Coupled system involving eddy coefficients and a right hand side in L^1 : review chapter

Guillaume LELOUP

October 18, 2024

1 Introduction

Let Ω be an open bounded subset of \mathbb{R}^N , this chapter focuses on the following problem. We search $u, k : \Omega \to \mathbb{R}$ satisfying

(1)
\n
$$
\begin{cases}\n-\text{div}(A(k)\nabla u) = f & \text{in } \Omega, \\
-\text{div}(B(k)\nabla k) = A(k)|\nabla u|^2 & \text{in } \Omega, \\
-A(k)\frac{\partial u}{\partial n} = \alpha u & \text{on } \partial \Omega, \\
k = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

In [\(1\)](#page-0-0), $f \in L^2(\Omega)$ is a given source term, $\alpha > 0$ and there exists two constants $\nu, \mu > 0$ such that both viscosities A and B satisfy

(2)
$$
\forall x \in \mathbb{R}, \quad \nu \leq A(x), B(x) \leq \mu.
$$

The aim of this chapter is proving the existence of a couple (u, k) of distributional solutions of [\(1\)](#page-0-0). This is not the only kind of solutions commonly searched. Indeed, some articles deal with renormalized solutions, which are defined and studied in [\[3\]](#page-23-0). This notion is interesting for the study of a system having a source term in $L^1(\Omega)$, as shown in [\[6\]](#page-23-1).

The source term of the equation in k is in $L^1(\Omega)$. Without any better hypothesis, it remains possible to find distributional solutions of [\(1\)](#page-0-0).

This figures in the works of L. Boccardo and T. Gallouët in [\[1\]](#page-23-2), on which is based this chapter. The associated result, proved in section [4,](#page-12-0) is a consequence of the washer Lemma, stated and proved in section [2.](#page-1-0) This Lemma brings a bound for a solution in $W_0^{1,q}$ $\mathcal{O}^{1,q}(\Omega)$, where $q < \frac{N}{N-1}$. Consequently, some particular function sets are needed.

Then, in section [4,](#page-12-0) we search weak solutions in $V = \bigcap_{1 \le q \le N'} W_0^{1,q}$ $L_0^{1,q}(\Omega)$, where N' refers to $\frac{N}{N-1}$; with test functions in $W = \bigcup_{q>N} W_0^{1,q}$ $_{0}^{1,q}(\Omega)$. This method was also used by T. Gallouët and R. Herbin in [\[4\]](#page-23-3).

Along this chapter, the viscosities A and B are bounded (assumption (2)). This does not really correspond to the physical situation, but is a right way to establish some interesting mathematical results, as a priori estimates, such as in section [3](#page-7-0) and [4.](#page-12-0) The assumption of bounded viscosities appears in [\[4\]](#page-23-3), but also in the works of S. Clain and R. Touzani (see [\[2\]](#page-23-4)), in which an existence result is proved in the two-dimensional case. In the present work, the existence results are proved when $N = 3$.

Of course it is possible to deal with unbounded viscosities, such as in $[6]$, where they are only bounded from below. Otherwise, if they are not, other assumptions are required, concerning the decreasing. In addition, other function spaces need to be developped, like in $|5|$.

In order to find the existence of a solution of [\(1\)](#page-0-0), this work will be divided into two steps, that correspond to sections [3](#page-7-0) and [4.](#page-12-0) Section 3 is devoted to the equation in u , which amounts to a linear problem. But when the problem is obviously non-linear, like the equation in k considered in section [4,](#page-12-0) another method is required. This consists in regularizing the system, then solving it by a linearization and a fixed-point theorem. This method is already used in [\[2\]](#page-23-4).

Given any borelian subset or \mathbb{R}^N named A, the Lebesgue measure is simply written |A|.

2 Preliminary results

2.1 The washer lemma

This section aims at proving the following result (already proved by Boccardo-Gallouët in [\[1\]](#page-23-2)).

Lemma 1. Let $q \in [1; N']$ where $N' = \frac{N}{N}$ $\frac{N}{N-1}$, and $u \in W_0^{1,q}$ $\int_0^{1,q}(\Omega)$. We define

(3)
$$
B_n = \{x \in \Omega \mid n \le |u(x)| < n+1\},\
$$

and assume that there is a constant $C > 0$ such that

(4)
$$
\forall n \in \mathbb{N}, \quad \int_{B_n} |\nabla u|^2 \leq C.
$$

Then we have the inequality

(5) ∥u∥W1,q(Ω) ≤ A,

where A depends on Ω , q and C.

Remark 2. Both constants C and A do not depend on u . Actually, the result may be rephrased as: let $(u_j)_{j\in J}$ a family of functions in $W_0^{1,q}$ $\chi_0^{1,q}(\Omega)$ with $q \in [1; N'[\text{ satisfying}]$

(6)
$$
\forall j \in J, \ \forall n \in \mathbb{N}, \ \int_{B_n^j} |\nabla u_j(x)|^2 dx \leq C,
$$

where B_n^j refers to $B_n^j = \{x \in \Omega \mid n \leq |u_j(x)| < n+1\}.$

Then there exists a constant $A > 0$ only depending on Ω , q and C such that

(7)
$$
\forall j \in J, \quad \|u_j\|_{W^{1,q}(\Omega)} \leq A.
$$

The proof of lemma [1](#page-1-1) is based on a decomposition given by the following lemma.

Lemma 3. Let u satisfy the assumptions of lemma [1.](#page-1-1) Let q^* be the critical exponent in Sobolev embedding $W^{1,q}(\Omega) \hookrightarrow L^{q^*}(\Omega)$, and any index $n_0 \in \mathbb{N}$. There exist two constants λ_1 and λ_2 depending on n_0 , q and Ω satisfying

(8)
$$
\|\nabla u\|_{L^q(\Omega)^N}^q \leq C^{q/2} \left(\lambda_1 + \lambda_2 \|u\|_{L^{q^*}(\Omega)}^{\frac{q^*(2-q)}{2}}\right).
$$

Moreover, we have: $\lim_{n_0 \to +\infty} \lambda_2(n_0) = 0.$

Proof of lemma [3.](#page-2-0) At first, we decompose $\int_{\Omega} |\nabla u|^q$ as a sum

(9)
$$
\int_{\Omega} |\nabla u|^q = \sum_{n=0}^{+\infty} \int_{B_n} |\nabla u|^q.
$$

Recalling that B_n is bounded, Hölder inequality and [\(4\)](#page-1-2) yield

(10)
$$
\int_{B_n} |\nabla u|^q \le |B_n|^{\frac{2-q}{2}} \left(\int_{B_n} |\nabla u|^2 \right)^{q/2} \le C^{q/2} |B_n|^{\frac{2-q}{2}}.
$$

We consider a fixed index $n_0 \in \mathbb{N}$.

If $n \leq n_0$, [\(10\)](#page-2-1) directly yields

(11)
$$
\sum_{n=0}^{n_0} \int_{B_n} |\nabla u|^q \leq C^{q/2} \sum_{n=0}^{n_0} |B_n|^{\frac{2-q}{2}} \leq (n_0+1)C^{q/2} |\Omega|^{\frac{2-q}{2}}.
$$

If $n > n_0$, the definition of B_n yields

(12)
$$
\int_{B_n} |u|^{q^*} \ge \int_{B_n} n^{q^*} = n^{q^*} |B_n|, \text{ hence } |B_n| \le \frac{1}{n^{q^*}} \int_{B_n} |u|^{q^*}.
$$

Inequalities (10) and (12) yield

(13)
$$
\forall n > n_0, \quad \int_{B_n} |\nabla u|^q \leq C^{q/2} \left(\frac{1}{n^{q^*}}\right)^{\frac{2-q}{2}} \left(\int_{B_n} |u|^{q^*}\right)^{\frac{2-q}{2}},
$$

which yields by addition

(14)
$$
\sum_{n=n_0+1}^{+\infty} \int_{B_n} |\nabla u|^q \leq C^{q/2} \sum_{n=n_0+1}^{+\infty} n^{\frac{(q-2)q^*}{2}} \left(\int_{B_n} |u|^{q^*} \right)^{\frac{2-q}{2}}.
$$

The discrete Hölder inequality applied on the right hand side of [\(14\)](#page-2-3) is written

$$
(15) \qquad \sum_{n=n_0+1}^{+\infty} n^{\frac{(q-2)q^*}{2}} \left(\int_{B_n} |u|^{q^*} \right)^{\frac{2-q}{2}} \le \left[\sum_{n=n_0+1}^{+\infty} \int_{B_n} |u|^{q^*} \right]^{\frac{2-q}{2}} \left[\sum_{n=n_0+1}^{+\infty} n^{\frac{N(q-2)}{N-q}} \right]^{q/2}
$$

.

The inequality may be useful in the following if and only if the series $\sum_{n\geq n_0+1} n^{\frac{N(q-2)}{N-q}}$ converges, which is equivalent to $N(2 - q) > N - q$. Some calculations show it is equivalent to $q < N'$.

Then we set $\lambda_2(n_0, q) = \left[\sum_{n=n_0+1}^{+\infty} n^{\frac{N(q-2)}{N-q}} \right]^{q/2}$, so that we directly obtain $\lambda_2(n_0, q) \underset{n_0 \to +\infty}{\longrightarrow}$ 0. With this notation, (14) and (15) become

$$
(16) \quad \sum_{n=n_0+1}^{+\infty} \int_{B_n} |\nabla u|^q \leq C^{q/2} \lambda_2(n_0, q) \left[\sum_{n=n_0+1}^{+\infty} \int_{B_n} |u|^{q^*} \right]^{\frac{2-q}{2}} \leq C^{q/2} \lambda_2(n_0, q) \left(\int_{\Omega} |u|^{q^*} \right)^{\frac{2-q}{2}}
$$

$$
= C^{q/2} \lambda_2(n_0, q) \|u\|_{L^{q^*}(\Omega)}^{\frac{q^*(2-q)}{2}}.
$$

By setting $\lambda_1(n_0, q) = (n_0 + 1)|\Omega|^{\frac{2-q}{2}}$, [\(11\)](#page-2-5) and [\(16\)](#page-3-0) yield

(17)
$$
\int_{\Omega} |\nabla u|^q \leq C^{q/2} \left(\lambda_1(n_0, q) + \lambda_2(n_0, q) \|u\|_{L^{q^*}(\Omega)}^{\frac{q^*(2-q)}{2}} \right)
$$

That corresponds to (8) , which concludes the proof.

This result can now be used to prove Lemma [1.](#page-1-1)

Proof of lemma [1.](#page-1-1) We start with the case $N = 2$, which is easier. In that case, we have $q^*(2-q)$ $\frac{Nq(2-q)}{2} = \frac{Nq(2-q)}{2(N-q)}$ $\frac{q(2-q)}{2(N-q)} = q$. Then [\(8\)](#page-2-6) becomes

(18)
$$
\|\nabla u\|_{L^q(\Omega)^N}^q \leq C^{q/2} \left(\lambda_1 + \lambda_2 \|u\|_{L^{q^*}(\Omega)}^q\right).
$$

Gagliardo-Nirenberg inequality and [\(18\)](#page-3-1) yield

(19)
$$
||u||_{L^{q^*}(\Omega)}^q \leq K ||\nabla u||_{L^q(\Omega)^N}^q \leq KC^{q/2} \left(\lambda_1 + \lambda_2 ||u||_{L^{q^*}(\Omega)}^q\right),
$$

where $K > 0$ depends on Ω and q. We recall that if $b < 1$, the following equivalence stands

(20)
$$
x \le a + bx \Leftrightarrow x \le \frac{a}{1 - b}.
$$

Since $\lambda_2(n_0, q) \longrightarrow_{n_0 \to +\infty} 0$, it is possible to choose $n_0 \in \mathbb{N}$ large enough to have $KC^{q/2}\lambda_2$ < 1. Then by [\(20\)](#page-3-2), we obtain

(21)
$$
||u||_{L^{q^*}(\Omega)}^q \le \frac{KC^{q/2}\lambda_1}{1 - KC^{q/2}\lambda_2}.
$$

Thus, from (18) :

(22)
$$
\|\nabla u\|_{L^q(\Omega)^N}^q \leq C^{q/2} \left(\lambda_1 + \frac{KC^{q/2} \lambda_1 \lambda_2}{1 - KC^{q/2} \lambda_2}\right).
$$

 \Box

.

And Poincaré-Friedrichs inequality yields

(23)
$$
||u||_{W^{1,q}(\Omega)}^q \le LC^{q/2} \left(\lambda_1 + \frac{KC^{q/2}\lambda_1\lambda_2}{1 - KC^{q/2}\lambda_2}\right)
$$

where L depends on q and Ω . This yields the result with

(24)
$$
A = L^{1/q} C^{1/2} \left(\lambda_1 + \frac{KC^{q/2} \lambda_1 \lambda_2}{1 - KC^{q/2} \lambda_2} \right)^{1/q}.
$$

We now focus on the case $N > 2$. Since $q < N' < N$, the Sobolev embedding used before yields

(25)
$$
||u||_{L^{q^*}(\Omega)}^q \leq K ||\nabla u||_{L^q(\Omega)^N}^q \leq KC^{q/2} \left(\lambda_1 + \lambda_2 ||u||_{L^{q^*}(\Omega)}^{\frac{q^*(2-q)}{2}}\right).
$$

Inequality [\(25\)](#page-4-0) is of the form $x \le a + bx^{\gamma}$, with

(26)
$$
\gamma = \frac{q^*(2-q)}{2q} = \frac{N(2-q)}{2(N-q)}.
$$

We have already shown that if $q \in [1; N']$

(27)
$$
1 < \frac{N(2-q)}{N-q} < N' \text{ hence } \frac{1}{2} < \gamma < \frac{N'}{2} < 1.
$$

Thus, the inequation we need to solve is of the form: $x \le a + bx^{\gamma}$, with $\gamma \in]0,1[$ and $a, b > 0.$

The graph on the side shows the existence of $\tau \in]0; +\infty[$ depending on a, b and γ such that $x \leq a + b x^{\gamma} \Leftrightarrow x \leq \tau.$

,

Let us show it rigorously by studying the variations of $F : x > 0 \mapsto a + bx^{\gamma} - x$. This function is \mathcal{C}^{∞} on $]0; +\infty[$ and $]$ $F'(x) = b\gamma x^{\gamma-1} - 1$ $F'(x) = b\gamma x$, therefore $F''(x) < 0$. We obtain $F''(x) = b\gamma (\gamma - 1) x^{\gamma - 2}$, therefore $F''(x)$ the following variations

Inequality [\(25\)](#page-4-0) finally ensures the existence of $\tau = \tau(\lambda_1, \lambda_2, C) > 0$ such that

$$
||u||_{L^{q^*}(\Omega)}^q \le \tau.
$$

Consequently, [\(8\)](#page-2-6) and Poincaré-Friedrichs inequality yield

(29)
$$
\|\nabla u\|_{L^q(\Omega)^N}^q \leq C^{q/2} \left(\lambda_1 + \lambda_2 \tau\right) \text{ hence } \|u\|_{W^{1,q}(\Omega)}^q \leq LC^{q/2} \left(\lambda_1 + \lambda_2 \tau\right),
$$

where L only depends on Ω and q. With $A = L^{1/q}C^{1/2}(\lambda_1 + \lambda_2 \tau)^{1/q}$ $A = L^{1/q}C^{1/2}(\lambda_1 + \lambda_2 \tau)^{1/q}$ $A = L^{1/q}C^{1/2}(\lambda_1 + \lambda_2 \tau)^{1/q}$, lemma 1 is proved in case $N > 2$. \Box

The first hypothesis of lemma [1](#page-1-1) is $q \in [1; N'$, where $N' = \frac{N}{N-1}$. It has been used many times, and we are able to show that is impossible to obtain similar results with higher values of q .

Indeed, considering the case $N > 2$, we recall that α is the only point where F' vanishes, which means

(30)
$$
b\gamma \alpha^{\gamma - 1} = 1 \text{ thus } \alpha = (b\gamma)^{\frac{1}{1 - \gamma}}.
$$

Replacing b by the constants of lemma [3](#page-2-0) yields $b(q) = M(q)\lambda_2(q)$, where $M(q)$ is bounded if $q \in [1; N']$. Consequently, $b(q) \longrightarrow_{q \to N'} +\infty$ and then

(31)
$$
\gamma(q) = \frac{N(2-q)}{2(N-q)} \underset{q \to N'}{\longrightarrow} 2 \text{ hence } \frac{1}{1-\gamma} \underset{q \to N'}{\longrightarrow} \frac{1}{2}.
$$

Therefore, [\(30\)](#page-5-0) yields $\alpha \longrightarrow_{q \to N'} +\infty$. And since $\tau \geq \alpha$, we obtain $\tau \longrightarrow_{q \to N'} +\infty$, which means $A \underset{q \to N'}{\longrightarrow} +\infty.$

There is a similar result in the case $N = 2$. The proof of lemma [1](#page-1-1) requires to choose an index n_0 great enough to have $b < 1$. But as $\lambda_2(n_0, q) \longrightarrow_{q \to N'} +\infty$, an increase of q implies an increase of n_0 .

Thus, as $\frac{2-q}{2} = 1 - \frac{q}{2} \underset{q \to N'}{\longrightarrow} 1 - \frac{N'}{2} = 0$, it follows

(32)
$$
\lambda_1(n_0, q) = (n_0 + 1)|\Omega|^{\frac{2-q}{2}} \underset{n_0 \to +\infty}{\longrightarrow} +\infty \text{ hence } A \underset{q \to N'}{\longrightarrow} +\infty.
$$

We have shown that q cannot be larger than the assumptions of lemma [1.](#page-1-1)

The result shown in this first section will be useful in the following. Generally, solving a PDE system is divided into two steps:

- simplifying the problem (for example by moving to a finite-dimension space, or by using a truncation function),
- coming back to the initial problem with the help of compacity results.

2.2 A general result on norms

Theorem 4 (Trace norm on H^1). Let the application N_0 be defined for any $u \in H^1(\Omega)$ by

(33)
$$
N_0(u) = \left(\|\nabla u\|_{L^2(\Omega)^N}^2 + \|u\|_{L^2(\partial\Omega)}^2 \right)^{1/2},
$$

where " $u_{|\partial\Omega}$ " refers to the trace of u on $\partial\Omega$.

Then N_0 is a norm, which is equivalent to the classical norm on $H^1(\Omega)$.

Proof. N_0 is non negative, homogeneous and satisfies triangular inequality (direct consequence of the fact that the norms L^2 also do). Let us consider $u \in H^1(\Omega)$ such that $N_0(u) = 0$. It comes $\|\nabla u\|_{L^2(\Omega)} = 0$ and $\|u\|_{L^2(\partial\Omega)} = 0$.

First, this yields that $\nabla u = 0$ almost everywhere on Ω . We write $u \stackrel{ae}{=} \lambda$, where λ is a real constant. We directly obtain that tr $u = \lambda$ a.e. on $\partial\Omega$, then $\lambda = 0$. We deduce that N_0 is a norm.

Equivalence between both norms :

At first, the trace operator $tr : H^1(\Omega) \to H^{1/2}(\partial \Omega)$ is surjective (see [\[7\]](#page-23-6)), and Sobolev embeddings yield in particular $H^{1/2}(\partial\Omega) \hookrightarrow L^2(\partial\Omega)$. Hence

(34)
$$
\exists C > 0, \forall u \in H^{1}(\Omega), \quad ||u||^{2}_{L^{2}(\partial \Omega)} \leq C||u||^{2}_{H^{1}(\Omega)}.
$$

We deduce

(35)
$$
\forall u \in H^{1}(\Omega), N_{0}(u)^{2} \leq (1+C) ||u||^{2}_{H^{1}(\Omega)}.
$$

Therefore N_0 is dominated by $\|\cdot\|_{H^1(\Omega)}$.

Conversely, we intend to show

(36)
$$
\exists C > 0, \forall u \in H^{1}(\Omega), \quad ||u||_{H^{1}(\Omega)}^{2} \leq CN_{0}(u)^{2}.
$$

By contradiction, let us suppose the negation of [\(36\)](#page-6-0), which means in particular

(37)
$$
\forall n \in \mathbb{N}, \exists u_n \in H^{1}(\Omega), \quad ||u_n||_{H^{1}(\Omega)}^{2} > nN_0(u_n)^{2}.
$$

Inequality [\(37\)](#page-6-1) yields that $\forall n \in \mathbb{N}^*, \ \|u_n\|_{L^2(\Omega)} > 0.$ Then, both sides of (37) can be divided by $||u_n||_{L^2(\Omega)}$. Which means, keeping the same notation

(38)
$$
\forall n \in \mathbb{N}, \exists u_n \in S, \ \ \|u_n\|_{H^1(\Omega)}^2 > nN_0(u_n)^2,
$$

where S refers to the "L²-sphere" defined by $S = \{v \in H^1(\Omega) / ||v||_{L^2(\Omega)} = 1\}$. Then [\(38\)](#page-7-1) can be rewritten as

(39)
$$
\forall n \geq 2, \quad \frac{1}{n} + \frac{1}{n} \|\nabla u_n\|_{L^2(\Omega)^N}^2 > \|u_n\|_{L^2(\partial\Omega)}^2 + \|\nabla u_n\|_{L^2(\Omega)^N}^2.
$$

Since $||u_n||^2_{L^2(\partial\Omega)} \geq 0$, [\(39\)](#page-7-2) yields in particular

(40)
$$
\left(1-\frac{1}{n}\right) \|\nabla u_n\|_{L^2(\Omega)^N}^2 \leq \frac{1}{n}, \text{ then } \|\nabla u_n\|_{L^2(\Omega)^N}^2 \leq \frac{1}{n-1}.
$$

Therefore, the sequence $(\nabla u_n)_{n\in\mathbb{N}^*}$ is bounded in $L^2(\Omega)$; and as $(u_n)_{n\in\mathbb{N}^*}$ is a sequence of points of S, $(u_n)_{n\in\mathbb{N}^*}$ is also bounded in $L^2(\Omega)$. We deduce $(u_n)_{n\in\mathbb{N}^*}$ is bounded in $H^1(\Omega)$, and there exists a subsequence also denoted $(u_n)_{n \in \mathbb{N}^*}$ satisfying $u_n \underset{n \to +\infty}{\to} u$ in $H^1(\Omega)$.

However, [\(39\)](#page-7-2) yields

(41)
$$
\forall n \geq 2, \quad \frac{1}{n} > \|u_n\|_{L^2(\partial\Omega)}^2 + \left(1 - \frac{1}{n}\right) \|\nabla u_n\|_{L^2(\Omega)}^2 \geq \frac{1}{2} N_0(u_n)^2,
$$

hence $N_0(u_n) \longrightarrow_{n \to +\infty} 0$, then $u = 0$.

Rellich theorem yields that $u_n \longrightarrow 0$ in $L^2(\Omega)$, meaning $||u_n||_{L^2(\Omega)} \longrightarrow 0$. But for all $n \in \mathbb{N}^*, \|u_n\|_{L^2(\Omega)} = 1$, which is a contradiction. \Box

3 Analysis of the first equation

In this section, given $p \in]1; +\infty[$ and $k \in W_0^{1,p}$ $L_0^{1,p}(\Omega)$, we consider the system

(42)
$$
\begin{cases}\n-\text{div}(A(k)\nabla u) = f & \text{in } \Omega, \\
-A(k)\frac{\partial u}{\partial n} = \alpha u & \text{on } \partial \Omega,\n\end{cases}
$$

with $f \in L^2(\Omega)$, $\alpha > 0$ and $A : \mathbb{R} \to \mathbb{R}_+$ satisfying

(43)
$$
\forall k \in \mathbb{R}, \ \ 0 < \nu \le A(k) \le \mu < +\infty.
$$

3.1 Variational formulation and a priori estimates

We remind the Green formula, which is likely to be used all along this thesis.

Theorem 5 (Green formula). Let $f \in H^1(\Omega)$ and $\mathbf{g} \in H^1(\Omega)^N$. Assume that **n** is the normal vector of Ω , then the following formula stands

(44)
$$
\int_{\Omega} \operatorname{div}(\mathbf{g}) f = -\int_{\Omega} \mathbf{g} \cdot \nabla f + \int_{\partial \Omega} (\mathbf{g} \cdot n) f \, dS.
$$

Multiplying the first equation of [\(42\)](#page-7-3) by $w \in H^1(\Omega)$ and then integrating yields

(45)
$$
-\int_{\Omega} \operatorname{div}(A(k)\nabla u)w = \int_{\Omega} fw.
$$

Then [\(44\)](#page-7-4) and the second equation of [\(42\)](#page-7-3) yield

(46)
$$
- \int_{\Omega} \operatorname{div}(A(k)\nabla u)w = \int_{\Omega} A(k)\nabla u \cdot \nabla w + \alpha \int_{\partial \Omega} uw \, dS.
$$

We obtain the variational formulation of [\(42\)](#page-7-3)

(47)
$$
\begin{cases} u \in H^{1}(\Omega) \\ \forall w \in H^{1}(\Omega), \quad \int_{\Omega} A(k) \nabla u \cdot \nabla w + \alpha \int_{\partial \Omega} uw \, dS = \int_{\Omega} fw. \end{cases}
$$

All the terms of [\(47\)](#page-8-0) are well defined. Moreover, the trace theorem (see [\[7\]](#page-23-6)) yields that $u, w \in H^{1/2}(\partial \Omega) \hookrightarrow L^2(\partial \Omega).$

The main result of this section is the following.

Theorem 6. There exists a unique function $u \in H^1(\Omega)$ satisfying [\(47\)](#page-8-0).

Proof. This proof uses the Lax-Milgram theorem on the Hilbert space $H^1(\Omega)$. Let a_k be the bilinear form given by

(48)
$$
\forall u, w \in H^{1}(\Omega), \quad a_{k}(u, w) = \int_{\Omega} A(k) \nabla u \cdot \nabla w + \alpha \int_{\partial \Omega} uw \, dS.
$$

Let $u, w \in H^1(\Omega)$. First we have

(49)
\n
$$
|a_k(u, w)| \leq \int_{\Omega} A(k) |\nabla u \cdot \nabla w| + \alpha \int_{\partial \Omega} |uw| \, dS
$$
\n
$$
\leq \mu ||\nabla u||_{L^2(\Omega)^N} ||\nabla w||_{L^2(\Omega)^N} + \alpha ||u||_{L^2(\partial \Omega)} ||w||_{L^2(\partial \Omega)}
$$
\n
$$
\leq (\mu + \alpha M) ||u||_{H^1(\Omega)} ||w||_{H^1(\Omega)},
$$

where M does not depend on u. Therefore, a_k is continuous on $H^1(\Omega) \times H^1(\Omega)$.

Then we show the coercivity. Let $w \in H^1(\Omega)$, we have

(50)
$$
a_k(w, w) = \int_{\Omega} A(k) |\nabla w|^2 + \alpha \int_{\partial \Omega} |w|^2 dS \ge \nu ||\nabla w||_{L^2(\Omega)^N}^2 + \alpha ||w||_{L^2(\partial \Omega)}^2
$$

$$
\ge \inf(\nu, \alpha) N_0(w)^2,
$$

hence Theorem [4](#page-6-2) yields the coercivity of a_k .

Finally, it is clear that the linear form $[w \mapsto \int_{\Omega} f w]$ is continuous. Problem [\(47\)](#page-8-0) then admits a unique solution $u \in H^1(\Omega)$, by Lax-Milgram theorem.

Now the existence and uniqueness of u is proved, it is relevant to state some a priori estimates on it.

Proposition 7. Let $k \in W_0^{1,p}$ $\mathcal{O}_0^{1,p}(\Omega)$ with $p \in [1; +\infty[$. The solution $u = u(k)$ of (47) satisfies the inequalities

(51)
$$
||u||_{H^1(\Omega)} \leq C_1(\Omega, \alpha, \nu, f),
$$

and

(52)
$$
||A(k)^{1/2} \nabla u(k)||_{L^{2}(\Omega)^{N}} \leq C_{2}(\Omega, \alpha, \mu, \nu, f).
$$

Proof. Taking $w = u$ as a test in [\(47\)](#page-8-0) leads to

(53)
$$
\int_{\Omega} A(k) |\nabla u|^2 + \alpha \int_{\partial \Omega} |u|^2 dS = \int_{\Omega} f u.
$$

Cauchy-Schwarz inequality then yields

(54)
$$
\nu \|\nabla u\|_{L^2(\Omega)^N}^2 + \alpha \|u\|_{L^2(\partial\Omega)}^2 \le \|f\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)},
$$

hence

(55)
$$
\min(\nu, \alpha) N_0(u)^2 \leq \|f\|_{L^2(\Omega)} \|u\|_{H^1(\Omega)}.
$$

Theorem [4](#page-6-2) directly yields

(56)
$$
\frac{\min(\nu, \alpha)}{C} ||u||_{H^1(\Omega)}^2 \leq ||f||_{L^2(\Omega)} ||u||_{H^1(\Omega)},
$$

hence (51) .

To obtain [\(52\)](#page-9-1), the higher bound on A and Poincaré inequality yield

(57)
$$
||A(k)^{1/2} \nabla u||_{L^{2}(\Omega)^{N}} \leq \sqrt{\mu} ||\nabla u||_{L^{2}(\Omega)^{N}} \leq c\sqrt{\mu} ||u||_{H^{1}(\Omega)}.
$$

Finally, (51) yields (52) .

3.2 An energy method

This subsection is devoted to show the H^1 convergence of solutions of [\(42\)](#page-7-3). More precisely, if $(k_n)_{n\in\mathbb{N}}$ is a sequence converging to a certain k in a sense precised after, a subsequence of $(u(k_n))_{n\in\mathbb{N}}$ converges in $H^1(\Omega)$ to $u(k)$. An intermediary result is first needed.

Theorem 8 (L^2 convergence). Let $p \in [1; +\infty[$ and $(k_n)_{n \in \mathbb{N}}$ a sequence of functions converging weakly to k in $W_0^{1,p}$ $u_0^{(1,p)}(\Omega)$. Let $u_n = u(k_n)$ and $u = u(k)$ the associated solutions of problem [\(42\)](#page-7-3). There exists a subsequence still denoted $(u_n)_{n\in\mathbb{N}}$ satisfying

(58)
$$
A(k_n)^{1/2} \nabla u_n \underset{n \to +\infty}{\longrightarrow} A(k)^{1/2} \nabla u \quad \text{in } L^2(\Omega).
$$

Proof. The weak convergence of $(k_n)_{n\in\mathbb{N}}$ and compact Sobolev embeddings yield that $k_n \longrightarrow +\infty$ k in $L^1(\Omega)$. By Lebesgue inverse theorem, a subsequence named the same way converges a.e. in Ω to k. The continuity of A yields

(59)
$$
A(k_n) \underset{n \to +\infty}{\longrightarrow} A(k)
$$
 a.e. in Ω .

We recall that u_n and u satisfy

(60)
$$
\forall v \in H^{1}(\Omega), \forall n \in \mathbb{N}, \int_{\Omega} A(k_{n}) \nabla u_{n} \cdot \nabla v + \alpha \int_{\partial \Omega} u_{n} v \, dS = \int_{\Omega} f v.
$$

(61)
$$
\forall v \in H^{1}(\Omega), \int_{\Omega} A(k) \nabla u \cdot \nabla v + \alpha \int_{\partial \Omega} uv \, dS = \int_{\Omega} fv.
$$

Inequality [\(51\)](#page-9-0) yields that $(u_n)_{n\in\mathbb{N}}$ is bounded in $H^1(\Omega)$, which ensures the existence of a same-named subsequence converging weakly to a certain $u^* \in H^1(\Omega)$. The continuity of the trace operator yields in particular

(62)
$$
\forall v \in H^{1}(\Omega), \quad \int_{\partial\Omega} u_{n}v \, dS \underset{n \to +\infty}{\longrightarrow} \int_{\partial\Omega} u^*v \, dS.
$$

Then, in order to show the convergence of the first term in [\(60\)](#page-10-0), an integration lemma is needed.

Lemma 9 (Convergence of integrals). Let $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ be two sequences of $L^2(\Omega)$ functions, and $f, g \in L^2(\Omega)$ such that

(63)
$$
f_n \underset{n \to +\infty}{\longrightarrow} f \quad and \quad g_n \underset{n \to +\infty}{\to} g \quad in \ L^2(\Omega).
$$

Then we have

(64)
$$
\int_{\Omega} f_n g_n \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} f g.
$$

This result will be proved after finishing the proof of Theorem [8.](#page-9-2)

The assumptions of Lemma [9](#page-10-1) have to be checked.

- Since the sequence $(A(k_n))_{n\in\mathbb{N}}$ converges almost everywhere to $A(k)$, the domination $A(k_n)|\nabla v| \leq \mu |\nabla v|$ and the Lebesgue theorem yield $A(k_n)\nabla v \xrightarrow[n \to +\infty]{} A(k)\nabla v$ in $L^2(\Omega)$.
- As a consequence of Rellich theorem, $\nabla u_n \underset{n\to+\infty}{\to} \nabla u^*$ in $L^2(\Omega)$.

Therefore, Lemma [9](#page-10-1) yields

(65)
$$
\forall v \in H^{1}(\Omega), \int_{\Omega} A(k_{n}) \nabla u_{n} \cdot \nabla v \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} A(k) \nabla u^{*} \cdot \nabla v.
$$

Both convergences (62) and (65) ensure that the limit u^* satisfies (61) . And since the solution of [\(61\)](#page-10-4) is unique (by Theorem [6\)](#page-8-1), $u^* = u = u(k)$.

Hence, $\nabla u_n \xrightarrow[n \to +\infty]{} \nabla u$ in $L^2(\Omega)$, and [\(52\)](#page-9-1) ensures that there exists a subsequence of $(A(k_n)^{1/2} \nabla u_n)_{n \in \mathbb{N}}$ converging weakly in L^2 . Therefore, Lemma [9](#page-10-1) yields

(66)
$$
A(k_n)^{1/2} \nabla u_n \underset{n \to +\infty}{\rightharpoonup} A(k)^{1/2} \nabla u \text{ in } L^2(\Omega).
$$

In order to obtain the strong convergence of this sequence, the convergence of the norms remains to be proved. Let us write [\(60\)](#page-10-0) with $v = u_n$ and [\(61\)](#page-10-4) with $v = u$.

(67)
$$
\forall n \in \mathbb{N}, \int_{\Omega} A(k_n) |\nabla u_n|^2 + \alpha \int_{\partial \Omega} |u_n|^2 dS = \int_{\Omega} f u_n.
$$

(68)
$$
\int_{\Omega} A(k) |\nabla u|^2 + \alpha \int_{\partial \Omega} |u|^2 dS = \int_{\Omega} f u.
$$

The strong convergence of $(u_n)_{n\in\mathbb{N}}$ in L^2 directly yields

(69)
$$
\int_{\Omega} f u_n \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} f u.
$$

The compact Sobolev embedding $H^{1/2}(\partial\Omega) \hookrightarrow L^2(\partial\Omega)$ yields in particular

(70)
$$
\int_{\partial\Omega} |u_n|^2 \, dS \underset{n\to+\infty}{\longrightarrow} \int_{\partial\Omega} |u|^2 \, dS.
$$

Convergences [\(69\)](#page-11-0) and [\(70\)](#page-11-1) yield

(71)
$$
\int_{\Omega} A(k_n) |\nabla u_n|^2 \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} A(k) |\nabla u|^2.
$$

The result of Theorem [8](#page-9-2) is proved.

It remains to prove Lemma [9,](#page-10-1) wo that the proof is complete.

Proof of Lemma [9.](#page-10-1) The difference between the two integrals is written

(72)
$$
\int_{\Omega} (f_n g_n - f g) = \int_{\Omega} f(g_n - g) + \int_{\Omega} (f_n - f) g_n.
$$

The weak convergence of $(g_n)_{n\in\mathbb{N}}$ yields the convergence of the first integral of [\(72\)](#page-11-2), and the fact that $(g_n)_{n\in\mathbb{N}}$ is bounded in $L^2(\Omega)$ yields

(73)
$$
\left| \int_{\Omega} (f_n - f) g_n \right| \leq \|f_n - f\|_{L^2(\Omega)} \|g_n\|_{L^2(\Omega)} \leq M \|f_n - f\|_{L^2(\Omega)} \xrightarrow[n \to +\infty]{} 0.
$$

Theorem 10 (H^1 convergence). With the same assumptions as in Theorem [8,](#page-9-2) there is a subsequence of $(u_n)_{n\in\mathbb{N}}$ still named the same such that

(74)
$$
u_n \underset{n \to +\infty}{\longrightarrow} u \quad in \ H^1(\Omega).
$$

Proof of Theorem [10.](#page-11-3) The weak convergence and Rellich Theorem ensure that $u_n \longrightarrow u$ in $L^2(\Omega)$. It remains to prove that $\nabla u_n \longrightarrow_{+\infty} \nabla u$ in $L^2(\Omega)$.

(75)
\n
$$
\sqrt{\nu} \|\nabla u_n - \nabla u\|_{L^2(\Omega)^N} \le \|A(k_n)^{1/2} \nabla u_n - A(k_n)^{1/2} \nabla u\|_{L^2(\Omega)^N}
$$
\n
$$
\le \|A(k_n)^{1/2} \nabla u_n - A(k)^{1/2} \nabla u\|_{L^2(\Omega)^N} + \left\| \left(A(k_n)^{1/2} - A(k)^{1/2}\right) \nabla u\right\|_{L^2(\Omega)^N} \underset{n \to +\infty}{\longrightarrow} 0,
$$

 \Box

by Theorem [8](#page-9-2) and Lebesgue Theorem.

4 Analysis of the second equation

The system considered in this section is the following

(76)
$$
\begin{cases}\n-\text{div}(B(k)\nabla k) = A(k)|\nabla u(k)|^2 & \text{in } \Omega, \\
k = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

The notations are lightened by defining

(77)
$$
D(k) = A(k)|\nabla u(k)|^2.
$$

4.1 Variational formulation and description of the method

In order to write the variational formulation of (76) , we start by defining two function sets, and stating a regularity result.

Definition 11. Let the sets V and W be defined by

(78)
$$
V = \bigcap_{1 \le r < N'} W_0^{1,r}(\Omega) \text{ and } W = \bigcup_{N < r \le +\infty} W_0^{1,r}(\Omega).
$$

Note that V is a vectorial space, but not W .

We aim at writing a variational formulation searching solutions in V with test functions in W.

Proposition 12. Let $k \in V$ and $\psi \in W$. Then $B(k)\nabla k \cdot \nabla \psi \in L^1(\Omega)$ and $D(k)\psi \in L^1(\Omega)$.

Proof. Let $k \in V$ and $\psi \in W$. By applying Hölder inequality with $r > N$ such that $\psi \in$ $W_0^{1,r}$ $\mathcal{L}_0^{1,r}(\Omega)$, we obtain

(79)
$$
\int_{\Omega} B(k) |\nabla k \cdot \nabla \psi| \leq \mu \int_{\Omega} |\nabla k \cdot \nabla \psi| \leq \mu ||\nabla k||_{L^{r'}(\Omega)} ||\nabla \psi||_{L^{r}(\Omega)}.
$$

Moreover, [\(52\)](#page-9-1) yields $||D(k)||_{L^1(\Omega)} \leq C$, then $D(k) \in L^1(\Omega)$ and $\psi \in L^{\infty}(\Omega)$. Hence $D(k)\psi \in L^1(\Omega)$. \Box Remark 13. The compact Sobolev embedding

$$
(80) \t\t V \hookrightarrow L^2(\Omega)
$$

stands if $N \in \{2, 3\}$.

Definition 14 (Variational formulation). A function k is a weak solution of (76) if

(81)
$$
\begin{cases} k \in V \\ \forall \psi \in W, \int_{\Omega} B(k) \nabla k \cdot \nabla \psi = \int_{\Omega} D(k) \psi. \end{cases}
$$

As proved before, $D(k) \in L^1(\Omega)$, but it seems difficult to obtain a better regularity. In addition, [\(81\)](#page-13-0) is not a linear problem, and could not be solved using only Lax-Milgram theorem, even if $D(k)$ was in $L^2(\Omega)$. These problems lead to use another method, which is divided into three steps:

- Regularizing the equation, by changing the source term.
- Linearizing it to solve the regularized problem with a fixed-point theorem.
- Taking the limit when the regularizing parameter goes to zero.

4.2 Two first steps: solving the regularized problem

Before linearizing Problem [\(81\)](#page-13-0), the source term needs to be approached by a sequence of regular functions.

Definition 15. If $w \in L^r(\Omega)$ with $r \in [1, +\infty]$, $\tilde{w} \in L^r(\mathbb{R}^N)$ refers to the extension by zero

$$
\tilde{w}: x \mapsto \begin{cases} w(x) \text{ if } x \in \Omega \\ 0 \text{ if } x \notin \Omega. \end{cases}
$$

Definition 16 (Mollifier). Let $\rho : \mathbb{R}^N \to \mathbb{R}$ be a \mathcal{C}^{∞} function satisfying

•
$$
\text{Supp}(\rho) = \bar{B}(0, 1),
$$

• $\int_{\mathbb{R}^N} \rho(y) dy = 1.$

 $\rho \geq 0$,

Let the family $(\rho_{\varepsilon})_{\varepsilon>0}$ be defined by

(82)
$$
\forall x \in \mathbb{R}^N, \ \rho_{\varepsilon}(x) = \frac{1}{\varepsilon^N} \rho\left(\frac{x}{\varepsilon}\right).
$$

Then $(\rho_{\varepsilon})_{\varepsilon>0}$ is called a mollifier.

Remark 17. From now on, the term "mollifier" always refers to Definition [16.](#page-13-1)

Definition 18 (Regularized problem). Let the approximated source term $D_{\varepsilon}(k)$ be defined for any $\varepsilon > 0$ by

(83)
$$
D_{\varepsilon}(k) = \left| \widetilde{U(k)} * \rho_{\varepsilon} \right|^2,
$$

where $U(k) = A(k)^{1/2} \nabla u(k)$.

A function k is called a weak solution of the regularized problem if it satisfies

(84)
$$
\begin{cases} k \in H_0^1(\Omega) \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} B(k) \nabla k \cdot \nabla \psi = \int_{\Omega} D_{\varepsilon}(k) \psi. \end{cases}
$$

Linearizing Problem [\(84\)](#page-14-0) is useful if and only if Lax-Milgram theorem can be applied in the Hilbert space $H_0^1(\Omega)$. To do so, the linear form $[\psi \mapsto \int_{\Omega} D_{\varepsilon}(k)\psi]$ must be continuous on $H_0^1(\Omega)$.

Theorem 19. Let $\varepsilon > 0$. The function $D_{\varepsilon}(k)$ defined just above is in $L^2(\Omega)$ and there exists a constant $C > 0$ independent of k and ε such that

(85)
$$
||D_{\varepsilon}(k)||_{L^{2}(\Omega)} \leq \frac{C}{\varepsilon^{2}}.
$$

The proof of Theorem [19](#page-14-1) is based on a general result.

Lemma 20. Let $v \in H^m(\mathbb{R}^N)$, $\ell \in \mathbb{N}$ and $(\rho_{\varepsilon})_{\varepsilon > 0}$ a mollifier. For $\varepsilon > 0$ sufficiently close to 0, we have

(86)
$$
\|v*\rho_{\varepsilon}\|_{H^{m+\ell}(\mathbb{R}^N)} \leq \frac{C(m,\ell)}{\varepsilon^{\ell}}\|v\|_{H^m(\mathbb{R}^N)}.
$$

Proof of Lemma [20.](#page-14-2) The $H^{m+\ell}$ norm can be defined by

(87)
$$
\|v * \rho_{\varepsilon}\|_{H^{m+\ell}(\mathbb{R}^N)}^2 = \sum_{\substack{|\alpha| \leq m \\ |\beta| \leq \ell}} \|\partial^{\alpha+\beta}(v * \rho_{\varepsilon})\|_{L^2(\mathbb{R}^N)}^2.
$$

Let $\alpha, \beta \in \mathbb{N}^d$ such that $|\alpha| \leq m$ and $|\beta| \leq \ell$. Plancherel theorem yields

(88)
$$
\|\partial^{\alpha+\beta}(v*\rho_{\varepsilon})\|_{L^2(\mathbb{R}^N)}^2 = \frac{1}{(2\pi)^N} \|\mathcal{F}(\partial^{\alpha+\beta}(v*\rho_{\varepsilon}))\|_{L^2(\mathbb{R}^N)}^2,
$$

where $\mathcal F$ refers to the Fourier transform operator.

Since $v \in H^m(\mathbb{R}^N)$, the derivation formula $\partial^{\alpha+\beta}(v * \rho_{\varepsilon}) = (\partial^{\alpha}v) * (\partial^{\beta} \rho_{\varepsilon})$ and the Fourier transform yield

(89)
$$
\mathcal{F}\left(\partial^{\alpha+\beta}(v*\rho_{\varepsilon})\right)=\mathcal{F}(\partial^{\alpha}v)\mathcal{F}(\partial^{\beta}\rho_{\varepsilon}).
$$

Then with norms

(90)
$$
\|\mathcal{F}(\partial^{\alpha+\beta}(v*\rho_{\varepsilon}))\|_{L^2(\mathbb{R}^N)}^2 = \int_{\mathbb{R}^N} |\mathcal{F}(\partial^{\alpha}v)(\xi)|^2 \cdot |\mathcal{F}(\partial^{\beta}\rho_{\varepsilon})(\xi)|^2 d\xi.
$$

A linear change of variables yields

(91)
$$
\mathcal{F}(\rho_{\varepsilon})(\xi) = \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} e^{-ix\xi} \rho\left(\frac{x}{\varepsilon}\right) dx \underset{y=x/\varepsilon}{=} \int_{\mathbb{R}^N} e^{-i\varepsilon y\xi} \rho(y) dy = \mathcal{F}(\rho)(\varepsilon\xi).
$$

Then we obtain

(92)
\n
$$
|\mathcal{F}(\partial^{\beta} \rho_{\varepsilon})(\xi)|^{2} = |\xi^{\beta} \mathcal{F}(\rho_{\varepsilon})(\xi)|^{2} = |\xi^{\beta} \mathcal{F}(\rho)(\varepsilon \xi)|^{2}
$$
\n
$$
= \frac{1}{\varepsilon^{2|\beta|}} |(\varepsilon \xi)^{\beta} \mathcal{F}(\rho)(\varepsilon \xi)|^{2} = \frac{1}{\varepsilon^{2|\beta|}} |\mathcal{F}(\partial^{\beta} \rho)(\varepsilon \xi)|^{2}
$$

Yet, $\partial^{\beta} \rho \in \mathscr{D}(\mathbb{R}^{N}) \subset L^{1}(\mathbb{R}^{N})$, which yields $\forall \xi \in \mathbb{R}^{N}$, $|\mathcal{F}(\partial^{\beta} \rho)(\xi)| \leq ||\partial^{\beta} \rho||_{L^{1}(\mathbb{R}^{N})}$. Then [\(90\)](#page-14-3) ensures the existence of a constant $c_0 > 0$ independent of v such that

(93)
$$
\|\mathcal{F}(\partial^{\alpha+\beta}(v*\rho_{\varepsilon}))\|_{L^{2}(\mathbb{R}^{N})}^{2} \leq \frac{c_{0}}{\varepsilon^{2|\beta|}}\|\mathcal{F}(\partial^{\alpha}v)\|_{L^{2}(\mathbb{R}^{N})}^{2}.
$$

Plancherel Theorem then yields

(94)
$$
\|\partial^{\alpha+\beta}(v*\rho_{\varepsilon})\|_{L^2(\mathbb{R}^N)}^2 \leq \frac{c_0}{\varepsilon^{2|\beta|}} \|\partial^{\alpha}v\|_{L^2(\mathbb{R}^N)}^2.
$$

Then, by addition

(95)
$$
\sum_{|\alpha| \leq m} \|\partial^{\alpha+\beta}(v * \rho_{\varepsilon})\|_{L^2(\mathbb{R}^N)}^2 \leq \frac{c_0}{\varepsilon^{2|\beta|}} \|v\|_{H^m(\mathbb{R}^N)}^2.
$$

Taking $\varepsilon \in]0,1[$ yields $\frac{1}{\varepsilon^{2|\beta|}} \leq \frac{1}{\varepsilon^2}$ $\frac{1}{\varepsilon^{2\ell}}$. Thus, adding for $|\beta| \leq \ell$ yields

(96)
$$
\|v*\rho_{\varepsilon}\|_{H^{m+\ell}(\mathbb{R}^N)}^2 \leq \frac{c(\ell)}{\varepsilon^{2\ell}}\|v\|_{H^m(\mathbb{R}^N)}^2,
$$

hence [\(86\)](#page-14-4).

We can now apply this result to prove Theorem
$$
19
$$
, recalling that

$$
||U(k)||_{L^2(\Omega)^N} \leq C,
$$

where $C > 0$ depends on f, Ω , α , μ and ν . This is a rewriting of [\(52\)](#page-9-1).

Proof of Theorem [19.](#page-14-1) The definition of D_{ε} yields

(98)
$$
||D_{\varepsilon}(k)||_{L^{2}(\Omega)} = \left(\int_{\Omega} |\widetilde{U(k)} * \rho_{\varepsilon}|^{4}\right)^{1/2} = \left\|\widetilde{U(k)} * \rho_{\varepsilon}\right\|_{L^{4}(\Omega)^{N}}^{2}.
$$

Sobolev embedding $H^1(\Omega) \hookrightarrow L^4(\Omega)$ and Lemma [20](#page-14-2) then yield

(99)
$$
\left\|\widetilde{U(k)} * \rho_{\varepsilon}\right\|_{L^{4}(\Omega)^{N}} \leq c_{1} \left\|\widetilde{U(k)} * \rho_{\varepsilon}\right\|_{H^{1}(\Omega)^{N}} \leq \frac{c_{2}}{\varepsilon} \|U(k)\|_{L^{2}(\Omega)^{N}}.
$$

Finally, [\(97\)](#page-15-0) yields the result.

 \Box

 \Box

.

In order to solve the regularized problem [\(84\)](#page-14-0), we first linearize it, as said before.

Definition 21. A function $g = g(k)$ is said to be a weak solution of the linearized problem associated to [\(76\)](#page-12-1) if

(100)
$$
\begin{cases} g = g(k) \in H_0^1(\Omega) \\ \forall \psi \in H_0^1(\Omega), \int_{\Omega} B(k) \nabla g \cdot \nabla \psi = \int_{\Omega} D_{\varepsilon}(k) \psi. \end{cases}
$$

Lemma 22. Let $k \in L^1(\Omega)$, there exists a unique solution to Problem [\(100\)](#page-16-0).

Proof. This is a consequence of Lax-Milgram theorem. Theorem [19](#page-14-1) ensures that $[\psi \mapsto \int_{\Omega} D_{\varepsilon}(k)\psi]$ is a continuous linear form on $H_0^1(\Omega)$. Let the bilinear form b be defined by

(101)
$$
b:(g,\psi)\mapsto \int_{\Omega}B(k)\nabla g\cdot\nabla\psi.
$$

First, let $g, \psi \in H_0^1(\Omega)$

(102)
$$
|b(g,\psi)| \leq \mu \|\nabla g\|_{L^2(\Omega)^N} \|\nabla \psi\|_{L^2(\Omega)^N} \leq \|g\|_{H^1(\Omega)} \|\psi\|_{H^1(\Omega)}.
$$

The continuity of b is proved.

Then, let $\psi \in H_0^1(\Omega)$, we have

(103)
$$
b(\psi,\psi) = \int_{\Omega} B(k) |\nabla \psi|^2 \geq \nu ||\nabla \psi||^2_{L^2(\Omega)^N} \geq c(\Omega) \nu ||\psi||^2_{H^1(\Omega)},
$$

as a consequence of Poincaré inequality. The coercivity of b is proved.

Lax-Milgram theorem yields the existence and unicity of the solution g.

Now, we aim at showing the existence of a solution to problem [\(84\)](#page-14-0). To do so, we recall the Leray-Schauder fixed-point theorem (see [\[9\]](#page-24-0)).

Theorem 23 (Leray-Schauder). Let X a Banach space, and B a convex closed bounded nonempty subset of X. Let $f : B \to B$ a continuous function with $f(B)$ compact. Then f admits at least one fixed point in B.

This result is the main ingredient of the proof of the following statement.

Theorem 24. The regularized problem (84) admits a solution.

Proof. Let the operator T be defined by

$$
(104) \t\t T: k \mapsto g(k),
$$

where $g(k)$ refers to the solution of Problem [\(100\)](#page-16-0). In other words, $Tk \in H_0^1(\Omega)$ satisfies

(105)
$$
\forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} B(k) \nabla T k \cdot \nabla \psi = \int_{\Omega} D_{\varepsilon}(k) \psi.
$$

The method consists in applying Theorem [23](#page-16-1) to the operator T. First, taking $\psi = Tk$ in [\(105\)](#page-16-2) yields

(106)
$$
\int_{\Omega} B(k) |\nabla T k|^2 = \int_{\Omega} D_{\varepsilon}(k) Tk, \text{ hence } \nu ||\nabla T k||_{L^2(\Omega)^N} \leq c_1 ||D_{\varepsilon}(k)||_{L^2(\Omega)}.
$$

Then Theorem [19](#page-14-1) yields

(107)
$$
\|\nabla T k\|_{L^2(\Omega)^N} \leq c_2 \|D_{\varepsilon}(k)\|_{L^2(\Omega)} \leq M,
$$

where $M > 0$ does not depend on k.

Considering the notations of Theorem [23,](#page-16-1) in this problem we take $X = H_0^1(\Omega)$, equipped with the scalar product

(108)
$$
(f,g)_{H_0^1(\Omega)} = \int_{\Omega} \nabla f \cdot \nabla g,
$$

and its associated topology.

Moreover, we take $B = B(0, M)$ which is a convex closed bounded nonempty subset of $H_0^1(\Omega)$. It has been shown that $T(B) \subset B$. Now it remains to prove that T is continuous and $T(B)$ is a compact set.

Compactness of $T(B)$:

Let $(k_n)_{n\in\mathbb{N}}$ be any sequence of B. We aim at proving the existence of a subsequence (named the same way) converging in $H_0^1(\Omega)$ to a certain Tk, with $k \in B$. Given that B is bounded, there is a subsequence satisfying

(109)
$$
k_n \underset{n \to +\infty}{\rightharpoonup} k \quad \text{in} \quad H_0^1(\Omega),
$$

where $k \in B$.

The assumptions on B and [\(107\)](#page-17-0) yield that $(B(k_n)^{1/2}\nabla T k_n)_{n\in\mathbb{N}}$ is bounded in $L^2(\Omega)^N$, so there exists a subsequence converging weakly to a certain function. In the following, we state this limit is $B(k)^{1/2}\nabla Tk$.

Let $(k_n)_{n\in\mathbb{N}}$ be a sequence of elements of B. Since it is bounded, there is a subsequence named the same satisfying $k_n \underset{n \to +\infty}{\to} k$ in $H_0^1(\Omega)$.

We first aim at showing that for any $\varepsilon > 0$ and $\psi \in H_0^1(\Omega)$

(110)
$$
\int_{\Omega} D_{\varepsilon}(k_n) \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} D_{\varepsilon}(k) \psi.
$$

The difference is rewritten as follows

(111)
$$
D_{\varepsilon}(k_n) - D_{\varepsilon}(k) = |\widetilde{U(k_n)} * \rho_{\varepsilon}|^2 - |\widetilde{U(k)} * \rho_{\varepsilon}|^2
$$

$$
= \left[(\widetilde{U(k_n)} - \widetilde{U(k)}) * \rho_{\varepsilon} \right] \cdot \left[(\widetilde{U(k_n)} + \widetilde{U(k)}) * \rho_{\varepsilon} \right].
$$

Hölder and then Gagliardo-Nirenberg inequality yield

$$
\left| \int_{\Omega} \left(D_{\varepsilon}(k_{n}) - D_{\varepsilon}(k) \right) \psi \right|
$$
\n
$$
\leq \left\| \widetilde{\left(U(k_{n}) - U(k) \right)} \ast \rho_{\varepsilon} \right\|_{L^{3}(\mathbb{R}^{N})^{N}} \left\| \widetilde{\left(U(k_{n}) + U(k) \right)} \ast \rho_{\varepsilon} \right\|_{L^{3}(\mathbb{R}^{N})^{N}} \|\psi\|_{L^{3}(\Omega)}
$$
\n
$$
\leq c_{1} \left\| \widetilde{\left(U(k_{n}) - U(k) \right)} \ast \rho_{\varepsilon} \right\|_{H^{1}(\mathbb{R}^{N})^{N}} \left\| \widetilde{\left(U(k_{n}) + U(k) \right)} \ast \rho_{\varepsilon} \right\|_{H^{1}(\mathbb{R}^{N})^{N}} \|\psi\|_{L^{3}(\Omega)}.
$$

Lemma [20](#page-14-2) and Young convolution inequality yield

$$
(113)\quad \left|\int_{\Omega} \left(D_{\varepsilon}(k_n)-D_{\varepsilon}(k)\right)\psi\right| \leq \frac{c_2}{\varepsilon^2} \|U(k_n)-U(k)\|_{L^2(\Omega)^N} \|U(k_n)+U(k)\|_{L^2(\Omega)^N} \|\psi\|_{L^3(\Omega)}.
$$

According to Theorem [8,](#page-9-2) the right hand side of (113) converges to 0 when n goes to $+\infty$. This yields [\(110\)](#page-17-1).

Both (110) and (105) imply

(114)
$$
\forall \psi \in H_0^1(\Omega), \int_{\Omega} B(k_n) \nabla T k_n \cdot \nabla \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} B(k) \nabla T k \cdot \nabla \psi.
$$

The uniqueness of the limit yields that

(115)
$$
B(k_n)^{1/2} \nabla T k_n \underset{n \to +\infty}{\rightharpoonup} B(k)^{1/2} \nabla T k \text{ in } L^2(\Omega)^N.
$$

In addition, Lebesgue inverse theorem and the continuity of $1/B$ yield $\frac{1}{B(k_n)} \longrightarrow_{n \to +\infty} \frac{1}{B(k_n)}$ $B(k)$ a.e. in Ω , and in addition $\frac{1}{B(k_n)}|\nabla\psi| \leq \frac{1}{\nu}|\nabla\psi|$. Then we obtain

(116)
$$
\frac{1}{B(k_n)} \nabla \psi \underset{n \to +\infty}{\longrightarrow} \frac{1}{B(k)} \nabla \psi \text{ in } L^2(\Omega)^N.
$$

Convergences [\(115\)](#page-18-1) and [\(116\)](#page-18-2), and Lemma [9](#page-10-1) then yield for any $\psi \in H_0^1(\Omega)$

(117)
$$
\int_{\Omega} \nabla T k_{n} \cdot \nabla \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} \nabla T k \cdot \nabla \psi.
$$

In other words, $Tk_n \underset{n \to +\infty}{\to} Tk$ in $H_0^1(\Omega)$.

The convergence of the norms has to be established. To do so, we have to prove

(118)
$$
\int_{\Omega} D_{\varepsilon}(k_n) T k_n \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} D_{\varepsilon}(k) T k.
$$

We start by writing the inequality

(119)
$$
||D_{\varepsilon}(k_n)Tk_n - D_{\varepsilon}(k)Tk||_{L^1(\Omega)} \leq ||(D_{\varepsilon}(k_n) - D_{\varepsilon}(k))Tk||_{L^1(\Omega)} + ||D_{\varepsilon}(k_n)(Tk_n - Tk)||_{L^1(\Omega)}.
$$

On one hand, [\(110\)](#page-17-1) yields $||(D_{\varepsilon}(k_n) - D_{\varepsilon}(k))Tk||_{L^1(\Omega)} \longrightarrow_{n \to +\infty} 0.$

On the other hand, by compact Sobolev embedding, we have $Tk_n \longrightarrow_{n \to +\infty} Tk$ in $L^2(\Omega)$. Hölder inequality then yields

(120)
$$
||D_{\varepsilon}(k_n)(Tk_n - Tk)||_{L^1(\Omega)} \leq ||D_{\varepsilon}(k_n)||_{L^2(\Omega)} ||Tk_n - Tk||_{L^2(\Omega)} \underset{n \to +\infty}{\longrightarrow} 0.
$$

Hence, [\(118\)](#page-18-3) is proved. Reporting in [\(105\)](#page-16-2) yields

(121)
$$
\int_{\Omega} B(k_n) |\nabla T k_n|^2 \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} B(k) |\nabla T k|^2.
$$

Both (115) and (121) yield

(122)
$$
B(k_n)^{1/2} \nabla T k_n \underset{n \to +\infty}{\longrightarrow} B(k)^{1/2} \nabla T k \text{ in } L^2(\Omega)^N.
$$

Lebesgue inverse theorem ensures that another subsequence of $(\nabla T k_n)_{n \in \mathbb{N}}$ is dominated by a $L^1(\Omega)^N$ function. Lebesgue theorem then yields

(123)
$$
\int_{\Omega} (B(k_n) - B(k)) |\nabla T k_n|^2 \underset{n \to +\infty}{\longrightarrow} 0.
$$

Consequently, the following decomposition

(124)
$$
\int_{\Omega} \left(B(k_n) |\nabla T k_n|^2 - B(k) |\nabla T k|^2 \right) = \int_{\Omega} B(k) \left(|\nabla T k_n|^2 - |\nabla T k|^2 \right) + \int_{\Omega} (B(k_n) - B(k)) |\nabla T k_n|^2
$$

implies that

(125)
$$
\int_{\Omega} B(k) \left(|\nabla T k_n|^2 - |\nabla T k|^2 \right) \underset{n \to +\infty}{\longrightarrow} 0.
$$

Let N_B be defined by

(126)
$$
N_B: f \in H_0^1(\Omega) \mapsto ||B(k)\nabla f||_{L^2(\Omega)^N}.
$$

The norms $\|\cdot\|_{H_0^1(\Omega)}$ and N_B are equivalent, and [\(125\)](#page-19-0) ensures that $(Tk_n)_{n\in\mathbb{N}}$ converges strongly for the norm N_B , so as for the $H_0^1(\Omega)$ norm.

We now have proved that $T(B)$ is compact.

Continuity of T :

Let $(k_n)_{n\in\mathbb{N}}$ be a sequence of B such that $k_n \longrightarrow k$ in $H_0^1(\Omega)$. The computations made before ensure that a subsequence of $(Tk_n)_{n\in\mathbb{N}}$ converges to Tk in $H_0^1(\Omega)$. Moreover, Tk is the only accumulation point of this bounded sequence. As a result, the whole sequence satisfies

(127)
$$
T k_n \underset{n \to +\infty}{\longrightarrow} T k \text{ in } H_0^1(\Omega).
$$

All the assumptions of Theorem [23](#page-16-1) are satisfied. Consequently, T admits a fixed point in B, which corresponds to a solution to Problem [\(84\)](#page-14-0). □

4.3 Last step: Taking the limit when ε goes to zero

This subsection aims at proving the existence of a solution to the initial variational TKE problem, by analyzing the convergence of the approximated solutions found just before.

Theorem 25. There exists a function $k \in V$ satisfying [\(81\)](#page-13-0).

Proof. Let $(k_{\varepsilon})_{\varepsilon>0}$ be the sequence of approximation functions given in the previous subsection. Then for any $\varepsilon > 0$, k_{ε} satisfies

(128)
$$
\forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} B(k_{\varepsilon}) \nabla k_{\varepsilon} \cdot \nabla \psi = \int_{\Omega} D_{\varepsilon}(k_{\varepsilon}) \psi.
$$

We intend to show that $(k_{\varepsilon})_{\varepsilon>0}$ is bounded for a certain topology. To do so, we use Lemma [1.](#page-1-1) A general theorem from Stampacchia (see [\[8\]](#page-24-1)) is needed before.

Theorem 26 (Regularity and truncation function). Let $H \in W^{1,\infty}(\mathbb{R})$ with a finite number of discontinuities, and such that $H(0) = 0$. Let $q \in [1; +\infty[$ and $v \in W_0^{1,q}$ $\mathcal{O}^{1,q}(\Omega).$

Then $H(v) \in W_0^{1,q}$ $_0^{1,q}(\Omega)$ and $\nabla H(v) = H'(v)\nabla v$.

Until the end of this chapter, for $j \in \mathbb{N}$, H_j refers to the truncation function defined by

This function satisfies the assumptions of Theorem [26,](#page-20-0) so that we can take $\psi = H_i (k_\varepsilon)$ in [\(128\)](#page-20-1) to obtain

(129)
$$
\forall j \in \mathbb{N}, \quad \int_{\Omega} B(k_{\varepsilon}) |\nabla k_{\varepsilon}|^2 H'_j(k_{\varepsilon}) = \int_{\Omega} D_{\varepsilon}(k_{\varepsilon}) H_j(k_{\varepsilon}).
$$

On one hand,

(130)
$$
\int_{\Omega} B(k_{\varepsilon}) |\nabla k_{\varepsilon}|^{2} H'_{j}(k_{\varepsilon}) = \int_{B_{j}^{\varepsilon}} B(k_{\varepsilon}) |\nabla k_{\varepsilon}|^{2} \geq \nu \int_{B_{j}^{\varepsilon}} |\nabla k_{\varepsilon}|^{2},
$$

where B_j^{ε} refers to the subset $\{x \in \Omega \mid j \leq |k_{\varepsilon}(x)| < j+1\}.$

One the other hand, Young convolution inequality yields

(131)
$$
\int_{\Omega} D_{\varepsilon}(k_{\varepsilon}) \underbrace{H_j(k_{\varepsilon})}_{\leq 1} \leq \left\| \widetilde{U(k_{\varepsilon})} * \rho_{\varepsilon} \right\|_{L^2(\Omega)^N}^2 \leq \| U(k_{\varepsilon}) \|_{L^2(\Omega)^N}^2.
$$

Inequalities [\(130\)](#page-20-2), [\(131\)](#page-20-3) and [\(97\)](#page-15-0) reported in [\(129\)](#page-20-4) yield the existence of a constant $C > 0$ not depending on k and ε such that

(132)
$$
\forall j \in \mathbb{N}, \quad \int_{B_j^{\varepsilon}} |\nabla k_{\varepsilon}|^2 \leq C.
$$

Lemma [1](#page-1-1) then yields $||k_{\varepsilon}||_{W^{1,q}(\Omega)} \leq A$, for $q \in [1; N']$. And given that C does not depend on ε , it is the same for A.

Thus, there exists a sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ such that $\varepsilon_n \longrightarrow_{n\to+\infty} 0$ and $k_{\varepsilon_n} \longrightarrow_{+\infty} k$ in $W_0^{1,q}$ $\mathfrak{a}^{1,q}(\Omega).$ The function k is in V .

We aim at showing that k is a solution of (81) , which means

(133)
$$
\forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} B(k) \nabla k \cdot \nabla \psi = \int_{\Omega} D(k) \psi.
$$

We recall that the intermediary solutions (k_{ε_n}) satisfy

(134)
$$
\forall \psi \in H_0^1(\Omega), \int_{\Omega} B(k_{\varepsilon_n}) \nabla k_{\varepsilon_n} \cdot \nabla \psi = \int_{\Omega} D_{\varepsilon_n}(k_{\varepsilon_n}) \psi.
$$

Convergence of the left hand side:

Given that $k_{\varepsilon_n} \underset{n \to +\infty}{\to} k$ in V, we have

(135)
$$
\forall \psi \in W, \quad \int_{\Omega} \nabla k_{\varepsilon_n} \cdot \nabla \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} \nabla k \cdot \nabla \psi.
$$

In order to add the term $B(k_n)$, it seems useful to state a variant of Lemma [9.](#page-10-1)

Lemma 27 (Double convergence in V and W). Let Ω be an open subset of \mathbb{R}^N , $f \in \bigcap$ $1 < r < N'$ $L^r(\Omega)$ and $g \in L^q(\Omega)$, where $q > N$. Let us consider two sequences $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ such that

(136)
$$
\begin{cases} f_n \underset{n \to +\infty}{\longrightarrow} f & \text{in } L^r(\Omega) \text{ for } r \in [1; N'],\\ g_n \underset{n \to +\infty}{\longrightarrow} g & \text{in } L^q(\Omega). \end{cases}
$$

Then we have

(137)
$$
\int_{\Omega} f_n g_n \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} f g.
$$

Proof of Lemma [27.](#page-21-0) The proof of Lemma [27](#page-21-0) is similar to the proof of Lemma [9.](#page-10-1) We write

(138)
$$
\int_{\Omega} (f_n g_n - f g) = \int_{\Omega} (f_n - f) g_n + \int_{\Omega} f (g_n - g).
$$

On one hand, the Hölder inequality yields

(139)
$$
\left| \int_{\Omega} (f_n - f) g_n \right| \leq \|f_n - f\|_{L^{q'}(\Omega)} \|g_n\|_{L^q(\Omega)} \leq M \|f_n - f\|_{L^{q'}(\Omega)} \underset{n \to +\infty}{\longrightarrow} 0,
$$

where q' refers to the conjugate of q, which is in [1; N'[.

On the other hand, the weak convergence of $(g_n)_{n\in\mathbb{N}}$ yields

(140)
$$
\int_{\Omega} (g_n - g) f \underset{n \to +\infty}{\longrightarrow} 0.
$$

Hence the result.

We now check if the assumptions of Lemma [27](#page-21-0) are satisfied.

By compact Sobolev embedding, $k_{\varepsilon_n} \longrightarrow k$ in $L^1(\Omega)$. Thus, Lebesgue inverse theorem yields that a subsequence satisfies $k_{\varepsilon_n} \longrightarrow k$ a.e. in Ω . The continuity of B yields $B(k_{\varepsilon_n}) \longrightarrow_{n \to +\infty} B(k)$ a.e. in Ω . And the domination $B(k_{\varepsilon_n})|\nabla \psi| \leq \mu |\nabla \psi|$ stands. Consequently, Lebesgue theorem yields

(141)
$$
\forall r \in [1; N'], \forall \psi \in W, B(k_{\varepsilon_n}) \nabla \psi \underset{n \to +\infty}{\longrightarrow} B(k) \nabla \psi \text{ in } L^r(\Omega).
$$

The weak convergence of $(k_{\varepsilon_n})_{n \in \mathbb{N}}$ being already established, Lemma [27](#page-21-0) yields

(142)
$$
\forall \psi \in W, \quad \int_{\Omega} B(k_{\varepsilon_n}) \nabla k_{\varepsilon_n} \cdot \nabla \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} B(k) \nabla k \cdot \nabla \psi.
$$

Convergence of the right hand side:

We intend to show that

(143)
$$
\forall \psi \in W, \quad \int_{\Omega} D_{\varepsilon_n}(k_{\varepsilon_n}) \psi \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} D(k) \psi,
$$

at least for a subsequence.

Given that $\psi \in L^{\infty}(\Omega)$, it is sufficient to prove that

(144)
$$
D_{\varepsilon_n}(k_{\varepsilon_n}) \underset{n \to +\infty}{\longrightarrow} D(k) \text{ in } L^1(\Omega).
$$

The L^1 norm is decomposed as follows

(145)
$$
\int_{\Omega} |D_{\varepsilon_n}(k_{\varepsilon_n}) - D(k)| \leq \int_{\Omega} |D_{\varepsilon_n}(k_{\varepsilon_n}) - D_{\varepsilon_n}(k)| + \int_{\Omega} |D_{\varepsilon_n}(k) - D(k)|.
$$

Cauchy-Schwarz inequality first yields

(146)
$$
\int_{\Omega} |D_{\varepsilon_n}(k) - D(k)| = \int_{\Omega} \left| |\widetilde{U(k)} * \rho_{\varepsilon_n}|^2 - |U(k)|^2 \right| \leq \left\| \widetilde{U(k)} * \rho_{\varepsilon_n} - \widetilde{U(k)} \right\|_{L^2(\mathbb{R}^N)^N} \left\| \widetilde{U(k)} * \rho_{\varepsilon_n} + \widetilde{U(k)} \right\|_{L^2(\mathbb{R}^N)^N}.
$$

We recall the following classical result.

Theorem 28. Let $p \in [1; +\infty[, f \in L^p(\mathbb{R}^N)$, and $(\rho_{\varepsilon})_{\varepsilon>0}$ a mollifier. Then we have

(147)
$$
\rho_{\varepsilon} * f \xrightarrow[\varepsilon \to 0]{} f \quad in \ L^{p}(\mathbb{R}^{N}).
$$

Theorem [28](#page-22-0) and [\(146\)](#page-22-1) yield

(148)
$$
\int_{\Omega} |D_{\varepsilon_n}(k) - D(k)| \underset{n \to +\infty}{\longrightarrow} 0.
$$

Similarly, we write (149)

$$
\left|\int_{\Omega}|D_{\varepsilon_n}(k_{\varepsilon_n})-D_{\varepsilon_n}(k)|\leq \left\|\left(\widetilde{U(k_{\varepsilon_n})}-\widetilde{U(k)}\right)*\rho_{\varepsilon_n}\right\|_{L^2(\mathbb{R}^N)^N}\left\|\left(\widetilde{U(k_{\varepsilon_n})}+\widetilde{U(k)}\right)*\rho_{\varepsilon_n}\right\|_{L^2(\mathbb{R}^N)^N}.
$$

On one hand, Young convolution inequality and [\(97\)](#page-15-0) yield

(150)
$$
\left\| \left(\widetilde{U(k_{\varepsilon_n})} + \widetilde{U(k)} \right) * \rho_{\varepsilon_n} \right\|_{L^2(\mathbb{R}^N)^N} \leq \| U(k_{\varepsilon_n}) \|_{L^2(\Omega)^N} + \| U(k) \|_{L^2(\Omega)^N} \leq C.
$$

On the other hand, Young convolution inequality and Theorem [8](#page-9-2) yield for a subsequence

(151)
$$
\left\| \left(\widetilde{U(k_{\varepsilon_n})} - \widetilde{U(k)} \right) * \rho_{\varepsilon_n} \right\|_{L^2(\mathbb{R}^N)^N} \leq \| U(k_{\varepsilon_n}) - U(k) \|_{L^2(\Omega)^N} \underset{n \to +\infty}{\longrightarrow} 0.
$$

We have obtained

(152)
$$
\int_{\Omega} |D_{\varepsilon_n}(k_{\varepsilon_n}) - D_{\varepsilon_n}(k)| \underset{n \to +\infty}{\longrightarrow} 0,
$$

hence (144) .

As a conclusion, k satisfies (81) .

4.4 Conclusion: solution of the coupled problem

Let us consider the sequence (ε_n) mentioned previously, after all the extractions that were done. We have shown that (k_{ε_n}) strongly converges in $L^2(\Omega)$ to a function k.

Moreover, (k_{ε_n}) weakly converges to k in every space $W_0^{1,q}$ $\mathcal{O}_0^{1,q}(\Omega)$ with $q \in [1; N']$. Therefore, theorem [10](#page-11-3) yields that $(u(k_{\varepsilon_n}))$ strongly converges to $u(k)$ in $H^1(\Omega)$.

All of this ensures the existence of a couple $(u; k)$ of solutions of (1) at the distribution sense, with $u \in H^1(\Omega)$ and $k \in V$ (in particular $k \in L^2$).

References

- [1] L. Boccardo and T. Gallouët. Non-linear elliptic and parabolic equations involving measure data. Journal of Functional Analysis, 87(1):149–169, 1989.
- [2] S. Clain and R. Touzani. A two-dimensional stationary induction heating problem. Mathematical methods in the applied sciences, 20(9):759–766, 1997.
- [3] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet. Renormalized solutions of elliptic equations with general measure data. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 28(4):741–808, 1999.
- [4] T. Gallouët and R. Herbin. Existence of a solution to a coupled elliptic system. 1994.
- [5] T. Gallouët, J. Lederer, R. Lewandowski, F. Murat, and L. Tartar. On a turbulent system with unbounded eddy viscosities. Nonlinear analysis, $52(4):1051-1068$, 2003.
- [6] R. Lewandowski. Analyse mathématique et océanographie. Elsevier Masson, 1997.
- [7] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications: Vol. 1, volume 181. Springer Science & Business Media, 2012.

- [8] G. Stampacchia. Equations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray, (3):1–77, 1963.
- [9] E. Zeidler. Nonlinear functional analysis and its applications I: fixed-point theorems. Springer Science & Business Media, 2013.