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Conflict-Based Inconsistency-Tolerant Query Answering

In this paper, we place ourselves in the context of inconsistency-tolerant query answering over lightweight ontologies, which aims to query a set of conflicting facts using an ontology that represents generic knowledge about a particular domain. Existing inconsistency-tolerant semantics typically consist in selecting some of (maximal) consistent subsets of facts, called repairs. We explore a novel strategy to select the most relevant repairs based on the stratification of the assertional base into priority levels that we automatically induce from the ontology. We propose a method that exploits conflict statistical regularities between facts to induce an embedding, in which each fact is represented by a vector. Based on Euclidean distances between facts, we classify the assertions from the most reliable to the least important ones. We then use these distances to define relevant repairs. Interestingly enough, we show that the obtained repair is done in polynomial time.

Introduction

Ontology-mediated query answering (OMQA) provides query reformulation techniques over ontological domain knowledge to improve access to data [START_REF] Bienvenu | A short survey on inconsistency handling in ontology-mediated query answering[END_REF]. Recent years have witnessed an increased interest in using OWL2-QL [START_REF] Lemos | Tractable Ontology-Mediated Query Answering with Datatypes[END_REF] profile for OMQA, which is based on a family of lightweight description logic, called DL-Lite [START_REF] Calvanese | Dl-lite: Tractable description logics for ontologies[END_REF]. DL-Lite is designed for applications that use huge data where query answering is the most important task. While in OMQA setting the ontological knowledge is assumed to be satisfiable, fully reliable, and often debugged by experts, the data (i.e., the assertional base), however, are usually of bad quality. This for example may happen when collecting data from several sources [START_REF] Benferhat | How to select one preferred assertional-based repair from inconsistent and prioritized dl-lite knowledge bases?[END_REF], or due to the ontology mapping [START_REF] Mani | Explicit link discovery scheme optimized with ontology mapping using improved machine learning approach[END_REF] or ontology evolution [START_REF] Algosaibi | Improving semantic properties relationships extraction in ontology evolution[END_REF]. When the data are conflicting with the ontology, logical deduction used for query answering is no longer appropriate, i.e, every fact can be derived as an answer to a query including the conflicting facts causing the inconsistency (ex falso quodlibet sequitur). For example, if an ontology indicates that it is not possible to be a professor and a student at the same time and that an individual John is said to be both, then the knowledge base will allow us to imply not only that John is a professor and a student, but also that John is a teaching module, which is undesirable.

This observation has led to several works on handling inconsistency in OMQA where several inconsistency-tolerant inference relations, called semantics, have been proposed [START_REF] Bienvenu | A short survey on inconsistency handling in ontology-mediated query answering[END_REF]. Most of these semantics, inspired by database reparation [START_REF] Bertossi | Database repairs and consistent query answering: Origins and further developments[END_REF] or nonmonotonic reasoning in propositional logic, consist in getting rid of inconsistency by first computing a set of (maximally) consistent subsets of the assertional base, called repairs, and then using them to perform query answering. For example, the AR semantics [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF][START_REF] Belabbes | Handling inconsistency in partially preordered ontologies: the elect method[END_REF] consists in computing all the inclusionmaximal subsets of data that are consistent with the ontology and considering an answer as valid if it holds all the repairs. In [START_REF] Baget | A general modifier-based framework for inconsistency-tolerant query answering[END_REF], a general framework that unifies inconsistency-tolerant semantics is defined. The idea behind our framework is to distinguish between the way data assertions are virtually distributed (the notion of modifiers) and inference strategies. An inconsistency-tolerant semantics is then naturally defined by a modifier and an inference strategy.

In some scenarios, the data are coming from different conflicting sources having different reliability levels. To take into account this information while handling inconsistency, several inconsistency-tolerant semantics have been considered based on the notion of preferred repairs when the assertions base is prioritized [START_REF] Bourgaux | Inconsistency Handling in Ontology-Mediated Query Answering[END_REF]. When there exists a total pre-order between assertions, the non-defeated repair semantics [START_REF] Benferhat | How to select one preferred assertional-based repair from inconsistent and prioritized dl-lite knowledge bases?[END_REF] is defined. The idea of this semantics consists of retrieving from each stratum only the set of free assertions to obtain a single repair. The importance of this repair semantics is that it has been done in polynomial time. Preferred repair semantics [START_REF] Bienvenu | A short survey on inconsistency handling in ontology-mediated query answering[END_REF]) is also designed for the same case as non-defeated repair semantics (i.e., the total preorders). In this area, they investigated variants of the AR [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF], and IAR [START_REF] Lembo | Inconsistency-tolerant query answering in ontology-based data access[END_REF] semantics by changing the classical notion of repair by the different types of preferred repairs, namely cardinality, prioritized set inclusion, prioritized cardinality, and weights.

In this paper, we follow another direction for inconsistency-tolerant query answering by exploiting co-occurrence conflicting relations for selecting preferred repairs. We explore novel strategies to compute relevant repairs based on the stratification of the assertional base into priority levels that are automatically induced from the ontology by exploiting statistical analysis between conflicting facts to induce an embedding, in which each fact is represented by a vector. We then propose a method that identifies repairs based on the Euclidean distance between facts and define a new repairing strategy that first classifies the facts into a set of clusters and then uses the Euclidean distance between their centroids to select one repair. We show, in particular, that all obtained repairs are tractable.

Background

In this section, we briefly recall the syntax and semantics of DL-Lite, which underlies OWL2-QL ontology language designed for applications that use huge volumes of data and review the main existing inconsistency-tolerant semantics proposed to deal with inconsistency. DL-Lite syntax and semantics. Let N C , N P , N I be three pairwise disjoint sets where N C denotes a set of atomic concepts, N P denotes a set of atomic roles and N I denotes a set of individuals. The DL-Lite concept expressions are built according to the following syntax:

R -→ P |P -E -→ R|¬R B -→ A|∃R C -→ B|¬B
Where A is an atomic concept, P is an atomic role and P -is the role inverse of P . B and C are basic and complex concepts. Finally, the role R (resp E) is basic (resp. complex) role. According to the above expression, the DL-Lite logic uses three unary connectors, the negation (¬), the existence (∃) and the inverse ( -). The DL-lite knowledge base K = (A, T ) is composed by a set of assertions (A) on atomic concepts and on atomic roles of the form A(a) and P (a, b) respectively. The terminological part (T ) is composed by a finite set of inclusion axioms between concepts of the form A ⊑ B.

The semantics is given in terms of interpretations I = (∆ I , . I ) which consist of a non-empty interpretation domain ∆ I and an interpretation function . I that maps each individual a I ∈ N I to an element a I ∈ ∆ I , each concept A ∈ N C to a subset A I ⊆ ∆ I and each role P ∈ N P to a subset P I ⊆ ∆ I × ∆ I . The interpretation function . I is extended in a straightforward way for complex concepts and roles, i.e, (P -

) I = {(y, x) ∈ ∆ I × ∆ I |(x, y) ∈ P I }, (∃R) I = {x ∈ ∆ I |∃y ∈ ∆ I such that(x, y) ∈ R I }, (¬B) I = ∆ I \ B I , (¬R) I = ∆ I × ∆ I \ R I .
An interpretation I is said to be a model of (or satisfies) A knowledge base K = (A, T ) is said to be consistent if it has a model. Otherwise, it is inconsistent. An axiom ϕ is entailed by K, denoted by K |= ϕ, if ϕ is satisfied by every model of K.

Inconsistency-Tolerant Semantics Several inconsistencytolerant semantics have been proposed in the literature to deal with inconsistency in OMQA and obtain meaningful answers to queries. Most of these semantics are based on the notion of repair that can be used to perform inference, i.e., query answering.

Definition 1 (A Repair). A repair, denoted by R, is an inclusion-maximal subset of the ABox which is consistent with the TBox. More formally

(T , R) is consistent iff ∀R ′ ⊆ A : if R ⊊ R ′ then (T , R ′ ) is inconsistent.
Let us denote by R(A) the set of repairs of ABox A. Note that the inconsistency problem is always defined for some ABox, since a TBox may be incoherent but never inconsistent. Incoherence means that there is at least a model for T , but for a concept C, such that C I = ∅. Inconsistency means there is a model. In DL-Lite, when the TBox is coherent, a conflict involves exactly two assertions (a 1 , a 2 ) and removing one of them restores the consistency. In the following, we recall the most common inconsistency-tolerant semantics. Definition 2 Let K = ⟨T , A⟩ be a DL-Lite ontology, the most common inconsistency-tolerant semantics are:

• ABox Repair Semantics: A tuple a is an answer to a query q under AR semantics, denoted

K |= AR q(a), if ∀A ′ ∈ R(A), ⟨T , A ′ ⟩ |= q(a) • Intersection of ABox Repair Semantics: A tuple a is an answer to query q under IAR semantics, denoted K |= IAR q(a), if ⟨T , S⟩ |= q(a), where S = A ′ ∈R(A) A ′
• Brave Semantics: A tuple a is an answer to a query q under brave semantics, denoted K |= brave q(a), if for some repair

A ′ ∈ R(A), ⟨T , A ′ ⟩ |= q(a)
Example 1 Consider the following ontology:

Carnivore ⊑ ¬Granivorous Carnivore ⊑ ¬ Herbivores ∃liveIn -⊑ AquaticRegion ∃liveIn -⊑ Carnivore Granivorous ⊑ ¬Herbivore Herbivore ⊑ WildAnimals WildAnimals ⊑ ¬AqAnimals Carnivore ⊑ Animal
The ABox A contains the following assertions: A={ Carnivore(lion), Herbivores(lion), Granivorous(lion), Carnivore(monkey), WildAnimal(monkey), AquaticAnimal(cow), WildAnimal(cow), liveIn(fish, sea)}

In Example 1 the ontology is inconsistent as the assertions Carnivore(lion) and Herbivore(lion) are contradicting w.r.t axiom Carnivore ⊑ ¬Herbivore. If the ontology is inconsistent, then everything can be inferred from it. One way to tackle this problem is to select some repairs. For example: R 1 ={Carnivore(monkey), WildAnimal(monkey), Herbivore(lion), WildAnimal(cow)}.

The inconsistency-tolerant semantics introduced in Definition 2 are based on repairs computed using the initial ABox. However, one can also define the same semantics on repairs computed from a closed ABox (e.g. CAR and ICAR semantics) or using closed repairs instead of repairs themselves, i.e., ICR semantics [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF]2015). One can also use lexicographical criterion instead of inclusion to define repairs. Finally, one can also define repairs on prioritized ABox. A prioritized ABox A = A 1 ∪ ... ∪ A n is partitioned into n layers (also called strata), where each partition A i contains the set of assertions having the same level of priority i, and they are considered as more reliable than the ones in the previous layer A j with j > i. The presence of additional information in the reliability of the ABox facts, such as prioritized cardinality, prioritized set inclusion, and weights, leads us to use them to identify the preferred repair [START_REF] Bienvenu | Explaining inconsistency-tolerant query answering over description logic knowledge bases[END_REF].

Among the existing semantics, the IAR-semantics is the most cautious in terms of inference as it is only based on free assertions. Contrarily, credulous semantics is the most productive. However, it is often considered too adventurous as the set of conclusions may be inconsistent w.r.t the ontology. The AR-semantics has considered the safest semantics as an answer to a query is valid if it can be deduced from each repair. However, query answering within the AR-semantics is co-NP-complete even for simple DL-Lite languages such as DL-Lite core . The main question addressed in this paper is how to compute relevant repairs in a tractable manner by exploiting additional information about conflicting facts.

Flexible Conflict Representation

When repairing conflicting ontologies, one important piece of information that needs to be considered is the participation of each assertion in the conflict and to what extent a fact is likely to be incompatible with each other. To provide an answer to this question, we exploit conflict regularities between facts by computing an embedding (a vector space representation) of the assertional base in which the distance between two facts reflects their compatibility. To represent the conflict between each pair of assertions, we use a one-hot matrix encoding of conflict, called conflict matrix. The conflict matrix takes the set of assertions as rows and columns. We assign '1' when there exists a conflict between the two assertions and '0' otherwise. Definition 3 (Conflict Matrix). A conflict matrix M is a square matrix that represents the relation of conflicts between assertions. It takes the set of assertions (a 1 , a 2 , ..., a n ) in their rows and columns.

∀a i , a j ∈ M, if M ai,aj =
1 then a i , a j are in conflict 0 then a i , a j are consistent

Example 2 Table 1 represents the conflict matrix of the inconsistent ontology in Example 1.

C(l) H(l) G (l) C (m) WA(m) WA (c) AA (c) C(l) 0 1 1 0 0 0 0 H(l) 1 0 1 0 0 0 0 G(l) 1 1 0 0 0 0 0 C(m) 0 0 0 0 0 0 0 WA(m) 0 0 0 0 0 0 0 WA(c) 0 0 0 0 0 0 1 AA (c) 0 0 0 0 0 1 0 Table 1: Conflict Matrix of Example 1
The conflict matrix obtained by Definition 3 is square and sparse. Unless the TBox is incoherent, the diagonal values are '0' since there is no incoherency. In real applications, the conflict matrix is huge and difficult to manipulate. For such reason, we need to reduce the dimensions of the matrix. The dimensionality reduction methods are classified into two categories. The first category consists in removing the redundant features and only keeping the most salient features in the data. Therefore, there is no modification in the set of features. The second one consists in expressing the existing features as a combination of new features. In this paper, we will use a method of the latter category using multidimensional scaling as a technique, which allows in turn it preserves much information when it transforms the data from the high dimensions to the low ones. Multidimensional Scaling of Conflict Matrix. Multidimensional scaling [START_REF] Cox | Multidimensional scaling[END_REF]) is a set of statistical techniques used in the field of information visualization [START_REF] Spence | Information visualization[END_REF] to explore similarities in data. It is a projection or a mapping from a high-dimensional data set in a low-dimensional space. The MDS takes as input a square, a symmetric matrix that indicates the relationships between items. Given N points (x 1 , x 2 , ..., x n ) in high-dimensional space p, MDS represents these points in low-dimensional space m < p by N new points (y 1 , y 2 , ..., y n ). These results can be presented by a matrix D having the Euclidean distances between each pair of points. The similarity and the Euclidean distance are two opposite notions, the lower the distance, the greater the similarity. In this paper, we start with the conflict matrix (M), which represents the relation of conflict between facts. We apply the MDS into M to reduce the dimensions of their data and obtain a new matrix D that contains the Euclidean distances between each pair of assertions. As we will use the matrix D for repairing the assertional base, as intuitively, D encodes statistical information about conflict co-occurrence. The following definition introduces the notion of similarity between assertions that will be considered to capture conflict regularities.

Definition 4 Let E be the low dimensional space that represents a set of assertions. We say that two assertions are similar if the two assertions have the same degree of conflict and d(a i , a j ) = 0, where d(a i , a j ) is the Euclidean distance between the two assertions.

Note that the degree of conflict presents the occurrence of each fact in the minimal inconsistent subset.The notion of similarity in Definition 4 is given by the Euclidean distance: An Euclidean distance value of zero indicates no conflict between assertions and they are similar, while the larger the distance value, the more severe the conflict and the least similar the assertions. Figure 1 depicts a multidimensional data of Example 1 in the two-dimensional space. As one can see, this representation intuitively reflects conflicting relationships between assertions. Namely the assertions in the centre are the most similar. They have a Euclidean distance equal to 0, meaning that these assertions do not occur in any conflict, i.e., they are free assertions (the assertions that form the IAR-repair). Now, when we move further away from the centre, the Euclidean distance increases, and therefore the 

Distance-Based Preferred Repairs

In this section, we will use MDS factorization of the conflict matrix to compute preferred repairs. Based on the Euclidean distances captured in an MDS conflicting space, we will induce a prioritized assertional base, starting with the most reliable facts until the set of the less important ones. More formally:

Definition 5 Let M be a conflict matrix. Applying the MDS into M leads to obtaining the Euclidean distance between each pair of assertions. Based on these distances, we define the stratified ABox as follows:

A = A 1 ∪ A 2 ∪ ... ∪ A n
Where A 1 contains the most reliable assertions, those having Euclidean distance equal to zero (i.e., the free asser-The assertions in A i are more reliable than those in the layer A j when i < j.

Recently, some strategies have been proposed to compute repairs of prioritized DL-Lite assertional bases [START_REF] Benferhat | Prioritized assertional-based removed sets revision of dl-lite belief bases[END_REF], where the preorder between assertions is given as input information (without justification). In this paper, we consider a pre-order that is automatically induced from the conflicting assertional base and use it to define relevant semantics based on the Euclidean distance between assertions (i.e., the distance between vectors in the space).

Min-Based Distance Repair

The min-based distance repair defined over the prioritized ABox (A) with respect to the TBox (T ) is an inclusionmaximal subset of A that is consistent with T .The minbased distance repair selects the first layer, i.e., the free assertions, then, it iteratively selects from the entire set of facts those that are consistent and have the minimal distance w.r.t the existing ones. More formally: Definition 6 Let K = ⟨T , A⟩ with A = A 1 , ..., A n be the inconsistent DL-lite ontology. The min-based distance repair, denoted by M in D , is defined as follows:

M in D = A 1 ∪ A ′ 2 ∪ ... ∪ A ′ n
Where A 1 contains the set of free assertions, and A ′ 2 includes A 1 and the consistent facts having the minimal distance w.r.t A 1 .

It is important to note that we can have more than one M in D repair of an ontology. Moreover, we can have two conflicting assertions at the same level, which are consistent with the existent ones. Therefore, there exist at least two repairs. Example 3 Consider the inconsistent ontology in Example 1. First, The algorithm selects Car(l) and WA(l). Then, it finds two conflicting assertions in the same level {AA(c), WA(c)}. Therefore, we obtain two repairs R 1 ={Car(l), WA(l), AA(c)} and R 2 = {Car(l), WA(l), WA(c)}.

The following proposition studies the computational complexity of M in D Proposition 1 Let K = ⟨T , A⟩ be an inconsistent DL-Lite ontology. The min-based distance repair, denoted by M in D is consistent and its computational complexity is in NPcomplete. The inconsistency-tolerant query answering under this semantics is the same as the AR-semantics which is co-NPcomplete with respect to data complexity [START_REF] Lembo | Inconsistency-tolerant query answering in ontology-based data access[END_REF]. In the following, we will define another repair that is more cautious than the M in D repair, but we can compute in polynomial time.

Central-Based Repair

The central-based repair is a consistent sub-base of the inconsistent ontology. This sub-base includes the set of free assertions (i.e., the assertions that do not involve any conflict). More formally: Definition 7 Let K = ⟨T , A⟩, with A = A 1 ∪ ... ∪ A n , be a stratified inconsistent DL-Lite ontology. The central repair, denoted by CR(A), selects the set of consistent assertions of each layer, starting from A 1 , and stops if it finds two conflicts assertions in the same level. More formally:

CR(A) = A 1 ∪ .. ∪ A i Where A i+1 is inconsistent with A i .
The central repair is more cautious in terms of inference than the M in D , as it is only based on assertions that are not conflicting with free assertions. Example 4 We continuous with the inconsistent ontology in Example 1. The CR(A) is the intersection of M in D repair : CR(A)={Carnivore(monkey), WildAnimal(monkey)}

The following proposition shows that CR(A) can be computed in polynomial time with respect to the size of the ABox. Proposition 2 Let K = ⟨T , A⟩ with A = A 1 ∪ A 2 , ... ∪ A n . Let CR(A) be its central repair. Then CR(A) can be computed in polynomial time with respect to the size of the ABox.

Proof 1 The proof is given by the fact that computing the free sub-set is done in polynomial time.

The CR-conclusions are considered safe since the centralbased repair stops at layer A i where there is a conflict assertion. Hence, only free assertions are taken into account for entailment. However, assertions having priority levels strictly greater than A i are inhibited even if they are consistent. To overcome this problem and provide more productive repairs, we define centroid-based repair.

Centroid-Based Repair

This section presents new strategies for selecting one preferred repair that is more productive in terms of inference than the central repair. Selecting only one repair is important since it allows efficient query answering once the preferred repair is computed. These strategies are based on analyzing the minimal distance between centroids that can be computed from the matrix D. Only using Euclidean distances presented to compute the min-based distance repairs may lead to obtaining several repairs and in the worst case, the computational complexity is NP-complete. Computing Central repair is tractable, however, this repair is too cautious in terms of inference. We aim to define a new strategy of repair that provides a good compromise between productivity and computational complexity. To this end, the new strategy takes as input all the assertions and their Euclidean distances obtained by applying MDS.

To build centroid-based repair, we start with the assumption that each point (or assertion) is independent of the others and forms an individual cluster in the space. We then seek possible compatibilities between assertions, i.e., compatible clusters. If two assertions are similar, i.e., close in space and consistent with each other, then they are merged in the same cluster. After that, we obtain a set of clusters, each of which contains a set of consistent assertions. Let CL be the set of clusters, we compute for each C ∈ CL the centroid as follows:

Cn = ( |C| i=1 (x i ) |C| , |C| i=1 (y i ) |C| ) Where |C| i=1 (x i
) is the sum of x i of each point in the cluster C and |C| is the cluster cardinality. After computing the centroid of each cluster, we compute the distance between the centroid of the free cluster (the one that has the free assertions) and all the other centroids. The Euclidean distance between two centroids (m 1 , m 2 ) having coordinates(x 1 , y 1 ), (x 2 , y 2 ) respectively, is obtained by the following expression:

d(m 1 , m 2 ) = (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2
The next step consists of choosing the cluster that is more similar to the free one (i.e., the centroid having less Euclidean distance w.r.t the others ). In the following, we define centroid-based repair.

Definition 8 The centroid-based repair, denoted by M inD c , is defined as follows: M inD c = C 1 ∪C ′ 2 , ..., ∪C ′ n , with:

• C 1 is the free cluster, i.e., the cluster that contains the set of free assertions.

• C ′ i = C 1 ∪min d(f ree(C i ))
contains the set of consistent assertions of the cluster C i that have the minimal distance w.r.t the others clusters.

In the first step, M inD c repair selects the free cluster and then chooses the cluster centroid that has the minimal distance w.r.t the free one. If there exist two centroids having the same distance w.r.t the free centroid, then we choose the cluster that has more consistent assertions. The following proposition studies the time complexity of the obtained repair and their consistency.

Proposition 3 Let M inD c be the repair obtained by applying the centroid-based repair. Then, the M inD c is consistent and it is done in PTime.

Comparative Study

In this section, we compare the repair strategies obtained in this paper based on their productivity of inference, i.e entailment of query answers. Before providing this study, we introduce the notion of deductive closure. In fact, the questionanswering given in the previous section can be either defined on the assertional base A and of its deductive closure cl(A) defined as follows: Note that the three algorithms presented above can be applied on ⟨T , A⟩ or ⟨T , cl(A)⟩. In the following we will extends the notion of deductive closure in case of prioritized ontology.

Definition 10 let K = ⟨T , A⟩, with A = {A 1 ∪ ... ∪ A n } be a DL-Lite ontology. We define the prioritized deductive closure of A as follows: cl(A) = cl(A 1 ∪ ... ∪ A n ).

The following proposition shows that the Central repair is sensitive to the use of deductive closure.

Proposition 4 Let CR(A) be the central repair of the inconsistent DL-Lite ontology and CR(cl(A)) be central repair of cl(A). Then ∀q:

• if ⟨T , A⟩ |= CR q then ⟨T , cl(A)⟩ |= CR q. However the converse is false.

The M in D and M inD c is also sensitive to the use of deductive closure. It is the same as CR(A). The following propositions study the productivity of the obtained repairs in terms of logical entailment.

Proposition 6 Each CR-consequence is also M in Dconsequence but the inverse is false.

The following proposition shows that each CR-consequence is also M inD c -consequence, however the inverse is false.

Proposition 7 Each CR-consequence is also M inD cconsequence but the inverse is false

Conclusion

In this paper, we represent novel strategies to compute repairs based on the stratification of the assertional base into priority levels that are automatically induced from the ontology. We propose a method that selects repairs based on the Euclidean distance between facts and define a new repairing strategy that first classifies the facts into a set of clusters and then use the Euclidean distance between their centroids to select one repair. We show that all obtained repairs are tractable. As future work, we plan consider other methods for inducing the prioritized ontology such as principal component analysis and singular value decomposition.
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  degree of conflict increases as well. Notice that the complexity of MDS used for computing pairs of conflict is the same as computing the pair of similarity (or dissimilarity) presented in[START_REF] Morrison | Fast multidimensional scaling through sampling, springs and interpolation[END_REF], which is done in O(n 2 ).
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 1 Figure 1: First two principal components of a vector space embedding of Example 1 using MDS.
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  The following proposition shows that CR(A) ⊆ M in D and CR(A) ⊆ M inD c Proposition 5 Let K = ⟨T , A⟩ be an inconsistent DL-Lite ontology. Let CR(A) be the central repair, M in D be the min-based distance repair and M inD c be the centroid based repair. Then CR(A) ⊆ M in D and CR(A) ⊆ M inD c
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 2 Euclidean Distance Between Assertions

		C(l)	H(l)	G(l)	C(m)	WA(m)	WA(c)	AA(c)
	C(l)	0.00	0.58	0.23	0.23	0.22	0.34	0.34
	H(l)	0.58	0.00	0.41	0.41	0.69	0.27	0.57
	G(l)	0.22	0.69	0.28	0.28	0.00	0.42	0.25
	C(m)	0.23	0.41	0.00	0.00	0.28	0.14	0.22
	WA(m)	0.23	0.41	0.00	0.00	0.28	0.14	0.22
	WA(c)	0.34	0.27	0.14	0.14	0.14	0.42	0.32
	AA(c)	0.37	0.57	0.22	0.22	0.25	0.32	0.00
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