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1 Introduction

Let Ω be an open bounded subset of RN , this chapter focuses on the following problem. We
search u, k : Ω → R satisfying

(1)


−div(A(k)∇u) = f in Ω,
−div(B(k)∇k) = A(k)|∇u|2 in Ω,

−A(k)∂u
∂n

= αu on ∂Ω,
k = 0 on ∂Ω.

In (1), f ∈ L2(Ω) is a given source term, α > 0 and there exists two constants ν, µ > 0
such that both viscosities A and B satisfy

(2) ∀ x ∈ R, ν ≤ A(x), B(x) ≤ µ.

The aim of this chapter is proving the existence of a couple (u, k) of distributional solutions
of (1). This is not the only kind of solutions commonly searched. Indeed, some articles deal
with renormalized solutions, which are defined and studied in [3]. This notion is interesting
for the study of a system having a source term in L1(Ω), as shown in [6].

The source term of the equation in k is in L1(Ω). Without any better hypothesis, it remains
possible to find distributional solutions of (1).

This figures in the works of L. Boccardo and T. Gallouët in [1], on which is based this
chapter. The associated result, proved in section 4, is a consequence of the washer Lemma,
stated and proved in section 2. This Lemma brings a bound for a solution in W 1,q

0 (Ω), where
q < N

N−1 . Consequently, some particular function sets are needed.
Then, in section 4, we search weak solutions in V =

⋂
1<q<N ′ W

1,q
0 (Ω), where N ′ refers to

N
N−1 ; with test functions in W =

⋃
q>N W 1,q

0 (Ω). This method was also used by T. Gallouët
and R. Herbin in [4].

Along this chapter, the viscosities A and B are bounded (assumption (2)). This does not
really correspond to the physical situation, but is a right way to establish some interesting
mathematical results, as a priori estimates, such as in section 3 and 4. The assumption of
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bounded viscosities appears in [4], but also in the works of S. Clain and R. Touzani (see [2]),
in which an existence result is proved in the two-dimensional case. In the present work, the
existence results are proved when N = 3.

Of course it is possible to deal with unbounded viscosities, such as in [6], where they
are only bounded from below. Otherwise, if they are not, other assumptions are required,
concerning the decreasing. In addition, other function spaces need to be developped, like in
[5].

In order to find the existence of a solution of (1), this work will be divided into two steps,
that correspond to sections 3 and 4. Section 3 is devoted to the equation in u, which amounts
to a linear problem. But when the problem is obviously non-linear, like the equation in k
considered in section 4, another method is required. This consists in regularizing the system,
then solving it by a linearization and a fixed-point theorem. This method is already used in
[2].

Given any borelian subset or RN named A, the Lebesgue measure is simply written |A|.

2 Preliminary results

2.1 The washer lemma

This section aims at proving the following result (already proved by Boccardo-Gallouët in [1]).

Lemma 1. Let q ∈ [1;N ′[ where N ′ =
N

N − 1
, and u ∈W 1,q

0 (Ω). We define

(3) Bn = {x ∈ Ω / n ≤ |u(x)| < n+ 1},

and assume that there is a constant C > 0 such that

(4) ∀ n ∈ N,
∫
Bn

|∇u|2 ≤ C.

Then we have the inequality

(5) ∥u∥W 1,q(Ω) ≤ A,

where A depends on Ω, q and C.

Remark 2. Both constants C and A do not depend on u. Actually, the result may be rephrased
as: let (uj)j∈J a family of functions in W 1,q

0 (Ω) with q ∈ [1;N ′[ satisfying

(6) ∀ j ∈ J, ∀n ∈ N,
∫
Bj

n

|∇uj(x)|2 dx ≤ C,

where Bj
n refers to Bj

n = {x ∈ Ω / n ≤ |uj(x)| < n+ 1}.
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Then there exists a constant A > 0 only depending on Ω, q and C such that

(7) ∀ j ∈ J, ∥uj∥W 1,q(Ω) ≤ A.

The proof of lemma 1 is based on a decomposition given by the following lemma.

Lemma 3. Let u satisfy the assumptions of lemma 1. Let q∗ be the critical exponent in Sobolev
embedding W 1,q(Ω) ↪→ Lq∗(Ω), and any index n0 ∈ N. There exist two constants λ1 and λ2
depending on n0, q and Ω satisfying

(8) ∥∇u∥q
Lq(Ω)N

≤ Cq/2

(
λ1 + λ2∥u∥

q∗(2−q)
2

Lq∗ (Ω)

)
.

Moreover, we have: lim
n0→+∞

λ2(n0) = 0.

Proof of lemma 3. At first, we decompose
∫
Ω |∇u|q as a sum

(9)
∫
Ω
|∇u|q =

+∞∑
n=0

∫
Bn

|∇u|q.

Recalling that Bn is bounded, Hölder inequality and (4) yield

(10)
∫
Bn

|∇u|q ≤ |Bn|
2−q
2

(∫
Bn

|∇u|2
)q/2

≤ Cq/2|Bn|
2−q
2 .

We consider a fixed index n0 ∈ N.
If n ≤ n0, (10) directly yields

(11)
n0∑
n=0

∫
Bn

|∇u|q ≤ Cq/2
n0∑
n=0

|Bn|
2−q
2 ≤ (n0 + 1)Cq/2|Ω|

2−q
2 .

If n > n0, the definition of Bn yields

(12)
∫
Bn

|u|q∗ ≥
∫
Bn

nq
∗
= nq

∗ |Bn|, hence |Bn| ≤
1

nq∗

∫
Bn

|u|q∗ .

Inequalities (10) and (12) yield

(13) ∀n > n0,

∫
Bn

|∇u|q ≤ Cq/2

(
1

nq∗

) 2−q
2
(∫

Bn

|u|q∗
) 2−q

2

,

which yields by addition

(14)
+∞∑

n=n0+1

∫
Bn

|∇u|q ≤ Cq/2
+∞∑

n=n0+1

n
(q−2)q∗

2

(∫
Bn

|u|q∗
) 2−q

2

.

The discrete Hölder inequality applied on the right hand side of (14) is written

(15)
+∞∑

n=n0+1

n
(q−2)q∗

2

(∫
Bn

|u|q∗
) 2−q

2

≤

[
+∞∑

n=n0+1

∫
Bn

|u|q∗
] 2−q

2
[

+∞∑
n=n0+1

n
N(q−2)
N−q

]q/2
.
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The inequality may be useful in the following if and only if the series
∑

n≥n0+1 n
N(q−2)
N−q

converges, which is equivalent to N(2 − q) > N − q. Some calculations show it is equivalent
to q < N ′.

Then we set λ2(n0, q) =
[∑+∞

n=n0+1 n
N(q−2)
N−q

]q/2
, so that we directly obtain λ2(n0, q) −→

n0→+∞
0. With this notation, (14) and (15) become

(16)

+∞∑
n=n0+1

∫
Bn

|∇u|q ≤ Cq/2λ2(n0, q)

[
+∞∑

n=n0+1

∫
Bn

|u|q∗
] 2−q

2

≤ Cq/2λ2(n0, q)

(∫
Ω
|u|q∗

) 2−q
2

= Cq/2λ2(n0, q)∥u∥
q∗(2−q)

2

Lq∗ (Ω)
.

By setting λ1(n0, q) = (n0 + 1)|Ω|
2−q
2 , (11) and (16) yield

(17)
∫
Ω
|∇u|q ≤ Cq/2

(
λ1(n0, q) + λ2(n0, q)∥u∥

q∗(2−q)
2

Lq∗ (Ω)

)
.

That corresponds to (8), which concludes the proof.

This result can now be used to prove Lemma 1.

Proof of lemma 1. We start with the case N = 2, which is easier. In that case, we have
q∗(2− q)

2
=
Nq(2− q)

2(N − q)
= q. Then (8) becomes

(18) ∥∇u∥q
Lq(Ω)N

≤ Cq/2
(
λ1 + λ2∥u∥qLq∗ (Ω)

)
.

Gagliardo-Nirenberg inequality and (18) yield

(19) ∥u∥q
Lq∗ (Ω)

≤ K∥∇u∥q
Lq(Ω)N

≤ KCq/2
(
λ1 + λ2∥u∥qLq∗ (Ω)

)
,

where K > 0 depends on Ω and q. We recall that if b < 1, the following equivalence stands

(20) x ≤ a+ bx⇔ x ≤ a

1− b
.

Since λ2(n0, q) −→
n0→+∞

0, it is possible to choose n0 ∈ N large enough to have

KCq/2λ2 < 1. Then by (20), we obtain

(21) ∥u∥q
Lq∗ (Ω)

≤ KCq/2λ1

1−KCq/2λ2
.

Thus, from (18):

(22) ∥∇u∥q
Lq(Ω)N

≤ Cq/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)
.
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And Poincaré-Friedrichs inequality yields

(23) ∥u∥q
W 1,q(Ω)

≤ LCq/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)
,

where L depends on q and Ω. This yields the result with

(24) A = L1/qC1/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)1/q

.

We now focus on the case N > 2. Since q < N ′ < N , the Sobolev embedding used before
yields

(25) ∥u∥q
Lq∗ (Ω)

≤ K∥∇u∥q
Lq(Ω)N

≤ KCq/2

(
λ1 + λ2∥u∥

q∗(2−q)
2

Lq∗ (Ω)

)
.

Inequality (25) is of the form x ≤ a+ bxγ , with

(26) γ =
q∗(2− q)

2q
=
N(2− q)

2(N − q)
.

We have already shown that if q ∈ [1;N ′[

(27) 1 <
N(2− q)

N − q
< N ′ hence

1

2
< γ <

N ′

2
< 1.

Thus, the inequation we need to solve is of the form: x ≤ a + bxγ , with γ ∈]0, 1[ and
a, b > 0.

The graph on the side shows the existence of
τ ∈]0; +∞[ depending on a, b and γ such that
x ≤ a+ bxγ ⇔ x ≤ τ .

x

x

a+ bxγ

τ

Let us show it rigorously by studying the variations of F : x > 0 7→ a + bxγ − x. This

function is C∞ on ]0; +∞[ and
∣∣∣∣ F ′(x) = bγxγ−1 − 1
F ′′(x) = bγ(γ − 1)xγ−2 , therefore F ′′(x) < 0. We obtain

the following variations
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x

F ′′(x)

F ′(x)

F (x)

0 α +∞

− −

+∞

−1

a

F (α)

−∞

0 p
τ(a, b, γ)

F (x)

x0 α

Inequality (25) finally ensures the existence of τ = τ(λ1, λ2, C) > 0 such that

(28) ∥u∥q
Lq∗ (Ω)

≤ τ.

Consequently, (8) and Poincaré-Friedrichs inequality yield

(29) ∥∇u∥q
Lq(Ω)N

≤ Cq/2 (λ1 + λ2τ) hence ∥u∥q
W 1,q(Ω)

≤ LCq/2 (λ1 + λ2τ) ,

where L only depends on Ω and q. With A = L1/qC1/2(λ1 + λ2τ)
1/q, lemma 1 is proved in

case N > 2.

The first hypothesis of lemma 1 is q ∈ [1;N ′[, where N ′ = N
N−1 . It has been used many

times, and we are able to show that is impossible to obtain similar results with higher values
of q.

Indeed, considering the case N > 2, we recall that α is the only point where F ′ vanishes,
which means

(30) bγαγ−1 = 1 thus α = (bγ)
1

1−γ .

Replacing b by the constants of lemma 3 yields b(q) =M(q)λ2(q), where M(q) is bounded
if q ∈ [1;N ′[. Consequently, b(q) −→

q→N ′
+∞ and then

(31) γ(q) =
N(2− q)

2(N − q)
−→
q→N ′

2 hence
1

1− γ
−→
q→N ′

1

2
.

Therefore, (30) yields α −→
q→N ′

+∞. And since τ ≥ α, we obtain τ −→
q→N ′

+∞, which means

A −→
q→N ′

+∞.

There is a similar result in the case N = 2. The proof of lemma 1 requires to choose an
index n0 great enough to have b < 1. But as λ2(n0, q) −→

q→N ′
+∞, an increase of q implies an

increase of n0.
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Thus, as 2−q
2 = 1− q

2 −→
q→N ′

1− N ′

2 = 0, it follows

(32) λ1(n0, q) = (n0 + 1)|Ω|
2−q
2 −→

q→N ′

n0→+∞

+∞ hence A −→
q→N ′

+∞.

We have shown that q cannot be larger than the assumptions of lemma 1.

The result shown in this first section will be useful in the following. Generally, solving a
PDE system is divided into two steps:

• simplifying the problem (for example by moving to a finite-dimension space, or by using
a truncation function),

• coming back to the initial problem with the help of compacity results.

2.2 A general result on norms

Theorem 4 (Trace norm on H1). Let the application N0 be defined for any u ∈ H1(Ω) by

(33) N0(u) =
(
∥∇u∥2L2(Ω)N + ∥u∥2L2(∂Ω)

)1/2
,

where "u|∂Ω" refers to the trace of u on ∂Ω.
Then N0 is a norm, which is equivalent to the classical norm on H1(Ω).

Proof. N0 is non negative, homogeneous and satisfies triangular inequality (direct consequence
of the fact that the norms L2 also do). Let us consider u ∈ H1(Ω) such that N0(u) = 0. It
comes ∥∇u∥L2(Ω)N = 0 and ∥u∥L2(∂Ω) = 0.

First, this yields that ∇u = 0 almost everywhere on Ω. We write u ae.
= λ, where λ is a real

constant. We directly obtain that tr u = λ a.e. on ∂Ω, then λ = 0. We deduce that N0 is a
norm.

Equivalence between both norms :
At first, the trace operator tr : H1(Ω) → H1/2(∂Ω) is surjective (see [7]), and Sobolev

embeddings yield in particular H1/2(∂Ω) ↪→ L2(∂Ω). Hence

(34) ∃C > 0,∀ u ∈ H1(Ω), ∥u∥2L2(∂Ω) ≤ C∥u∥2H1(Ω).

We deduce

(35) ∀ u ∈ H1(Ω), N0(u)
2 ≤ (1 + C)∥u∥2H1(Ω).

Therefore N0 is dominated by ∥ · ∥H1(Ω).
Conversely, we intend to show

(36) ∃C > 0, ∀ u ∈ H1(Ω), ∥u∥2H1(Ω) ≤ CN0(u)
2.

By contradiction, let us suppose the negation of (36), which means in particular

(37) ∀ n ∈ N,∃ un ∈ H1(Ω), ∥un∥2H1(Ω) > nN0(un)
2.
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Inequality (37) yields that ∀n ∈ N∗, ∥un∥L2(Ω) > 0. Then, both sides of (37) can be
divided by ∥un∥L2(Ω). Which means, keeping the same notation

(38) ∀ n ∈ N,∃un ∈ S, ∥un∥2H1(Ω) > nN0(un)
2,

where S refers to the "L2-sphere" defined by S = {v ∈ H1(Ω) / ∥v∥L2(Ω) = 1}. Then (38) can
be rewritten as

(39) ∀ n ≥ 2,
1

n
+

1

n
∥∇un∥2L2(Ω)N > ∥un∥2L2(∂Ω) + ∥∇un∥2L2(Ω)N .

Since ∥un∥2L2(∂Ω) ≥ 0, (39) yields in particular

(40)
(
1− 1

n

)
∥∇un∥2L2(Ω)N ≤ 1

n
, then ∥∇un∥2L2(Ω)N ≤ 1

n− 1
.

Therefore, the sequence (∇un)n∈N∗ is bounded in L2(Ω) ; and as (un)n∈N∗ is a sequence
of points of S, (un)n∈N∗ is also bounded in L2(Ω). We deduce (un)n∈N∗ is bounded in H1(Ω),
and there exists a subsequence also denoted (un)n∈N∗ satisfying un ⇀

n→+∞
u in H1(Ω).

However, (39) yields

(41) ∀n ≥ 2,
1

n
> ∥un∥2L2(∂Ω) +

(
1− 1

n

)
∥∇un∥2L2(Ω)N ≥ 1

2
N0(un)

2,

hence N0(un) −→
n→+∞

0, then u = 0.

Rellich theorem yields that un −→
n→+∞

0 in L2(Ω), meaning ∥un∥L2(Ω) −→
n→+∞

0. But for all

n ∈ N∗, ∥un∥L2(Ω) = 1, which is a contradiction.

3 Analysis of the first equation

In this section, given p ∈]1; +∞[ and k ∈W 1,p
0 (Ω), we consider the system

(42)

{ −div(A(k)∇u) = f in Ω,

−A(k)∂u
∂n

= αu on ∂Ω,

with f ∈ L2(Ω), α > 0 and A : R → R+ satisfying

(43) ∀k ∈ R, 0 < ν ≤ A(k) ≤ µ < +∞.

3.1 Variational formulation and a priori estimates

We remind the Green formula, which is likely to be used all along this thesis.

Theorem 5 (Green formula). Let f ∈ H1(Ω) and g ∈ H1(Ω)N . Assume that n is the normal
vector of Ω, then the following formula stands

(44)
∫
Ω
div(g)f = −

∫
Ω
g · ∇f +

∫
∂Ω

(g · n)f dS.
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Multiplying the first equation of (42) by w ∈ H1(Ω) and then integrating yields

(45) −
∫
Ω
div(A(k)∇u)w =

∫
Ω
fw.

Then (44) and the second equation of (42) yield

(46) −
∫
Ω
div(A(k)∇u)w =

∫
Ω
A(k)∇u · ∇w + α

∫
∂Ω
uw dS.

We obtain the variational formulation of (42)

(47)

 u ∈ H1(Ω)

∀w ∈ H1(Ω),

∫
Ω
A(k)∇u · ∇w + α

∫
∂Ω
uw dS =

∫
Ω
fw.

All the terms of (47) are well defined. Moreover, the trace theorem (see [7]) yields that
u,w ∈ H1/2(∂Ω) ↪→ L2(∂Ω).

The main result of this section is the following.

Theorem 6. There exists a unique function u ∈ H1(Ω) satisfying (47).

Proof. This proof uses the Lax-Milgram theorem on the Hilbert space H1(Ω). Let ak be the
bilinear form given by

(48) ∀ u,w ∈ H1(Ω), ak(u,w) =

∫
Ω
A(k)∇u · ∇w + α

∫
∂Ω
uw dS.

Let u,w ∈ H1(Ω). First we have

(49)

|ak(u,w)| ≤
∫
Ω
A(k)|∇u · ∇w|+ α

∫
∂Ω

|uw| dS

≤ µ∥∇u∥L2(Ω)N ∥∇w∥L2(Ω)N + α∥u∥L2(∂Ω)∥w∥L2(∂Ω)

≤ (µ+ αM)∥u∥H1(Ω)∥w∥H1(Ω),

where M does not depend on u. Therefore, ak is continuous on H1(Ω)×H1(Ω).
Then we show the coercivity. Let w ∈ H1(Ω), we have

(50)
ak(w,w) =

∫
Ω
A(k)|∇w|2 + α

∫
∂Ω

|w|2 dS ≥ ν∥∇w∥2L2(Ω)N + α∥w∥2L2(∂Ω)

≥ inf(ν, α)N0(w)
2,

hence Theorem 4 yields the coercivity of ak.

Finally, it is clear that the linear form [w 7→
∫
Ω fw] is continuous. Problem (47) then

admits a unique solution u ∈ H1(Ω), by Lax-Milgram theorem.
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Now the existence and uniqueness of u is proved, it is relevant to state some a priori
estimates on it.

Proposition 7. Let k ∈ W 1,p
0 (Ω) with p ∈ [1; +∞[. The solution u = u(k) of (47) satisfies

the inequalities

(51) ∥u∥H1(Ω) ≤ C1(Ω, α, ν, f),

and

(52) ∥A(k)1/2∇u(k)∥L2(Ω)N ≤ C2(Ω, α, µ, ν, f).

Proof. Taking w = u as a test in (47) leads to

(53)
∫
Ω
A(k)|∇u|2 + α

∫
∂Ω

|u|2 dS =

∫
Ω
fu.

Cauchy-Schwarz inequality then yields

(54) ν∥∇u∥2L2(Ω)N + α∥u∥2L2(∂Ω) ≤ ∥f∥L2(Ω)∥u∥L2(Ω),

hence

(55) min(ν, α)N0(u)
2 ≤ ∥f∥L2(Ω)∥u∥H1(Ω).

Theorem 4 directly yields

(56)
min(ν, α)

C
∥u∥2H1(Ω) ≤ ∥f∥L2(Ω)∥u∥H1(Ω),

hence (51).

To obtain (52), the higher bound on A and Poincaré inequality yield

(57) ∥A(k)1/2∇u∥L2(Ω)N ≤ √
µ∥∇u∥L2(Ω)N ≤ c

√
µ∥u∥H1(Ω).

Finally, (51) yields (52).

3.2 An energy method

This subsection is devoted to show the H1 convergence of solutions of (42). More precisely,
if (kn)n∈N is a sequence converging to a certain k in a sense precised after, a subsequence of
(u(kn))n∈N converges in H1(Ω) to u(k). An intermediary result is first needed.

Theorem 8 (L2 convergence). Let p ∈ [1; +∞[ and (kn)n∈N a sequence of functions converging
weakly to k in W 1,p

0 (Ω). Let un = u(kn) and u = u(k) the associated solutions of problem (42).
There exists a subsequence still denoted (un)n∈N satisfying

(58) A(kn)
1/2∇un −→

n→+∞
A(k)1/2∇u in L2(Ω).
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Proof. The weak convergence of (kn)n∈N and compact Sobolev embeddings yield that kn −→
n→+∞

k in L1(Ω). By Lebesgue inverse theorem, a subsequence named the same way converges a.e.
in Ω to k. The continuity of A yields

(59) A(kn) −→
n→+∞

A(k) a.e. in Ω.

We recall that un and u satisfy

∀ v ∈ H1(Ω),∀ n ∈ N,
∫
Ω
A(kn)∇un · ∇v + α

∫
∂Ω
unv dS =

∫
Ω
fv.(60)

∀ v ∈ H1(Ω),

∫
Ω
A(k)∇u · ∇v + α

∫
∂Ω
uv dS =

∫
Ω
fv.(61)

Inequality (51) yields that (un)n∈N is bounded in H1(Ω), which ensures the existence of a
same-named subsequence converging weakly to a certain u∗ ∈ H1(Ω). The continuity of the
trace operator yields in particular

(62) ∀ v ∈ H1(Ω),

∫
∂Ω
unv dS −→

n→+∞

∫
∂Ω
u∗v dS.

Then, in order to show the convergence of the first term in (60), an integration lemma is
needed.

Lemma 9 (Convergence of integrals). Let (fn)n∈N and (gn)n∈N be two sequences of L2(Ω)
functions, and f, g ∈ L2(Ω) such that

(63) fn −→
n→+∞

f and gn ⇀
n→+∞

g in L2(Ω).

Then we have

(64)
∫
Ω
fngn −→

n→+∞

∫
Ω
fg.

This result will be proved after finishing the proof of Theorem 8.

The assumptions of Lemma 9 have to be checked.

• Since the sequence (A(kn))n∈N converges almost everywhere to A(k), the domination
A(kn)|∇v| ≤ µ|∇v| and the Lebesgue theorem yield A(kn)∇v −→

n→+∞
A(k)∇v in L2(Ω).

• As a consequence of Rellich theorem, ∇un ⇀
n→+∞

∇u∗ in L2(Ω).

Therefore, Lemma 9 yields

(65) ∀ v ∈ H1(Ω),

∫
Ω
A(kn)∇un · ∇v −→

n→+∞

∫
Ω
A(k)∇u∗ · ∇v.

Both convergences (62) and (65) ensure that the limit u∗ satisfies (61). And since the
solution of (61) is unique (by Theorem 6), u∗ = u = u(k).
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Hence, ∇un ⇀
n→+∞

∇u in L2(Ω), and (52) ensures that there exists a subsequence of(
A(kn)

1/2∇un
)
n∈N converging weakly in L2. Therefore, Lemma 9 yields

(66) A(kn)
1/2∇un ⇀

n→+∞
A(k)1/2∇u in L2(Ω).

In order to obtain the strong convergence of this sequence, the convergence of the norms
remains to be proved. Let us write (60) with v = un and (61) with v = u.

∀n ∈ N,
∫
Ω
A(kn)|∇un|2 + α

∫
∂Ω

|un|2 dS =

∫
Ω
fun.(67) ∫

Ω
A(k)|∇u|2 + α

∫
∂Ω

|u|2 dS =

∫
Ω
fu.(68)

The strong convergence of (un)n∈N in L2 directly yields

(69)
∫
Ω
fun −→

n→+∞

∫
Ω
fu.

The compact Sobolev embedding H1/2(∂Ω) ↪→ L2(∂Ω) yields in particular

(70)
∫
∂Ω

|un|2 dS −→
n→+∞

∫
∂Ω

|u|2 dS.

Convergences (69) and (70) yield

(71)
∫
Ω
A(kn)|∇un|2 −→

n→+∞

∫
Ω
A(k)|∇u|2.

The result of Theorem 8 is proved.

It remains to prove Lemma 9, wo that the proof is complete.

Proof of Lemma 9. The difference between the two integrals is written

(72)
∫
Ω
(fngn − fg) =

∫
Ω
f(gn − g) +

∫
Ω
(fn − f)gn.

The weak convergence of (gn)n∈N yields the convergence of the first integral of (72), and
the fact that (gn)n∈N is bounded in L2(Ω) yields

(73)
∣∣∣∣∫

Ω
(fn − f)gn

∣∣∣∣ ≤ ∥fn − f∥L2(Ω)∥gn∥L2(Ω) ≤M∥fn − f∥L2(Ω) −→
n→+∞

0.

Theorem 10 (H1 convergence). With the same assumptions as in Theorem 8, there is a
subsequence of (un)n∈N still named the same such that

(74) un −→
n→+∞

u in H1(Ω).

12



Proof of Theorem 10. The weak convergence and Rellich Theorem ensure that un −→
n→+∞

u in

L2(Ω). It remains to prove that ∇un −→
n→+∞

∇u in L2(Ω).

(75)
√
ν∥∇un −∇u∥L2(Ω)N ≤

∥∥∥A(kn)1/2∇un −A(kn)
1/2∇u

∥∥∥
L2(Ω)N

≤
∥∥∥A(kn)1/2∇un −A(k)1/2∇u

∥∥∥
L2(Ω)N

+
∥∥∥(A(kn)1/2 −A(k)1/2

)
∇u
∥∥∥
L2(Ω)N

−→
n→+∞

0,

by Theorem 8 and Lebesgue Theorem.

4 Analysis of the second equation

The system considered in this section is the following

(76)
{

−div(B(k)∇k) = A(k)|∇u(k)|2 in Ω,
k = 0 on ∂Ω.

The notations are lightened by defining

(77) D(k) = A(k)|∇u(k)|2.

4.1 Variational formulation and description of the method

In order to write the variational formulation of (76), we start by defining two function sets,
and stating a regularity result.

Definition 11. Let the sets V and W be defined by

(78) V =
⋂

1≤r<N ′

W 1,r
0 (Ω) and W =

⋃
N<r≤+∞

W 1,r
0 (Ω).

Note that V is a vectorial space, but not W .

We aim at writing a variational formulation searching solutions in V with test functions
in W .

Proposition 12. Let k ∈ V and ψ ∈W . Then B(k)∇k · ∇ψ ∈ L1(Ω) and D(k)ψ ∈ L1(Ω).

Proof. Let k ∈ V and ψ ∈ W . By applying Hölder inequality with r > N such that ψ ∈
W 1,r

0 (Ω), we obtain

(79)
∫
Ω
B(k)|∇k · ∇ψ| ≤ µ

∫
Ω
|∇k · ∇ψ| ≤ µ∥∇k∥Lr′ (Ω)∥∇ψ∥Lr(Ω).

Moreover, (52) yields ∥D(k)∥L1(Ω) ≤ C, then D(k) ∈ L1(Ω) and ψ ∈ L∞(Ω). Hence
D(k)ψ ∈ L1(Ω).
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Remark 13. The compact Sobolev embedding

(80) V ↪→ L2(Ω)

stands if N ∈ {2; 3}.

Definition 14 (Variational formulation). A function k is a weak solution of (76) if

(81)

 k ∈ V

∀ ψ ∈W,

∫
Ω
B(k)∇k · ∇ψ =

∫
Ω
D(k)ψ.

As proved before, D(k) ∈ L1(Ω), but it seems difficult to obtain a better regularity. In
addition, (81) is not a linear problem, and could not be solved using only Lax-Milgram theorem,
even if D(k) was in L2(Ω). These problems lead to use another method, which is divided into
three steps:

• Regularizing the equation, by changing the source term.

• Linearizing it to solve the regularized problem with a fixed-point theorem.

• Taking the limit when the regularizing parameter goes to zero.

4.2 Two first steps: solving the regularized problem

Before linearizing Problem (81), the source term needs to be approached by a sequence of
regular functions.

Definition 15. If w ∈ Lr(Ω) with r ∈ [1,+∞], w̃ ∈ Lr(RN ) refers to the extension by zero

w̃ : x 7→
{
w(x) if x ∈ Ω
0 if x /∈ Ω.

Definition 16 (Mollifier). Let ρ : RN → R be a C∞ function satisfying

• Supp(ρ) = B̄(0, 1),

• ρ ≥ 0,

•
∫
RN ρ(y) dy = 1.

Let the family (ρε)ε>0 be defined by

(82) ∀x ∈ RN , ρε(x) =
1

εN
ρ
(x
ε

)
.

Then (ρε)ε>0 is called a mollifier.

Remark 17. From now on, the term "mollifier" always refers to Definition 16.
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Definition 18 (Regularized problem). Let the approximated source term Dε(k) be defined
for any ε > 0 by

(83) Dε(k) =
∣∣∣Ũ(k) ∗ ρε

∣∣∣2 ,
where U(k) = A(k)1/2∇u(k).

A function k is called a weak solution of the regularized problem if it satisfies

(84)

 k ∈ H1
0 (Ω)

∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(k)∇k · ∇ψ =

∫
Ω
Dε(k)ψ.

Linearizing Problem (84) is useful if and only if Lax-Milgram theorem can be applied in
the Hilbert space H1

0 (Ω). To do so, the linear form
[
ψ 7→

∫
ΩDε(k)ψ

]
must be continuous on

H1
0 (Ω).

Theorem 19. Let ε > 0. The function Dε(k) defined just above is in L2(Ω) and there exists
a constant C > 0 independent of k and ε such that

(85) ∥Dε(k)∥L2(Ω) ≤
C

ε2
.

The proof of Theorem 19 is based on a general result.

Lemma 20. Let v ∈ Hm(RN ), ℓ ∈ N and (ρε)ε>0 a mollifier. For ε > 0 sufficiently close to
0, we have

(86) ∥v ∗ ρε∥Hm+ℓ(RN ) ≤
C(m, ℓ)

εℓ
∥v∥Hm(RN ).

Proof of Lemma 20. The Hm+ℓ norm can be defined by

(87) ∥v ∗ ρε∥2Hm+ℓ(RN ) =
∑

|α|≤m
|β|≤ℓ

∥∂α+β(v ∗ ρε)∥2L2(RN ).

Let α, β ∈ Nd such that |α| ≤ m and |β| ≤ ℓ. Plancherel theorem yields

(88) ∥∂α+β(v ∗ ρε)∥2L2(RN ) =
1

(2π)N
∥F(∂α+β(v ∗ ρε))∥2L2(RN ),

where F refers to the Fourier transform operator.
Since v ∈ Hm(RN ), the derivation formula ∂α+β(v ∗ ρε) = (∂αv) ∗ (∂βρε) and the Fourier

transform yield

(89) F
(
∂α+β(v ∗ ρε)

)
= F(∂αv)F(∂βρε).

Then with norms

(90) ∥F(∂α+β(v ∗ ρε))∥2L2(RN ) =

∫
RN

|F(∂αv)(ξ)|2 · |F(∂βρε)(ξ)|2dξ.
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A linear change of variables yields

(91) F(ρε)(ξ) =
1

εN

∫
RN

e−ixξρ
(x
ε

)
dx =

y=x/ε

∫
RN

e−iεyξρ(y)dy = F(ρ)(εξ).

Then we obtain

(92)
|F(∂βρε)(ξ)|2 = |ξβF(ρε)(ξ)|2 = |ξβF(ρ)(εξ)|2

=
1

ε2|β|
|(εξ)βF(ρ)(εξ)|2 = 1

ε2|β|
|F(∂βρ)(εξ)|2.

Yet, ∂βρ ∈ D(RN ) ⊂ L1(RN ), which yields ∀ξ ∈ RN , |F(∂βρ)(ξ)| ≤ ∥∂βρ∥L1(RN ). Then
(90) ensures the existence of a constant c0 > 0 independent of v such that

(93) ∥F(∂α+β(v ∗ ρε))∥2L2(RN ) ≤
c0

ε2|β|
∥F(∂αv)∥2L2(RN ).

Plancherel Theorem then yields

(94) ∥∂α+β(v ∗ ρε)∥2L2(RN ) ≤
c0

ε2|β|
∥∂αv∥2L2(RN ).

Then, by addition

(95)
∑

|α|≤m

∥∂α+β(v ∗ ρε)∥2L2(RN ) ≤
c0

ε2|β|
∥v∥2Hm(RN ).

Taking ε ∈]0, 1[ yields 1
ε2|β|

≤ 1
ε2ℓ

. Thus, adding for |β| ≤ ℓ yields

(96) ∥v ∗ ρε∥2Hm+ℓ(RN ) ≤
c(ℓ)

ε2ℓ
∥v∥2Hm(RN ),

hence (86).

We can now apply this result to prove Theorem 19, recalling that

(97) ∥U(k)∥L2(Ω)N ≤ C,

where C > 0 depends on f , Ω, α, µ and ν. This is a rewriting of (52).

Proof of Theorem 19. The definition of Dε yields

(98) ∥Dε(k)∥L2(Ω) =

(∫
Ω
|Ũ(k) ∗ ρε|4

)1/2

=
∥∥∥Ũ(k) ∗ ρε

∥∥∥2
L4(Ω)N

.

Sobolev embedding H1(Ω) ↪→ L4(Ω) and Lemma 20 then yield

(99)
∥∥∥Ũ(k) ∗ ρε

∥∥∥
L4(Ω)N

≤ c1

∥∥∥Ũ(k) ∗ ρε
∥∥∥
H1(Ω)N

≤ c2
ε
∥U(k)∥L2(Ω)N .

Finally, (97) yields the result.

16



In order to solve the regularized problem (84), we first linearize it, as said before.

Definition 21. A function g = g(k) is said to be a weak solution of the linearized problem
associated to (76) if

(100)

 g = g(k) ∈ H1
0 (Ω)

∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(k)∇g · ∇ψ =

∫
Ω
Dε(k)ψ.

Lemma 22. Let k ∈ L1(Ω), there exists a unique solution to Problem (100).

Proof. This is a consequence of Lax-Milgram theorem. Theorem 19 ensures that
[
ψ 7→

∫
ΩDε(k)ψ

]
is a continuous linear form on H1

0 (Ω). Let the bilinear form b be defined by

(101) b : (g, ψ) 7→
∫
Ω
B(k)∇g · ∇ψ.

First, let g, ψ ∈ H1
0 (Ω)

(102) |b(g, ψ)| ≤ µ∥∇g∥L2(Ω)N ∥∇ψ∥L2(Ω)N ≤ ∥g∥H1(Ω)∥ψ∥H1(Ω).

The continuity of b is proved.
Then, let ψ ∈ H1

0 (Ω), we have

(103) b(ψ,ψ) =

∫
Ω
B(k)|∇ψ|2 ≥ ν∥∇ψ∥2L2(Ω)N ≥ c(Ω)ν∥ψ∥2H1(Ω),

as a consequence of Poincaré inequality. The coercivity of b is proved.
Lax-Milgram theorem yields the existence and unicity of the solution g.

Now, we aim at showing the existence of a solution to problem (84). To do so, we recall
the Leray-Schauder fixed-point theorem (see [9]).

Theorem 23 (Leray-Schauder). Let X a Banach space, and B a convex closed bounded
nonempty subset of X. Let f : B → B a continuous function with f(B) compact.

Then f admits at least one fixed point in B.

This result is the main ingredient of the proof of the following statement.

Theorem 24. The regularized problem (84) admits a solution.

Proof. Let the operator T be defined by

(104) T : k 7→ g(k),

where g(k) refers to the solution of Problem (100). In other words, Tk ∈ H1
0 (Ω) satisfies

(105) ∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(k)∇Tk · ∇ψ =

∫
Ω
Dε(k)ψ.

The method consists in applying Theorem 23 to the operator T . First, taking ψ = Tk in
(105) yields

(106)
∫
Ω
B(k)|∇Tk|2 =

∫
Ω
Dε(k)Tk, hence ν∥∇Tk∥L2(Ω)N ≤ c1∥Dε(k)∥L2(Ω).
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Then Theorem 19 yields

(107) ∥∇Tk∥L2(Ω)N ≤ c2∥Dε(k)∥L2(Ω) ≤M,

where M > 0 does not depend on k.

Considering the notations of Theorem 23, in this problem we take X = H1
0 (Ω), equipped

with the scalar product

(108) (f, g)H1
0 (Ω) =

∫
Ω
∇f · ∇g,

and its associated topology.
Moreover, we take B = B̄(0,M) which is a convex closed bounded nonempty subset of

H1
0 (Ω). It has been shown that T (B) ⊂ B. Now it remains to prove that T is continuous and

T (B) is a compact set.

Compactness of T (B) :
Let (kn)n∈N be any sequence of B. We aim at proving the existence of a subsequence

(named the same way) converging in H1
0 (Ω) to a certain Tk, with k ∈ B. Given that B is

bounded, there is a subsequence satisfying

(109) kn ⇀
n→+∞

k in H1
0 (Ω),

where k ∈ B.
The assumptions on B and (107) yield that

(
B(kn)

1/2∇Tkn
)
n∈N is bounded in L2(Ω)N ,

so there exists a subsequence converging weakly to a certain function. In the following, we
state this limit is B(k)1/2∇Tk.

Let (kn)n∈N be a sequence of elements of B. Since it is bounded, there is a subsequence
named the same satisfying kn ⇀

n→+∞
k in H1

0 (Ω).

We first aim at showing that for any ε > 0 and ψ ∈ H1
0 (Ω)

(110)
∫
Ω
Dε(kn)ψ −→

n→+∞

∫
Ω
Dε(k)ψ.

The difference is rewritten as follows

(111)
Dε(kn)−Dε(k) = |Ũ(kn) ∗ ρε|2 − |Ũ(k) ∗ ρε|2

=
[
(Ũ(kn)− Ũ(k)) ∗ ρε

]
·
[
(Ũ(kn) + Ũ(k)) ∗ ρε

]
.

Hölder and then Gagliardo-Nirenberg inequality yield

(112)

∣∣∣∣∫
Ω
(Dε(kn)−Dε(k))ψ

∣∣∣∣
≤
∥∥∥(Ũ(kn)− Ũ(k)) ∗ ρε

∥∥∥
L3(RN )N

∥∥∥(Ũ(kn) + Ũ(k)) ∗ ρε
∥∥∥
L3(RN )N

∥ψ∥L3(Ω)

≤ c1

∥∥∥(Ũ(kn)− Ũ(k)) ∗ ρε
∥∥∥
H1(RN )N

∥∥∥(Ũ(kn) + Ũ(k)) ∗ ρε
∥∥∥
H1(RN )N

∥ψ∥L3(Ω).
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Lemma 20 and Young convolution inequality yield

(113)
∣∣∣∣∫

Ω
(Dε(kn)−Dε(k))ψ

∣∣∣∣ ≤ c2
ε2

∥U(kn)− U(k)∥L2(Ω)N ∥U(kn) + U(k)∥L2(Ω)N ∥ψ∥L3(Ω).

According to Theorem 8, the right hand side of (113) converges to 0 when n goes to +∞.
This yields (110).

Both (110) and (105) imply

(114) ∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(kn)∇Tkn · ∇ψ −→

n→+∞

∫
Ω
B(k)∇Tk · ∇ψ.

The uniqueness of the limit yields that

(115) B(kn)
1/2∇Tkn ⇀

n→+∞
B(k)1/2∇Tk in L2(Ω)N .

In addition, Lebesgue inverse theorem and the continuity of 1/B yield 1
B(kn)

−→
n→+∞

1
B(k)

a.e. in Ω, and in addition 1
B(kn)

|∇ψ| ≤ 1
ν |∇ψ|. Then we obtain

(116)
1

B(kn)
∇ψ −→

n→+∞

1

B(k)
∇ψ in L2(Ω)N .

Convergences (115) and (116), and Lemma 9 then yield for any ψ ∈ H1
0 (Ω)

(117)
∫
Ω
∇Tkn · ∇ψ −→

n→+∞

∫
Ω
∇Tk · ∇ψ.

In other words, Tkn ⇀
n→+∞

Tk in H1
0 (Ω).

The convergence of the norms has to be established. To do so, we have to prove

(118)
∫
Ω
Dε(kn)Tkn −→

n→+∞

∫
Ω
Dε(k)Tk.

We start by writing the inequality

(119)
∥Dε(kn)Tkn −Dε(k)Tk∥L1(Ω) ≤ ∥(Dε(kn)−Dε(k))Tk∥L1(Ω)

+ ∥Dε(kn)(Tkn − Tk)∥L1(Ω).

On one hand, (110) yields ∥(Dε(kn)−Dε(k))Tk∥L1(Ω) −→
n→+∞

0.

On the other hand, by compact Sobolev embedding, we have Tkn −→
n→+∞

Tk in L2(Ω).
Hölder inequality then yields

(120) ∥Dε(kn)(Tkn − Tk)∥L1(Ω) ≤ ∥Dε(kn)∥L2(Ω)∥Tkn − Tk∥L2(Ω) −→
n→+∞

0.

Hence, (118) is proved. Reporting in (105) yields

(121)
∫
Ω
B(kn)|∇Tkn|2 −→

n→+∞

∫
Ω
B(k)|∇Tk|2.
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Both (115) and (121) yield

(122) B(kn)
1/2∇Tkn −→

n→+∞
B(k)1/2∇Tk in L2(Ω)N .

Lebesgue inverse theorem ensures that another subsequence of (∇Tkn)n∈N is dominated
by a L1(Ω)N function. Lebesgue theorem then yields

(123)
∫
Ω
(B(kn)−B(k))|∇Tkn|2 −→

n→+∞
0.

Consequently, the following decomposition

(124)

∫
Ω

(
B(kn)|∇Tkn|2 −B(k)|∇Tk|2

)
=

∫
Ω
B(k)

(
|∇Tkn|2 − |∇Tk|2

)
+

∫
Ω
(B(kn)−B(k))|∇Tkn|2

implies that

(125)
∫
Ω
B(k)

(
|∇Tkn|2 − |∇Tk|2

)
−→

n→+∞
0.

Let NB be defined by

(126) NB : f ∈ H1
0 (Ω) 7→ ∥B(k)∇f∥L2(Ω)N .

The norms ∥ · ∥H1
0 (Ω) and NB are equivalent, and (125) ensures that (Tkn)n∈N converges

strongly for the norm NB, so as for the H1
0 (Ω) norm.

We now have proved that T (B) is compact.

Continuity of T :
Let (kn)n∈N be a sequence of B such that kn −→

n→+∞
k in H1

0 (Ω). The computations made

before ensure that a subsequence of (Tkn)n∈N converges to Tk in H1
0 (Ω). Moreover, Tk is the

only accumulation point of this bounded sequence. As a result, the whole sequence satisfies

(127) Tkn −→
n→+∞

Tk in H1
0 (Ω).

All the assumptions of Theorem 23 are satisfied. Consequently, T admits a fixed point in
B, which corresponds to a solution to Problem (84).

4.3 Last step: Taking the limit when ε goes to zero

This subsection aims at proving the existence of a solution to the initial variational TKE
problem, by analyzing the convergence of the approximated solutions found just before.

Theorem 25. There exists a function k ∈ V satisfying (81).
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Proof. Let (kε)ε>0 be the sequence of approximation functions given in the previous subsection.
Then for any ε > 0, kε satisfies

(128) ∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(kε)∇kε · ∇ψ =

∫
Ω
Dε(kε)ψ.

We intend to show that (kε)ε>0 is bounded for a certain topology. To do so, we use Lemma
1. A general theorem from Stampacchia (see [8]) is needed before.

Theorem 26 (Regularity and truncation function). Let H ∈ W 1,∞(R) with a finite number
of discontinuities, and such that H(0) = 0. Let q ∈ [1; +∞[ and v ∈W 1,q

0 (Ω).
Then H(v) ∈W 1,q

0 (Ω) and ∇H(v) = H ′(v)∇v.

Until the end of this chapter, for j ∈ N, Hj refers to the truncation function defined by

p p p p

−

−(j + 1)

−j 0 j j + 1

1

−1

Hj(x)

This function satisfies the assumptions of Theorem 26, so that we can take ψ = Hj(kε) in
(128) to obtain

(129) ∀ j ∈ N,
∫
Ω
B(kε)|∇kε|2H ′

j(kε) =

∫
Ω
Dε(kε)Hj(kε).

On one hand,

(130)
∫
Ω
B(kε)|∇kε|2H ′

j(kε) =

∫
Bε

j

B(kε)|∇kε|2 ≥ ν

∫
Bε

j

|∇kε|2,

where Bε
j refers to the subset {x ∈ Ω / j ≤ |kε(x)| < j + 1}.

One the other hand, Young convolution inequality yields

(131)
∫
Ω
Dε(kε)Hj(kε)︸ ︷︷ ︸

≤1

≤
∥∥∥Ũ(kε) ∗ ρε

∥∥∥2
L2(Ω)N

≤ ∥U(kε)∥2L2(Ω)N .

Inequalities (130), (131) and (97) reported in (129) yield the existence of a constant C > 0
not depending on k and ε such that

(132) ∀ j ∈ N,
∫
Bε

j

|∇kε|2 ≤ C.

Lemma 1 then yields ∥kε∥W 1,q(Ω) ≤ A, for q ∈ [1;N ′[. And given that C does not depend
on ε, it is the same for A.

Thus, there exists a sequence (εn)n∈N such that εn −→
n→+∞

0 and kεn ⇀
n→+∞

k in W 1,q
0 (Ω).

The function k is in V .
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We aim at showing that k is a solution of (81), which means

(133) ∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(k)∇k · ∇ψ =

∫
Ω
D(k)ψ.

We recall that the intermediary solutions (kεn) satisfy

(134) ∀ ψ ∈ H1
0 (Ω),

∫
Ω
B(kεn)∇kεn · ∇ψ =

∫
Ω
Dεn(kεn)ψ.

Convergence of the left hand side:
Given that kεn ⇀

n→+∞
k in V , we have

(135) ∀ ψ ∈W,

∫
Ω
∇kεn · ∇ψ −→

n→+∞

∫
Ω
∇k · ∇ψ.

In order to add the term B(kn), it seems useful to state a variant of Lemma 9.

Lemma 27 (Double convergence in V andW ). Let Ω be an open subset of RN , f ∈
⋂

1<r<N ′

Lr(Ω)

and g ∈ Lq(Ω), where q > N . Let us consider two sequences (fn)n∈N and (gn)n∈N such that

(136)

{
fn −→

n→+∞
f in Lr(Ω) for r ∈ [1;N ′[,

gn ⇀
n→+∞

g in Lq(Ω).

Then we have

(137)
∫
Ω
fngn −→

n→+∞

∫
Ω
fg.

Proof of Lemma 27. The proof of Lemma 27 is similar to the proof of Lemma 9. We write

(138)
∫
Ω
(fngn − fg) =

∫
Ω
(fn − f)gn +

∫
Ω
f(gn − g).

On one hand, the Hölder inequality yields

(139)
∣∣∣∣∫

Ω
(fn − f)gn

∣∣∣∣ ≤ ∥fn − f∥Lq′ (Ω)∥gn∥Lq(Ω) ≤M∥fn − f∥Lq′ (Ω) −→
n→+∞

0,

where q′ refers to the conjugate of q, which is in [1;N ′[.
On the other hand, the weak convergence of (gn)n∈N yields

(140)
∫
Ω
(gn − g)f −→

n→+∞
0.

Hence the result.
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We now check if the assumptions of Lemma 27 are satisfied.
By compact Sobolev embedding, kεn −→

n→+∞
k in L1(Ω). Thus, Lebesgue inverse theorem

yields that a subsequence satisfies kεn −→
n→+∞

k a.e. in Ω. The continuity of B yields

B(kεn) −→
n→+∞

B(k) a.e. in Ω. And the domination B(kεn)|∇ψ| ≤ µ|∇ψ| stands. Consequently,
Lebesgue theorem yields

(141) ∀ r ∈ [1;N ′[,∀ ψ ∈W, B(kεn)∇ψ −→
n→+∞

B(k)∇ψ in Lr(Ω).

The weak convergence of (kεn)n∈N being already established, Lemma 27 yields

(142) ∀ ψ ∈W,

∫
Ω
B(kεn)∇kεn · ∇ψ −→

n→+∞

∫
Ω
B(k)∇k · ∇ψ.

Convergence of the right hand side:
We intend to show that

(143) ∀ ψ ∈W,

∫
Ω
Dεn(kεn)ψ −→

n→+∞

∫
Ω
D(k)ψ,

at least for a subsequence.
Given that ψ ∈ L∞(Ω), it is sufficient to prove that

(144) Dεn(kεn) −→
n→+∞

D(k) in L1(Ω).

The L1 norm is decomposed as follows

(145)
∫
Ω
|Dεn(kεn)−D(k)| ≤

∫
Ω
|Dεn(kεn)−Dεn(k)|+

∫
Ω
|Dεn(k)−D(k)|.

Cauchy-Schwarz inequality first yields

(146)

∫
Ω
|Dεn(k)−D(k)| =

∫
Ω

∣∣∣|Ũ(k) ∗ ρεn |2 − |U(k)|2
∣∣∣

≤
∥∥∥Ũ(k) ∗ ρεn − Ũ(k)

∥∥∥
L2(RN )N

∥∥∥Ũ(k) ∗ ρεn + Ũ(k)
∥∥∥
L2(RN )N

.

We recall the following classical result.

Theorem 28. Let p ∈ [1; +∞[, f ∈ Lp(RN ), and (ρε)ε>0 a mollifier. Then we have

(147) ρε ∗ f −→
ε→0

f in Lp(RN ).

Theorem 28 and (146) yield

(148)
∫
Ω
|Dεn(k)−D(k)| −→

n→+∞
0.

Similarly, we write
(149)∫
Ω
|Dεn(kεn)−Dεn(k)| ≤

∥∥∥(Ũ(kεn)− Ũ(k)
)
∗ ρεn

∥∥∥
L2(RN )N

∥∥∥(Ũ(kεn) + Ũ(k)
)
∗ ρεn

∥∥∥
L2(RN )N

.
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On one hand, Young convolution inequality and (97) yield

(150)
∥∥∥(Ũ(kεn) + Ũ(k)

)
∗ ρεn

∥∥∥
L2(RN )N

≤ ∥U(kεn)∥L2(Ω)N + ∥U(k)∥L2(Ω)N ≤ C.

On the other hand, Young convolution inequality and Theorem 8 yield for a subsequence

(151)
∥∥∥(Ũ(kεn)− Ũ(k)

)
∗ ρεn

∥∥∥
L2(RN )N

≤ ∥U(kεn)− U(k)∥L2(Ω)N −→
n→+∞

0.

We have obtained

(152)
∫
Ω
|Dεn(kεn)−Dεn(k)| −→

n→+∞
0,

hence (144).

As a conclusion, k satisfies (81).

4.4 Conclusion: solution of the coupled problem

Let us consider the sequence (εn) mentioned previously, after all the extractions that were
done. We have shown that (kεn) strongly converges in L2(Ω) to a function k.

Moreover, (kεn) weakly converges to k in every space W 1,q
0 (Ω) with q ∈ [1;N ′[. Therefore,

theorem 10 yields that (u(kεn)) strongly converges to u(k) in H1(Ω).

All of this ensures the existence of a couple (u; k) of solutions of (1) at the distribution
sense, with u ∈ H1(Ω) and k ∈ V (in particular k ∈ L2).
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