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Abstract. Deep learning techniques have demonstrated state-of-the-art
performances in many medical imaging applications. These methods can
efficiently learn specific patterns. An alternative approach to deep learn-
ing is patch-based grading methods, which aim to detect local similarities
and differences between groups of subjects. This latter approach usually
requires less training data compared to deep learning techniques. In this
work, we propose two major contributions: first, we combine patch-based
and deep learning methods. Second, we propose to extend the patch-
based grading method to a new patch-based abnormality metric. Our
method enables us to detect localized structural abnormalities in a test
image by comparison to a template library consisting of images from a
variety of healthy controls. We evaluate our method by comparing classi-
fication performance using different sets of features and models. Our ex-
periments show that our novel patch-based abnormality metric increases
deep learning performance from 91.3% to 95.8% of accuracy compared
to standard deep learning approaches based on the MRI intensity.
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1 Introduction

Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative dis-
order that causes motor, behavioral and cognitive abnormalities. The patholog-
ical mutation consists of an abnormal cytosine-adenine-guanine (CAG) repeat
in the huntingtin gene (HTT) [4]. Gene modification leads to pathological brain
changes, and imaging studies have shown structural changes in the striatum [15].
Unlike many other degenerative diseases, a genetic test can determine the pres-
ence of the mutated gene well before the onset of symptoms, which makes HD a
good candidate for the evaluation of new imaging-based methods.
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Recently, deep learning methods have reached state-of-the-art performances
in many medical imaging problems. However, such approaches have only ob-
tained similar performance to methods using a combination of good feature
engineering and machine learning methods for the detection and prediction of
neurodegenerative diseases [1]. Although deep-learning approaches have shown
promising results, one of the main limitations is a lack of large annotated train-
ing datasets, combined with the high dimensionality of the medical image data.
Recent methods proposed to combine deep learning with pre-processed features
[16,11]. These approaches proposed to use as input of deep-learning networks
gray matter (GM) volumes to learn abnormalities over each subject. This results
in normalized features that not only substantially reduce the problem dimension-
ality but also have lower variability compared to the raw MRI intensities. More
advanced features have also been proposed for classification tasks to describe
subtle anatomical changes. Among them, the patch-based grading framework
has shown state-of-the-art performances [2,17,18,8,7]. This framework aims to
detect local similarities of a given test image to two template libraries repre-
senting two different populations (e.g., diseased vs. healthy). The general idea of
patch-based grading methods is to compare structural patterns of a local patch
in a test image with the images in the template libraries. However, such meth-
ods are highly dependent on the two template libraries, which can be affected
by many factors (differences in distributions of MR protocols, sex, age, etc). A
proposed solution is to use a patch-based framework to detect abnormal patterns
by using the coefficients of sparse coding to assess the subject under study [3].

Just like the pre-processed features proposed by [16,11], we hypothesize that
using a normalized patch-based grading maps as an input feature will lower the
variability that limits deep learning models. In addition, deep neural networks
can efficiently learn abnormality patterns over the brain without requiring seg-
mentation maps. This is the first contribution of our paper. While the patch-
based grading method is very powerful when appropriate template libraries can
be identified for a given task, this can sometimes be difficult to achieve. For
example, a real dataset may contain more than two distributions: a movement
disorders clinic may deal with not only healthy controls and Parkinson’s pa-
tients, but also Lewy body disease patients, and essential tremor patients. Even
within a single disease, disease heterogeneity may make it impractical to build a
representative template library. In such scenarios, it is much easier to rely on a
single template library distribution representing healthy controls, and report the
local deviation of a given test subject from the healthy control distribution. The
second contribution of our paper is a new patch-based abnormality metric
which achieves this goal.

2 Materials and Methods

2.1 Dataset

All T1-weighted (T1w) MRIs come from PREDICT-HD [12], which is a multi-
site longitudinal study of HD. The MRIs have been acquired using 3 Tesla MRI
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Table 1. Demographic description of the dataset used in our experiments. Subjects are
divided into three populations: healthy control (HC), Pre-Manifest HD (i.e., abnormal
CAG repetition in the HTT gene without motor impairment), and Manifest HD (i.e.,
abnormal CAG with motor impairment).

Healthy control Huntington’s disease
Pre-Manifest Manifest

Number of MRIs 327 300 117
Age (years) 49.3±11.9 43.4±10.1 56.8±6.5
Sex (F/M) 206/121 199/101 28/28
CAG length 15-35 37-57 37-57

scanners from different vendors (e.g., GE, Phillips, and Siemens). The cohort
used in the study includes 683 MPRAGE images from subjects representing
three populations: control subjects (HC), pre-manifest HD that is composed of
subjects with the expanded CAG repeat but who have not yet received a motor
diagnosis at the time of the scan, and manifest HD which refers to patients who
already have a motor diagnosis by the time of the scan (see Table 1).

2.2 Preprocessing

The preprocessing was conducted with the BRAINSAutoWorkup pipeline [14].
This pipeline is composed of the following steps: (1) denoising with non-local
means filter, (2) anterior/posterior commissure and intra-subject alignments
with rigid transformation, (3) bias field correction, and (4) regional segmen-
tation with a multi-atlas method using atlases from Neuromorphometrics7. Fi-
nally, MRI intensities have been standardized using a piece-wise linear histogram
normalization technique.

Abnormality 
Estimation

Pre-processing

CNN

HC/HD
Training
Testing

Denoising Affine
Registration

Inhomogeneity
Correction

HC Templates

- HC

- Manifest HD

- Pre-Manifest HD

HC
Templates

Intensity
Norm.

Fig. 1. Pipeline of the proposed method. First, HC from the dataset is separated into
two subset, the HC templates used to estimate the local abnormality, the second is
the set of HC for the evaluation of our method. Once all MRIs are preprocessed, we
estimate the local abnormality using the HC template library. Finally, a convolutional
neural network with softmax is used to obtain final classification.

7 http://www.neuromorphometrics.com

http://www.neuromorphometrics.com
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2.3 Patch-based metrics

We consider two patch-based metrics (i.e., patch-based grading and our proposed
patch-based abnormality) to detect structural changes. Both methods rely on
the accurate selection of closest patches in terms of intensity differences. In our
work, closest patch selection is done using a version of PatchMatch that ensures
uniqueness of patches extracted for the template library [5]. PatchMatch is an
optimized algorithm that enables us to extract the most similar patches from
the template library in a sparse selection fashion.

Patch-based grading (PBG). Patch-based grading has been introduced to
detect local similarity between two populations of subjects [2]. At each voxel x
of the subject under study, this method estimates a grading value g(x) based on
the following equation:

g(x) =

∑
T∈Kx

exp
(
− ||S(x)− T (y)||22

h(x)

)
pT∑

T∈Kx
exp

(
− ||S(x)− T (y)||22

h(x)

) , (1)

where S(x) is the patch surrounding the voxel x of the test subject image. T (y)
is a patch from the set Kx, which contains the most similar patches to S(x)
from the training library, as determined by the PatchMatch algorithm. h(x) =
min||S(x) − T (y)||22 is a normalization factor. Finally, pT is the pathological
status set to −1 for patches extracted from HD patients and to 1 for those
extracted from HC subjects.

Patch-based abnormality (PBA). Our method derives from the patch-based
grading framework. To address PBG’s dependence on the two template libraries,
we estimate the local differences from a single template library composed only
of HC subjects (see Fig. 1). The abnormality a(x) for each voxel x of the MRI
under study, is defined as:

a(x) =

∑
T∈Kx

||S(x)− T (y)||22
σS(x)

, (2)

where σS(x) is standard deviation of intensities over the patch S(x), which nor-
malizes the differences of signal intensity contained in each patch S(x). Similar
to Eq. 1, Kx is the set of closest patches provided by the PatchMatch algorithm.
This results in a low abnormality metric if the current patch is similar to age-
matched control subjects, and in a high abnormality metric if the patch does
not fit well within the distribution of age-matched control subjects (see Fig. 2).

2.4 Network architecture

In order to model the spatial disease signature and perform the subject-level clas-
sification, we used a convolutional neural network (CNN) approach. In recent
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Fig. 2. Illustration of patch-based abnormality maps for (top) a healthy control sub-
ject and (bottom) an HD patient with 40 CAG repeats. From left to right, 3
different time points are shown for each subject. The HD subject is in the pre-manifest
stage for the first time points, but converts to clinical diagnosis by the third time point.
Blue represents areas with a low abnormality score a(x), whereas red represents ar-
eas with high abnormality score a(x). We note a progressive increase of abnormality
near the basal ganglia during the course of the disease which is consistent with HD
pathology, while the abnormality map for the HC subject remains stable.

years, many different architectures have been proposed in the pattern recognition
field. Among them, deep residual neural network (ResNet) has shown competi-
tive performances [6]. This architecture is characterized by skipped connections
of different blocks of layers (see Fig. 3). ResNet has demonstrated a reduced
training error compared to other networks with similar depth. Indeed, the resid-
ual mapping enables to reduce the training error, which is generally correlated
with the network depth for classic stacked architectures. In addition, to address
the problem of GPU memory limitation, we used a 3D patch approach. Thus,
both networks have as input 8 channels that represent non-overlapping patches
from the input data (i.e., T1w MRI or PBA maps).

2.5 Implementation and evaluation

We evaluate our proposed method on two classification tasks: HC versus manifest
HD patients, and HC versus pre-manifest HD patients. MRIs from HC subjects
have been divided in two disjoint subsets, one to construct the patch-based
abnormality maps and the others to train the model. The data partition results
in 163 MRIs from HC subjects for the computation of PBA, 468 images for
HC (164) vs. Pre-manifest HD (300), and 280 MRI for CN (164) vs. Manifest
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Side

Addition

Fig. 3. Illustration of the convolutional neural network architecture used to validate
our work. The architecture consist of a combination of convolutional layer (Conv),
batch normalization (BN), Skipped connection layer (Side), pooling layer (Pool), and
fully connected layer (FC). A softmax layer estimates the probability for each class.

HD (117). We tailored the template library for the estimation of PBA maps by
selecting a set of 30 HC MRI using an age-matching technique. The patch size
for the abnormality metric computation has been set to 7× 7× 7 voxels.

The network was trained using Adam optimizer with a constant learning rate
equals to 0.0001. We used cross-entropy as loss function and a batch size of 2 over
20 epochs. For the deep learning network, the patch size was set to 64× 64× 64
voxels. A stratified 5-fold cross-validation was conducted to obtain training and
testing sets. Because of the longitudinal nature of our dataset, care was taken to
ensure different timepoints from the same patient were either all in the template
library, all in the training set or all in the testing set, to avoid any leakage. We
estimated classification performance in terms of precision, accuracy, specificity,
sensitivity, and area under the ROC curve. All code can be found online8.

To evaluate our methods, we compare the results obtained using 6 differ-
ent classification methods: LDA classifier with putamen volume, LDA classifier
with classic PBG feature [2] averaged over the putamen using the same param-
eters described in [9], LDA classifier with proposed PBA feature averaged over
the putamen, ResNet with T1w input, ResNet with proposed PBA input, and
ResNet with the concatenation of T1w and PBA inputs. For the first three ex-
periments, we use the multi-atlas based putamen segmentation mask (Sec. 2.2).

3 Results and Discussion

The results of the HC vs. Manifest-HD classification task are shown in Table 2.
The ResNet classifier using PBA features as input has the best performance for
all classification metrics.

We note that the putamen volume, which is well known to be a crucial
marker of HD progression [13,10], dramatically outperforms (by about 15 AUC
points) the patch-based approaches if a simple LDA classifier is used (PBG and

8 https://github.com/hettk/patch-based_abnormality

https://github.com/hettk/patch-based_abnormality
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PBA maps are each summarized by averaging within the putamen ROI in this
setup). This may be due to inability of the simple classifier to model the complex
patterns of neurodegeneration, as well as imperfections in the putamen segmen-
tation. Using the ResNet classifier and the whole feature maps instead of the
average within putamen, we see a big improvement in classification performance,
consistent with our hypothesis. Among the ResNet classifiers, the model using
the proposed PBA feature substantially outperforms the model using the raw
T1w intensities. Indeed, the ResNet with PBA feature input is the only model
that outperforms the simple LDA classifier on putamen volumes. Finally, we
note that concatenating the T1w and PBA features within ResNet does not im-
prove classification performance. This may potentially be because PBA extracts
the same information from T1w by highlighting regions impacted by changes
due to the neurological disease. Consequently, although PBA makes it easier to
detect controls from HD patients, our experiments are inconclusive about any
complementarity between PBA and T1w.

Table 3 shows the results from the same experiments on the HC vs. Pre-
Manifest HD classification task. We note that most of the observations from
Table 2 similarly hold for this experiment: putamen volume outperforms patch-
based methods with simple LDA classifier; ResNet substantially improves upon
the LDA based performance for any of the patch-based grading metrics; and
the ResNet performance tends to be best when using the proposed PBA and
grading metrics. PBA obtains similar results to grading but without requiring a
second template library, which is problematic. Indeed, we did not perform HC
vs. Manifest HD to avoid double-dipping, since the Manifest HD group has been
used to compute PBG. We note that, unlike the HC vs. Manifest HD task, the
concatenation of T1w and PBA features in ResNet does improve some of the
performance metrics, suggesting some potential complementarity. Additionally,
again unlike the HC vs. Manifest HD task, no patch-based method reaches the
performance of the putamen volume. This may suggest that at this stage of
the disease progression, the local abnormalities are more subtle and the global
volume is a more robust marker of pathology. In future work, we will explore

Table 2. Comparison of different methods for HC versus manifest HD classification.
Results represent the average of classification performances for 5 xval folds. All re-
sults are expressed in terms of percentage. Best and second scores for each metric are
expressed in bold and underlined font, respectively.

Classifier AUC Precision Accuracy Specificity Sensitivity

Putamen volume LDA 96.1±0.3 89.1±0.3 93.5±0.4 96.6±0.2 89.1±0.3
Putamen grading LDA 81.0±0.5 75.9±1.2 75.9±1.6 87.5±1.4 60.0±1.0
Putamen PBA LDA 81.6±0.5 73.2±1.1 76.2±1.6 89.5±1.6 58.5±1.2

ResNet T1w Softmax 90.7±1.8 87.7±2.4 91.3±1.7 95.2±0.9 85.0±3.0
ResNet PBA Softmax 96.3±0.7 96.9±0.6 95.8±0.8 98.8±0.2 91.0±1.8
ResNet T1w + PBA Softmax 91.6±1.6 85.0±3.0 90.9±1.8 96.4±0.7 82.0±3.6
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Table 3. Comparison of different methods for HC versus pre-manifest HD classifica-
tion. Results represent the average of classification performances for 5 xval folds. All
results are expressed in terms of percentage. Best and second scores for each metric
are expressed in bold and underlined font, respectively.

Classifier AUC Precision Accuracy Specificity Sensitivity

Putamen volume LDA 93.9±0.3 93.1±0.6 85.7±0.5 72.5±0.3 93.1±0.6
Putamen grading LDA 74.5±1.6 87.2±1.9 72.6±1.7 45.7±1.9 87.2±1.8
Putamen PBA LDA 77.6±1.2 87.7±1.8 72.5±1.5 45.6±1.6 87.7±1.8

ResNet T1w Softmax 89.8±2.0 87.7±1.4 88.8±1.3 68.1±3.9 98.6±1.5
ResNet grading Softmax 92.1±1.6 91.4±1.3 90.5±1.3 75.9±3.8 97.8±1.2
ResNet PBA Softmax 91.9±1.6 90.7±1.3 91.4±1.3 75.7±3.8 98.6±1.2

ResNet T1w + PBA Softmax 89.0±2.2 92.3±1.4 91.6±1.6 80.5±3.7 97.6±1.1

combining the putamen volume with the patch-based deep learning model to
better capture the disease pathology.

It is worth noting that the performance of the LDA classifier with the patch-
based methods is lower than what has been reported in other similar tasks
(e.g., hippocampus analysis for Alzheimer’s classification). However, the results
we present here are consistent with previous work that reports lower detection
performance for patch-based methods comparing intensity within the putamen
for HD classification [9]. One of the main strengths of our method that combines
patch-based and deep learning approaches is its independence from segmentation
of a region of interest. This addresses the dependence of current patch-based
grading methods on accurate segmentation maps to aggregate grading values
into a final ROI-based feature [2,8].

4 Conclusion

In this paper we proposed a new patch-based framework to estimate local abnor-
malities to improve classification performance of a deep learning method in the
context of HD detection. The distance from a distribution of healthy controls
is estimated using a patch-match scheme preserving the uniqueness of patches
extracted from the control library. Our experiments demonstrated superior clas-
sification performance of convolutional neural network when the patch-based
abnormality maps are used as input of the network compared to the straightfor-
ward use of T1w intensities. In future work, we will investigate the combination
of pre-trained and data augmentation techniques with our novel approach, as
well as the incorporation of putamen volume into our model.
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