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Abstract—The Internet of Things (IoT) impacts numerous
application domains nowadays, including smart cities, smart
factories, and intelligent transportation, to name a few. However,
leveraging the IoT within software applications raises tremendous
challenges from the networking up to the application layer due
to the ultra-large-scale, extreme heterogeneity, and dynamics of
IoT. This paper explores how the service-oriented architecture
paradigm may be revisited to address communication challenges
posed by the IoT for the development of distributed applications
in the IoT realm.

Index Terms—Smart Cities, Cloud computing, Interoperability.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) has revo-
lutionized the way we interact with technology, embedding
intelligence into various aspects of our lives. From smart
homes and connected vehicles to industrial automation and
healthcare systems, IoT has enabled seamless connectivity
and automation, promising enhanced efficiency, productivity,
and improved quality of life. As the IoT ecosystem continues
to expand, the need for efficient and reliable communication
mechanisms becomes increasingly crucial.

Traditional centralized communication approaches, which
rely on a centralized server to facilitate data exchange between
IoT devices, face significant challenges when confronted with
the scale and complexity of IoT deployments. Issues such
as latency, scalability, network congestion, and vulnerability
to single points of failure hinder the optimal functioning
of IoT applications. To overcome such challenges, Machine-
to-Machine (M2M) communications using a service-oriented
approach (i.e., SOA) in IoT is a relevant approach. The M2M
communication model is a promising paradigm providing a
decentralized approach for pairs and systems communication.
By leveraging the capabilities of M2M communications and
SOA in the IoT field, devices and IoT systems/services can
establish direct connections, enabling faster and more efficient
data transmission, reducing latency, and enhancing overall
system responsiveness, compatibility, and management.

Taking as an example the smart city ecosystem, we are
led to deal with a heterogeneous IoT environment. In such
a large scale deployment, we may leverage tens, hundreds

or even thousands of devices belonging to different broadcast
domains while using distinct communication protocols (e.g.,
HTTP, MQTT, CoAP, etc.). Indeed, we can not think about a
smart city deployment on which all the devices belong to the
same network/sub-network and use the same protocol. Such
constraints lead to the adoption of IoT-based systems in very
specific, scale-limited and statically defined scenarios (e.g.,
Local Area Network (LAN)-based deployments).

To deal with the aforementioned challenges, we propose
a system meant to ensure seamless interaction between de-
vices, regardless of their localization, underlying network-
ing configuration (e.g., being behind a NAT), and the used
communication protocols. For this purpose, we integrate two
systems namely IoTronic (a component of the Stack4Things
middleware [1] and the Data eXchange Mediator Synthesizer
(DeXMS) [2]. In particular, IoTronic is used as an IoT In-
frastructure Manager (IIM) to deal with all the infrastructure-
related duties (e.g., remote management and programmation).
On the other hand, DeXMS takes care of mediating com-
munications between IoT devices/systems that use different
protocols.

II. SYSTEMS DESCRIPTION AND INTEGRATION

To enhance the IoT smart environments, we integrated
DeXMS and the OpenStack-based system Stack4Things.
Fig. 1 depicts the architecture of the two OpenStack subsys-
tems Neutron (blue subsystem) and IoTronic (red subsystem)
dealing with networking and IoT infrastructure management,
respectively, and DeXMS (purple subsystem) that deals with
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Fig. 1: IoTronic, Neutron and DeXMS integration design.
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Fig. 2: An HTTP mediation bus for distributed IoT systems

protocols mediation. Fig. 2 conceptually shows an instance of
the system bus regrouping a set of geographically distributed
devices and systems. The architecture depicted in Fig. 2
defines a common middleware technology in a horizontal
layer between IoT devices, systems, and IoT applications. The
Cloud-based bus is shown as the horizontal blue cylinder. The
vertical green dashed lines represent the OpenStack overlay
network that covers both the Cloud and the Edge deployments
(i.e., VMs, containers, and remote IoT nodes as reported
in [3]). We mention that each Cloud tenant may create his/her
bus connecting a set of distributed equipment following the
as-a-Service (aaS) paradigm. All the devices and systems in
the figure (including the DeXMS mediators) are part of the
same overlay. The mediation layer which is reported in the
figure deals with protocols’ adaptation. The overlay links (i.e.,
green dashed lines) can be thought of as ”connections” that
are the sources and/or destinations of messages flowing over
the bus. Regarding the Edge networking network service, the
Neutron ports (i.e., the kernel virtual network TAP interfaces)
get instantiated on the data center, precisely, on the machines
hosting the WebSockets (WS) tunnel agents (i.e., the blue
bashed component in Fig. 1) and then attached to the Neutron
virtual switching facilities managed by the Neutron L2 agent
(i.e., the Linux bridge in Fig. 1) [3]. It is worth mentioning that
in this networking design, the switching facilities (i.e., virtual
switches) are running on the cloud thus making the system
highly scalable for particular hefty configuration requirements.
Another advantage of the networking solution is the support
of mobile devices/systems. Even if a device that belongs to
a user-defined overlay is a mobile one and may experience
connectivity changes due to vertical handovers (switching
between different connectivity options such as WiFi, 3/4/5G)
and thus, an underlay networking configuration change (i.e., IP
address modification), the device will remain part of the same
virtual network while keeping the same overlay IP address as
before the connectivity interruption [3].

For protocols’ adaptation, DeXMS is the pillar of our medi-
ation layer. In the scenario in Fig. 2, a set of protocols can be
translated to the bus protocol (in this case, HTTP). Technically,
to instantiate a DeXMS mediator, we use Docker containers.

Fig. 3: The HTTP-based visualization service.
We devote containers’ provisioning to the OpenStack Zun
subsystem to be compliant with the other services we use (e.g.,
Neutron) and in particular, the virtual networking solution we
described earlier [3].

III. TESTBED IMPLEMENTATION

We report in this section the description of a preliminary
testbed being used to test the system. The implementation uses
an IoT device (a Raspberry Pi) deployed in Paris, France,
and managed using S4T. The device is configured to send
data periodically (every 30 seconds) to an MQTT broker. To
expose the IoT device-generated data through the HTTP bus,
a DeXMS mediator is deployed. This mediator is managed
through S4T and it is configured to be on a user-defined
Neutron overlay network. As a client, we use an HTTP-based
service deployed on a Raspberry Pi deployed in Messina,
Italy. This later HTTP service (which is part of the same
network overlay) can the MQTT data using GET requests
in the destination of the DeXMS mediator. The service is
configured to get data every 30 seconds, it calculates the
average value in an interval of 10 minutes and then adds
the value to a graph that can be visualized, in real-time, by
users. Fig 3 shows the graph of the data being collected and
calculated during 24 hours (23/06/2023). We highlight that the
presented solution has been also tested with other protocols
(e.g., MQTT to HTTP to CoAP and MQTT to HTTP to SOAP)
to be used in a French project called Cloud Platform for Smart
City (CP4SC).

IV. CONCLUSION

The management of heterogeneous interconnected things is
a novel challenge that has to be addressed to lay down the
foundation of a fresh way to manage and live in a (Smart) City.
We believe that our system can address a set of challenges in
IoT. As a future extension of this work, the reported system
will be extensively tested with real-world scenarios related to
the CP4SC project. In particular, we will use and adapt this
solution to deal with a large-scale Intelligent Transportation
System (ITS) as well as a use case related to digital twins.
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