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POD

Proper Orthogonal Decomposition can be used to extract the

principal modes (V) from a physical simulation :

The flow approximates as a linear combination of a reduced

number (r) of modes :

u(x , t) ≈ ū = V (x)α(t)

V ∈ Rnx×r , α ∈ Rr
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Galerkin Projection

An equation for the coefficients of this simplified form is

obtained through Galerkin Projection of the original system :

∂u(x , t)

∂t
= g(u(x , t)), V Tu = α

=⇒ dα

dt
= V Tg(u(x , t))

The dynamics g() of the reduced model are computed from the

approximate solution, which introduces error :

dα

dt
≈ V Tg(ū) 6= V Tg(u(x , t))
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ROM Errors

In the case of a laminar 2-D cylinder flow, a 3 equation model

can be used to capture the transient dynamics1 :

1 B. R. Noack et al., “A hierarchy of low-dimensional models for the transient and post-transient cylinder wake”,
Journal of Fluid Mechanics 497, 335–363 (2003).

https://doi.org/10.1017/S0022112003006694
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ROM Correction

To address classical POD-Galerkin model’s shortcomings, we

propose to add a correction term to their dynamics :

dα

dt
= V Tg(u) = V Tg(ū) + f

This correction term depends on information outside of the POD

basis:

Corrected ROM:

g(u) = g(VV Tu + (I − VV T )u) ≈ g(Vα) + g ′Vα(I − VV T )u
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Takens Theorem

Following Takens’s theorem, we can retrieve the information lost

during the projection on the POD basis by considering the past

states of the system :
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DDE

Delay Differential Equations can be used to aggregate

information from the past in a time continuous manner :

dx

dt
= f (t, x , y), y(t) =

∫ t

−∞
x(τ)eλ(τ−t)dτ, λ ∈ R+

These equations are solved as an augmented ODE system :

dx
dt
dy
dt

=
f (t, x , y)

x − λy
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Neural Correction Term

We use Neural Networks to learn the ROM’s correction from the

memory y :

dα
dt
dy
dt

=
V Tg(Vα) + NN (y)

α − λy

The information available in memory y is limited by its

dimension :

y(t) =

∫ t

−∞
α(τ)eλ(τ−t)dτ =⇒ dim(y) = dim(α)
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Encoders

To address the bottleneck in the memory, we propose to add an

encoder network to expand the dimension of the memory :

dα
dt
dy
dt

=
V Tg(Vα) + NN (y)

E(α) − λy

Leading to the final CD-ROM formulation :



10 / 21

Training Data and Neural ODE

Training data for the true ROM trajectories can be obtained

from the snapshot data :

α̂ti = V TuDNS,ti

The model can then be trained through adjoint

backpropagation2 :

L(α) =
∑tn

t0
‖αti − α̂ti‖2

2
R. T. Q. Chen et al., “Neural ordinary differential equations”, (2019).
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Cylinder Results
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Chaotic Pinball

We tested the approach on a more challenging case, the chaotic

pinball3:

Reminder : 8 modes are enough to capture 99 % of the cylinder

flow’s energy.

3 N. Deng et al., “Low-order model for successive bifurcations of the fluidic pinball”, Journal of Fluid Mechanics
884, 10.1017/jfm.2019.959 (2019).

https://doi.org/10.1017/jfm.2019.959
https://doi.org/10.1017/jfm.2019.959
https://doi.org/10.1017/jfm.2019.959
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Unstable ROM

Taking a very reduced number (r = 10) of modes for the pinball

flow yields a very unstable model.
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Pinball Results
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Attractor Statistics

The test trajectory presents statistics similar to the original

attractor :

Probability density function of the amplitude of each mode over a trajectory of ≈ 1000

seconds. The CD-ROM results are presented in blue while the DNS is in black.
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Attractor Statistics

The test trajectory presents statistics similar to the original

attractor :
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Time Horizons

We can learn a different λ for each dimension of the memory :

y(t) =

∫ t

−∞
E (x(s))eΛ(s−t)ds, Λ =

λ1

. . .

λN

 , N = dim(y)

Each λi defines the time horizon of each memory dimension,

which can be computed as :

τi =
1

λi
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Synthetic Experiment

Sine waves are a good test-case to assess the ability of the

CD-ROM to learn the time-horizons :

With a wave of period T , using a delay of τ = T
4 yields a perfect

circle in phase space.
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Trajectory Fit

We use a superposition of two waves of periods

T1 = 50,T2 = 168 :

We need a memory of dimension 3 to represent the dynamics of

the wave.
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Learned Horizons

Starting from varying initial conditions, the model learns similar

horizons.

τ1 ≈ 50/4, τ2 ≈ 168/4, τ3 ≈ 168
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Summary & Future Work

Summary :

• We propose a novel, time-continuous, neural architecture for

modeling partially observable systems.

• It provides a computationally inexpensive and data-efficient

correction to POD-Galerkin models, illustrated here in

different flow configurations.

• Relevant and physically consistent time-constants are

extracted from observations of the system.

• CD-ROM: Complementary Deep - Reduced Order model, Menier et al.,

https://arxiv.org/abs/2202.10746

https://arxiv.org/abs/2202.10746
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Annex Slides
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Computational Costs

Although the CD-ROM increases the computational costs, it

remains less expensive than bigger models :

Integration times

Uncorrected 10 modes 30 ms

Uncorrected 173 modes 550 ms

CD-ROM 10 modes 330 ms

Performance and computational cost of different models on a point outside the

CD-ROM training basis.
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Pinball Training

This model can then be progressively corrected and stabilised

through our approach :
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Comparison with Reservoir Computing

Echo State Networks are based on random matrices Win and W :

Yt+1 = tanh(Win · xt + W · Yt)

s.t. ρ(W ) < 1

Only the output operator is optimised to map the output

sequence (O) to the memories :

xt = Wout · Yt

Wout = Y †O
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Comparison with RC

Ignoring the non-linearity, the ESN becomes a linear dynamical

system :

Yt+1 = Win · xt + W · Yt

= Yt + ∆t
dY
dt

=⇒ dY

dt
=

Win

∆t
· x(t) +

W − I

∆t
Y (t)

The operator W̄ = W−I
∆t

eigenvalues have negative real part. It

plays the same memory dissipation role as the Λ matrix in our

architecture :

ESN : dY
dt = Win

∆t
· x + W−I

∆t
Y

Deep ROM : dY
dt = Enc (x) − ΛY
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Neural ODE

With Neural ODEs4 , we can back-propagate gradients through

the simulation steps :

dz(t)
dt = f (z , t; θ)

a(t) = dL
dz

∣∣
t

da(t)
dt = −a(t)∂f (z(t),t;θ)

∂z

dL
dθ = −

∫ t1

t0
a(t)∂f (z(t),t;θ

∂θ

4
R. T. Q. Chen et al., “Neural ordinary differential equations”, (2019).
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ROM NODE

In our case, the Neural ODE corresponds to the complete ROM :

z =

(
α

y

)

f (z , t; θ) =
1
ReKα− α

TNα + NN (y ; θ1)

E(α; θ2) − Λy

Because the model is fully expressed with differentiable objects,

the required jacobians can be easily evaluated through automatic

differentiation.
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Cylinder Hyperparameters

ReLU activation

Encoder Network

Layer 1 3 neurons

Layer 2 11 neurons

Layer 3 19 neurons

Layer 4 27 neurons

Correction Network

Layer 1 30 neurons

Layer 2 30 neurons

Layer 3 30 neurons

Layer 4 3 neurons
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Pinball Hyperparameters

Swish activation

Encoder Network

Layer 1 10 neurons

Layer 2 36 neurons

Layer 3 63 neurons

Layer 4 90 neurons

Correction Network

Layer 1 100 neurons

Layer 2 500 neurons

Layer 3 500 neurons

Layer 4 10 neurons
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Takens Theorem

Discrete time delays are unsuitable for classical time integrators :
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