
HAL Id: hal-04405277
https://hal.science/hal-04405277v1

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FaaS for IoT: Evolving Serverless towards Deviceless in
I/Oclouds

Giovanni Merlino, Giuseppe Tricomi, Luca D’Agati, Zakaria Benomar,
Francesco Longo, Antonio Puliafito

To cite this version:
Giovanni Merlino, Giuseppe Tricomi, Luca D’Agati, Zakaria Benomar, Francesco Longo, et al.. FaaS
for IoT: Evolving Serverless towards Deviceless in I/Oclouds. Future Generation Computer Systems,
2024, �10.1016/j.future.2023.12.029�. �hal-04405277�

https://hal.science/hal-04405277v1
https://hal.archives-ouvertes.fr


Future Generation Computer Systems 154 (2024) 189–205

A
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

FaaS for IoT: Evolving Serverless towards Deviceless in I/Oclouds
Giovanni Merlino a,b, Giuseppe Tricomi a,b,d,∗, Luca D’Agati a, Zakaria Benomar c,
Francesco Longo a,b, Antonio Puliafito a,b

a University of Messina, Italy
b CINI: National Interuniversity Consortium for Informatics, Rome, Italy
c Inria: Institut National de Recherche en sciences et technologies du numérique, Paris, Île-de-France, France
d ICAR-CNR: Institute of High-Performance Computing and Networking (ICAR) of National Research Council of Italy (CNR), Napoli, Italy

A R T I C L E I N F O

Keywords:
IoT
Serverless
Deviceless
FaaS
Edge computing
Stack4Things

A B S T R A C T

The burgeoning paradigms of Fog and Edge computing propose delegating Cloud-related tasks to the network’s
periphery, thus placing computational resources closer to data producers. This shift promises to boost the
performance of IoT-based services, providing swift response times while conserving bandwidth. Despite their
potential, the current Edge/Fog computing platforms must provide the required flexibility for dynamic service
orchestration within a data-oriented context. Addressing this gap, the Function-as-a-Service (FaaS) model
emerges as an exceptional strategy for Edge/Fog deployments. Its ability to manage an ever-expanding
ecosystem of devices with remarkable flexibility and efficiency holds considerable promise. This paper
articulates a novel approach to enhancing the adaptability of IoT Edge/Fog deployments. We propose an
innovative extension to OpenStack, an open-source Cloud management system, which pushes its functionality
towards the network Edge. Our approach empowers OpenStack to facilitate FaaS services within a distributed
IoT infrastructure, thus infusing unprecedented adaptability and efficiency into the Edge/Fog computing
paradigms.
1. Introduction

The information technology (IT) domain has experienced unprece-
dented expansion in recent years, catalyzed by increasing competitive
pressure among service providers to accelerate their value generation
and service deployment. The emphasis on reducing time-to-market,
traditionally plagued by lengthy infrastructural procurement, configu-
ration, deployment, and manual software management tasks, is now
more significant than ever. The widespread practice of server over-
provisioning for improved scalability and resilience has often led to the
underutilization of hardware resources, yielding inefficiencies in terms
of time and cost.

The advent of virtualization technologies over the past decade has
revolutionized the IT landscape, fostering optimized usage of hardware
resources and enabling cost-effective operations [1,2]. Consequently,
this has led to the emergence of the Cloud computing paradigm,
wherein hardware resources are treated as on-demand utilities. In this
paradigm, companies need not hold physical hardware, like servers,
but can access and leverage remote infrastructure via the Internet, only
paying for the resources consumed.

For a considerable period, ‘‘virtualization’’ primarily referred to
Hypervisor-based virtualization. However, advancements in the field

∗ Corresponding author at: University of Messina, Italy.
E-mail address: gtricomi@unime.it (G. Tricomi).

have given rise to an alternative form of virtualization, Operating Sys-
tem (OS)-level virtualization, better known as containerization, which
has gained popularity due to its more efficient resource utilization,
faster provisioning/de-provisioning, and superior scalability [3].

Although Hypervisor-based virtualization continues to provide users
with on-demand access to computing resources, containerization adds
facilities for self-contained applications on demand. This shift has
catalyzed an evolution from large monolithic applications to distributed
architectures based on microservices [4]. Containers and microservice-
based architectures are paving the way for a new paradigm, Serverless
computing, oftentimes also known as, albeit not the same concept as,
Function-as-a-Service (FaaS) [5].

Despite its name, the serverless model involves infrastructure, namely
servers, managed entirely by the service providers, rendering them
transparent to developers and end-users. This model enables developers
to focus primarily on the business logic and deployment of features
through functions without worrying about infrastructure management
and runtimes’ configurations. Functions being stateless and indepen-
dent enhance systems scalability and resilience overall, leading to a
revolution in software engineering procedures for modern software
vailable online 2 January 2024
167-739X/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.future.2023.12.029
Received 9 September 2023; Received in revised form 24 November 2023; Accepte
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

d 28 December 2023

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:gtricomi@unime.it
https://doi.org/10.1016/j.future.2023.12.029
https://doi.org/10.1016/j.future.2023.12.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.12.029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

,

-

delivery [5]. Simultaneously, the explosive growth of the Internet of
Things (IoT) has catalyzed an evolution in smart environments and
Cyber–Physical Systems (CPS), where devices are no longer mere data
sources but participants in complex data processing pipelines. While
providing comprehensive management facilities, Cloud computing has
shown limitations when dealing with the demands of real-time, lo-
calized IoT services. Consequently, paradigms such as Fog and Edge
computing have emerged, bringing (e.g., computational) resources
and/or tasks closer to data producers and consumers [6].

The FaaS model, coupled with these Edge/Fog computing approaches
proves beneficial for IoT applications by deploying personalized func-
tions onto IoT devices for localized and efficient responses to events
[7]. IoT services, in this context, evolve from merely collecting raw data
to producing actionable results, improving user Quality of Experience
(QoE) by reducing latency, and enhancing security by isolation of
execution units and/or runtimes [7,8].

In this paper, our contribution is threefold. We propose an OpenStack
based framework for FaaS, capitalizing on IoT resources for function
hosting; we introduce a preliminary integration of the OpenStack
subsystems for, respectively, containers, functions, and IoT, Zun, Qin-
ling, and IoTronic; and we provide an evaluation that underlines the
advantages of our solution in the context of the I/Ocloud paradigm,
concerning application definition, configuration, and resource usage at
the Edge devices. Furthermore, we propose a solution to manage the
FaaS approach for the I/Ocloud component mentioned above through
a unified system relying on Node-RED. The novelties and contribution
presented in this work may be summarized as follow: (i) IoT fleet
management as the only prerequisite to swiftly deploy FaaS-based
applications on demand and at will on top of managed nodes, (ii) a tool
able to define complex applications as workflows composed of blocks.
The workflow definition and deployment are enabled by leveraging the
FaaS paradigm. (iii) simplified functions configuration without direct
device interaction mediated via a user-friendly dashboard, (iv) IoT
device facilities may be used for heterogeneous purposes through the
injection of additional functions on devices originally assigned to other
workflows, (v) extensibility and scalability of applications improved
through FaaS-enhanced infrastructure management.

The remainder of this paper is structured as follows: Section 2
presents an analysis of literature concerning the scenario in which the
proposed solution works; Section 3 introduces key concepts and build-
ing blocks. Section 4 provides a high-level overview of the architecture,
while Section 5 delves into the main mechanisms and workflows of
the solution. Section 6 describes a use case leveraged to analyze the
framework under consideration. The experimental results are discussed
and presented in Section 7 to complete the evaluation. Lastly, Sec-
tion 8 discusses the results presented in this paper and outlines future
directions for this research activity.

2. Related work

2.1. Cloud and Fog in IoT

In recent years, significant efforts have been spent to promote the
Cloud as a suitable paradigm for managing IoT environments. Indeed,
several methods and techniques have been introduced to deal with the
management of remote and resource-constrained infrastructure. In this
context, a set of issues has been addressed in the literature, such as
scalability, device accessibility, and personalization of services. To have
extensive insight into the challenges in integrating the Cloud and IoT,
readers may refer to [9,10]. In the same perspective, several platforms
were introduced to aggregate IoT deployments under the scope of Cloud
management.

Despite the wide range of benefits the Cloud paradigm provides
(e.g., pooling of storage and computing resources), novel constraints in
190

terms of Quality of Service (QoS) dictated by current and forthcoming
applications make the Cloud unfit to meet the corresponding require-
ments. The Fog/Edge computing paradigms push the resources close
to the data producers (e.g., storage and computing) to the network
edge, reaching the goal of overcoming the intrinsic limitations of the
Cloud paradigm stated above. Fog computing nodes are bound to be
close to data sources, which is a key enabler of advanced applica-
tions [6] that were not feasible when relying only on the faraway Cloud
infrastructure.

2.2. Serverless vs. Function-as-a-service (FaaS)

Both approaches are related to the trend to virtualize resources and
provide these as utility, introduced by Cloud Computing. However, we
can move on one or the other according to how virtualization activities
are managed. Until 2017, authors confused these two paradigms, refer-
ring to them without discriminating whether a full-stack environment
or the execution of a simple function is required, as in [5,11], and a few
other works. In particular, in [12], they define serverless as: "a software
architecture where an application is decomposed into ‘triggers’ (events)
and ‘actions’ (functions), and there is a platform that provides a seamless
hosting and execution environment.’’ that correspond more or less to the
merge of the definitions used for serverless and FaaS. On the Web, it is
possible to identify several works discussing the differences between
the two approaches and even respective advantages/disadvantages,
as in [13] and, depending on the aspects under analysis, some [14]
commend the serverless approach, and others [15] highlight the FaaS
approach as one of the main trends currently. Identifying the traits
characterizing these two concepts is very important to understand
how the workflow is managed in the presented architecture and why
some architectural choices have been made. Recently, the Cloud Native
Computing Foundation (CNCF) [16] disambiguated concepts related to
serverless computing by introducing the Backend-as-a-Service (BaaS)
terminology in the process. They state that, by definition: (i) Function-
as-a-Service provides small units of code, representing event-driven
computing facilities, where the functions get instantiated and trig-
gered from an external source, typically through commonplace HTTP
requests; (ii) Backend-as-a-Service is an approach to have common
backend tasks be handled without any customer’s involvement in their
management; (iii) Serverless is defined as the combination of FaaS and
BaaS.

2.3. Fog/Edge computing and Serverless/FaaS

With the evolution of Cloud solutions, all major Cloud service
providers nowadays include, among their offerings, Serverless com-
puting solutions. For instance, Amazon Web Services (AWS) has AWS
Lambda,1 enabling consumers to run their code without provisioning
the infrastructure. IBM also provides a Serverless platform named IBM
Cloud Functions,2 built on top of Apache OpenWhisk [17]. The same
is true for Microsoft Azure and Google, which propose Cloud-backed
Serverless plans in the form of Azure Functions3 and Google Func-
tions,4 respectively; thus, their consumers can deploy their functions
in the Cloud. With the proliferation of IoT devices, the amount of
data generated at the network Edge has experienced immense growth.
Examples include sensor data, events generated by IoT devices and
gateways, and multimedia files such as camera images. To use this data
and provide new services/applications with added value, the incum-
bent cloud players show immense interest in the Fog/Edge paradigms
and promote the Serverless/FaaS approaches as suited solutions to
be adopted at the network edge. In fact, Microsoft has released a

1 https://aws.amazon.com/lambda/
2 https://cloud.ibm.com/functions/
3 https://azure.microsoft.com/en-us/services/functions/
4
 https://firebase.google.com/

https://aws.amazon.com/lambda/
https://cloud.ibm.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://firebase.google.com/


Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fog/Edge platform for IoT called Microsoft Azure IoT Edge [18] that
extends the Cloud Serverless paradigm towards the network Edge using
containerization technology. Likewise, Amazon and IBM extended their
pre-existing proprietary Cloud solutions to the network Edge using AWS
Greengrass [19] and IBM Watson IoT [20] platforms, respectively. AWS
Greengrass, for instance, allows users to run AWS Lambda functions
on Edge devices; hence, they can deploy customized applications on
IoT devices. Although opting for Serverless offerings from public Cloud
service providers is a widely adopted strategy to deploy applications,
one of the most significant issues related to public Cloud Serverless
solutions is definitely vendor lock-in. Indeed, Cloud providers can
impose their own choices for strongly (user-)restrictive configuration
settings, e.g., caps for the execution duration of functions or concurrent
executions.

Moreover, in this setting, data privacy, sovereignty, and control of
owned infrastructure are relinquished and cannot be easily reclaimed
by the IoT owner and/or IoT-hosted service user. Such concerns can
be addressed and solved if the Serverless paradigm is deployed using
a private Cloud environment. Within this context, our Stack4Things
(S4T) middleware provides an open-source solution based on industry-
standard protocols and services that can run on-premises without re-
lying on third-party data centers. An administrator can deploy his/her
own self-controlled private Cloud; thus, he/she can have total control
over the deployment settings and configurations. In the literature, as
reported in [21], several works target the use of the Serverless/FaaS
paradigms in IoT deployments, which are cataloged in a taxonomy that
considers challenges, protocols, technologies, architectural insights,
and use cases. The great variety of applications and use cases reported
highlights the flexibility of the paradigm applied on Fog or Edge
devices. For instance, authors in [22] proposed a Fog-based Serverless
system that supports data-centric IoT services. In particular, they fo-
cused their work on a smart parking use case. In the same context,
authors in [23] introduced a platform named Kappa that can be used
to deploy functions on devices at the network Edge.

2.4. Comparing traditional FaaS with our deviceless solution

Recent IoT and cloud computing advancements have led to signifi-
cant developments in FaaS solutions, each offering distinctive perspec-
tives and methodologies. Studies such as those by Garbugli et al. [24]
have delved into QoS management in distributed cloud environments,
emphasizing the increasingly pivotal role of edge resources in server-
less paradigms. This aligns with our work’s objective of enhancing
serverless computing in IoT through OpenStack integration, proposing
a distinct approach in terms of implementation and architectural focus.
Complementing this perspective, the research by Benedetti et al. [25]
examines the application of serverless computing to IoT platforms,
particularly addressing challenges in warm start and cold start deploy-
ment models within resource-constrained environments. This analysis
significantly enriches our understanding of serverless computing perfor-
mance, a critical aspect of integrating FaaS services within distributed
IoT architectures. Despite these advancements, existing FaaS solutions
often need to be revised, especially in addressing the complex re-
quirements of IoT environments. These include resource management
challenges, data processing latency, and difficulties in ensuring efficient
deployment and scalability in highly distributed systems. Current FaaS
models also sometimes grapple with the complexity of integrating
diverse IoT platforms and maintaining consistent performance across
varied devices and network conditions. Our approach seeks to ad-
dress these challenges, offering an OpenStack-based framework that
capitalizes on the strengths of cloud computing while optimizing for
the distinct needs of IoT systems. By integrating serverless comput-
ing capabilities into OpenStack, we aim to enhance the adaptability
and efficiency of distributed IoT architectures. We focus on both the
performance and scalability aspects and infrastructure management of
191

serverless functions within the IoT ecosystem, addressing immediate
deployment needs and anticipating future scalability and infrastructure
management challenges. Furthermore, innovations such as CSPOT and
tinyFaaS, highlighted in [26,27], show the evolving landscape of FaaS
solutions in IoT. CSPOT extends the FaaS model across IoT scales,
focusing on application robustness and reducing latency. At the same
time, tinyFaaS provides a tailored solution for edge environments,
emphasizing resource efficiency and effective communication with low-
power devices. These advancements demonstrate diverse approaches
to scalability, interoperability, and performance optimization, offering
perspectives that both contrast with and complement our approach.

3. Background

In this section, we explore the key technologies we used to con-
ceive our Edge-based FaaS system, focusing on containerization as
an enabler of the FaaS model within the cloud computing paradigm.
We contrast the traditional Kubernetes-based container orchestration
with our implementation using OpenStack’s Zun and Qinling ser-
vices. This comparison highlights how our approach, complemented by
our Stack4Things (S4T) middleware, diverges from the conventional
Kubernetes-dominated landscape in managing containerized environ-
ments, particularly within IoT contexts. Container-based virtualization,
leveraging tools such as Namespaces, Control Groups (Cgroups), and
Secure Computing Mode (Seccomp), provides a flexible and efficient
alternative to Hypervisor-based virtualization. Our discussion extends
to Kubernetes’ architecture and its role in container orchestration,
setting the stage to contrast it with OpenStack’s Zun for container
management and Qinling as an OpenStack FaaS service. The integration
of these OpenStack components within our system represents a distinct
approach, targeting enhanced adaptability and efficiency in distributed
IoT architectures, a deviation from typical Kubernetes applications.

3.1. Container-based virtualization

The IT field has made significant progress with the set of benefits
OS-level virtualization introduced [28]. This key open-source technol-
ogy consolidates the virtualization realm with an efficient, lightweight
alternative for Hypervisor-based virtualization. Actually, the image-
based containerization approach gives considerable flexibility, thereby
making it a Swiss army knife solution to be adopted in different
environments and circumstances [29]. In the following, we provide
a technical description of this technology based on a Linux environ-
ment as it fully supports containerization. Containers are provisioned
in a Linux-based OS using a set of features provided by the Kernel,
such as Namespaces for process isolation, Control Groups (Cgroups)
for resource management, and Secure computing mode (Seccomp) for
secure sandboxing. More in detail, the Namespacing feature [30] is
responsible for process isolation. When a container gets created, the
Kernel isolates its processes using Namespaces that create abstracted
instances of particular system resources (e.g., Mount, UTS, IPC, PID,
Network). Hence, a container ends up being a one-off instance with
reference to the processes running inside it.

Consequently, multiple containers can run simultaneously on top
of a shared OS without begetting any conflict or unauthorized visibil-
ity among them. Regarding the Cgroups capability [31], it manages
the containers’ allocation/control of the resources (e.g., RAM, CPU,
block I/O, devices, network bandwidth). In particular, Cgroups allow
a dynamic aspect while managing the allocation of resources, thereby
making the containers flexible. Last but not least, Seccomp [32] is a
feature the Linux Kernel provides that restricts the system calls that
a process can use. For instance, when a developer uses potentially
unsafe/unverified code or software, Seccomp efficiently isolates and
restricts the code/program from using calls that have not been (already)
permitted and declared. Thereby, the Seccomp capability prevents the
misbehavior of launched applications inside containers that could gain
access to the host Kernel and compromise it.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

3

d
a
b
c
p
i
a
a
b
c

A
i
w
o

3

v
t
T
w
i
a
t
s
s

3.2. Kubernetes

Among the open-source management systems for containerized ap-
plications able to automate deployment and scaling, Kubernetes (K8s)
is one of the most famous. This platform orchestrates tasks such as
scaling containers up or down, deployment patterns, and distributing
workloads among containers. Furthermore, by design, it follows the
traditional Client-Server paradigm with a Master (node) responsible for
decision-making, allocating resources, and scheduling containers; in a
few words, it is designed to coordinate the deployment (i.e., cluster).
Some of the essential elements of the Kubernetes ecosystem are:

• Clusters: a Kubernetes cluster is formed by several Nodes to pool
their resources. These resources are then shared to be used in an
abstract fashion by the applications deployed within the cluster.

• Nodes: A Node is a worker machine (either VMs or physical)
belonging to a cluster managed by Kubernetes Master Node.

• Pods: a Pod is the basic building block in Kubernetes-based de-
ployments. A Pod can host one or multiple containers depending
on the application’s needs. Containers inside the same Pod share
their resources (e.g., network and storage) and can operate closely
with each other to achieve a goal.

• Persistent Volumes: The containers use this useful mechanism
to take advantage of permanent storage. The reason supporting
its utilization is obvious if a reader considers that Kubernetes
provides automatic up/down scaling containers that can be short-
living instances as they get created/deleted dynamically; hence,
each of their local data storage can be volatile.

.3. OpenStack Containers service: Zun

Zun is one of the OpenStack projects aiming to manage container
eployments. Zun’s users may instantiate and use containers rapidly
nd without the need to manage their placement. This is possible
ecause, at the backend, Zun can use a set of technologies to manage
ontainers in a transparent/abstract manner, hence hiding the com-
lexity of the workflows. One of the most used Zun configurations
s based on the exploitation of Docker as a container runtime tool
nd (optionally) collaborating with other OpenStack subsystems such
s Neutron to provide advanced networking capabilities (e.g., Load
alancing, security groups) to the containers, and Glance to manage
ontainers’ images (instead of pulling them from public repositories).

The architecture of Zun consists of five main components:

• Zun-API: a WSGI server able to handle the users’ REST requests
from the CLI or Horizon dashboard.

• Zun-compute: is an agent that stands on the Compute nodes
(where containers get instantiated). By performing (almost) all
backend operations, this agent hides the workflows of the ser-
vices.

• Zun-wsproxy: a WS-proxy server for providing container interac-
tive mode and streaming.

• Zun scheduler: is a component responsible for decisions-making.
In particular, when it receives a request to create a container, it
uses a set of filters (e.g., RAM, CPU, etc.), and it interacts with the
Container Orchestrator Engine (COE) (e.g., Kubernetes) to select
the ’best’ host where to deploy the container.

• Zun networking driver: is responsible for ensuring the network
reachability for the containers. In Cloud-only OpenStack deploy-
ments, Zun delegates this task to a networking driver that in-
teracts with the OpenStack networking subsystem, Neutron, that
assigns the containers private IP addresses.

nother OpenStack subsystem that is an excellent candidate for exploit-
ng the Zun COE facilities is the OpenStack FaaS project: Qinling. This
ay, we integrated the Zun orchestrator with Qinling to come up with
ur Edge-based FaaS system. This choice was made for a purpose, as
192
OpenStack integration with Kubernetes is not totally straightforward
and still needs some manual configurations. This way, to have a full
and tight integration with OpenStack, using a built-in Zun orchestrator
compatible with the other subsystems (i.e., Qinling) is a fit solution.
Considering the similarity in basic concepts between Kubernetes and
Zun, it is possible to associate the Kubernetes Pod with the Zun Capsule,
a group of containers sharing the same network configuration, names-
paced PID, Mount, etc. For Persistent Volumes, Zun can be extended
to use different storage backend technologies such as Docker local
volumes, Swift and Amazon S3. For our system, we opted for an
integration with the Local Volumes provided by Docker.

3.4. OpenStack FaaS service: Qinling

Qinling is the OpenStack project to provide FaaS services, en-
abling its users to deploy functions based on the Serverless paradigm
(like AWS Lambda). By design, Qinling may support several container
orchestration platforms such as Kubernetes and Docker Swarm to man-
age and maintain the underlying Pods hosting the functions. For our
system and to keep a full integration with OpenStack, our built-in Zun-
based orchestrator will manage the capsules required by Qinling. The
architectural design of Qinling consists of three main components:

• Qinling-API: is a WSGI server that handles the different requests
received. For instance, it interacts with Keystone for authentica-
tion and then routes the requests to the Qinling-engine or the
Qinling-orchestrator.

• Qinling-engine: is the central component that processes all the
backend operations, such as runtime maintenance and function
execution operations. Also, the engine maintains the mapping be-
tween the functions and the containers where they are deployed,
as it has access to the database.

• Qinling-orchestrator: is the component that orchestrates/manages
the FaaS deployments while interacting with a container or-
chestrator (e.g., Kubernetes or Zun). In particular, It manages
the scaling up/down of containers depending on the charge of
requests received by the system.

When a user requests the instantiation of a function, and before it
gets executed, Qinling handles the event by preparing the environment
needed to execute the function (e.g., packages needed, runtime). The
Qinling request to create such an environment is translated into a
Zun capsule generation. The capsule that gets created is composed of
3 containers:

• Runtime container: it is where a function code gets executed. Qin-
ling supports three runtime environments (i.e., Python2, Python3,
and Node.js)

• Sidecar container: it is responsible for downloading, from the
Cloud, the functions’ needed packages. The runtime container
afterward uses these packages.

• Pause container: it represents the capsule and provides network
capabilities to the other two containers since it is the only one
attached to the network.

.5. Stack4Things-based I/Ocloud

Stack4Things (S4T) is a research project aimed at expanding the uni-
ersally adopted open-source Cloud management system, OpenStack,
o accommodate Internet of Things (IoT) management as well [33].
his endeavor involves implementing various features and capabilities
ithin the S4T middleware, enabling IoT deployments to participate

n an Edge-extended Infrastructure as a Service (IaaS)/Platform as
Service (PaaS) Cloud. The principal vision of the S4T project is

o facilitate users in leveraging IoT devices and their I/O resources,
uch as sensors and actuators, through well-defined APIs akin to using
tandard Cloud resources [34]. This leads to the emergence of a new



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 1. Stack4Things core subsystems.
Fig. 2. Stack4Things FaaS Cloud-side subsystem design.
paradigm, I/Ocloud [35], which introduces IoT virtualization capabil-
ities in tandem with conventional IaaS virtualization, like computing
and storage.

In the I/Ocloud concept, Virtual Nodes (VNs) that can host the
business logic and utilize the attached I/O resources are introduced,
much like a real IoT device. These VNs can be deployed either at the
datacenter-level infrastructure or directly on the physical IoT nodes
at the Edge, depending on the service context, such as time sen-
sitivity, required computational resources, and more. To cope with
this objective, the FaaS paradigm represents the optimal candidate
for IoT virtualization inside VNs. In this direction, the studies made
in [36,37] pave the way for realizing a server/device-less approach
suitable for I/Ocloud needs. The design of S4T deployment is divided
between a Cloud data center and a collection of IoT devices, illustrated
in Fig. 1. For the hardware configuration of the IoT nodes, single-
board computers like Arduino and Raspberry Pi are utilized, which
193
can host a minimal Linux distribution, such as OpenWRT. As a result,
these devices can accommodate various Linux-based tools and different
runtime environments like Python and Node.js, which are essential for
the node-side S4T agent known as Lightning-Rod (LR) [38,39].

The S4T Cloud-side subsystem, IoTronic, is developed considering
the standard architecture of OpenStack services, demonstrated in Fig. 2.
This design ensures full compatibility with other OpenStack subsystems
like Keystone, Neutron, and Qinling, among others. On the node side,
the LR agent is a crucial component that links the IoT devices, even
those deployed behind Network Address Translations (NATs) or strict
firewalls, to the Cloud infrastructure where the S4T IoTronic service
is deployed. The interconnections between the Cloud and the devices
leverage the exploitation of WebSocket (WS) solutions to bypass net-
working middleboxes like NATs and firewalls. Notably, S4T utilizes the
Web Application Messaging Protocol (WAMP), a subprotocol of WS,
to create a full-duplex messaging channel for routing traffic streams,



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 3. Stack4Things FaaS Edge/Fog-side subsystem design.
such as commands, between the Cloud and the distributed IoT devices.
WAMP offers two significant features: publish/subscribe (pub/sub)
messages and Remote Procedure Calls (RPCs). The S4T middleware en-
ables users to expose internal services (e.g., SSH, VNC) of an IoT device
through the Cloud by deploying WS tunnels using a reverse mechanism
known as ‘rtunnel’.5 The IoT devices initiate communication with the
Cloud, as shown by the green arrows in Figs. 1, 2, and 3.

Moreover, a service request that reaches the Cloud on a specific
port is forwarded to the S4T IoTronic WS tunnel agent, which controls
the WS server to which a device connects through the wstunnel li-
braries (Fig. 3). The same ‘rtunnel’ mechanism creates overlays between
distributed IoT devices, enabling them to reach each other and the
Cloud-based instances (i.e., Virtual Machines, containers) as if they
were on the same Local Area Network (LAN). The LR agent estab-
lishes connections between the Cloud and the devices and oversees all
operations to be executed on the IoT devices, including management
tasks or user needs, like interacting with the sensors and actuators.
This unique approach significantly extends the potential for customiza-
tion and reprogramming of IT infrastructures in various environments,
such as smart buildings [40] and industrial settings [41], by fostering
cooperation among different CPSs within a given space.

4. System architecture

This section presents an extension of the OpenStack Cloud-based
management system to the network Edge. In particular, the approach
uses our subsystem, IoTronic, and modified Qinling and Zun subsystems
to make the OpenStack system able to provide FaaS services on top of
distributed IoT devices located at the Edge of the network. This newly
introduced functionality in OpenStack is achieved through RESTful
interactions with Qinling that uses, in the backend, Zun and IoTronic to
deploy functions on remote IoT devices. A significant difference from
data center-based OpenStack deployments is that, in our approach, the
three components, Zun-compute, Docker engine, and the runtimes, are
not deployed on the Cloud. In fact, to extend the (limited) FaaS scope
features provided by Qinling and Zun in standard Cloud deployments
and make them able to manage FaaS services at the network Edge, we
adapted the typical Cloud architecture design by deploying on the cloud
side: the Qinling subsystem (engine, orchestrator, and API server), Zun
(API server and Zun scheduler) and IoTronic, while on the IoT devices
the other components: Zun-computes, Docker engines, and the runtimes
that commonly are deployed on the Cloud as well when considering
standard OpenStack deployment. Fig. 4 depicts the architecture design
of our Edge-based FaaS system. In particular, we have a Cloud part
that manages/coordinates the whole deployment and an Edge/Fog

5 https://github.com/MDSLab/wstun
194
layer composed of the IoT devices. The users can interact with the
management system through several methods (e.g., Dashboard, APIs,
etc.). We organized the system’s structure into three parts based on this
architecture.

• User Interface (UI): it equips users with an easy way to interact
with the system. In particular, the UI exploits the APIs exposed to
provide a graphical interface to set deploy/manage functions on
the IoT devices. We mention here that our system provides two
UIs. The first one is dedicated for administration purposes and is
based on the OpenStack standard dashboard, Horizon. The second
one is intended to be used for applications/services purposes. It
is designed using the Node-RED tool to allow end-users to use the
system efficiently.

• Management Nodes: these components represent the Cloud-side
of the system. This part of the system is responsible for running
the services and provides suitable mechanisms to make the IoT
devices reachable by the users. In our Edge-based FaaS system,
the Cloud hosts Qinling, Zun, IoTronic, and Keystone. Still, it
can be extended to host other subsystems, such as Neutron and
Glance, to mention a few, to provide other advanced S4T services
(e.g., virtual networking).

• Edge workers/Compute nodes: are the IoT devices deployed at
the network Edge that hosts the LR agents. They can interact
with the Cloud part using WS-based communication channels. In
the I/Ocloud perspective, they represent the physical element in
which the VNs functions run.

4.1. User Interfaces

The end-user UI based on Node-RED we provide with our system
allows users to easily deploy their desired business logic and workflows
on the IoT devices by instantiating functions managed by our FaaS
system. In this way, the users can deploy on the Fog/Edge devices
particular data workflow pipelines and software-defined actions using
the resources they can host (e.g., sensors and actuators). Regarding the
management/administration, the OpenStack dashboard (i.e., Horizon),
which aims only at managing the infrastructure without dealing with
users’ needs, has also been extended to be aligned with the new features
made available through the Edge-based FaaS system.

4.2. Management nodes

Our system’s cloud side comprises several OpenStack services
(e.g., Keystone, Neutron, Glance). We report in the following the three
subsystems involved in our FaaS system (see Figs. 2 and 4).

https://github.com/MDSLab/wstun


Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 4. The Edge-based Faas system architecture.
• Qinling: It is the subsystem responsible for managing the FaaS
capabilities. In particular, it receives the users’ requests and deals
with function instantiation (see Section 3.4). In our Edge-based
FaaS system, Qinling uses the Zun-based orchestrator that we in-
tegrated with the system instead of Kubernetes or Docker Swarm.

• Zun: it manages the life cycle of the containers required by
the Qinling subsystem (see Section 3.3). Regarding the contain-
ers/capsules networking, Zun, in our use case, has been extended
by introducing a new networking driver that uses IoTronic.

• IoTronic: it manages the life-cycle of the IoT devices and links
them to the Cloud infrastructure. Besides, it can expose the de-
vices’ internal services and the containers they can host, using
a Cloud public IP address and associated ports. This way, the
internal services/containers become reachable even when the IoT
devices are deployed behind some middleboxes (see Section 3.5).
In particular, this capability is used in our FaaS system to en-
able users to reach their Edge-based runtimes. This service is
integrated with Zun as a networking driver.

4.3. Edge workers

The last part of the system is made up of the IoT devices that host
the LR agents, as depicted in Fig. 4. An IoT device, when belonging to
the FaaS ‘‘pool’’ hosts the following components (see Figs. 3 and 4).

• LR agent: S4T-specific agent hosted on IoT devices. Its main
duties consist of registering the devices to the Cloud and manag-
ing the commands/requests from users/administrators (see Sec-
tion 3.5).

• Zun-Compute: This agent performs (almost) all backend opera-
tions related to the container life-cycle invoked by the Zun API
server (see Section 3.3).

• Docker engine: It is responsible for creating and running Docker
containers. It is based on a client–server architecture that uses
HTTP. This engine receives management requests from the Zun-
Compute agent in our use case.

• Reverse Proxy: This component is part of LR. It has an important
role in the Edge/Fog FaaS system as it is responsible for for-
warding the runtimes and function execution requests. In detail,
the reverse proxy associates the runtime_id field contained in the
requests received and the runtimes deployed on the device.

4.4. Bird’s eye view of function and runtime deployment workflows

The system’s architecture is highlighted in Figs. 2 and 4. To de-
ploy a runtime/function on a particular IoT device, a user interacts,
through the dashboard or CLI, with the Qinling-API server that for-
wards the request to the Qinling orchestrator. This latter component
cooperates with the Zun-scheduler to identify the IoT device where the
195
runtime/function should be deployed; then, the Zun-API server sends
a request to create, on this device, the containers needed (i.e., the
capsule). To enable users to reach the capsule, particularly the runtime
container, IoTronic exposes it on the Cloud side, using a public IP
address and a port; then, a WS tunnel is created between the Cloud
and the IoT device. Hence, a request that reaches the Cloud on that
IP address/port will be forwarded to the WS tunnel and reaches the
device. On the device side (see Fig. 3), the request is received through
the S4T wstunnel plugin and forwarded to the reverse proxy that routes
it to the correct runtime.

4.5. Advantages of functions deployment at the network edge

The framework to use the FaaS approach for I/Ocloud allows users
to deploy business logic in applications composed of multiple func-
tions connected and running at the Edge/Fog levels. This approach
can significantly improve the application setup, management, and up-
grade. From the I/Ocloud perspective, the Virtual Nodes work side-by-
side with the Node-RED dashboard, invoking functionalities executed
as functions through the framework. The following are the benefits
provided by the framework:

• Dynamic installation of applications: The framework enables
users to deploy/update the functions composing their applica-
tions on the devices efficiently and without being involved in
tasks related to the configuration or the provisioning of the
infrastructure.

• Fleet Deployment: Fleet deployment is directly connected with
the previous item. This mechanism is supported by the S4T com-
ponents that aggregate a group of devices as a fleet and manage it
as a whole and by the FaaS Qinling subsystem with a mechanism
to inject a function on multiple nodes (see Section 5.2).

• Optimized performances: by pushing IoT-related tasks (e.g., actu-
ation decisions) to the network Edge, issues coming from services’
latency are reduced due to the proximity of execution to the end
device, and the security of the overall system is strengthened by
data transmission via virtualized private networks (realized by
WebSocket). Moreover, a function can react to particular events
so that the devices are exempted from sending continuous data to
the Cloud. This way, the bandwidth consumption is reduced.

• Automatic scaling: By design, a FaaS system can scale up/down
depending on the number of functions execution requests on a
node. This is obtained via the automatic orchestration of contain-
ers.

• OpenStack APIs: The proposed framework, even if it is easily
exploitable by a user through Node-RED, is compliant with the
OpenStack API structure, and in more detail, it is primarily ex-
ploitable via Qinling APIs, which can activate all mechanisms
involving the other subsystems.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

t
v
m
o
h
w
s
p

T
(

b

5. System design

In order to define the framework enabling the exploitation of FaaS
facilities by the I/Ocloud, this section analyzes the extension of Open-
Stack subsystems (namely Qinling, Zun, IoTronic) aiming to manage
functions at the network Edge. Concerning the FaaS coordination,
Qinling and Zun were modified and integrated with IoTronic to provide
suitable features related to IoT management. In the following, we report
the modifications and the integration made to design the Edge-based
FaaS system.

5.1. Edge-based FaaS containerization with Zun

In standard OpenStack Cloud deployments, the FaaS subsystem,
Qinling, uses, by default, Kubernetes, or it can be configured to use
Docker Swarm as COE. However, in both cases, the administrator
has to manage the clusters manually, making such solutions hard to
use in environments with high dynamicity. This is the case for IoT
deployments, where IoT devices can be added to or removed from
the deployments. To overcome this limitation and reduce the problems
coming from integrating intrinsically different systems, the framework
infrastructure exploits only OpenStack projects, so full compatibility is
granted among all the subsystems. Moreover, exploiting this compati-
bility simplifies the resulting configuration duties for the administrator.
For this purpose, we have extended the Zun subsystem capabilities to
provide, for Qinling, a built-in orchestrator compliant with OpenStack.
Consequently, in a straightforward manner, the built-in Zun orchestra-
tor will use the Zun Compute nodes as its cluster. When a new IoT
device (i.e., a Compute node) is added to the deployment, the system
automatically includes it within the cluster.

Regarding the reachability of the runtime containers, in Cloud-only
deployments, Zun relies on the networking technologies provided by
OpenStack, such as Neutron/Kuryr, to make the containers/runtimes
reachable based on a private IP addressing. In the Edge-based FaaS
deployments, since the IoT devices are deployed outside the Cloud, may
not have routable IP addresses, and can even be deployed behind NATs,
reaching the runtimes they can host is not taken for granted as the case
when considering standard Cloud deployments. For this purpose, we
developed for Zun a new networking driver that exploits IoTronic to
expose the capsules (i.e., the runtime containers) to the users through
the use of the service forwarding capability provided by IoTronic (see
Section 3.5). A runtime deployed on an IoT device will be exposed
using a Cloud public IP address and a specific port. For the containers’
Permanent Volumes, we conceived our FaaS system in a way to deploy
he containers using Docker Local Volumes to make their storage non-
olatile. We developed for this purpose a new Zun volume driver. A
ajor difference between a standard FaaS system and an IoT-related

ne is the selection policies used to handle the device where a function
as to be deployed. While analyzing the Zun-scheduler’s selection rules,
e noticed no option to request Zun to create a container/capsule on a

pecific node. For containers/capsules instantiation, the Zun scheduling
rocedure is done in two steps:

• Filtering: This step finds the set of nodes where deploying a
container/capsule is feasible based on a set of filtering rules

• Scoring: This step assigns a score to any nodes that have passed
the first step and choose the most suitable.

he filtering rules used by the standard Zun container manager are
i.e., scheduler):

• CPUFilter: The nodes are filtered according to the portion of CPU
(free/allocated). The node with the highest free portion is the
most preferred for the deployment.

• RAMFilter : Similar to the CPUFilter rule, the RAMFilter is based
on memory utilization.
196
• LabelFilter: In this case, nodes with a particular label node are
ranked higher than others.

• ComputeFilter: A simple filter returns any host whose compute
service is enabled and operational.

• AvailabilityZoneFilter: This filter uses the OpenStack availability
zone option to select the compute node.

• DiskFilter: In this case, the hosts are sorted based on the free disk
space with the largest weight winning.

From these filtering rules, we can notice that a scheduling policy
ased on the hostname is missing. Consequently, the user cannot request

the creation of a runtime on a specific node. This rule is crucial for our
use case as users will have more control over the deployment and, thus,
be able to select an Edge device where a function/runtime should be
deployed. For this purpose, we added a new filter for Zun based on the
hostname we called HostnameFilter.

5.2. Edge-based FaaS with Qinling

The Qinling subsystem was also extended to meet the requirements
of the FaaS for the I/Ocloud framework. In particular, as the frame-
work includes Zun as an orchestrator, Qinling was extended to use
the built-in Zun orchestrator instead of Kubernetes or Docker Swarm.
Furthermore, to enable Zun to schedule a particular IoT device based
on its hostname or a group of devices using a specific label, Qinling
should specify in its requests to Zun the scheduling filters to be used in
the selection: the HostnameFilter and LabelFilter. Here, we modified the
Qinling structure by introducing two new features:

• nodeName: The nodeName is an attribute used to create a run-
time in a node with a specific hostname. The Zun scheduler will
use the HostnameFilter filtering rule in this case.

• nodeSelector: The nodeSelector is an attribute to create run-
times in a pool of nodes with one or many specific labels. The
Zun scheduler will use the LabelFilter filtering rule in this case.

Until now, the new features introduced in Qinling are related to
creating runtimes. However, for the execution of a function, more is
needed. Indeed, let us consider standard Qinling implementations in
Cloud environments to identify the runtime where a function should
be executed. Qinling relies on the OpenStack networking service’s IP
address (i.e., Neutron/Kuryr). In our case, the Edge-based capsules
cannot use standard OpenStack networking services, so it is impossible
to deal with the particularity of IoT deployments (Neutron does not
manage distributed instances deployed outside the Cloud). Further-
more, it cannot exploit a private IP address to select a runtime. To
manage the association between the incoming execution requests and
the runtimes, they are associated with the couples {Cloud IP address,
port}. Hence, each runtime deployed at the network Edge is reachable
through the Cloud (public) IP address and a specific port. The reverse
proxy routes the requests received towards the right runtime on the IoT
devices’ side. In particular, the request going from Qinling to the Edge-
based devices is modified by adding a new field, runtime_id, pointing
to the IoT device’s correct runtime. Once the reverse proxy receives
a request, it checks the runtime_id field contained in the request and
associates it with one of the capsules it manages (each pause container
has a label called runtime_id). Of course, a modification to the Qinling
database becomes necessary to store the capsules’ runtime_ids as well.

5.3. Workflows

The following describes two important workflows that our FaaS
for the I/Ocloud framework exploits. Specifically, we report the basic
actions when a user requests the creation of a runtime on a specific IoT
device and the workflow when a function is being requested to be exe-
cuted on the runtime already created. To make the descriptions easy to

follow, we report a simplified version of the workflows without taking



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 5. Runtime creation and Function execution workflows.

into account some (default) OpenStack procedures: the ones related to
Keystone duties to authenticate/authorize the incoming requests and
the other OpenStack procedures based on tools such as Etcd to store
information or RabbitMQ to dispatch events. In particular, we spotlight
the interactions among the three main subsystems (i.e., Qinling, Zun,
and IoTronic). This analysis also excludes the IoT registration phases.
Fig. 5 shows a schematic, fully comprehensive direct acyclic graph
representing the two workflows analyzed in detail in the following
subsections.

5.3.1. Runtime instantiation workflow
A function execution in a FaaS system needs an opportune runtime

instantiated in the device designed to execute the designed function;
here is provided a detailed description of the interaction involving the
main elements of the framework, and furthermore, a graphical view of
this workflow is depicted both in Fig. 5 and in the activity diagram in
Fig. 6. According to the presented framework purposes, the described
workflow aims to instantiate a runtime on a device deployed at the
network Edge:

1. The user requests to deploy a runtime on a specific remote node
through the dashboard or the CLI. Then, the dashboard/CLI performs
a specific REST request to the Qinling-API server.

2. The Qinling-API server forwards the request to create the runtime
to the Qinling-orchestrator driver designed to interact with Zun.

3. The Qinling-orchestrator sends the request to the Zun-API server
with a particular body specifying the nodeName attribute (i.e., the
hostname of the device where the runtime should be created. See
Section 5.1).

4. The Zun-API server forwards the request to the Zun scheduler to
identify the host (i.e., IoT device) where the runtime should be created.

5. The Zun scheduler applies the new filter HostnameFilter (see
Section 5.2) to schedule the appropriate host. Afterward, it sends a
request to create a capsule to the Zun-Compute agent running on that
host.

6. After receiving the request, the Zun-Compute agent sends an
HTTP request on localhost to the Docker engine to create the cap-
sule/containers.

7. Docker creates the containers needed.
8. After creating the containers, the Zun-compute agent operating in

the framework requests the Zun networking driver, which uses IoTronic
functionalities, to expose the capsule (i.e., the pause container) to the
users.

9. The Zun networking driver interacts with the IoTronic subsystem
to expose the capsule. More in detail, IoTronic exposes the capsule
through a particular port associated with a public IP address on the
Cloud. Then, a WS tunnel is created between the IoT device and the
Cloud. Hence, any request received on the Cloud port/IP address will be
197
forwarded through the WS tunnel to a port already opened on the IoT
device (configured to reach exactly the container of a specific runtime
linked to a function execution. The reverse proxy exploits this port).

10. IoTronic sends back to the Zun networking driver the port and
the Cloud IP address associated with the capsule; then, the metadata of
the capsule already created in step 7 (i.e., capsule runtime_id, IP/port)
will be stored in the Zun database.

11. The Zun-Compute on Cloud sends a notification about the oper-
ation status to the Zun-scheduler. The response contains the runtime_id
of the capsule created that will be stored in the Qinling database (the
runtime_id is essential to reach the runtime when a function should be
executed).

12. The Zun-scheduler forwards the notification to the Zun-API
server that contacts, in its turn, the Qinling subsystem to store on its
database the capsule runtime_id.

The workflow reported previously concerns to the runtime instanti-
ation on a single IOT device. In order to deploy runtime on several IoT
devices having the same label, the same workflow will take place while
specifying in step 3 the nodeSelector attribute instead of nodeName.
Therefore, the Zun scheduler will use the LabelFilter to select the set
of IoT devices where the runtime should be deployed.

5.3.2. Function execution workflow
The workflow related to a function execution on a specific runtime

deployed on an Edge node using our FaaS for the I/Ocloud framework
is depicted in Fig. 5 and in the activity diagram in Fig. 7.

As an essential requirement, we assume that a hosting node (i.e., an
IoT device) is already registered to the Cloud. The user has already
written his/her function and associated it with a particular runtime
(so the function_id is stored on the Qinling database). As the last
prerequisite, the runtime is already deployed on the Edge device. The
following steps describe the workflow of executing the function on the
runtime:

1. The user sends a request to execute a function on a specific
IoT node, either through the dashboard or the CLI, and according to
the above assumptions, the runtime is already deployed on the remote
node. Then, the dashboard/CLI performs a specific Qinling API call via
REST. The request body contains the function_id and the nodeName to
identify the IoT device where the function has to be executed (or the
nodeSelector in case of function to be executed on group IoT devices).

2. After retrieving the involved runtime_id from its database, the
Qinling-API server forwards the request to the Qinling orchestrator
driver (meant to interact with Zun).

3. The orchestrator contacts Zun using the API server to get the
metadata of the runtime involved (i.e., IP/port used by IoTronic to
expose the runtime).

4. The Zun-API server forwards the request to the Zun database to
retrieve the information.

5. The Zun database sends back the metadata to the Zun-API server.
6. The Zun-API server forwards back the response to the Qinling

orchestrator.
7. Based on the metadata received, the orchestrator routes the

execution request through the WS tunnel previously created when
the runtime was deployed on the Edge node. The request forwarded
contains a field with the runtime_id.

8. Once the request reaches the IoT device through the WS tunnel,
LR uses the reverse proxy to identify the runtime concerned. Specifi-
cally, the reverse proxy uses the runtime_id field in the received request
to make the association.

9. The result is returned to LR once the function has been executed
on the runtime.

10. LR then sends the result back to the Qinling-Orchestrator via
the WS tunnel.

11. The orchestrator sends the result to the Qinling-API server.
12. Finally, the function execution result is returned to the user or

shown on the dashboard according to the workflow defined.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

m

Fig. 6. A runtime instantiation workflow.
Fig. 7. A function execution workflow.

The aforementioned workflow is also used when the function has
already been executed at least once.

When a function is invoked, the runtime container can load the nec-
essary packages from the shared volume that the sidecar container has
prepared during the ’Runtime Creation Workflow’. However, additional
operations must occur when a function is invoked for the first time.
Specifically, once the request reaches the IoT device involved (step 8),
the relevant capsule must retrieve the packages of the invoked function
from the Cloud and store them on the Persistent Volume. This goal is
obtained by the sidecar container communicating with the Cloud to
download and store the necessary packages locally. Once this is done,
the runtime container can load and execute the function.

6. Use case

Our system enables users to create and deploy applications on
remote IoT devices or gateways. These devices, in turn, are designed
to respond swiftly to specific circumstances, mitigating the dependence
on remote Cloud services.

Fig. 8 presents a detailed use case of Monitoring and Control Sys-
tems deployment in a Multi-line Production Facility. Here, a production
controller6 creates an application to monitor and control processes in

6 Commonly, the production controller is also called production manager or
anufacturing manager.
198
a production facility with multiple production lines, where the oper-
ational temperature significantly influences the final product quality.
These processes may encompass several procedures, such as forging,
turning, milling, and drilling. The application, once designed, is actu-
alized using a user-friendly drag-and-drop interface on the Node-RED
dashboard. The deployment of the flow involves a series of procedures
intended to initiate runtimes and execute functions on the selected
devices, as enabled through the FaaS approach within the I/Ocloud
framework.

Each production line in this use case is supported by an external
refrigeration system that responds when the temperature escalates too
quickly to be controlled by the internal cooling system. The addi-
tional temperature control layer demonstrates the system’s practical
application in real-world scenarios.

The analysis of this use case can be broken down into three phases:
(i) application definition, (ii) application deployment and execution,
and (iii) event detection.

Fig. 8(a) depicts the initial state where an administrator defines
or modifies the monitoring and control operations application. To
accomplish this task, the administrator interacts with the Node-RED
dashboard, where a set of predefined nodes – each representing an
atomic function – can be configured and interconnected to formulate
the application workflow.

The ease inherent in deploying functions via the FaaS framework
makes it an ideal programming model for this scenario. In the sub-
sequent phase, illustrated in Fig. 8(b), the administrator deploys the
Node-RED flow, generating a series of requests for runtime creation
and function injection on the devices outlined by the appropriate
configuration parameters (i.e., nodeSelector or nodeName) defined in
the initial phase. Upon successfully completing the deployment, the
administrator can activate the injected functions.

During the final phase, while executing the functions, a function
may interact with another function in response to an event. This
interaction uses the execution parameters obtained by Qinling from
a query conducted by the Node-RED dashboard during the execution
phase.

Figs. 8(a), 8(b), and 8(c) illustrate a scenario involving four produc-
tion lines, each outfitted with an injected monitoring function. In the
event of overheating, this function triggers a cooling action executed
by another function housed within the external refrigeration system.

7. Approach and system evaluation

The evaluation of the proposed approach and framework is car-
ried out over many perspectives, starting from an evaluation of the
impact on the end device-side scalability and stepping through an
analysis of the overhead introduced by the FaaS paradigm concerning
the traditional approach of handcrafted setup for the component of
a distributed application. To complete our analysis, we compare an

application tailored to the use case shown in Fig. 8.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 8. Overview of a use case where the Edge-based FaaS system can be deployed for better management tasks.
Fig. 9. Node-RED flow involving a Qinling-node.
Fig. 10. Flow output on the Node-RED dashboard.

7.1. Scalability of FaaS on IoT nodes

The first step in the evaluation is understanding how the FaaS ap-
proach impacts devices in the I/Ocloud. The framework can exploit IoT
boards as (at least) compute nodes hosting application componentry
according to the flow defined in the NodeRED dashboard. A user of the
framework can obviously expose multiple functions of a single node
(i.e., multiple instances of the same function related to one or multiple
flows or multiple instances of different functions). For this reason, we
will analyze the behavior of two characteristics discussed above in
Section 4.5: (i) Automatic scaling and (ii) Optimization of performance
and reliability.

The analysis has been carried out on a simple monitoring function
that reads a value and delivers it to the FaaS system. Fig. 9 shows
the flow used to implement the analysis logic; it can deploy multiple
instances of a function defined in the ‘‘qinling-node’’, ready to be
executed on the same IoT node. After the deployment and execution
of these functions, the NodeRed system is responsible for visualizing
the outcome. Fig. 10 captures this aspect, illustrating the NodeRed
dashboard’s flow output in terms of CPU usage percentage. This Figure
provides a visual representation of the results as they are returned
from the executed functions on the IoT device, highlighting the prompt
199
feedback provided by NodeRed. The test aims to measure the time
needed to complete requests under different FaaS platform settings for
concurrency; in particular, each test set runs with a different load-
balancing policy for Qinling. According to each configuration, the
runtimes deployed on the board manage 2 to 8 concurrent requests
before an additional runtime is spawned. Tests are defined in groups
of 30 attempts per working condition, then reported in terms of their
averages. The testbed is composed of a few Virtual Machines plus an
emulated IoT device with 1 GB of RAM and one vCPU. Fig. 11 shows the
most significant three out of seven behaviors (i.e., 2-to −8 concurrency
levels) emerging from the tests; in particular, Fig. 11 represents the best
behavior, alongside the two worst ones.

The case of 2 concurrent requests admitted had the most uneven
behavior because, as requests increase, runtimes spawned on the device
also grow at a rapid pace (i.e., every other concurrent request), saturat-
ing the resources available on the device. The peaks, indeed, are aligned
to the spawning of additional runtimes. The case of 8 concurrent
requests admitted on the same device, as depicted in the figure with
a yellow line, has less nonlinear behavior. According to this graph,
the best configuration (i.e., less elapsed time, better concurrent request
management) is the one drawn in red, representing a concurrency of
7 requests. During the experiments, a certain number of failures7 have
been observed. Fig. 12 shows the relationship between the percentage
of failures vs the total number of incoming (concurrent) requests. In
the configuration with 7 concurrent requests, depicted with a red line,
we observe the most favorable behavior, in line with our remarks on
the previous graph. Specifically, the rate of failures begins to rise once
a (comparatively) higher number of concurrent requests is reached,
moreover, at a slower pace compared to other configurations.

Another aspect under analysis is the behavior of the system when
the number of functions deployed on the IoT node grows. Indeed, the
execution of an additional function on the same device requires a new
capsule at the edge (e.g., on a constrained IoT device), corresponding
to (at least) three containers created as described in 3.4. Fig. 13 shows
the elapsed service times on average where either one or two functions
get deployed by the FaaS platform on a single node. Results highlight
the higher performance achieved in the latter case, i.e., the number of

7 A failure happens when a timeout is reached; the testbed is configured
with a connection timeout equal to 3.05 s and a response timeout equal to
60 s.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 11. Elapsed time to execute one simple function with three different concurrency configurations.
Fig. 12. Failures occurred in the execution of simple function with three different
concurrency configurations.

Fig. 13. Average elapsed times vs RPS.

requests per second (RPS) that a node can handle before response times
degrade significantly by hosting multiple functions; thus, it is beneficial
to devise very scope-limited functions on a single node instead of de-
signing (e.g., monolithic) functions, i.e., too rich in duties to fulfill. This
approach may lead to a comparatively higher number of requests each
node can manage with respect to the number of functions deployed. The
results show again how an approach using more scope-limited functions
is better in terms of performance.

Accordingly, corresponding failures are depicted in Fig. 14.
Another round of testing was meant to evaluate the impact of

leveraging IoTronic facilities for network management, as shown in
200
Fig. 14. Percentage of failed executions vs RPS.

Fig. 15. Impact of Datacenter-only vs. IoT-oriented drivers on networking performance.

Fig. 15, comparing the behavior of our platform that uses IoTronic as a
networking driver (we refer to this scenario, in the figure, as IoT-based
architecture) and a (vanilla) Datacenter-only FaaS deployment where a
Flannel driver8 is used to manage the containers’ networking facilities
(referred to as Cloud-based architecture in the figure). The performance
of the two scenarios is comparable. Consequently, using IoTronic as
a networking driver does not seem to impact system performance
measurably.

8 The Flannel driver is the default driver used by Kubernetes, ZUN, and
other Container Orchestration Environment to manage the networking among
containers as an overlay network. It offers an IP for each container.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 16. Single-function invocation performance: script vs function (as in FaaS)
comparison.

7.2. FaaS overhead

The overhead introduced by the FaaS platform is analyzed to mea-
sure its impact. This way, the key performance indicators in the pre-
vious scenario are measured and compared with the case in which a
simple HTTP server script is running on a device and performs what
is set in Fig. 9 with the FaaS: on a device, an HTTP server is set
up with a function able to read the CPU serving parallel requests
by exploiting a multi-threading approach. The end-to-end response
times are compared in Fig. 16 with data originating from the previous
analysis to evaluate system overhead. The comparison highlights a
slight performance degradation when concurrent requests keep growing
due to multiple runtimes being instantiated into a device to manage
independent incoming requests. Nevertheless, the difference is mini-
mal, and there is even a crossover point all the way to the left of the
graph, i.e., at lower concurrency levels, beyond which (e.g., around 5
and below) FaaS actually provides an edge in terms of performance.

7.3. Comparison with a conventional development workflow

The last step that completes the analysis of the proposed solution
is performed to analyze its impact on the application developer. To
201
cope with this goal, a further comparison is made in terms of coding
duties up to a developer: firstly, we implement a dummy application
representing the Use Case shown in Fig. 8 where a client application
runs on the production line and in case of an event invokes a server
application that controls the external refrigeration system, to actuate
according to the cooling request, and secondly, we go through an
analysis of steps requested to define the application with and without
our solution.

The first comparison draws on the code listings below, per the
following description: the dummy application devised without resorting
to deviceless FaaS is shown in Algorithms 1 and 2; conversely, the
dummy application designed on top of our FaaS approach is shown in
Algorithms 3, 4,5, 6, and 7. Nevertheless, by making a straightforward
comparison in terms of LOC, i.e., Lines of Code, it is evident that
the FaaS-based solution reduces the quantity of code necessary for
the developer (48 LOC versus 114 LOC in the case of the standalone
implementation). It is worth noting that although the code listings, as
mentioned earlier, exemplify the FaaS approach, these do not factor
in flow definition duties within the Node-RED dashboard, as needed
to set up the application. Indeed, in order to replicate the application
faithfully, two additional custom nodes (e.g., built beforehand) are
needed, one for the Server side and another one for the Client side,
obtained through a simple drag&drop action of the selected node and
its suitable configuration.

A more thorough overview of the advantages provided by the pro-
posed approach to developers may be outlined by considering the steps
needed to implement the aforementioned application. Nevertheless,
despite the issues in evaluating how demanding coding may be overall,
we are confident that this outline provides a rough estimate of the
effort involved in the process. Figs. 17 and 18 show a possible workflow
of application definition involving four identical production lines con-
nected to an external on-demand cooling system. By analyzing the two
activity diagrams, it is clear that the end-device interaction in the FaaS
approach relies totally on Node-RED, conversely from the traditional
approach, which requests an interaction with every system involved.
Another meaningful difference is represented by the configuration steps
named ‘‘Production Line Identification’’ corresponding to creating the
four files used in Algorithm 2 to enable the external cooling system to
move towards the right production line. Moreover, the configuration
steps done with the FaaS approach are safer because they are done
once in the Node-RED dashboard instead of repeating them in each
Production Line part of the system, as shown in Fig. 19. Finally, the FaaS
approach, due to the exploitation of a specific runtime for function exe-
cution, decouples the runtime environment from function dependencies
Fig. 17. Dummy application setup steps (traditional approach).



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
Fig. 18. Dummy application setup steps (FaaS approach).
Fig. 19. Dummy application in Node-RED.

(e.g., libraries, settings) thanks to the isolation offered by the capsule
environments.

8. Conclusion and future works

In this research, we presented a Function-as-a-Service platform de-
signed to manage and program Internet of Things resources efficiently.
This platform allows the definition and execution of function-based
pipelines at the network’s Edge, encompassing Fog or Edge devices.
The solution features a dashboard providing a graphical interface for an
integrated development environment to aid IoT developers in designing
data pipelines. Our preliminary tests prove that the proposed solution
accommodates scenarios where extensive use of IoT-hosted resources
is expected. Metrics of usage patterns include scope/purpose, such as
instantiating multiple functions as part of one or more pipelines and
sharing among multiple users, such as managing concurrent invoca-
tions. We aim to incorporate Fog/Edge devices management using the
202
FaaS facilities outlined in this work. This approach will better define
Fog computing’s role as a coordinator of (e.g., clusters of) IoT devices
and/or resources involved in specific pipelines, providing system ad-
ministrators with the chance to define a function as a planned reaction
to events. Moving forward with this research, we expect to refine and
expand the capabilities of our FaaS platform, gauging its applicability
and optimizing its effectiveness in various IoT scenarios.

CRediT authorship contribution statement

Giovanni Merlino: Conceptualization, Methodology, Project ad-
ministration, Supervision, Writing – review & editing. Giuseppe Tri-
comi: Conceptualization, Investigation, Methodology, Writing – orig-
inal draft, Writing – review & editing. Luca D’Agati: Visualization,
Writing – review & editing. Zakaria Benomar: Writing – original
draft. Francesco Longo: Project administration, Supervision. Antonio
Puliafito: Project administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is partially supported by ‘‘SoBigData.it receives funding
from European Union – NextGenerationEU – National Recovery and
Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) –
Project: ‘‘SoBigData.it – Strengthening the Italian RI for Social Mining
and Big Data Analytics’’ – Prot. IR0000013 – Avviso n. 3264 del
28/12/2021.’’

Appendix. Algorithms

See Algorithms 1 to 7 and Table 1.



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

t

Algorithm 1: Fragment of a standalone code to control the
emperature on the product line
1: import time
2: import requests
3: import RPi.GPIO as GPIO
4: SERVER_URL = ’http://X.X.X.X:8000’
5: my_variable=0;
6: prodlineid = 0

; /* prodlineid variable represents the ID of the production line
where this code runs */

7: interval = 2;
8: pin = 17

; /* This code suppose to use DHT11 or the DS18B20 */
9: def send_post_request(value,prodlineid):

; /* Function to request refrigerator actuation */
10: payload = { ’campo’: str(value), ’line_number’: str(prodlineid) }
11: try:
12: response = requests.post(SERVER_URL, data=payload)
13: print("Request of cooling sent to device. Response received:", response.text)
14: response.close()
15: except request.exceptions.RequestException as e:
16: print("Error sending request:",e)

; /* GPIO initial configuration */
17: def read_temperature():
18: GPIO.setmode(GPIO.BCM)
19: GPIO.setup(pin, GPIO.OUT)

; /* The communication with the sensor begins here */
20: GPIO.output(pin, GPIO.HIGH)
21: time.sleep(0.1)
22: GPIO.output(pin, GPIO.LOW)
23: time.sleep(0.018)

; /* Configure GPIO pin to read sensor */
24: GPIO.setup(pin, GPIO.IN, GPIO.PUD_UP)

; /* Read sensor value */
25: while GPIO.input(pin) == GPIO.LOW:
26: pass
27: start_time = time.time()
28: while GPIO.input(pin) == GPIO.HIGH:
29: pass
30: end_time = time.time()

; /* Computing temperature with respect to pulse duration */
31: pulse_duration = end_time - start_time
32: temperature = pulse_duration * 1000
33: GPIO.cleanup()
34: return temperature
35: while True:
36: temp = read_temperature()

; /* Critical condition requesting an extra cooling activity */
37: if temp > 80:
38: send_post_request(my_variable,prodlineid)
39: time.sleep(interval)
203
Algorithm 2: Fragment of a code to control the external cooling
device
1: from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
2: from urllib.parse import urlparse, parse_qs
3: import threading
4: semaforo = threading.Semaphore(1)
5: class MyHandler(BaseHTTPRequestHandler):
6: def on_demand_actuation(self,line_number):

; /* The code is referring to the use case reported in Fig. 8 */
7: if line_number == 1:
8: nome_file = ’alpha.cfg’
9: elif line_number == 2:
10: nome_file = ’beta.cfg’
11: elif line_number == 3:
12: nome_file = ’gamma.cfg’
13: elif line_number == 4:
14: nome_file = ’delta.cfg’
15: else:
16: raise ValueError("Value not admitted. Production line ID not identified.")
17: self.move_actuator(nome_file)
18: def move_actuator(self, nome_file):
19: try:
20: if semaforo.acquire(blocking=False):
21: with semaforo:

; /* The Semaphore usage is needed to avoid the concurrential
access on actuator */

22: with open(nome_file, ’r’) as file:
23: for row in file:

; /* Files represent a list of rows containing the instructions
necessary to reach a production line from the base position */

24: command = row.strip()
25: print(command)
26: self.executeCommand(command)
27: else :
28: semaforo.acquire()
29: with semaforo:
30: with open(nome_file, ’r’) as file:
31: for row in file:
32: command = row.strip()
33: print(command)
34: self.executeCommand(command)
35: except FileNotFoundError:
36: raise FileNotFoundError(f"The file {nome_file} does not exists.")
37: def executeCommand(self, command):

; /* function logic not implemented */
38: return
39: def do_POST(self):
40: content_length = int(self.headers[’Content-Length’])
41: post_data = self.rfile.read(content_length).decode(’ utf-8 ’)
42: parsed_data = parse_qs(post_data)
43: if ’prodline’ in parsed_data:
44: prodline = parsed_data[’prodline’][0]
45: print("Production Line requesting actuation is:", prodline)
46: try:
47: self.on_demand_actuation(prodline)
48: except ValueError as e:
49: print(str(e))
50: self.send_response(500)
51: return
52: except FileNotFoundError as ef:
53: print(str(e))
54: self.send_response(500)
55: return
56: self.send_response(200)
57: self.send_header(’Content-type’, ’text/html’)
58: self.end_headers()
59: response_message = ’Cooling action done on prod. line with id: ’+prodline
60: self.wfile.write(response_message.encode(’utf-8’))
61: class ThreadedHTTPServer(ThreadingHTTPServer):
62: def process_request(self, request, client_address):
63: thread = threading.Thread(target=self.__new_request_thread, args=(self, request,

client_address))
64: thread.start()
65: def __new_request_thread(self, server, request, client_address):
66: server.ProcessRequestThread(request, client_address)
67: def ProcessRequestThread(self, request, client_address):
68: self.finish_request(request, client_address)
69: self.shutdown_request(request)
70: def run(server_class=ThreadedHTTPServer, handler_class=MyHandler, port=8000):
71: server_address = (’X.X.X.X’, port)
72: httpd = server_class(server_address, handler_class)
73: print(f"Server is reachable at port {port}")
74: httpd.serve_forever()
75: run()



Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.

c

1
1
1
1
1
1
1
1
1
1
2

c

Table 1
Table of acronyms.
Acronym Meaning

API Application Programming Interface
AWS Amazon Web Services
BaaS Backend-as-a-Service
CLI Command Line Interface
CNCF Cloud Native Computing Foundation
COE Container Orchestration Environment
CPS Cyber-Physical Systems
Cgroups Control Groups
FaaS Function-as-a-Service
HTTP Hypertext Transfer Protocol
IaaS Infrastructure-as-a-Service
IoT Internet of Things
IT Information Technology
K8s Kubernetes
LAN Local Area Network
LOC Lines of Code
LR Lightning-Rod
NAT Network Address Translation
OS Operative System
PaaS Platform-as-a-Service
QoE Quality of Experience
QoS Quality of Service
REST Representational State Transfer
RPC Remote Procedure Calls
RPS Requests per Second
S4T Stack4Things
Seccomp Secure Computing Mode
UI User Interface
VMs Virtual Machines
VN Virtual Node
vCPU Virtual Central Processing Unit
WAMP Web Application Messaging Protocol
WS WebSocket

Algorithm 3: Node-RED ‘exec‘ node used to execute the Python
ode related to the second node of the graph Client

1: import RPi.GPIO as GPIO
2: import time
3: def read_temperature(pin):
4: GPIO.setmode(GPIO.BCM)
5: GPIO.setup(pin, GPIO.OUT)
6: GPIO.output(pin, GPIO.HIGH)
7: time.sleep(0.1)
8: GPIO.output(pin, GPIO.LOW)
9: time.sleep(0.018)
0: GPIO.setup(pin, GPIO.IN, GPIO.PUD_UP)
1: while GPIO.input(pin) == GPIO.LOW:
2: pass
3: start_time = time.time()
4: while GPIO.input(pin) == GPIO.HIGH:
5: pass
6: end_time = time.time()
7: pulse_duration = end_time - start_time
8: temperature = pulse_duration * 1000
9: GPIO.cleanup()
0: return temperature

Algorithm 4: Node-RED ‘exec‘ node used to execute the Python
ode related to the third node of the graph Client

1: def check_temperature(temperature):
2: if temperature > 80:
3: return True
4: return False
204
Algorithm 5: Node-RED ‘exec‘ node used to execute the Python
code related to the forth node of the graph Client
1: import requests
2: SERVER_URL = ’http://X.X.X.X:8000’
3: def send_post_request(value, prodlineid):
4: payload = ’campo’: str(value), ’line_number’: str(prodlineid)
5: response = requests.post(SERVER_URL, data=payload)
6: return response.text

Algorithm 6: Node-RED ‘exec‘ node used to execute the Python
code related to the second node of the graph Server
1: from urllib.parse import parse_qs
2: def parse_post_data(post_data):
3: parsed_data = parse_qs(post_data)
4: if ’prodline’ in parsed_data:
5: prodline = parsed_data[’prodline’][0]
6: return prodline

Algorithm 7: Node-RED ‘exec‘ node used to execute the Python
code related to the third node of the graph Server
1: def on_demand_actuation(line_number):
2: if line_number == 1:
3: pnome_file = ’alpha.cfg’
4: elif line_number == 2:
5: pnome_file = ’beta.cfg’
6: elif line_number == 3:
7: pnome_file = ’gamma.cfg’
8: elif line_number == 4:
9: pnome_file = ’delta.cfg’
10: else:
11: raise ValueError("Value not admitted. Production line ID not identified.")
12: return nome_file

References

[1] G. Adzic, R. Chatley, Serverless computing: economic and architectural impact,
in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ACM, 2017, pp. 884–889.

[2] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi, Cloud
computing—The business perspective, Decis. Support Syst. 51 (1) (2011)
176–189.

[3] A.M. Joy, Performance comparison between linux containers and virtual ma-
chines, in: 2015 International Conference on Advances in Computer Engineering
and Applications, IEEE, 2015, pp. 342–346.

[4] N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L.
Safina, Microservices: yesterday, today, and tomorrow, in: Present and Ulterior
Software Engineering, Springer, 2017, pp. 195–216.

[5] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski, Serverless programming
(function as a service), in: 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems, ICDCS, 2017, pp. 2658–2659, http://dx.doi.org/
10.1109/ICDCS.2017.305.

[6] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, O. Rana, Fog computing for the
internet of things: A survey, ACM Trans. Internet Technol. (TOIT) 19 (2) (2019)
18.

[7] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska, B.
Jakimovski, S. Ristov, R. Prodan, A serverless real-time data analytics platform
for edge computing, IEEE Internet Comput. 21 (4) (2017) 64–71.

[8] L. Baresi, D.F. Mendonça, Towards a serverless platform for edge computing, in:
2019 IEEE International Conference on Fog Computing, ICFC, IEEE, 2019, pp.
1–10.

[9] A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing
and Internet of Things: a survey, Future Gener. Comput. Syst. 56 (2016) 684–700.

[10] M. Díaz, C. Martín, B. Rubio, State-of-the-art, challenges, and open issues in the
integration of internet of things and cloud computing, J. Netw. Comput. Appl.
67 (2016) 99–117.

[11] T. Lynn, P. Rosati, A. Lejeune, V. Emeakaroha, A preliminary review of
enterprise serverless cloud computing (function-as-a-service) platforms, in: 2017
IEEE International Conference on Cloud Computing Technology and Science,
CloudCom, 2017, pp. 162–169, http://dx.doi.org/10.1109/CloudCom.2017.15.

[12] A. Glikson, S. Nastic, S. Dustdar, Deviceless edge computing: Extending serverless
computing to the edge of the network, in: In Proceedings of the 10th ACM
International Systems and Storage Conference, SYSTOR, 2017.

[13] A. Alvarado, Serverless vs. FaaS: A beginner’s guide, 2019, URL: https://www.
liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/.

http://refhub.elsevier.com/S0167-739X(23)00492-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb4
http://dx.doi.org/10.1109/ICDCS.2017.305
http://dx.doi.org/10.1109/ICDCS.2017.305
http://dx.doi.org/10.1109/ICDCS.2017.305
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb10
http://dx.doi.org/10.1109/CloudCom.2017.15
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb12
https://www.liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/
https://www.liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/
https://www.liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/


Future Generation Computer Systems 154 (2024) 189–205G. Merlino et al.
[14] P. Johnston, Serverless: It’s much much more than faas, 2018, URL:
https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-
faas-a342541b982e.

[15] L.E. Hecht, Add it up: FAAS ≠ Serverless, 2018, URL: https://thenewstack.io/
add-it-up-serverless-faas/.

[16] CN.C.F. Serverless Working Group, Serverless Whitepaper V1.0, CloudNative
Computing Foundation, 2018, URL: https://github.com/cncf/wg-serverless/tree/
master/whitepapers/serverless-overview.

[17] Apache, Apache OpenWhisk, 2019, URL: https://openwhisk.apache.org/.
[18] Microsoft, Azure IoT edge, 2019, URL: https://azure.microsoft.com/en-us/

services/iot-edge/.
[19] Amazon, AWS greengrass, 2019, URL: https://aws.amazon.com/greengrass/.
[20] IBM, IBM watson IoT platform, 2019, URL: https://www.ibm.com/cloud/

internet-of-things.
[21] G.A.S. Cassel, V.F. Rodrigues, R. da Rosa Righi, M.R. Bez, A.C. Nepomuceno,

C. André da Costa, Serverless computing for Internet of Things: A systematic
literature review, Future Gener. Comput. Syst. 128 (2022) 299–316, http://
dx.doi.org/10.1016/j.future.2021.10.020, URL: https://www.sciencedirect.com/
science/article/pii/S0167739X21004167.

[22] B. Cheng, J. Fuerst, G. Solmaz, T. Sanada, Fog function: Serverless fog computing
for data intensive IoT services, in: 2019 IEEE International Conference on
Services Computing, SCC, IEEE, 2019, pp. 28–35.

[23] P. Persson, O. Angelsmark, Kappa: serverless IoT deployment, in: Proceedings of
the 2nd International Workshop on Serverless Computing, 2017, pp. 16–21.

[24] A. Garbugli, A. Sabbioni, A. Corradi, P. Bellavista, Tempos: Qos management
middleware for edge cloud computing faas in the Internet of Things, IEEE Access
10 (2022) 49114–49127.

[25] P. Benedetti, M. Femminella, G. Reali, K. Steenhaut, Experimental analysis of
the application of serverless computing to IoT platforms, Sensors 21 (3) (2021)
928.

[26] R. Wolski, C. Krintz, F. Bakir, G. George, W.T. Lin, Cspot: Portable, multi-scale
functions-as-a-service for IoT, in: Proceedings of the 4th ACM/IEEE Symposium
on Edge Computing, 2019, pp. 236–249.

[27] T. Pfandzelter, D. Bermbach, Tinyfaas: A lightweight faas platform for edge
environments, in: 2020 IEEE International Conference on Fog Computing, ICFC,
IEEE, 2020, pp. 17–24.

[28] R. Dua, A.R. Raja, D. Kakadia, Virtualization vs containerization to support paas,
in: 2014 IEEE International Conference on Cloud Engineering, IEEE, 2014, pp.
610–614.

[29] Z. Kozhirbayev, R.O. Sinnott, A performance comparison of container-based
technologies for the cloud, Future Gener. Comput. Syst. 68 (2017) 175–182.

[30] E.W. Biederman, L. Networx, Multiple instances of the global linux namespaces,
in: Proceedings of the Linux Symposium, Vol. 1, Citeseer, 2006, pp. 101–112.

[31] R. Rosen, Resource management: Linux kernel namespaces and cgroups, 186,
2013, Haifux, May.

[32] M.A. Babar, B. Ramsey, Understanding Container Isolation Mechanisms for
Building Security-Sensitive Private Cloud, Technical Report, CREST, University
of Adelaide, Adelaide, Australia, 2017.

[33] F. Longo, D. Bruneo, S. Distefano, G. Merlino, A. Puliafito, Stack4Things: An
OpenStack-based framework for IoT, in: 2015 3rd International Conference on
Future Internet of Things and Cloud, 2015, pp. 204–211, http://dx.doi.org/10.
1109/FiCloud.2015.97.

[34] S. Distefano, G. Merlino, A. Puliafito, Device-centric sensing: An alternative to
data-centric approaches, IEEE Syst. J. 11 (1) (2017) 231–241, http://dx.doi.org/
10.1109/JSYST.2015.2448533.

[35] D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito, I/Ocloud: Adding an
IoT dimension to cloud infrastructures, Computer 51 (1) (2018) 57–65.

[36] G. Tricomi, Z. Benomar, F. Aragona, G. Merlino, F. Longo, A. Puliafito, A
NodeRED-based dashboard to deploy pipelines on top of IoT infrastructure, in:
2020 IEEE International Conference on Smart Computing, SMARTCOMP, 2020,
pp. 122–129, http://dx.doi.org/10.1109/SMARTCOMP50058.2020.00036.

[37] Z. Benomar, F. Longo, G. Merlino, A. Puliafito, Deviceless: A serverless approach
for the Internet of Things, in: 2021 ITU Kaleidoscope: Connecting Physical and
Virtual Worlds, ITU K, 2021, pp. 1–8, http://dx.doi.org/10.23919/ITUK53220.
2021.9662096.

[38] Z. Benomar, D. Bruneo, S. Distefano, K. Elbaamrani, N. Idboufker, F. Longo, G.
Merlino, A. Puliafito, Extending OpenStack for cloud-based networking at the
edge, in: 2018 IEEE International Conference on Internet of Things, IThings,
IEEE, 2018, pp. 162–169.

[39] G. Merlino, D. Bruneo, F. Longo, S. Distefano, A. Puliafito, Cloud-based network
virtualization: An IoT use case, in: N. Mitton, M.E. Kantarci, A. Gallais, S.
Papavassiliou (Eds.), Ad Hoc Networks, Springer International Publishing, Cham,
2015, pp. 199–210.

[40] G. Tricomi, C. Scaffidi, G. Merlino, F. Longo, S. DIstefano, A. Puliafito, From
vertical to horizontal buildings through IoT and software defined approaches,
in: Proceedings - 2021 IEEE International Conference on Smart Computing,
SMARTCOMP 2021, Institute of Electrical and Electronics Engineers Inc.,
2021, pp. 365–370, http://dx.doi.org/10.1109/SMARTCOMP52413.2021.00074,
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&
doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=
4bd6dcfd5d69bbf8770b1232847639fe.
205
[41] G. Tricomi, C. Scaffidi, G. Merlino, F. Longo, A. Puliafito, S. Distefano,
A resilient fire protection system for software-defined factories, IEEE
Internet Things J. 10 (4) (2023) 3151–3164, http://dx.doi.org/10.1109/
JIOT.2021.3127387, URL: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=
ddd8036f68bad3fc4ed743ebb046ccb6.

Giovanni Merlino is an Associate Professor in Computer
Engineering at the Department of Engineering, University
of Messina. His research interests currently include IoT
for Industry 4.0, Fog computing and the Web of smart
things, cyber–physical systems modeled as software-defined
infrastructure, smart contracts for auditable access control
and delegation, and mobile crowdsensing. He has co-
authored over 100 papers, and been involved in several EU
projects. He has co-founded an academic spin-off company,
smartme.IO, and is holder of a patent. He is IEEE/ACM
member.

Giuseppe Tricomi earned his international Ph.D. at the
University of Messina in 2021. He is a researcher at the
Institute of High-Performance Computing and Networking
(ICAR) of the National Research Council of Italy (CNR).
His current research interests include Cyber–Physical Sys-
tems(CPS), smart environments, Cloud-to-Edge continuum,
and cooperative patterns to be applied to these technologies.
He is co-authored of 21 papers and has been involved
in National and EU projects. He is a member of the
team leading the design of Stack4Things, an OpenStack-
based Sensing-and-Actuation-as-a-Service framework. He is
an IEEE member.

Luca D’Agati is currently a Ph.D. student at the University
of Messina, Italy. His main research interests include the
Internet of Things (IoT), Cloud computing and their applica-
tions in telemedicine, smart cities, and home automation. He
has co-authored several papers exploring these technologies,
focusing on their integrative potential.

Zakaria Benomar is a PostDoc at the National Institute for
Research in Digital Science and Technology (INRIA), Paris,
France. He holds a Ph.D. in Cyber–Physical Systems (CPS)
from the University of Messina, Italy. His main research
interests are currently focused on mobile and distributed
systems with particular emphasis on the Internet of Things
(IoT), Edge/Fog Computing, and the Web of Things. He is
the recipient of the Outstanding Paper Award at the IEEE
International Conference on Internet of Things (iThings-
2020). He has co-authored over 20 papers in international
journals and conferences. He is a member of the team
leading the design of Stack4Things, an OpenStack-based
Sensing-and-Actuation-as-a-Service framework.

Francesco Longo is Associate Professor at University of
Messina. His main research interests include performance
and availability evaluation of distributed systems with spe-
cific focus on non-Markovian modeling, Internet of Things,
and its integration within Infrastructure-as-a-Service Clouds.
Most of his work has been published in over 130 papers.
He has co-founded an academic spin-off, smartme.IO. He is
IEEE member.

Antonio Puliafito is Full Professor in Computer Engineering
at University of Messina. His interests include distributed
systems, networking, IoT and Cloud computing. He is mem-
ber of the management board of the National Center of
Informatics in Italy (CINI) and the director of the CINI
Italian Lab on ‘‘Smart Cities & Communities’’. He is author
and co-author of more than 400 scientific papers. He has
co-founded an academic spin-off, smartme.IO. He is IEEE
member.

https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-faas-a342541b982e
https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-faas-a342541b982e
https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-faas-a342541b982e
https://thenewstack.io/add-it-up-serverless-faas/
https://thenewstack.io/add-it-up-serverless-faas/
https://thenewstack.io/add-it-up-serverless-faas/
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://openwhisk.apache.org/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://aws.amazon.com/greengrass/
https://www.ibm.com/cloud/internet-of-things
https://www.ibm.com/cloud/internet-of-things
https://www.ibm.com/cloud/internet-of-things
http://dx.doi.org/10.1016/j.future.2021.10.020
http://dx.doi.org/10.1016/j.future.2021.10.020
http://dx.doi.org/10.1016/j.future.2021.10.020
https://www.sciencedirect.com/science/article/pii/S0167739X21004167
https://www.sciencedirect.com/science/article/pii/S0167739X21004167
https://www.sciencedirect.com/science/article/pii/S0167739X21004167
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb23
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb23
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb23
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb27
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb32
http://dx.doi.org/10.1109/FiCloud.2015.97
http://dx.doi.org/10.1109/FiCloud.2015.97
http://dx.doi.org/10.1109/FiCloud.2015.97
http://dx.doi.org/10.1109/JSYST.2015.2448533
http://dx.doi.org/10.1109/JSYST.2015.2448533
http://dx.doi.org/10.1109/JSYST.2015.2448533
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb35
http://dx.doi.org/10.1109/SMARTCOMP50058.2020.00036
http://dx.doi.org/10.23919/ITUK53220.2021.9662096
http://dx.doi.org/10.23919/ITUK53220.2021.9662096
http://dx.doi.org/10.23919/ITUK53220.2021.9662096
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00492-2/sb39
http://dx.doi.org/10.1109/SMARTCOMP52413.2021.00074
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=4bd6dcfd5d69bbf8770b1232847639fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=4bd6dcfd5d69bbf8770b1232847639fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=4bd6dcfd5d69bbf8770b1232847639fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=4bd6dcfd5d69bbf8770b1232847639fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117588551&doi=10.1109%2fSMARTCOMP52413.2021.00074&partnerID=40&md5=4bd6dcfd5d69bbf8770b1232847639fe
http://dx.doi.org/10.1109/JIOT.2021.3127387
http://dx.doi.org/10.1109/JIOT.2021.3127387
http://dx.doi.org/10.1109/JIOT.2021.3127387
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=ddd8036f68bad3fc4ed743ebb046ccb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=ddd8036f68bad3fc4ed743ebb046ccb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=ddd8036f68bad3fc4ed743ebb046ccb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=ddd8036f68bad3fc4ed743ebb046ccb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119456832&doi=10.1109%2fJIOT.2021.3127387&partnerID=40&md5=ddd8036f68bad3fc4ed743ebb046ccb6

	FaaS for IoT: Evolving Serverless towards Deviceless in I/Oclouds
	Introduction
	Related Work
	Cloud and Fog in IoT
	Serverless vs. Function-as-a-Service (FaaS)
	Fog/Edge computing and Serverless/FaaS
	Comparing Traditional FaaS with Our Deviceless Solution

	Background
	Container-based virtualization
	Kubernetes
	OpenStack Containers service: Zun
	OpenStack FaaS service: Qinling
	Stack4Things-based I/Ocloud

	System Architecture 
	User Interfaces
	Management nodes
	Edge workers 
	 Bird's eye view of Function and Runtime deployment workflows 
	Advantages of functions deployment at the network edge 

	System Design
	 Edge-based FaaS containerization with Zun 
	 Edge-based FaaS with Qinling 
	 Workflows
	Runtime Instantiation Workflow
	Function execution workflow


	Use Case 
	Approach and System Evaluation
	Scalability of FaaS on IoT nodes
	FaaS overhead
	Comparison with a conventional development workflow

	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Algorithms
	References


