationship between protein production and bacterial physiology

Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction:

What are the fundamental principles underlying the regulation and coordination of biosynthesis in a given growth environment?

-> Bacterial growth law

Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction:

What are the fundamental principles underlying the regulation and coordination of biosynthesis in a given growth environment?

-> Bacterial growth law

Some major principles studied in bacterial physiology:

- Link between bacterial growth and nutrient concentrations in culture media (Monod, 1942)
- Link between the macromolecular composition and the cell doubling time (Schaechter et al., 1958)
- Linear relationships between RNA/DNA, RNA/protein, protein/DNA and growth rate (Bremer & Dennis, 1974)
- Increasing allocation of cellular resources to ribosome synthesis with increasing growth rate (Hwa & Scott, 2010)

-> New technology allows novel experiments

Experimental setup

Genomic regulations

E. coli living cells

Experimental setup

Genomic regulations

Intertwined Effects

-> New technology to decouple the many effects observed in living cells

Protein expression in an open system

A direct manipulation of the environment of protein production because it is an open system:

Protein expression in an open system

A direct manipulation of the environment of protein production because it is an open system:

- An alternative technology to study central process observed in living cells (replication, transcription, translation, degradation, metabolism)
- A versatile technology for bioengineering (Use in Synthetic Biology)

1. Description of Cell-Free Systems

History: First use of cell-free

What is the composition of a cell-free reaction?

Advantages of producing protein outside of the cell

Measurements in 384-well plate

Current existing protocol to produce bacterial cell extract

Alternative cell-free approach, the pure system

2. Current Applications of Cell-Free Systems in Academia and Industry

First major use of cell-free

Cell-free was first used in the 1960's by Nirenberg and Matthaei to understand the genetic code

American & German biochemist

Matthaei

Johannes Heinrich

Marshall Warren Nirenberg

THE DEPENDENCE OF CELL- FREE PROTEIN SYNTHESIS IN E. COLI UPON NATURALLY OCCURRING OR SYNTHETIC POLYRIBONUCLEOTIDES

By Marshall W. Nirenberg and J. Heinrich Matthaei*

NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND

Communicated by Joseph E. Smadel, August 3, 1961

A stable cell-free system has been obtained from E. coli which incorporates C14-valine into protein at a rapid rate. It was shown that this apparent protein synthesis was energy-dependent, was stimulated by a mixture of L-amino acids, and was markedly inhibited by RNAase, puromycin, and chloramphenicol. The present communication describes a novel characteristic of the system, that is, a requirement for template RNA, needed for amino acid incorporation even in the

First major use of cell-free

Nirenberg's laboratory notebooks

Nobel prize for the interpretation of the genetic code and its function in protein synthesis

They made a synthetic RNA only with the base uracil (poly U – codon UUU) and tested it in 20 tubes, each one with a different radioactive amino acid.

History

sigma-factor genetic system GCPR expression

What is the composition of a cell-free reaction?

Melinek B, et al. BioProcess International (2020)

What is the composition of a cell-free reaction?

Melinek B, et al. BioProcess International (2020)

Seok Hoon Hong et al. Frontiers in Chemistry 2014

Cell-extract preparation

Melinek B, et al. BioProcess International (2020)

Physical disruption

French press

Chemical disruption

Autolysis

Lysozyme

Protocol for home-made cell-extract preparation

Buffer composition

Melinek B, et al. BioProcess International (2020)

Amino Acid Translation
tRNA Translation

Mg-glutamate Ribosome maintenance

K-glutamate Ribosome stability

Folinic Acid A precursor for formylmethionine (fMet)

Spermidine Ribosome activity /RNA stability

Coenzyme A Regenerate ATP via glycolysis

NAD Regenerate ATP via glycolysis

3-PGA Regenerate ATP

AMPc regulating glycolysis

Nucleoside triphosphate (NTP) Tra

Transcription

Measurements in 384-well plate

Melinek B, et al. BioProcess International (2020)

Measurements in 384-well plate

Current existing protocol to produce bacterial cell extract

Melinek B, et al. BioProcess International (2020)

Table 1. Current existing protocols to produce cell-free lysates from bacteria cells

E. coli B. subiltis Firmicutes L. lactis Firmicutes Firmicutes Firmicutes C. autoethanogenum Firmicutes V. natriegens Proteobacteria Proteobacteria E. fergusoni Proteobacteria S. enterica Proteobacteria Froteobacteria Proteobacteria Froteobacteria Actinobacteria S. venezuelae Actinobacteria	Organism	Bacteria Phylum	
L. lactis B. megaterium C. autoethanogenum Firmicutes V. natriegens P. putida P. putida Proteobacteria E. fergusoni S. enterica Froteobacteria Proteobacteria Froteobacteria Proteobacteria Proteobacteria C. glutamicum Actinobacteria	E. coli	Proteobacteria	
B. megaterium C. autoethanogenum Firmicutes V. natriegens Proteobacteria Proteobacteria E. fergusoni S. enterica Froteobacteria Froteobacteria Froteobacteria Froteobacteria C. glutamicum Actinobacteria	B. subiltis	Firmicutes	
C. autoethanogenum V. natriegens P. putida P. fergusoni S. enterica Froteobacteria Proteobacteria Proteobacteria Proteobacteria Proteobacteria Proteobacteria C. glutamicum Actinobacteria	L. lactis	Firmicutes	
V. natriegens P. putida P. putida Proteobacteria Proteobacteria Proteobacteria S. enterica Proteobacteria Proteobacteria Proteobacteria C. glutamicum Actinobacteria	B. megaterium	Firmicutes	
P. putida Proteobacteria E. fergusoni Proteobacteria S. enterica Proteobacteria K. oxytoca Proteobacteria C. glutamicum Actinobacteria	C. autoethanogenum	Firmicutes	
E. fergusoni Proteobacteria S. enterica Proteobacteria K. oxytoca Proteobacteria C. glutamicum Actinobacteria	V. natriegens	Proteobacteria	
S. enterica Proteobacteria K. oxytoca Proteobacteria C. glutamicum Actinobacteria	P. putida	Proteobacteria	
K. oxytoca Proteobacteria C. glutamicum Actinobacteria	E. fergusoni	Proteobacteria	
C. glutamicum Actinobacteria	S. enterica	Proteobacteria	
	K. oxytoca	Proteobacteria	
S. venezuelae Actinobacteria	C. glutamicum	Actinobacteria	
	S. venezuelae	Actinobacteria	

Types of cell-free extract

Melinek B, et al. BioProcess International (2020)

Anne Zemella et al. ChemBioChem 2015

Alternative cell-free approach, the pure system

Melinek B, et al. BioProcess International (2020)

36 PURE protein components produced using the OnePot method + tetra-(His)6-tagged 70S ribosomes purified using affinity chromatography

Lavickova, Barbora, et al. ACS synthetic biology (2019)

Advantages of producing protein outside of the cell

- Fast reaction to produce protein
- No need for transformation
- No GMO
- No interaction with a living host (No mutation, No burden)
- Decoupling effect
 (e.g. Metabolic burden vs production burden)
- Low volume of reaction
- Higher level of control: Amount of DNA, Composition of the reaction.
- Work with Linear DNA

INRAO

Cell-free Quiz

Current Applications of Cell-Free Systems in Academia and Industry

Fundamental science: cell-free to understand living cells

Example 1: Exploring Resource Competition through Cell-Free Systems

Applied Science: Bridging Theory to Practice

Example 2: Cell-Free Biosensor for food industry and medicine

Industrial Applications: Transforming Knowledge into Innovation

Exploring Resource Competition through Cell-Free Systems

- Resource allocation *in vivo*Production burden

Exploring Resource Competition through Cell-Free Systems

- Resource allocation *in vitro*Production burden

Exploring Resource Competition through Cell-Free Systems

Resource allocation in vitro
 Tuning the cell-free reaction

Exploring Resource Competition through Cell-Free Systems

- Resource allocation *in vitro*Different levels of protein production

Exploring Resource Competition through Cell-Free Systems

Resource allocation in vitro
 Different types of protein production

Exploring Resource Competition through Cell-Free Systems

Resource allocation in vitro
 Burden in different growth conditions

Exploring Resource Competition through Cell-Free Systems

Resource competition in vitro
 Measure with a metabolic pathway

Exploring Resource Competition through Cell-Free Systems

Resource competition in vitro
 Measure with a metabolic pathway

Exploring Resource Competition through Cell-Free Systems

- Resource competition in vitro

Measure with an inactivated metabolic pathway

Exploring Resource Competition through Cell-Free Systems

Resource competition in vitro
 Measure with a metabolic pathway

Exploring Resource Competition through Cell-Free Systems

- Resource allocation

Decouple production and metabolic burden

Fundamental science: cell-free to understand living cells

Example 1: Exploring Resource Competition through Cell-Free Systems

Applied Science: Bridging Theory to Practice

Example 2: Cell-Free Biosensor for food industry and medicine

Industrial Applications: Transforming Knowledge into Innovation

Cell-Free Biosensor for food industry and medicine

Cell-Free Biosensor for food industry and medicine

Cell-Free Biosensor for food industry and medicine

- Properties of a biosensor

Cell-Free Biosensor for food industry and medicine

- Properties of the transducer

Applied Science: Bridging Theory to Practice

- Efficiency of the biosensor

Applied Science: Bridging Theory to Practice

- Efficiency of the biosensor

Do you have an idea to use cell-free?

Fundamental science: cell-free to understand living cells

Applied Science: Bridging Theory to Practice

Industrial Applications: Transforming Knowledge into Innovation

Current uses of cell-free system

Fundamental science: cell-free to understand living cells

- Central functions

 DNA replication

 Transcription and translation process

 Metabolism and energy production
- Resource allocation in vitro
- Construction hybrid systems
 Multi-species systems
 Nonstandard (unnatural) amino acids
 Eukaryote properties (Glycolysation)
- Constructing artificial cells

Fundamental science: cell-free to understand living cells

- Central functions **DNA** replication

DNA replication system reconstructed by expressing 13 central genes encoding initiator (dnaA), DNA helicase (dnaB), helicase

loader (dnaC), RNA primase (dnaG) and DNA polymerase III.

Omitting *dnaC* (one of the 13 genes) is the most important effect.

Fujiwara, Kei, Nucleic acids research (2013)

Fundamental science: cell-free to understand living cells

- Central functions **DNA** replication

DNA replication system reconstructed by expressing 1 gene of the bacteriophage phi 29 DNA replication .

Use for replication of large DNA genomes

Libicher, K, nat comms (2020)

Fundamental science: cell-free to understand living cells

- Central functions

Transcription process: T7 polymerase

Gene circuit performance characterization

Siegal-Gaskins, D. ACS synthetic biology (2014)

Fundamental science: cell-free to understand living cells

- Central functions

Transcription process: modified promoter to recruits more T7 polymerase

Control environnement: Fixed purified T7 RNA polymerase concentration, Fixed plasmid concentration, Fixed lysate and buffer concentration (ribosome, NTPs, Amino Acides etc..)

One changing elements = promoter sequence

Specific effects measured = Protein production, RNA production and DNA template degradation

Deich, Christopher, et al. Journal of Biological Engineering (2023)

Fundamental science: cell-free to understand living cells

- Central functions Transcription

Bervoets, I FEMS microbiology reviews (2019)

Fundamental science: cell-free to understand living cells

- Central functions Transcription

o-factor	Function	Group	
σ^D/σ^{70}	Housekeeping genes	1	
σ^{S}/σ^{38}	Stationary phase	2	
σ^{H}/σ^{32}	Heat shock response	3	
σ^F/σ^{28}	Motility genes	3	
σ^E/σ^{24}	Extracytoplasmic function	4	
$\sigma^{\text{lect}}/\sigma^{19}$	Extracytoplasmic function	4	
σ ^N /σ ⁵⁴	Nitrogen metabolism		Bei

Fundamental science: cell-free to understand living cells

- Central functions

Translation: Optimizing translation process

Combinatorial space = 4¹¹ = **4 194 304** compositions

- Can we improve protein production for a specific lysate without increasing the price of cell-free reaction?
- Can we provide efficient predictions of protein production?
- Can we highlight the critical parameters involved in protein production?

Fundamental science: cell-free to understand living cells

- Central functions

Translation: Optimizing translation process

Fundamental science: cell-free to understand living cells

- Central functions

Translation: Optimizing translation process

Fundamental science: cell-free to understand living cells

- Central functions

Translation: Optimizing translation process

Components that improve yield at high concentration: Mg-glutamate, K-glutamate, Amino Acidss and NTPs

Components that improve yield at low concentration: Spermidine, 3-PGA

Fundamental science: cell-free to understand living cells

- Central functions

Translation: Optimizing translation process

Transcription vs translation:

Our data suggests that we mainly improved translation via composition optimization

Fundamental science: cell-free to understand living cells

- Central functions

Translation: engineering translation machinery

Fundamental science: cell-free to understand living cells

- Central functions

Metabolism and energy production

Fundamental science: cell-free to understand living cells

- Central functions

Metabolism and energy production

Study of composition in metabolites in different cell-free process

-> improve cell-free efficiency, supplemented with proteins to observe the impact on each part of of the metabolism

Fundamental science: cell-free to understand living cells

- Construction hybrid systems Multi-species systems

Fundamental science: cell-free to understand living cells

- Construction hybrid systems

Nonstandard (unnatural) amino acids, more orthogonality for a better predictabilty

Fundamental science: cell-free to understand living cells

Construction hybrid systems
 Nonstandard (unnatural) amino acids

Gao, Wei, et al. Frontiers in pharmacology (2019)

Fundamental science: cell-free to understand living cells

Construction hybrid systems
 Multi-species systems

Fundamental science: cell-free to understand living cells

Construction hybrid systems
 Eukaryote properties (Glycolysation)

Kightlinger, W. et al Nature communications (2019)

Fundamental science: cell-free to understand living cells

- Constructing artificial cells

CoA cAMP tRNA

Spermidine

Efficient TX-TL, ATP regenerated

Residual adaptation

Artificial equilibrium

(pH buffer, ATP regenerated)

Residual spatial

organisation

Wagner L et al Computational and Structural Biotechnology Journal (2023)

Fundamental science: cell-free to understand living cells

- Constructing artificial cells

Liposomes

Maeda, Yusuke T., et al. ACS synthetic biology 2011

Fundamental science: cell-free to understand living cells

- Constructing artificial cells: Communication / exchange with the environment

Fundamental science: cell-free to understand living cells

- Constructing artificial cells : compartimentation

Fundamental science: cell-free to understand living cells

- Constructing artificial cells : compartimentation

Deshpande, S et al. Nature communications (2019)

Current uses of cell-free system

Applied Science: Bridging Theory to Practice

- Prototyping genetic circuits and pathways
 Genetic parts
 Metabolic engineering
- Developing biosensors
 Optimize cell-free biosensor
 Biocomputing
 Materials and cell-free
 Medical diagnostics
 Pollution diagnostics
- Bio-machine assembly
 Phages selection
 Antibodies

Applied Science: Bridging Theory to Practice

Prototyping genetic circuits and pathways
 Genetic parts

Applied Science: Bridging Theory to Practice

- Prototyping genetic circuits and pathways Genetic parts

Applied Science: Bridging Theory to Practice

- Prototyping genetic circuits and pathways Genetic parts: regulated systems

Applied Science: Bridging Theory to Practice

- Prototyping genetic circuits and pathways
Genetic parts: Linear fragment vs plasmid

Applied Science: Bridging Theory to Practice

Prototyping genetic circuits and pathways
 Genetic parts: Linear fragment vs plasmid

Applied Science: Bridging Theory to Practice

Prototyping genetic circuits and pathways

Metabolic engineering: combinatory exploration

Example of : 6⁴ combinations

Applied Science: Bridging Theory to Practice

Applied Science: Bridging Theory to Practice

Metabolic engineering: combinatory exploration

 $6 \times 4 = 24$ plasmids

Applied Science: Bridging Theory to Practice

Prototyping genetic circuits and pathways

Metabolic engineering: combinatory exploration

Applied Science: Bridging Theory to Practice

Applied Science: Bridging Theory to Practice

Developing biosensors

Biocomputing: logic gates

OR		
I_1	l ₂	out
0	0	0
0	1	1
1	0	1
1	1	1

Applied Science: Bridging Theory to Practice

Developing biosensors

Biocomputing: 4 biosensors

Pandi A et al. Nat com. 2019

Applied Science: Bridging Theory to Practice

Developing biosensors

Biocomputing: tuning the weights

Applied Science: Bridging Theory to Practice

Developing biosensors
Biocomputing: perceptron

Applied Science: Bridging Theory to Practice

Developing biosensors
 Medical diagnostics

Applied Science: Bridging Theory to Practice

Developing biosensors
 Medical diagnostics

Applied Science: Bridging Theory to Practice

Developing biosensors
 Materials and cell-free

Applied Science: Bridging Theory to Practice

Whithfield et al. Chem Commun 2020

Applied Science: Bridging Theory to Practice

- Developing biosensors
Pollution detection

Applied Science: Bridging Theory to Practice

- Developing biosensors Pollution detection Freeze-dried Municipal (Rehydrate with Visualize **ROSALIND** sensors water 1 municipal water sources Municipal water 3 Municipal water 2 Municipal water 4 **b** L: Laboratory-grade water Zinc and copper field sample Zinc-only field sample Zinc-only field sample Zinc and copper field sample Laboratory-grade water Laboratory-grade water Laboratory-grade water Laboratory-grade water Municipal water 1 Municipal water 3 Municipal water 4 FAAS measurements: FAAS measurements: FAAS measurements: FAAS measurements: $[Copper] = 0 \pm 0 ppb$ $[Copper] = 366 \pm 2 ppb$ $[Copper] = 0 \pm 0 ppb$ $[Zinc] = 1,690 \pm 4 ppb$ $[Zinc] = 918 \pm 1 ppb$ $[Zinc] = 1,110 \pm 4 ppb$ $[Zinc] = 370 \pm 4 ppb$ MEF (µM | CsoR SmtB NIMPLY SmtB NIMPLY SmtB NIMPLY SmtB NIMPLY SmtB NIMPLY

Applied Science: Bridging Theory to Practice

- Bio-machine assembly
Antibodies (eukaryotic cell-free)

Applied Science: Bridging Theory to Practice

- Bio-machine assembly
Phages selection

Applied Science: Bridging Theory to Practice

- Bio-machine assembly
Phages selection

Encoded by a 40 kbp DNA program composed of about 60 genes

Fundamental science: cell-free to understand living cells

Applied Science: Bridging Theory to Practice

Industrial Applications: Transforming Knowledge into Innovation

Industrial Applications: Transforming Knowledge into Innovation

Pharmaceuticals

- Monoclonal Antibodies & Antimicrobial Peptides

LenioBio (Germany)

Cube Biotech (Germany)

BioCat (Germany)

- Vaccines

Ntxpress (New Mexico, USA)

CPI (UK)

Sutro Biopharma (California, USA)

- Small Molecules

Creativebiomart (USA, Europe, Canada)

- Membrane Proteins

Creativebiomart (USA, Europe, Canada)

Desgin Pharma (Massachussetts, USA)

Synthelis (France)

Pollution

- CO2 capture

Ensovi (Massachussetts, USA)

- Biosensor

Stemloop (Illinois, USA)

On-Demand

- Purified proteins

Tierra bioscience (California, USA)

CFS (Japan)

Cell-free (Ontario, Canada)

Cell-free kit providers

- New England Biolabs (Massachussets, USA)
- Thermo Fisher (Massachussets, USA)
- Biotechrabbit (Germany)
- arbor bioscience (Michigan, USA)

Scale-up

Additional use / challenges with cell-free

Cell-free for education

myTXTL® Cell-Free Protein Expression kits for Igem

National Institute of Standards and Technology

Acknowledgements

Matthieu Jules

Léa Wagner

Olivier Delumeau

Vincent Sauveplane

TOM ELLIS LAB

Tom Ellis

Guy-Bart Stan Lab Carlos Bricio

Imperial College Brooke Rothschild-Mancinelli London

Francesca Ceroni

Michela Murgiano

Bio-RetroSynth

Jean-Loup Faulon

Amir Pandi Mathilde Koch

Agnès Zettor