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1 Introduction

This chapter is focused on the following system:
−div(A(k)∇u) = f in Ω,
−div(B(k)∇k) = A(k)|∇u|2 in Ω,

−A(k)
∂u

∂n
= αu on Γ,

k = 0 on Γ.

(1.1)

Where Ω is an open bounded set in RN (N ≥ 2), and Γ = ∂Ω its boundary. The viscosity
functions are bounded and satisfy:

∃ ν, µ > 0, ∀x ≥ 0, ν ≤ A(x), B(x) ≤ µ. (1.2)

We also assume that f ∈ L2(Ω) and α > 0.
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The aim of this chapter is proving the existence of a couple (u, k) of distributional solutions
of (1.1). This is not the only kind of solutions commonly searched. Indeed, some articles deal
with renormalized solutions, which are defined and studied in [3]. This notion is interesting
for the study of a system having one source term in L1(Ω), as shown in [6].

The source term of the equation in k in (1.1) is in L1(Ω). Without any better hypothesis,it
remains possible to find distributional solutions of (1.1).

This figures in the works of L. Boccardo and T. Gallouët in [1], on which is based this
chapter. The associated result, proved in section 4, is a consequence of the washer Lemma,
stated and proved in section 2. This Lemma brings a bound for a solution in W 1,q

0 (Ω), where
q < N

N−1 . Consequently, some particular function sets are needed.
Then, in section 4, we search weak solutions in V =

⋂
1<q<N ′ W

1,q
0 (Ω), where N ′ refers to

N
N−1 ; with test functions in W =

⋃
q>N W 1,q

0 (Ω). This method was also used by T. Gallouët
and R. Herbin in [4].

Along this chapter, the viscosities A and B are bounded (assumption (1.2)). This does
not really correspond to the physical situation, but is a right way to establish some interesting
mathematical results, as a priori estimates, such as in section 3 and 4. The assumption of
bounded viscosities appears in [4], but also in the works of S. Clain and R. Touzani (see [2]),
in which an existence result is proved in the two-dimensional case. In the present work, the
existence results are proved when N = 3.

Of course it is possible to deal with unbounded viscosities, such as in [6], where they are
only bounded from below. Otherwise, if they are not, other assumptions are required, con-
cerning the decreasing. In addition, other function spaces need to be developped, like in [5].

In order to find the existence of a solution of (1.1), this work will be divided into two steps,
that correspond to sections 3 and 4. Section 3 is devoted to the equation in u, which amounts
to a linear problem. But when the problem is obviously non-linear, like the equation in k
considered in section 4, another method is required. This consists in regularizing the system,
then solving it by a linearization and a fixed-point theorem. This method is already used in
[2].

Given m ∈ N and p ∈ [1,+∞], the norm of Wm,p(Ω) will be simply written: ∥ · ∥m,p,Ω. In
particular, ∥ · ∥0,p,Ω is the Lp(Ω) norm.

2 Preliminary results

2.1 The washer lemma

This section aims at proving the following result (already proved by Boccardo-Gallouët in [1]).

Lemma 1 (Washer lemma). Let q ∈]1, N ′[ where N ′ =
N

N − 1
, and u ∈ W 1,q

0 (Ω). Let us
write:

Bn = {x ∈ Ω / n ≤ |u(x)| < n+ 1}. (2.1)
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We assume that there is a constant C > 0 such that:

∀n ∈ N,
∫
Bn

|∇u(x)|2 dx ≤ C. (2.2)

Then we have the inequality:
∥u∥1,q,Ω ≤ A. (2.3)

Where A depends on Ω, q and C that is introduced by (2.2).

Remark 1. The most important in this result is the fact that the two constants C and A are
independent of u. Actually, the result that will be used is: let (uj)j∈J a family of functions in
W 1,q

0 (Ω) with q ∈]1, N ′[ satisfying:

∀j ∈ J, ∀n ∈ N,
∫
Bj

n

|∇uj(x)|2 dx ≤ C, (2.4)

where Bj
n refers to: Bj

n = {x ∈ Ω / n ≤ |uj(x)| < n+ 1}.

Then there exists a constant A > 0 only depending on Ω, q and C such that:

∀j ∈ J, ∥uj∥1,q,Ω ≤ A. (2.5)

The proof of lemma 1 is based on a decomposition given by the following lemma.

Lemma 2. Let u satisfying the assumptions of lemma 1. Let q∗ be the critical exponent in
Sobolev embedding W 1,q(Ω) ↪→ Lq∗(Ω), and any index n0 ∈ N. There exist two constants λ1

and λ2 depending on n0, q and Ω satisfying:

∥∇u∥q0,q,Ω ≤ Cq/2

(
λ1 + λ2∥u∥

q∗(2−q)
2

0,q∗,Ω

)
. (2.6)

Moreover, we have: lim
n0→+∞

λ2(n0) = 0.

Proof of lemma 2. At first, we decompose
∫
Ω |∇u(x)|q dx as a sum:∫

Ω
|∇u(x)|q dx =

+∞∑
n=0

∫
Bn

|∇u(x)|q dx. (2.7)

Let us apply Hölder inequality, recalling that Ω is bounded, thus for n ∈ N, Bn is bounded.

∀n ∈ N,
∫
Bn

|∇u(x)|q dx ≤
(∫

Bn

|∇u(x)|2 dx
)q/2(∫

Bn

dx

)1− q
2

= Meas(Bn)
2−q
2

(∫
Bn

|∇u(x)|2 dx
)q/2

≤ Meas(Bn)
2−q
2 Cq/2.

(2.8)

Where "Meas" refers to the Lebesgue measure of any borelian subset of RN . The last inequality
comes from (2.2).
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We set n0 ∈ N, and we focus on the case n ≤ n0, then n > n0.

On one hand, let n ≤ n0, we have∫
Bn

|∇u(x)|q dx ≤ Meas(Bn)
2−q
2 Cq/2 ≤ Meas(Ω)

2−q
2 Cq/2, (2.9)

then by addition

n0∑
n=0

∫
Bn

|∇u(x)|q dx ≤ (n0 + 1)Meas(Ω)
2−q
2 Cq/2. (2.10)

On the other hand, let n > n0, we have∫
Bn

|u(x)|q∗ dx ≥
∫
Bn

nq∗ dx = nq∗Meas(Bn), then Meas(Bn) ≤
1

nq∗

∫
Bn

|u(x)|q∗ dx. (2.11)

Inequalities (2.8) and (2.11) yield

∀n > n0,

∫
Bn

|∇u(x)|q dx ≤ Cq/2

(
1

nq∗

) 2−q
2
(∫

Bn

|u(x)|q∗ dx
) 2−q

2

, (2.12)

which yields by addition

+∞∑
n=n0+1

∫
Bn

|∇u(x)|q dx ≤ Cq/2
+∞∑

n=n0+1

n
(q−2)q∗

2

(∫
Bn

|u(x)|q∗ dx
) 2−q

2

. (2.13)

We then apply the discrete Hölder inequality on the right hand side of (2.13) to obtain

+∞∑
n=n0+1

n
(q−2)q∗

2

(∫
Bn

|u(x)|q∗ dx
) 2−q

2

≤

[
+∞∑

n=n0+1

∫
Bn

|u(x)|q∗ dx

] 2−q
2
[

+∞∑
n=n0+1

n
N(q−2)
N−q

]q/2
.

(2.14)

We need to prove that the series
∑

n≥n0+1 n
N(q−2)
N−q converges, which is equivalent to

N(2− q)

N − q
> 1.

By simple calculations, this inequality is equivalent to q < N ′.

Then we set λ2(n0, q) =

[∑+∞
n=n0+1 n

N(q−2)
N−q

]q/2
. And since the series converges, we directly

have: λ2(n0, q) −→
n0→+∞

0. With this notation, (2.14) becomes

+∞∑
n=n0+1

n
(q−2)q∗

2

(∫
Bn

|u(x)|q∗ dx
) 2−q

2

≤ λ2(n0, q)

[
+∞∑

n=n0+1

∫
Bn

|u(x)|q∗ dx

] 2−q
2

≤ λ2(n0, q)

(∫
Ω
|u(x)|q∗ dx

) 2−q
2

.

(2.15)
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Hence, (2.15) combined with (2.13) yield

+∞∑
n=n0+1

∫
Bn

|∇u(x)|q dx ≤ Cq/2λ2(n0, q)

(∫
Ω
|u(x)|q∗ dx

) 2−q
2

= Cq/2λ2(n0, q)∥u∥
q∗(2−q)

2
0,q∗,Ω .

(2.16)
We set λ1(n0, q) = (n0 + 1)Meas(Ω)

2−q
2 , and we add (2.10) to (2.16) to obtain, by (2.7)∫

Ω
|∇u(x)|q dx ≤ Cq/2

(
λ1(n0, q) + λ2(n0, q)∥u∥

q∗(2−q)
2

0,q∗,Ω

)
. (2.17)

That corresponds to (2.6), which concludes the proof.

Then we use this result to prove the washer lemma.

Proof of lemma 1. We start with the case N = 2, which is easier. In that case, we have
q∗(2− q)

2
=

Nq(2− q)

2(N − q)
= q. Then (2.6) becomes

∥∇u∥q0,q,Ω ≤ Cq/2
(
λ1 + λ2∥u∥q0,q∗,Ω

)
. (2.18)

As q < 2, we can apply Sobolev embedding W 1,q(Ω) ↪→ Lq∗(Ω) on the right hand side of
(2.18), and then the Poincaré-Friedrichs inequality

∥u∥q0,q∗,Ω ≤ K∥∇u∥q0,q,Ω ≤ KCq/2
(
λ1 + λ2∥u∥q0,q∗,Ω

)
, (2.19)

where K > 0 depends on Ω and q. We recall that if b < 1, the following equivalence stands

x ≤ a+ bx ⇔ x ≤ a

1− b
. (2.20)

Since λ2(n0, q) −→
n0→+∞

0, it is possible to choose n0 ∈ N large enough to have

KCq/2λ2 < 1. Then by (2.20), we obtain

∥u∥q0,q∗,Ω ≤ KCq/2λ1

1−KCq/2λ2
. (2.21)

Thus, from (2.18):

∥∇u∥q0,q,Ω ≤ Cq/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)
. (2.22)

And the Poincaré-Friedrichs inequality yields

∥u∥q1,q,Ω ≤ LCq/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)
, (2.23)

where L depends on q and Ω. This yields the result with

A = L1/qC1/2

(
λ1 +

KCq/2λ1λ2

1−KCq/2λ2

)1/q

. (2.24)

5



Let us focus now on the case N > 2. Since q < N ′ < N , the Sobolev embedding used
before yields

∥u∥q0,q∗,Ω ≤ K∥∇u∥q0,q,Ω ≤ KCq/2

(
λ1 + λ2∥u∥

q∗(2−q)
2

0,q∗,Ω

)
. (2.25)

Inequality (2.25) is of the form x ≤ a+ bxγ , with

γ =
q∗(2− q)

2q
=

N(2− q)

2(N − q)
. (2.26)

We have already shown that if q ∈]1, N ′[, then:

1 <
N(2− q)

N − q
< N ′ hence

1

2
< γ <

N ′

2
< 1. (2.27)

Thus, the inequation we need to solve is of the form: x ≤ a + bxγ , with γ ∈]0, 1[ and
a, b > 0.

The graph on the side shows the existence of
τ ∈]0,+∞[ depending on a, b and γ such that
x ≤ a+ bxγ ⇔ x ≤ τ .

x

x

a+ bxγ

τ

Let us show it rigorously by studying the variations of F : x > 0 7→ a + bxγ − x. This

function is C∞ on ]0; +∞[ and
∣∣∣∣ F ′(x) = bγxγ−1 − 1
F ′′(x) = bγ(γ − 1)xγ−2 , therefore F ′′(x) < 0. We obtain

the following variations

x

F ′′(x)

F ′(x)

F (x)

0 α +∞

− −

+∞

−1

a

F (α)

−∞

0 p
τ(a, b, γ)

F (x)

x0 α

Inequality (2.25) finally ensures the existence of τ = τ(λ1, λ2, C) > 0 such that

∥u∥q0,q∗,Ω ≤ τ. (2.28)

Thus, (2.6) and Poincaré-Friedrichs inequality yield

∥∇u∥q0,q,Ω ≤ Cq/2 (λ1 + λ2τ) hence ∥u∥q1,q,Ω ≤ LCq/2 (λ1 + λ2τ) , (2.29)
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where L only depends on Ω and q. With A = L1/qC1/2(λ1 + λ2τ)
1/q, lemma 1 is proved in

case N > 2.

The first hypothesis of lemma 1 is q ∈]1, N ′[, where N ′ = N
N−1 . It has been used many

times, and we are able to show that is impossible to obtain similar results with higher values
of q.

Indeed, considering the case N > 2, we recall that α is the only point where F ′ vanishes,
which means

bγαγ−1 = 1 thus α = (bγ)
1

1−γ . (2.30)

Replacing b by the constants of lemma 2 yields b(q) = M(q)λ2(q), where M(q) is bounded
if q ∈]1, N ′[. Consequently, b(q) −→

q→N ′
+∞ and then

γ(q) =
N(2− q)

2(N − q)
−→
q→N ′

2 hence
1

1− γ
−→
q→N ′

1

2
. (2.31)

Therefore, (2.30) yields α −→
q→N ′

+∞. And since τ ≥ α, we obtain τ −→
q→N ′

+∞, thus

A −→
q→N ′

+∞.

There is a similar result in the case N = 2. The proof of lemma 1 requires to choose an
index n0 great enough to have b < 1. But as λ2(n0, q) −→

q→N ′
+∞, an increase of q implies an

increase of n0.
Thus, as 2−q

2 = 1− q
2 −→

q→N ′
1− N ′

2 = 0, it follows

λ1(n0, q) = (n0 + 1)Meas(Ω)
2−q
2 −→

q→N ′

n0→+∞

+∞ hence A −→
q→N ′

+∞. (2.32)

We have shown that q cannot be larger than the assumptions of lemma 1.

The result shown in this first section will be useful in the following. Generally, solving a
PDE system is divided into two steps:

• simplifying the problem (for example by moving to a finite-dimension space, or by using
a truncation function),

• coming back to the initial problem with the help of compacity results.

2.2 A general result on norms

Prop./Def. 3 (Trace norm on H1). Let us define the application: N0(u) =
(
∥∇u∥20,2,Ω + ∥u∥20,2,Γ

)1/2
,

"u|Γ" referring to the trace of u on Γ.
Then N0 is a norm on H1(Ω).
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Proof. N0 is non negative, homogeneous and satisfies triangular inequality (direct consequence
of the fact that the norms L2 also do). Let us consider u ∈ H1(Ω) such that N0(u) = 0. It
comes ∥∇u∥0,2,Ω = 0 and ∥u∥0,2,Γ = 0.

First, this yields that ∇u = 0 almost everywhere on Ω. Thus, we write: u ae.
= λ, where λ is

a real constant. And if u is constant almost everywhere, its trace has the same value almost
everywhere on Γ. Yet, tr(u) = 0, therefore u

ae.
= 0.

Consequently, N0 is a norm on H1(Ω).

Theorem 4 (Two equivalent norms). Let us recall the definition of the classical Sobolev norm
on H1(Ω):

∥u∥1,2,Ω =
(
∥u∥20,2,Ω + ∥∇u∥20,2,Ω

)1/2
. (2.33)

Then this norm and N0 previously defined are equivalent.

Proof. At first, the trace operator tr : H1(Ω) → H1/2(Γ) is surjective (see [7]), and by Sobolev
embedding, H1/2(Γ) ↪→ Lq(Γ), with 1

q = 1
2 − 1

2N , thus q = 2N
N−1 ≥ 2.

Then, since Ω is bounded, we have: H1/2(Γ) ↪→ L2(Γ). Hence

∃C > 0,∀u ∈ H1(Ω), ∥u∥20,2,Γ ≤ C∥u∥21,2,Ω. (2.34)

We deduce
∀u ∈ H1(Ω), N0(u)

2 ≤ (1 + C)∥u∥21,2,Ω. (2.35)

Therefore N0 is dominated by ∥ · ∥1,2,Ω.

Conversely, we intend to show

∃C > 0,∀u ∈ H1(Ω), ∥u∥21,2,Ω ≤ CN0(u)
2. (2.36)

By contradiction, let us suppose the negation of (2.36), which means

∀C > 0,∃u ∈ H1(Ω), ∥u∥21,2,Ω > CN0(u)
2. (2.37)

Then in particular
∀n ∈ N,∃un ∈ H1(Ω), ∥un∥21,2,Ω > nN0(un)

2. (2.38)

Inequality (2.38) yields that ∀n ∈ N∗, ∥un∥0,2,Ω > 0. Then, both sides of (2.38) van be
divided by ∥un∥0,2,Ω. Which means, keeping the same notation

∀n ∈ N,∃un ∈ S, ∥un∥21,2,Ω > nN0(un)
2, (2.39)

where S refers to the "L2-sphere" defined by: S = {v ∈ H1(Ω) / ∥v∥0,2,Ω = 1}. Then (2.39)
can be rewritten as

∀n ≥ 2,
1

n
+

1

n
∥∇un∥20,2,Ω > ∥un∥0,2,Γ + ∥∇un∥20,2,Ω. (2.40)

Since ∥un∥20,2,Γ ≥ 0, (2.40) yields in particular(
1− 1

n

)
∥∇un∥20,2,Ω ≤ 1

n
, then ∥∇un∥20,2,Ω ≤ 1

n− 1
. (2.41)
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Therefore, the sequence (∇un)n∈N∗ is bounded in L2(Ω) ; and as (un)n∈N∗ is a sequence
of points of S, (un)n∈N is also bounded in L2(Ω). We deduce (un) is bounded in H1(Ω).
Thus, Banach-Alaoglu theorem ensures the existence of a subsequence still denoted (un)n∈N∗

satisfying un
H1

⇀
n→+∞

u.

But (2.40) yields

∀n ≥ 2,
1

n
> ∥un∥20,2,Γ +

(
1− 1

n

)
∥∇un∥20,2,Ω ≥ 1

2
N0(un)

2, (2.42)

hence N0(un) −→
n→+∞

0, then u = 0.

Last, by Rellich theorem: un
L2

−→
n→+∞

0, which implies: ∥un∥0,2,Ω −→
n→+∞

0. But we have

assumed that ∀n ∈ N, ∥un∥0,2,Ω = 1, which is a contradiction.

3 Analysis of the first equation

In this subsection, given p ∈]1,+∞[ and k ∈ W 1,p
0 (Ω), we consider the system:{ −div(A(k)∇u) = f in Ω,

−A(k)
∂u

∂n
= αu on Γ.

(3.1)

Where f ∈ L2(Ω), and α > 0. We recall that A : R → R+ is bounded from above and
below:

∀k ∈ R, 0 < ν ≤ A(k) ≤ µ < +∞. (3.2)

3.1 Variational formulation

Let us write the variational form of this equation. To do so, we need the Green formula.

Theorem 5 (Green formula). Let f ∈ H1(Ω) and g ∈ H1(Ω)N . Assume that n is the normal
vector of Ω, then the following formula stands∫

Ω
div(g)f dx = −

∫
Ω
g · ∇f dx+

∫
Γ
(g · n)f dS(x). (3.3)

Let us consider w ∈ H1(Ω) and multiply the first equation of (3.1) by w, then integrate.

−
∫
Ω
div(A(k)∇u)w dx =

∫
Ω
fw dx. (3.4)

The Green formula (3.3) yields

−
∫
Ω
div(A(k)∇u)w dx =

∫
Ω
A(k)∇u · ∇w dx−

∫
Γ
A(k)

∂u

∂n
w dS(x)

=

∫
Ω
A(k)∇u · ∇w dx+ α

∫
Γ
uw dS(x).

(3.5)
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That leads to the variational formulation of (3.1): u ∈ H1(Ω)

∀w ∈ H1(Ω),

∫
Ω
A(k)∇u · ∇w dx+ α

∫
Γ
uw dS(x) =

∫
Ω
fw dx.

(3.6)

All the terms of (3.6) are well defined, since u,w ∈ H1(Ω), hence ∇u,∇w ∈ L2(Ω). And
A is bounded. Moreover, by the trace theorem (see [7]), u,w ∈ H1/2(Γ) ↪→ L2(Γ).

The main result of this section is the following.

Theorem 6. There exists a unique function u ∈ H1(Ω) satisfying (3.6).

Proof. This proof uses the Lax-Milgram theorem on the Hilbert space H1(Ω). Let a(k, ·, ·) be
the bilinear form given by

∀u,w ∈ H1(Ω), a(k, u, w) =

∫
Ω
A(k)∇u · ∇w dx+ α

∫
Γ
uw dS(x). (3.7)

Let u,w ∈ H1(Ω)

|a(k, u, w)| ≤
∫
Ω
A(k)|∇u · ∇w| dx+ α

∫
Γ
|uw| dS(x)

≤ µ∥∇u∥0,2,Ω∥∇w∥0,2,Ω + α∥u∥0,2,Γ∥w∥0,2,Γ
≤ (µ+ αM)∥u∥1,2,Ω∥w∥1,2,Ω,

(3.8)

where M does not depend on u. Therefore, a(k, ·, ·) is continuous on H1(Ω)×H1(Ω).

Then we show the coercivity. Let w ∈ H1(Ω), we have

a(k,w,w) =

∫
Ω
A(k)|∇w|2 dx+ α

∫
Γ
|w|2 dS(x) ≥ ν∥∇w∥20,2,Ω + α∥w∥20,2,Γ

≥ inf(ν, α)N0(w)
2,

(3.9)

hence the coercivity of a(k, ·, ·) by theorem 4.

Finally, it is clear that the linear form [w 7→
∫
Ω fw dx] is continuous. Problem (3.6) then

admits a unique solution u ∈ H1(Ω), by the Lax-Milgram theorem.

3.2 A priori estimates for u

Previously, we have shown that for k ∈ W 1,p
0 (Ω), (3.6) admits a unique solution u = u(k). In

this subsection, we give some estimates for this function u.

Proposition 7. The solution u of (3.6) satisfies the inequality:

∥u∥1,2,Ω ≤
C∥f∥0,2,Ω
inf(α, ν)

. (3.10)

Where C > 0 only depends on Ω.
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Proof. Taking w = u as a test in (3.6) leads to∫
Ω
A(k)|∇u|2 dx+ α

∫
Γ
|u|2 dS(x) =

∫
Ω
fu dx. (3.11)

We get by Cauchy-Schwarz inequality

ν∥∇u∥20,2,Ω + α∥u∥20,2,Γ ≤ ∥f∥0,2,Ω∥u∥0,2,Ω. (3.12)

Then by Theorem 4

ν∥∇u∥20,2,Ω + α∥u∥20,2,Γ ≥ inf(ν, α)N0(u)
2 ≥ inf(ν, α)

C
∥u∥21,2,Ω. (3.13)

Then (3.12) becomes

inf(ν, α)

C
∥u∥21,2,Ω ≤ ∥f∥0,2,Ω × ∥u∥0,2,Ω ≤ ∥f∥0,2,Ω∥u∥1,2,Ω, (3.14)

which yields (3.10).

Proposition 8. Let k ∈ W 1,p
0 (Ω), and u = u(k) the solution of (3.6). Then u and k satisfy

the inequality

∥
√

A(k)∇u(k)∥0,2,Ω ≤
C∥f∥0,2,Ω
inf(α, ν)

, (3.15)

where C > 0 only depends on Ω.

Proof. Equality (3.11) can be rewritten with norms

∥
√
A(k)u∥20,2,Ω + α∥u∥20,2,Γ =

∫
Ω
fu dx. (3.16)

Let us bound from below the left hand side of (3.16):

∥
√
A(k)u∥20,2,Ω + α∥u∥20,2,Γ =

1

2
∥
√

A(k)u∥20,2,Ω +
1

2

∫
Ω
A(k)|∇u|2 dx+ α∥u∥20,2,Γ

≥ 1

2
∥
√

A(k)u∥20,2,Ω +
ν

2
∥∇u∥20,2,Ω + α∥u∥20,2,Γ

≥ 1

2
∥
√

A(k)u∥20,2,Ω +
inf(α, ν)

2
N0(u)

2

≥ 1

2
∥
√

A(k)u∥20,2,Ω +
inf(α, ν)

2C
∥u∥21,2,Ω.

(3.17)

Then, let us apply Young inequality with weights to the right hand side of (3.16):∫
Ω
fu dx ≤ ∥f∥0,2,Ω∥u∥1,2,Ω ≤ inf(α, ν)

2C
∥u∥21,2,Ω +

C

2 inf(α, ν)
∥f∥20,2,Ω. (3.18)

Thus, (3.16) can be rewritten

1

2
∥
√
A(k)u∥20,2,Ω ≤ C

2 inf(α, ν)
∥f∥20,2,Ω, (3.19)

which yields (3.15).

These estimates will be useful in the following, to show a strong convergence in H1 for
equation (3.1).
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3.3 A first convergence result: the energy method

This subsection aims at proving the following result.

Theorem 9 (H1 convergence). Let p ∈]1,+∞[, and (kn)n∈N be a sequence of functions in
W 1,p

0 (Ω). Let us suppose that (kn) weakly converges to k in W 1,p
0 (Ω). Let u = u(k), and

un = u(kn), n ∈ N.
Then a subsequence still denoted (un)n∈N strongly converges to u in H1(Ω).

This theorem is a consequence of another, which involves A and the previous estimates.

Theorem 10 (L2 convergence). With the same notations and assumptions as those of Theorem
9, we have: √

A(kn)∇un
L2

−→
n→+∞

√
A(k)∇u. (3.20)

Proof of Theorem 10. As kn
W 1,p

0⇀
n→+∞

k, the compact embedding W 1,p
0 (Ω) ↪→ L1(Ω) yields

kn
L1

−→
n→+∞

k. By the Lebesgue inverse theorem, there is a subsequence (still named (kn))

such that kn
ae.−→

n→+∞
k. Since A is continuous, we deduce A(kn)

ae.−→
n→+∞

A(k).

We recall that un and u satisfy

∀φ ∈ H1(Ω),∀n ∈ N,
∫
Ω
A(kn)∇un · ∇φ dx+ α

∫
Γ
unφ dS(x) =

∫
Ω
fφ dx. (3.21)

∀φ ∈ H1(Ω),

∫
Ω
A(k)∇u · ∇φ dx+ α

∫
Γ
uφ dS(x) =

∫
Ω
fφ dx. (3.22)

Inequality (3.10) yields that (un) is bounded in H1(Ω), which ensures the existence of a
subsequence still denoted (un)n∈N such that

un
H1

⇀
n→+∞

w and un
L2

−→
n→+∞

w, hence ∇un
L2

⇀
n→+∞

∇w, (3.23)

where w ∈ H1(Ω). This yields in particular

∀φ ∈ H1(Ω),

∫
Γ
unφ dS(x) −→

n→+∞

∫
Γ
wφ dS(x). (3.24)

Then, in order to show the convergence of the first term in (3.21), an integration lemma
is needed.

Lemma 11 (Convergence of integrals). Let (fn)n∈N and (gn)n∈N two sequences of L2(Ω)

functions, and f, g ∈ L2(Ω) satisfying fn
L2

−→
n→+∞

f and gn
L2

⇀
n→+∞

g. Then we have∫
Ω
fngn dx −→

n→+∞

∫
Ω
fg dx. (3.25)

This result will be proved after finishing the proof of Theorem 10.

The assumptions of Lemma 11 have to be checked.
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• As the sequence (A(kn))n∈N converges almost everywhere to A(k), the domination

A(kn)|∇φ| ≤ µ|∇φ| and the Lebesgue theorem yield A(kn)∇φ
L2

−→
n→+∞

A(k)∇φ.

• By (3.23): ∇un
L2

⇀
n→+∞

∇w.

Therefore, Lemma 11 yields

∀φ ∈ H1(Ω),

∫
Ω
A(kn)∇un · ∇φ dx −→

n→+∞

∫
Ω
A(k)∇w · ∇φ dx. (3.26)

Both convergences (3.24) and (3.26) ensure that the limit w satisfies (3.22). And since the
solution of (3.22) is unique (by Theorem 6), we deduce: w = u = u(k).

Hence, ∇un
L2

⇀
n→+∞

∇u, and (3.15) ensures that there exists a subsequence of
(√

A(kn)∇un

)
n∈N

that weakly converges in L2. Therefore, Lemma 11 yields√
A(kn)∇un

L2

⇀
n→+∞

√
A(k)∇u. (3.27)

In order to obtain the strong convergence of this sequence, the convergence of the norms
remains to be proved. Let us write (3.21) with φ = un and (3.22) with φ = u.

∀n ∈ N,
∫
Ω
A(kn)|∇un|2 dx+ α

∫
Γ
|un|2 dS(x) =

∫
Ω
fun dx. (3.28)∫

Ω
A(k)|∇u|2 dx+ α

∫
Γ
|u|2 dS(x) =

∫
Ω
fu dx. (3.29)

The strong convergence of (un) in L2 directly yields∫
Ω
fun dx −→

n→+∞

∫
Ω
fu dx. (3.30)

And since H1/2(Γ) ↪→ L2(Γ) is compact: (un)|Γ
L2

−→
n→+∞

u|Γ. In particular

∫
Γ
|un|2 dS(x) −→

n→+∞

∫
Γ
|u|2 dS(x). (3.31)

Convergences (3.30) and (3.31) yield:∫
Ω
A(kn)|∇un|2 dx −→

n→+∞

∫
Ω
A(k)|∇u|2 dx. (3.32)

The result of Theorem 10 is then obtained.

Finally, Lemma 11 needs to be proved.
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Proof of Lemma 11. Let us decompose the difference between the two integrals:∫
Ω
(fngn − fg) dx =

∫
Ω
f(gn − g) dx+

∫
Ω
(fn − f)gn dx. (3.33)

On one hand, the weak convergence of (gn) yields:
∫
Ω f(gn − g) dx −→

n→+∞
0.

On the other hand, (gn)n∈N weakly converges, then is bounded in L2(Ω). We deduce∣∣∣∣∫
Ω
(fn − f)gn dx

∣∣∣∣ ≤ ∥fn − f∥0,2,Ω∥gn∥0,2,Ω ≤ M∥fn − f∥0,2,Ω −→
n→+∞

0. (3.34)

Theorem 9 can be proved now.

Proof of Theorem 9. We have already shown that un
L2

−→
n→+∞

u, we have to prove that (∇un)

strongly converges. Let n ∈ N, we have

√
ν∥∇un −∇u∥0,2,Ω ≤

∥∥∥√A(kn)∇un −
√
A(kn)∇u

∥∥∥
0,2,Ω

≤
∥∥∥√A(kn)∇un −

√
A(k)∇u

∥∥∥
0,2,Ω

+
∥∥∥(√A(kn)−

√
A(k)

)
∇u
∥∥∥
0,2,Ω

−→
n→+∞

0,
(3.35)

by Theorem 10 and Lebesgue Theorem.

4 Analysis of the second equation

From now until the end, N = 3. In this section, we consider the system:{
−div(B(k)∇k) = A(k)|∇u(k)|2 in Ω,
k = 0 on Γ.

(4.1)

In order to lighten the writing, we define:

D(k) = A(k)|∇u(k)|2. (4.2)

4.1 Variational formulation and description of the method

Let us define two function spaces:

V =
⋂

1<r<N ′

W 1,r
0 (Ω) and W =

⋃
r>N

W 1,r
0 (Ω).

Before stating the variational formulation, we need a result.

Proposition 12. Let k ∈ V and p ∈ W . Then B(k)∇k · ∇p ∈ L1(Ω) and D(k)p ∈ L1(Ω).
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Proof. Let k ∈ V and p ∈ W . By applying the Hölder inequality with r > N such that
p ∈ W 1,r

0 (Ω), we obtain∫
Ω
B(k)|∇k · ∇p| dx ≤ µ

∫
Ω
|∇k · ∇p| dx ≤ µ∥∇k∥0,r′,Ω × ∥∇p∥0,r,Ω. (4.3)

Since r > N , r′ < N ′, thus k ∈ W 1,r′

0 (Ω). This yields the first result.

The second result comes from (3.15), that yields: ∥D(k)∥0,1,Ω ≤
(
C∥f∥0,2,Ω
inf(α,ν)

)2
, then D(k) ∈

L1(Ω) and p ∈ L∞(Ω), by Sobolev embedding. Hence D(k)p ∈ L1(Ω).

It is important to notice that if N = 3, V ↪→ L2(Ω). Indeed, we have the equivalence

W 1,q(Ω) ↪→ L2(Ω) ⇔ q∗ > 2 ⇔ 1

q
<

1

2
+

1

N
⇔ q >

2N

N + 2
.

Then the condition that needs to be satisfied is: N ′ > 2N
N+2 , which is equivalent to N < 4.

We are now able to state the variational formulation of (4.1) ; k is called a weak solution
of (4.1) if  k ∈ V

∀p ∈ W,

∫
Ω
B(k)∇k · ∇p dx =

∫
Ω
D(k)p dx.

(4.4)

As a priori D(k) ∈ L1(Ω), it is not possible to solve directly (4.4). Indeed, the method
that will be used consists in bringing (4.4) back to a Lax-Milgram problem, which requires
being in a Hilbert space. Yet, W 1,p(Ω) with p ̸= 2 is not a Hilbert space. And D(k) is not in
L2(Ω).

More precisely, the method is divided into three steps:

• Regularizing the equation, by changing the source term.

• Linearizing it to solve the regularized problem with a fixed-point theorem.

• Taking the limit when the regularizing parameter goes to zero.

4.2 Two first steps: solving the regularized problem

In order to set the regularized version of (4.4), several tools must be defined.

Definition 1. If w ∈ Lr(Ω) with r ∈ [1,+∞], w̃ ∈ Lr(RN ) refers to the extension by zero

w̃ : x 7→
{

w(x) if x ∈ Ω
0 if x /∈ Ω.

Definition 2 (Mollifier). Let ρ : RN → R a function such that Supp(ρ) = B̄(0, 1), ρ ≥ 0 and∫
RN ρ(y)dy = 1. We define the family (ρε)ε>0 by

∀x ∈ RN , ρε(x) =
1

εN
ρ
(x
ε

)
.
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Let ε > 0, and Dε(k) given by: Dε(k) = A(k)
∣∣∣∇̃u(k) ∗ ρε

∣∣∣2, and the following regularized
problem:  k ∈ H1

0 (Ω)

∀p ∈ H1
0 (Ω),

∫
Ω
B(k)∇k · ∇p dx =

∫
Ω
Dε(k)p dx.

(4.5)

Linearizing is only useful if the assumptions of the Lax-Milgram theorem are satisfied.
This is what will be proved now, beginning by a continuity result on the right hand side of
(4.5).

Theorem 13. Let ε > 0 and Dε(k) defined as in (4.5). Then Dε(k) ∈ L2(Ω) and there exists
a constant C > 0 only depending of the data of the problem such that

∀k ∈ H1
0 (Ω), ∥Dε(k)∥0,2,Ω ≤ C

ε2
. (4.6)

The proof of Theorem 13 is based on a general result.

Lemma 14. Let v ∈ Hm(Ω), ℓ ∈ N and (ρε)ε>0 a mollifier defined as previously. For ε > 0
sufficiently close to 0, we have

∥v ∗ ρε∥m+ℓ,2 ≤
C(m, ℓ)

εℓ
∥v∥m,2. (4.7)

Proof of Lemma 14. Let us recall the definition of the Sobolev norm
∥v ∗ ρε∥2m+ℓ,2 =

∑
|α|≤m
|β|≤ℓ

∥∂α+β(v ∗ ρε)∥20,2. Let α, β ∈ Nd such that |α| ≤ m and |β| ≤ ℓ.

Plancherel theorem yields

∥∂α+β(v ∗ ρε)∥20,2 =
1

(2π)N
∥F(∂α+β(v ∗ ρε))∥20,2, (4.8)

where F refers to the Fourier transform operator.
Since v ∈ Hm(Ω), the following derivation formula stands ∂α+β(v ∗ ρε) = (∂αv) ∗ (∂βρε).

And by Fourier transform, we get

F
(
∂α+β(v ∗ ρε)

)
= F(∂αv)F(∂βρε). (4.9)

Then with norms:

∥F(∂α+β(v ∗ ρε))∥20,2 =
∫
RN

|F(∂αv)(ξ)|2 · |F(∂βρε)(ξ)|2dξ. (4.10)

The definition of ρε with respect to ρ yields, by a change of variables

F(ρε)(ξ) =
1

εN

∫
RN

e−ixξρ
(x
ε

)
dx =

y=x/ε

∫
RN

e−iεyξρ(y)dy = F(ρ)(εξ). (4.11)

Then we obtain

|F(∂βρε)(ξ)|2 = |ξβF(ρε)(ξ)|2 = |ξβF(ρ)(εξ)|2

=
1

ε2|β|
|(εξ)βF(ρ)(εξ)|2 = 1

ε2|β|
|F(∂βρ)(εξ)|2.

(4.12)
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Yet, ∂βρ ∈ D(RN ) ⊂ L1(RN ), which yields ∀ξ ∈ RN , |F(∂βρ)(ξ)| ≤ ∥∂βρ∥0,1. This
reported in the inequality (4.10) ensure the existence of a constant c0 > 0 independent of v
such that

∥F(∂α+β(v ∗ ρε))∥20,2 ≤
c0

ε2|β|
∥F(∂αv)∥20,2. (4.13)

Plancherel Theorem then yields

∥∂α+β(v ∗ ρε)∥20,2 ≤
c0

ε2|β|
∥∂αv∥20,2. (4.14)

By addition for |α| ≤ m: ∑
|α|≤m

∥∂α+β(v ∗ ρε)∥20,2 ≤
c0

ε2|β|
∥v∥2m,2. (4.15)

Taking ε ∈]0, 1[ yields 1
ε2|β|

≤ 1
ε2ℓ

. Thus, adding for |β| ≤ ℓ brings the inequality

∥v ∗ ρε∥2m+ℓ,2 ≤
c(ℓ)

ε2ℓ
∥v∥2m,2, (4.16)

hence (4.7).

We can now apply this result to prove Theorem 13.

Proof of Theorem 13. The definition of Dε yields

∥Dε(k)∥0,2,Ω =

(∫
Ω
|
√
A(k)∇̃u(k) ∗ ρε|4 dx

)1/2

=
∥∥∥√A(k)∇̃u(k) ∗ ρε

∥∥∥2
0,4,Ω

. (4.17)

And since N = 3, the Sobolev embedding H1(Ω) ↪→ L6(Ω) ↪→ L4(Ω) yields∥∥∥√A(k)∇̃u(k) ∗ ρε
∥∥∥
0,4,Ω

≤ c1

∥∥∥√A(k)∇̃u(k) ∗ ρε
∥∥∥
1,2,Ω

≤ c2
ε

∥∥∥√A(k)∇u(k)
∥∥∥
0,2,Ω

. (4.18)

Finally, (3.15) yields the result.

In order to solve the regularized problem (4.5), we first linearize it, as said before. q = q(k) ∈ H1
0 (Ω)

∀p ∈ H1
0 (Ω),

∫
Ω
B(k)∇q · ∇p dx =

∫
Ω
Dε(k)p dx.

(4.19)

We have already shown that [p 7→
∫
ΩDε(k)p dx] is a continuous linear form on H1

0 (Ω), and
then it is clear that [(q, p) 7→

∫
ΩB(k)∇q · ∇p dx] is a bilinear form on H1

0 (Ω).

• Let q, p ∈ H1
0 (Ω):∣∣∣∣∫

Ω
B(k)∇q · ∇p dx

∣∣∣∣ ≤ µ∥∇q∥0,2,Ω∥∇p∥0,2,Ω ≤ µ∥q∥1,2,Ω∥p∥1,2,Ω. (4.20)

Then continuity is proved.
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• Let p ∈ H1
0 (Ω):∫

Ω
B(k)|∇p|2 dx ≥ ν∥∇p∥20,2,Ω ≥ ν

2

(
∥∇p∥20,2,Ω +

1

c2Ω
∥p∥20,2,Ω

)
≥ ν

2
inf

(
1,

1

c2Ω

)
∥p∥21,2,Ω.

(4.21)

Where cΩ refers to the Poincaré-Friedrichs constant for Ω. Then coercivity is proved.

Until the end, cΩ keeps the same meaning than in (4.21).

Consequently, problem (4.19) is a Lax-Milgram problem, hence by the same-named theo-
rem, (4.19) has a unique solution q = q(k) ∈ H1

0 (Ω). Our goal is applying the Leray-Schauder
fixed-point theorem on the operator [k 7→ q(k)].

Taking p = q(k) in (4.19) yields∫
Ω
B(k)|∇q(k)|2 dx =

∫
Ω
Dε(k)q(k) dx, hence ν∥∇q(k)∥0,2,Ω ≤ cΩ∥Dε(k)∥0,2,Ω. (4.22)

Then Theorem 13 yields

∥∇q(k)∥0,2,Ω ≤
cΩ∥Dε(k)∥0,2,Ω

ν
≤ cΩC

νε2
=: M. (4.23)

The constant M > 0 does not depend on k. Since Ω is bounded, the norms ∥∇ · ∥0,2,Ω and
∥ · ∥1,2,Ω are equivalent.

The end of this subpart aims at showing the existence of a solution to (4.5). This needs
the Leray-Schauder fixed-point theorem (see [9]).

Theorem 15 (Leray-Schauder). Let X a Banach space, and B a convex closed bounded
nonempty subset of X. Let f : B → B a continuous function with f(B) compact.

Then f admits at least one fixed point in B.

In our problem, we set X = H1
0 (Ω), B = B̄(0,M) and the function

Q : B → B
k 7→ q(k)

.

It is clear that B is a convex closed bounded nonempty subset of H1
0 (Ω), and Q(B) ⊂ B.

Remains to be proved that Q is continuous and Q(B) is compact.

Let us show that Q(B) is compact. Let (kn)n∈N a sequence of elements of B. Since
(kn) is bounded in H1(Ω), a subsequence still named (kn) can be extracted, which satisfies:

kn
H1

⇀
n→+∞

k. By theorem 10 with p = 2, this weak convergence is sufficient to obtain (3.20).
The Young convolution inequality consequently yields
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∥
√
A(kn)∇u(kn) ∗ ρε −

√
A(k)∇u(k) ∗ ρε∥0,2

≤ ∥
√
A(kn)∇u(kn)−

√
A(k)∇u(k)∥0,2 × ∥ρε∥0,1︸ ︷︷ ︸

=1

−→
n→+∞

0. (4.24)

This strong convergence in L2 and the Lebesgue inverse theorem ensure the existence of a
subsequence of (kn)n∈N still named the same way satisfying√

A(kn)∇u(kn) ∗ ρε
ae.−→

n→+∞

√
A(k)∇u(k) ∗ ρε, hence Dε(kn)

ae.−→
n→+∞

Dε(k). (4.25)

By theorem 9, (u(kn))n∈N strongly converges in H1(Ω), then (∇u(kn))n∈N strongly con-
verges in L2(Ω)N . Thus, the Lebesgue inverse theorem yields the existence of h ∈ L2(Ω) such
that

∀n ∈ N, |∇u(kn)| ≤ h ae. Ω, (4.26)

where (kn)n∈N refers to another subsequence. Therefore, we obtain

|∇̃u(kn) ∗ ρε(x)| ≤ h̃ ∗ ρε(x). (4.27)

And since h does not depend on n and h ∗ ρε is continuous with compact support, Dε(kn)
is bounded by a constant that does not depend on n, then (4.25) and Lebesgue theorem yield

∀p ∈ H1
0 (Ω),

∫
Ω
Dε(kn)p dx −→

n→+∞

∫
Ω
Dε(k)p dx. (4.28)

Reporting (4.28) in (4.19) yields:

∀p ∈ H1
0 (Ω),

∫
Ω
B(kn)∇q(kn) · ∇p dx −→

n→+∞

∫
Ω
B(k)∇q(k) · ∇p dx. (4.29)

We have proved that B(kn)∇q(kn)
L2

⇀
n→+∞

B(k)q(k). The Lebesgue inverse theorem and

the continuity of 1/B yield 1
B(kn)

ae.−→
n→+∞

1
B(k) , and in addition 1

B(kn)
|∇p| ≤ 1

ν |∇p|. We then
obtain

1

B(kn)
∇p

L2

−→
n→+∞

1

B(k)
∇p. (4.30)

The assumptions of Lemma 11 are satisfied, so that it yields

∀p ∈ H1
0 (Ω),

∫
Ω
∇q(kn) ·∇p dx −→

n→+∞

∫
Ω
∇q(k) ·∇p dx, hence ∇q(kn)

L2

⇀
n→+∞

∇q(k). (4.31)

We deduce by compact embedding q(kn)
L2

−→
n→+∞

q(k). We now intend to show∫
Ω
Dε(kn)q(kn) dx −→

n→+∞

∫
Ω
Dε(k)q(k) dx. (4.32)

Another decomposition is needed:

∥Dε(kn)q(kn)−Dε(k)q(k)∥0,1,Ω ≤ ∥(Dε(kn)−Dε(k))q(k)∥0,1,Ω
+ ∥Dε(kn)(q(kn)− q(k))∥0,1,Ω.

(4.33)
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On the one hand, the Lebesgue theorem yields ∥(Dε(kn)−Dε(k))q(k)∥0,1,Ω −→
n→+∞

0.

On the other hand, there exist two constants c1 and c2 due to the domination of (Dε(kn))
and the embedding L2(Ω) ↪→ L1(Ω) such that

∥Dε(kn)(q(kn)− q(k))∥0,1,Ω ≤ c1∥q(kn)− q(k)∥0,1,Ω ≤ c2∥q(kn)− q(k)∥0,2,Ω −→
n→+∞

0. (4.34)

Hence, (4.32) is proved. Reporting in (4.19) yields∫
Ω
B(kn)|∇q(kn)|2 dx −→

n→+∞

∫
Ω
B(k)|∇q(k)|2 dx. (4.35)

We need a last decomposition:∫
Ω

(
B(kn)|∇q(kn)|2 −B(k)|∇q(k)|2

)
dx =

∫
Ω
B(k)

(
|∇q(kn)|2 − |∇q(k)|2

)
dx

+

∫
Ω
(B(kn)−B(k))|∇q(kn)|2 dx.

(4.36)

Given that the sequence
(
B(kn)|∇q(kn)|2

)
n∈N is bounded, (4.35) yields for another subse-

quence still named (kn)n∈N:√
B(kn)∇q(kn)

L2

−→
n→+∞

√
B(k)∇q(k). (4.37)

Then, by the Lebesgue inverse theorem, a subsequence still named the same way is dominated.
That means

(
|∇q(kn)|2

)
n∈N is dominated by a L1 function. Then the Lebesgue theorem yields∫

Ω
(B(kn)−B(k))|∇q(kn)|2 dx −→

n→+∞
0. (4.38)

Consequently, (4.36) yields∫
Ω
B(k)

(
|∇q(kn)|2 − |∇q(k)|2

)
dx −→

n→+∞
0. (4.39)

Let NB be defined by

NB : f ∈ H1
0 (Ω) 7→ ∥B(k)∇f∥0,2,Ω. (4.40)

The two norms ∥ · ∥1,2,Ω and NB are equivalent, and (4.39) ensures that (q(kn))n∈N strongly
converges for the norm NB. Thus, it also strongly converges in H1

0 (Ω).

We obtain
q(kn)

H1

−→
n→+∞

q(k). (4.41)

Therefore, we have shown that Q(B) is compact, and by a very similar way, the continuity
of Q is deduced. Consequently, Theorem 15 ensures the existence of a fixed-point of Q in B.
Which means there exists a function k ∈ B that satisfies (4.5).
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4.3 Last step: Taking the limit when ε goes to zero

Let us define a family of intermediary solutions with respect to what has just been done. For
ε > 0, the intermediary solution kε satisfies

∀p ∈ H1
0 (Ω),

∫
Ω
B(kε)∇kε · ∇p dx =

∫
Ω
Dε(kε)p dx. (4.42)

Our next goal is showing that (kε) is bounded uniformly with respect to ε. For this we use
the washer lemma, (Lemma 1). But a general theorem from Stampacchia (see [8]) is needed
before.

Theorem 16 (Regularity and truncation function). Let H ∈ W 1,∞(R) having a finite number
of discontinuities, and such that H(0) = 0. Let q ∈ [1,+∞[ and v ∈ W 1,q

0 (Ω).
Then H(v) ∈ W 1,q

0 (Ω) and we have: ∇H(v) = H ′(v)∇v.

Until the end of this chapter, for j ∈ N, Hj refers to the truncation function defined by

p p p p

−

−

−(j + 1)

−j 0 j j + 1

1

−1

Hj(x)

This function satisfies the assumptions of 16, so that we can take p = Hj(kε) in (4.42) to
obtain

∀j ∈ N,
∫
Ω
B(kε)|∇kε|2H ′

j(kε) dx =

∫
Ω
Dε(kε)Hj(kε) dx. (4.43)

On one hand, by writing Bε
j = {x ∈ Ω / j ≤ |kε(x)| < j + 1}:∫

Ω
B(kε)|∇kε|2H ′

j(kε) dx =

∫
Bε

j

B(kε)|∇kε|2 dx ≥ ν

∫
Bε

j

|∇kε|2 dx. (4.44)

One the other hand, the Young convolution inequality yields∫
Ω
Dε(kε)Hj(kε)︸ ︷︷ ︸

≤1

dx ≤
∥∥∥√A(kε)∇̃u(kε) ∗ ρε

∥∥∥2
0,2

≤
∥∥∥√A(kε)∇u(kε)

∥∥∥2
0,2,Ω

. (4.45)

By (3.15), the right hand side is uniformly bounded with respect to ε. Both inequalities
(4.44) and (4.45) reported in (4.43) yield

∃C > 0,∀ε > 0, ∀j ∈ N,
∫
Bε

j

|∇kε|2 dx ≤ C. (4.46)

This corresponds to the assumptions of lemma 1. Then for any exponent q ∈]1, N ′[, we
have: ∥kε∥1,q,Ω ≤ A. And given that C does not depend on ε, this is the same for A (as a
consequence of lemma 1).
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Therefore, (kε)ε>0 is bounded in W 1,q(Ω) for q ∈]1, N ′[. Banach-Alaoglu theorem yields

the existence of a sequence (εn)n∈N such that εn −→
n→+∞

0 and kεn
W 1,q

0⇀
n→+∞

k. Therefore, k ∈ V .

We need to show that k is a solution of (4.4), which means we need to show

∀p ∈ H1
0 (Ω),

∫
Ω
B(k)∇k · ∇p dx =

∫
Ω
D(k)p dx. (4.47)

The intermediary solutions (kεn) satisfy

∀p ∈ H1
0 (Ω),

∫
Ω
B(kεn)∇kεn · ∇p dx =

∫
Ω
Dεn(kεn)p dx. (4.48)

Convergence of the left hand side:

We have supposed that kεn
W 1,q

0⇀
n→+∞

k, which means in particular

∀p ∈ W,

∫
Ω
∇kεn · ∇p dx −→

n→+∞

∫
Ω
∇k · ∇p dx. (4.49)

To add the term B(kn), it seems useful to state a variant of Lemma 11.

Lemma 17 (Double convergence in V and W ). Let Ω be an open subset of RN , f ∈
⋂

1<r<N ′

Lr(Ω)

and g ∈ Lq(Ω), where q > N . Let us consider two sequences (fn)n∈N and (gn)n∈N such that
∀r ∈]1, N ′[, fn

Lr

−→
n→+∞

f

gn
Lq

⇀
n→+∞

g
(4.50)

Then we have the convergence∫
Ω
fngn dx −→

n→+∞

∫
Ω
fg dx. (4.51)

Proof. The proof of Lemma 17 is similar to the proof of Lemma 11. We write∫
Ω
(fngn − fg) dx =

∫
Ω
(fn − f)gn dx+

∫
Ω
f(gn − g) dx. (4.52)

On one hand, the Hölder inequality yields∣∣∣∣∫
Ω
(fn − f)gn dx

∣∣∣∣ ≤ ∥fn − f∥0,q′,Ω∥gn∥0,q,Ω ≤ M∥fn − f∥0,q′,Ω −→
n→+∞

0, (4.53)

where q′ refers to the conjugate of q, which is in ]1, N ′[.
On the other hand, the weak convergence of (gn)n∈N yields∫

Ω
(gn − g)f dx −→

n→+∞
0. (4.54)

Hence the result.
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Let us now check if the assumptions of Lemma 17 are satisfied.
The compact embedding V ↪→ L1(Ω) yields kεn

L1

−→
n→+∞

k. Thus, the Lebesgue inverse

theorem yields kεn
ae.−→

n→+∞
k, where (εn) refers to a subsequence. Hence, by countinuity of

B: B(kεn)
ae.−→

n→+∞
B(k). And the domination B(kεn)|∇p| ≤ µ|∇p| stands. Consequently, the

Lebesgue theorem yields

∀r ∈]1, N ′[,∀p ∈ W, B(kεn)∇p
Lr

−→
n→+∞

B(k)∇p. (4.55)

And the weak convergence of (kεn)n∈N is already established. Then, Lemma 17 yields the
convergence of the left hand side

∀p ∈ W,

∫
Ω
B(kεn)∇kεn · ∇p dx −→

n→+∞

∫
Ω
B(k)∇k · ∇p dx. (4.56)

Convergence of the right hand side:

We aim at applying the Lebesgue inverse theorem on (Dεn(kεn)), so we need to prove

∀p ∈ W, Dεn(kεn)p
L1

−→
n→+∞

D(k)p. (4.57)

Yet, it is clear that for n ∈ N and p ∈ W

∥Dεn(kεn)p−D(k)p∥0,1,Ω = ∥Dεn(kεn)−D(k)∥0,1,Ω ∥p∥0,∞,Ω. (4.58)

Then we write a decomposition.∫
Ω
|Dεn(kεn)−D(k)| dx =

∫
RN

∣∣∣A(kεn)|∇̃u(kεn) ∗ ρεn |2 −A(k)|∇̃u(k)|2
∣∣∣ dx

≤
∫
Ω
|A(kεn)−A(k)| · |∇u(k)|2 dx+

∫
RN

A(kεn)
∣∣∣|∇̃u(kεn) ∗ ρεn |2 − |∇̃u(k)|2

∣∣∣ dx. (4.59)

The same argument as in the proof of (4.55) yields∫
Ω
|A(kεn)−A(k)| · |∇u(k)|2 dx −→

n→+∞
0. (4.60)

It remains to prove the following

∇̃u(kεn) ∗ ρεn
L2

−→
n→+∞

∇̃u(k). (4.61)

First we write∥∥∥∇̃u(kεn) ∗ ρεn − ∇̃u(k)
∥∥∥
0,2

≤
∥∥∥∇̃u(kεn) ∗ ρεn − ∇̃u(k) ∗ ρεn

∥∥∥
0,2

+
∥∥∥∇̃u(k) ∗ ρεn − ∇̃u(k)

∥∥∥
0,2

.
(4.62)
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On one hand, the Young convolution inequality yields∥∥∥∇̃u(kεn) ∗ ρεn − ∇̃u(k) ∗ ρεn
∥∥∥
0,2

≤ ∥∇u(kεn)−∇u(k)∥0,2,Ω −→
n→+∞

0, (4.63)

as a consequence of theorem 9.
On the other hand, a classical convergence result has to be recalled.

Theorem 18. Let v a Lp(RN ) function with compact support (1 ≤ p < +∞), and (ρε) a
mollifier. Then

∥v ∗ ρε − v∥0,p −→
n→+∞

0. (4.64)

Theorem 18 applied to ∇̃u(k) brings the following convergence∥∥∥∇̃u(k) ∗ ρεn − ∇̃u(k)
∥∥∥
0,2

−→
n→+∞

0. (4.65)

This finally yields (4.61).

There is a subsequence, still named (εn), such that |∇̃u(kεn) ∗ ρεn |2 −→
n→+∞

|∇̃u(k)|2 and

|∇̃u(kεn) ∗ ρεn |2 ≤ g ∈ L2(RN ) almost everywhere (g can be taken with compact support).
Therefore, Lebesgue theorem can be used for the last term of (4.59) to obtain∫

RN

A(kεn)
∣∣∣|∇̃u(kεn) ∗ ρεn |2 − |∇̃u(k)|2

∣∣∣ dx −→
n→+∞

0. (4.66)

We finally obtain
∥Dεn(kεn)−D(k)∥0,1,Ω −→

n→+∞
0. (4.67)

Therefore, (4.58) yields the convergence of the right hand side

∀p ∈ W,

∫
Ω
Dεn(kεn)p dx −→

n→+∞

∫
Ω
D(k)p dx. (4.68)

We have shown that the function k given by the washer lemma satisfies (4.4). Moreover,
since k ∈ V , there exists q ∈]1, N ′[ such that q∗ > 2 (for example by taking q = 4

3 , q
∗ = 12

5 > 2).

As a result, the embedding V ↪→ L2(Ω) is compact. Then (kεn) strongly converges to k in
L2(Ω). This allows us to conclude.

4.4 Conclusion: solution of the coupled problem

Let us consider the sequence (εn) mentioned previously, after all the extractions that were
done. We have shown that (kεn) strongly converges in L2(Ω) to a function k.

Moreover, (kεn) weakly converges to k in every space W 1,q
0 (Ω) with q ∈]1, N [. Therefore,

theorem 9 yields that (u(kεn)) strongly converges to u(k) in H1(Ω).

All of this ensures the existence of a couple (u; k) of solutions of (1.1) at the distribution
sense, with u ∈ H1(Ω) and k ∈ V (in particular k ∈ L2).
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