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Abstract

In this paper, we place ourselves in the con-
text of inconsistency-tolerant query answering over
lightweight ontologies, which aims to query a set
of conflicting facts using an ontology that represents
generic knowledge about a particular domain. Exist-
ing inconsistency-tolerant semantics typically consist
in selecting some of (maximal) consistent subsets of
facts, called repairs. We explore a novel strategy to se-
lect the most relevant repairs based on the stratifica-
tion of the assertional base into priority levels that we
automatically induce from the ontology. We propose a
method that exploits conflict statistical regularities be-
tween facts to induce an embedding, in which each
fact is represented by a vector. Based on Euclidean dis-
tances between facts, we classify the assertions from
the most reliable to the least important ones. We then
use these distances to define relevant repairs. Interest-
ingly enough, we show that the obtained repair is done
in polynomial time.

Introduction
Ontology-mediated query answering (OMQA) provides
query reformulation techniques over ontological domain
knowledge to improve access to data (Bienvenu 2020). Re-
cent years have witnessed an increased interest in using
OWL2-QL (Lemos 2019) profile for OMQA, which is based
on a family of lightweight description logic, called DL-Lite
(Calvanese et al. 2005). DL-Lite is designed for applications
that use huge data where query answering is the most im-
portant task. While in OMQA setting the ontological knowl-
edge is assumed to be satisfiable, fully reliable, and often de-
bugged by experts, the data (i.e., the assertional base), how-
ever, are usually of bad quality. This for example may hap-
pen when collecting data from several sources (Benferhat,
Bouraoui, and Tabia 2015), or due to the ontology mapping
(Mani and Annadurai 2021) or ontology evolution (Algo-
saibi 2021). When the data are conflicting with the ontol-
ogy, logical deduction used for query answering is no longer
appropriate, i.e, every fact can be derived as an answer to
a query including the conflicting facts causing the inconsis-
tency (ex falso quodlibet sequitur). For example, if an ontol-
ogy indicates that it is not possible to be a professor and a
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student at the same time and that an individual John is said
to be both, then the knowledge base will allow us to imply
not only that John is a professor and a student, but also that
John is a teaching module, which is undesirable.

This observation has led to several works on handling in-
consistency in OMQA where several inconsistency-tolerant
inference relations, called semantics, have been proposed
(Bienvenu 2020). Most of these semantics, inspired by
database reparation (Bertossi 2019) or nonmonotonic rea-
soning in propositional logic, consist in getting rid of in-
consistency by first computing a set of (maximally) con-
sistent subsets of the assertional base, called repairs, and
then using them to perform query answering. For example,
the AR semantics (Lembo et al. 2010; Belabbes, Benferhat,
and Chomicki 2021) consists in computing all the inclusion-
maximal subsets of data that are consistent with the ontol-
ogy and considering an answer as valid if it holds all the re-
pairs. In (Baget et al. 2016), a general framework that unifies
inconsistency-tolerant semantics is defined. The idea behind
our framework is to distinguish between the way data asser-
tions are virtually distributed (the notion of modifiers) and
inference strategies. An inconsistency-tolerant semantics is
then naturally defined by a modifier and an inference strat-
egy.

In some scenarios, the data are coming from different con-
flicting sources having different reliability levels. To take
into account this information while handling inconsistency,
several inconsistency-tolerant semantics have been consid-
ered based on the notion of preferred repairs when the as-
sertions base is prioritized (Bourgaux 2016). When there ex-
ists a total pre-order between assertions, the non-defeated re-
pair semantics (Benferhat, Bouraoui, and Tabia 2015) is de-
fined. The idea of this semantics consists of retrieving from
each stratum only the set of free assertions to obtain a sin-
gle repair. The importance of this repair semantics is that it
has been done in polynomial time. Preferred repair seman-
tics (Bienvenu 2020) is also designed for the same case as
non-defeated repair semantics (i.e., the total preorders). In
this area, they investigated variants of the AR (Lembo et al.
2010), and IAR (Lembo et al. 2015) semantics by changing
the classical notion of repair by the different types of pre-
ferred repairs, namely cardinality, prioritized set inclusion,
prioritized cardinality, and weights.

In this paper, we follow another direction for



inconsistency-tolerant query answering by exploiting
co-occurrence conflicting relations for selecting preferred
repairs. We explore novel strategies to compute relevant
repairs based on the stratification of the assertional base
into priority levels that are automatically induced from
the ontology by exploiting statistical analysis between
conflicting facts to induce an embedding, in which each fact
is represented by a vector. We then propose a method that
identifies repairs based on the Euclidean distance between
facts and define a new repairing strategy that first classifies
the facts into a set of clusters and then uses the Euclidean
distance between their centroids to select one repair. We
show, in particular, that all obtained repairs are tractable.

Background
In this section, we briefly recall the syntax and semantics of
DL-Lite, which underlies OWL2-QL ontology language de-
signed for applications that use huge volumes of data and re-
view the main existing inconsistency-tolerant semantics pro-
posed to deal with inconsistency.
DL-Lite syntax and semantics. Let NC , NP , NI be three
pairwise disjoint sets where NC denotes a set of atomic con-
cepts, NP denotes a set of atomic roles and NI denotes a set
of individuals. The DL-Lite concept expressions are built ac-
cording to the following syntax:

R −→ P |P− E −→ R|¬R

B −→ A|∃R C −→ B|¬B
Where A is an atomic concept, P is an atomic role and

P− is the role inverse of P . B and C are basic and complex
concepts. Finally, the role R (resp E) is basic (resp. complex)
role. According to the above expression, the DL-Lite logic
uses three unary connectors, the negation (¬), the existence
(∃) and the inverse (−).
The DL-lite knowledge base K = (A, T ) is composed by a
set of assertions (A) on atomic concepts and on atomic roles
of the form A(a) and P (a, b) respectively. The terminologi-
cal part (T ) is composed by a finite set of inclusion axioms
between concepts of the form A ⊑ B.

The semantics is given in terms of interpretations I =
(∆I , .I) which consist of a non-empty interpretation do-
main ∆I and an interpretation function .I that maps each
individual aI ∈ NI to an element aI ∈ ∆I , each concept
A ∈ NC to a subset AI ⊆ ∆I and each role P ∈ NP

to a subset P I ⊆ ∆I × ∆I . The interpretation function
.I is extended in a straightforward way for complex con-
cepts and roles, i.e, (P−)I = {(y, x) ∈ ∆I ×∆I |(x, y) ∈
P I}, (∃R)I = {x ∈ ∆I |∃y ∈ ∆Isuch that(x, y) ∈
RI}, (¬B)I = ∆I \BI , (¬R)I = ∆I ×∆I \RI .

An interpretation I is said to be a model of (or satisfies)
a GCI, denoted by I |= C ⊑ D if CI ⊆ DI . Similarly, I
satisfies a concept (resp. role) assertions, denoted I |= C(a)
(resp. I |= P (a, b)), if aI ∈ CI (resp. (aI , bI) ∈ P I).
A knowledge base K = (A, T ) is said to be consistent if
it has a model. Otherwise, it is inconsistent. An axiom ϕ is
entailed by K, denoted by K |= ϕ, if ϕ is satisfied by every
model of K.

Inconsistency-Tolerant Semantics Several inconsistency-
tolerant semantics have been proposed in the literature to
deal with inconsistency in OMQA and obtain meaningful
answers to queries. Most of these semantics are based on
the notion of repair that can be used to perform inference,
i.e., query answering.

Definition 1 (A Repair). A repair, denoted by R, is an
inclusion-maximal subset of the ABox which is consistent
with the TBox. More formally (T ,R) is consistent iff ∀R′ ⊆
A : if R ⊊ R′ then (T ,R′) is inconsistent.

Let us denote by R(A) the set of repairs of ABox A. Note
that the inconsistency problem is always defined for some
ABox, since a TBox may be incoherent but never inconsis-
tent. Incoherence means that there is at least a model for T ,
but for a concept C, such that CI = ∅. Inconsistency means
there is a model. In DL-Lite, when the TBox is coherent, a
conflict involves exactly two assertions (a1, a2) and remov-
ing one of them restores the consistency. In the following,
we recall the most common inconsistency-tolerant seman-
tics.

Definition 2 Let K = ⟨T ,A⟩ be a DL-Lite ontology, the
most common inconsistency-tolerant semantics are:

• ABox Repair Semantics: A tuple a is an answer to a
query q under AR semantics, denoted K |=AR q(a), if
∀A′ ∈ R(A), ⟨T , A′⟩ |= q(a)

• Intersection of ABox Repair Semantics: A tuple a is an
answer to query q under IAR semantics, denoted K |=IAR

q(a), if ⟨T ,S⟩ |= q(a), where S =
⋂

A′∈R(A) A
′

• Brave Semantics: A tuple a is an answer to a query q un-
der brave semantics, denoted K |=brave q(a), if for some
repair A′ ∈ R(A), ⟨T , A′⟩ |= q(a)

Example 1 Consider the following ontology:

Carnivore ⊑ ¬Granivorous Carnivore ⊑ ¬ Herbivores
∃liveIn− ⊑ AquaticRegion ∃liveIn− ⊑ Carnivore
Granivorous ⊑ ¬Herbivore Herbivore ⊑ WildAnimals
WildAnimals ⊑ ¬AqAnimals Carnivore ⊑ Animal

The ABox A contains the following assertions:
A={ Carnivore(lion), Herbivores(lion), Granivorous(lion),
Carnivore(monkey), WildAnimal(monkey), AquaticAni-
mal(cow), WildAnimal(cow), liveIn(fish, sea)}
In Example 1 the ontology is inconsistent as the assertions
Carnivore(lion) and Herbivore(lion) are contradicting w.r.t
axiom Carnivore ⊑ ¬Herbivore. If the ontology is incon-
sistent, then everything can be inferred from it. One way
to tackle this problem is to select some repairs. For exam-
ple: R1={Carnivore(monkey), WildAnimal(monkey), Her-
bivore(lion), WildAnimal(cow)}.

The inconsistency-tolerant semantics introduced in Def-
inition 2 are based on repairs computed using the initial
ABox. However, one can also define the same semantics
on repairs computed from a closed ABox (e.g. CAR and
ICAR semantics) or using closed repairs instead of re-
pairs themselves, i.e., ICR semantics (Lembo et al. 2010;
2015). One can also use lexicographical criterion instead



of inclusion to define repairs. Finally, one can also de-
fine repairs on prioritized ABox. A prioritized ABox A =
A1 ∪ ...∪An is partitioned into n layers (also called strata),
where each partition Ai contains the set of assertions having
the same level of priority i, and they are considered as more
reliable than the ones in the previous layer Aj with j > i.
The presence of additional information in the reliability of
the ABox facts, such as prioritized cardinality, prioritized set
inclusion, and weights, leads us to use them to identify the
preferred repair (Bienvenu, Bourgaux, and Goasdoue 2016).

Among the existing semantics, the IAR-semantics is the
most cautious in terms of inference as it is only based on free
assertions. Contrarily, credulous semantics is the most pro-
ductive. However, it is often considered too adventurous as
the set of conclusions may be inconsistent w.r.t the ontology.
The AR-semantics has considered the safest semantics as an
answer to a query is valid if it can be deduced from each
repair. However, query answering within the AR-semantics
is co-NP-complete even for simple DL-Lite languages such
as DL-Litecore. The main question addressed in this paper
is how to compute relevant repairs in a tractable manner by
exploiting additional information about conflicting facts.

Flexible Conflict Representation
When repairing conflicting ontologies, one important piece
of information that needs to be considered is the participa-
tion of each assertion in the conflict and to what extent a
fact is likely to be incompatible with each other. To provide
an answer to this question, we exploit conflict regularities
between facts by computing an embedding (a vector space
representation) of the assertional base in which the distance
between two facts reflects their compatibility. To represent
the conflict between each pair of assertions, we use a one-hot
matrix encoding of conflict, called conflict matrix. The con-
flict matrix takes the set of assertions as rows and columns.
We assign ’1’ when there exists a conflict between the two
assertions and ’0’ otherwise.
Definition 3 (Conflict Matrix). A conflict matrix M is
a square matrix that represents the relation of con-
flicts between assertions. It takes the set of assertions
(a1, a2, ..., an) in their rows and columns.

∀ai, aj ∈ M, if Mai,aj
=

{
1 then ai, aj are in conflict
0 then ai, aj are consistent

Example 2 Table 1 represents the conflict matrix of the in-
consistent ontology in Example 1.

C(l) H(l) G (l) C (m) WA(m) WA (c) AA (c)
C(l) 0 1 1 0 0 0 0
H(l) 1 0 1 0 0 0 0
G(l) 1 1 0 0 0 0 0
C(m) 0 0 0 0 0 0 0

WA(m) 0 0 0 0 0 0 0
WA(c) 0 0 0 0 0 0 1
AA (c) 0 0 0 0 0 1 0

Table 1: Conflict Matrix of Example 1

The conflict matrix obtained by Definition 3 is square and
sparse. Unless the TBox is incoherent, the diagonal values
are ’0’ since there is no incoherency. In real applications, the
conflict matrix is huge and difficult to manipulate. For such
reason, we need to reduce the dimensions of the matrix. The
dimensionality reduction methods are classified into two cat-
egories. The first category consists in removing the redun-
dant features and only keeping the most salient features in
the data. Therefore, there is no modification in the set of
features. The second one consists in expressing the existing
features as a combination of new features. In this paper, we
will use a method of the latter category using multidimen-
sional scaling as a technique, which allows in turn it pre-
serves much information when it transforms the data from
the high dimensions to the low ones.
Multidimensional Scaling of Conflict Matrix. Multidi-
mensional scaling (Cox and Cox 2008) is a set of statisti-
cal techniques used in the field of information visualization
(Spence 2001) to explore similarities in data. It is a pro-
jection or a mapping from a high-dimensional data set in
a low-dimensional space. The MDS takes as input a square,
a symmetric matrix that indicates the relationships between
items. Given N points (x1, x2, ..., xn) in high-dimensional
space p, MDS represents these points in low-dimensional
space m < p by N new points (y1, y2, ..., yn). These results
can be presented by a matrix D having the Euclidean dis-
tances between each pair of points. The similarity and the
Euclidean distance are two opposite notions, the lower the
distance, the greater the similarity. In this paper, we start
with the conflict matrix (M), which represents the relation
of conflict between facts. We apply the MDS into M to re-
duce the dimensions of their data and obtain a new matrix D
that contains the Euclidean distances between each pair of
assertions. As we will use the matrix D for repairing the as-
sertional base, as intuitively, D encodes statistical informa-
tion about conflict co-occurrence. The following definition
introduces the notion of similarity between assertions that
will be considered to capture conflict regularities.

Definition 4 Let E be the low dimensional space that rep-
resents a set of assertions. We say that two assertions are
similar if the two assertions have the same degree of conflict
and d(ai, aj) = 0, where d(ai, aj) is the Euclidean distance
between the two assertions.

Note that the degree of conflict presents the occurrence of
each fact in the minimal inconsistent subset.The notion of
similarity in Definition 4 is given by the Euclidean distance:
An Euclidean distance value of zero indicates no conflict be-
tween assertions and they are similar, while the larger the
distance value, the more severe the conflict and the least
similar the assertions. Figure 1 depicts a multidimensional
data of Example 1 in the two-dimensional space. As one can
see, this representation intuitively reflects conflicting rela-
tionships between assertions. Namely the assertions in the
centre are the most similar. They have a Euclidean distance
equal to 0, meaning that these assertions do not occur in any
conflict, i.e., they are free assertions (the assertions that form
the IAR-repair). Now, when we move further away from the
centre, the Euclidean distance increases, and therefore the



C(l) H(l) G(l) C(m) WA(m) WA(c) AA(c)
C(l) 0.00 0.58 0.23 0.23 0.22 0.34 0.34
H(l) 0.58 0.00 0.41 0.41 0.69 0.27 0.57
G(l) 0.22 0.69 0.28 0.28 0.00 0.42 0.25
C(m) 0.23 0.41 0.00 0.00 0.28 0.14 0.22

WA(m) 0.23 0.41 0.00 0.00 0.28 0.14 0.22
WA(c) 0.34 0.27 0.14 0.14 0.14 0.42 0.32
AA(c) 0.37 0.57 0.22 0.22 0.25 0.32 0.00

Table 2: Euclidean Distance Between Assertions

degree of conflict increases as well. Notice that the com-
plexity of MDS used for computing pairs of conflict is the
same as computing the pair of similarity (or dissimilarity)
presented in (Morrison, Ross, and Chalmers 2003), which is
done in O(n2).

Figure 1: First two principal components of a vector space
embedding of Example 1 using MDS.

Distance-Based Preferred Repairs
In this section, we will use MDS factorization of the conflict
matrix to compute preferred repairs. Based on the Euclidean
distances captured in an MDS conflicting space, we will in-
duce a prioritized assertional base, starting with the most
reliable facts until the set of the less important ones. More
formally:

Definition 5 Let M be a conflict matrix. Applying the MDS
into M leads to obtaining the Euclidean distance between
each pair of assertions. Based on these distances, we define
the stratified ABox as follows:

A = A1 ∪ A2 ∪ ... ∪ An

Where A1 contains the most reliable assertions, those hav-
ing Euclidean distance equal to zero (i.e., the free asser-
tions). The assertions in Ai are more reliable than those in
the layer Aj when i < j.

Recently, some strategies have been proposed to compute
repairs of prioritized DL-Lite assertional bases (Benferhat
et al. 2017), where the preorder between assertions is given

as input information (without justification). In this paper, we
consider a pre-order that is automatically induced from the
conflicting assertional base and use it to define relevant se-
mantics based on the Euclidean distance between assertions
(i.e., the distance between vectors in the space).

Min-Based Distance Repair
The min-based distance repair defined over the prioritized
ABox (A) with respect to the TBox (T ) is an inclusion-
maximal subset of A that is consistent with T .The min-
based distance repair selects the first layer, i.e., the free as-
sertions, then, it iteratively selects from the entire set of facts
those that are consistent and have the minimal distance w.r.t
the existing ones. More formally:
Definition 6 Let K = ⟨T ,A⟩ with A = A1, ..., An be the
inconsistent DL-lite ontology. The min-based distance re-
pair, denoted by MinD, is defined as follows:

MinD = A1 ∪A′
2 ∪ ... ∪A′

n

Where A1 contains the set of free assertions, and A′
2 in-

cludes A1 and the consistent facts having the minimal dis-
tance w.r.t A1.

It is important to note that we can have more than one
MinD repair of an ontology. Moreover, we can have two
conflicting assertions at the same level, which are consistent
with the existent ones. Therefore, there exist at least two re-
pairs.
Example 3 Consider the inconsistent ontology in Example
1. First, The algorithm selects Car(l) and WA(l). Then, it
finds two conflicting assertions in the same level {AA(c),
WA(c)}. Therefore, we obtain two repairs R1={Car(l),
WA(l), AA(c)} and R2= {Car(l), WA(l), WA(c)}.

The following proposition studies the computational com-
plexity of MinD

Proposition 1 Let K = ⟨T ,A⟩ be an inconsistent DL-Lite
ontology. The min-based distance repair, denoted by MinD

is consistent and its computational complexity is in NP-
complete.
The inconsistency-tolerant query answering under this se-
mantics is the same as the AR-semantics which is co-NP-
complete with respect to data complexity (Lembo et al.
2015). In the following, we will define another repair that
is more cautious than the MinD repair, but we can compute
in polynomial time.

Central-Based Repair
The central-based repair is a consistent sub-base of the in-
consistent ontology. This sub-base includes the set of free
assertions (i.e., the assertions that do not involve any con-
flict). More formally:
Definition 7 Let K = ⟨T ,A⟩, with A = A1∪ ...∪An, be a
stratified inconsistent DL-Lite ontology. The central repair,
denoted by CR(A), selects the set of consistent assertions of
each layer, starting from A1, and stops if it finds two conflicts
assertions in the same level. More formally:

CR(A) = A1 ∪ .. ∪Ai

Where Ai+1 is inconsistent with Ai.



The central repair is more cautious in terms of inference than
the MinD, as it is only based on assertions that are not con-
flicting with free assertions.
Example 4 We continuous with the inconsistent ontology in
Example 1. The CR(A) is the intersection of MinD repair :
CR(A)={Carnivore(monkey), WildAnimal(monkey)}

The following proposition shows that CR(A) can be com-
puted in polynomial time with respect to the size of the
ABox.
Proposition 2 Let K = ⟨T ,A⟩ with A = A1 ∪ A2, ... ∪
An. Let CR(A) be its central repair. Then CR(A) can be
computed in polynomial time with respect to the size of the
ABox.

Proof 1 The proof is given by the fact that computing the
free sub-set is done in polynomial time.

The CR-conclusions are considered safe since the central-
based repair stops at layer Ai where there is a conflict as-
sertion. Hence, only free assertions are taken into account
for entailment. However, assertions having priority levels
strictly greater than Ai are inhibited even if they are consis-
tent. To overcome this problem and provide more productive
repairs, we define centroid-based repair.

Centroid-Based Repair
This section presents new strategies for selecting one pre-
ferred repair that is more productive in terms of inference
than the central repair. Selecting only one repair is important
since it allows efficient query answering once the preferred
repair is computed. These strategies are based on analyzing
the minimal distance between centroids that can be com-
puted from the matrix D. Only using Euclidean distances
presented to compute the min-based distance repairs may
lead to obtaining several repairs and in the worst case, the
computational complexity is NP-complete. Computing Cen-
tral repair is tractable, however, this repair is too cautious in
terms of inference. We aim to define a new strategy of re-
pair that provides a good compromise between productivity
and computational complexity. To this end, the new strategy
takes as input all the assertions and their Euclidean distances
obtained by applying MDS.

To build centroid-based repair, we start with the assump-
tion that each point (or assertion) is independent of the oth-
ers and forms an individual cluster in the space. We then
seek possible compatibilities between assertions, i.e., com-
patible clusters. If two assertions are similar, i.e., close in
space and consistent with each other, then they are merged
in the same cluster. After that, we obtain a set of clusters,
each of which contains a set of consistent assertions. Let
CL be the set of clusters, we compute for each C ∈ CL the
centroid as follows:

Cn = (

∑|C|
i=1(xi)

|C|
,

∑|C|
i=1(yi)

|C|
)

Where
∑|C|

i=1(xi) is the sum of xi of each point in the
cluster C and |C| is the cluster cardinality. After comput-
ing the centroid of each cluster, we compute the distance

between the centroid of the free cluster (the one that has
the free assertions) and all the other centroids. The Eu-
clidean distance between two centroids (m1,m2) having
coordinates(x1, y1), (x2, y2) respectively, is obtained by the
following expression:

d(m1,m2) =
√

(x2 − x1)2 + (y2 − y1)2

The next step consists of choosing the cluster that is more
similar to the free one (i.e., the centroid having less Eu-
clidean distance w.r.t the others ). In the following, we define
centroid-based repair.

Definition 8 The centroid-based repair, denoted by
MinDc, is defined as follows: MinDc = C1∪C ′

2, ...,∪C ′
n,

with:

• C1 is the free cluster, i.e., the cluster that contains the set
of free assertions.

• C ′
i = C1∪min d(free(Ci)) contains the set of consistent

assertions of the cluster Ci that have the minimal distance
w.r.t the others clusters.

In the first step, MinDc repair selects the free cluster and
then chooses the cluster centroid that has the minimal dis-
tance w.r.t the free one. If there exist two centroids having
the same distance w.r.t the free centroid, then we choose the
cluster that has more consistent assertions. The following
proposition studies the time complexity of the obtained re-
pair and their consistency.

Proposition 3 Let MinDc be the repair obtained by apply-
ing the centroid-based repair. Then, the MinDc is consis-
tent and it is done in PTime.

Comparative Study
In this section, we compare the repair strategies obtained in
this paper based on their productivity of inference, i.e entail-
ment of query answers. Before providing this study, we in-
troduce the notion of deductive closure. In fact, the question-
answering given in the previous section can be either defined
on the assertional base A and of its deductive closure cl(A)
defined as follows:

Definition 9 Deductive Closure Let K = ⟨T ,A⟩ be a DL-
Lite ontology. Let Tp be the positive inclusion axioms of T
of the form A ⊑ B and TN be the set of negative inclusion
axioms of the form A ⊑ ¬B. The deductive closure of A
is defined as follows: cl(A) = {B(a), ⟨Tp,A⟩ |= B(a)} ∪
{R(a, b), ⟨Tp,A⟩ |= R(a, b)}, where B and R are a concept
and a role of T and a, b are individuals of A.

Note that the three algorithms presented above can be ap-
plied on ⟨T ,A⟩ or ⟨T , cl(A)⟩. In the following we will ex-
tends the notion of deductive closure in case of prioritized
ontology.

Definition 10 let K = ⟨T ,A⟩, with A = {A1 ∪ ... ∪ An}
be a DL-Lite ontology. We define the prioritized deductive
closure of A as follows: cl(A) = cl(A1 ∪ ... ∪An).

The following proposition shows that the Central repair is
sensitive to the use of deductive closure.



Proposition 4 Let CR(A) be the central repair of the in-
consistent DL-Lite ontology and CR(cl(A)) be central re-
pair of cl(A). Then ∀q:

• if ⟨T ,A⟩ |=CR q then ⟨T , cl(A)⟩ |=CR q. However the
converse is false.

The MinD and MinDc is also sensitive to the use of de-
ductive closure. It is the same as CR(A).

The following proposition shows that CR(A) ⊆ MinD

and CR(A) ⊆ MinDc

Proposition 5 Let K = ⟨T ,A⟩ be an inconsistent DL-
Lite ontology. Let CR(A) be the central repair, MinD

be the min-based distance repair and MinDc be the cen-
troid based repair. Then CR(A) ⊆ MinD and CR(A) ⊆
MinDc

The following propositions study the productivity of the ob-
tained repairs in terms of logical entailment.

Proposition 6 Each CR-consequence is also MinD-
consequence but the inverse is false.

The following proposition shows that each CR-consequence
is also MinDc-consequence, however the inverse is false.

Proposition 7 Each CR-consequence is also MinDc-
consequence but the inverse is false

Conclusion
In this paper, we represent novel strategies to compute re-
pairs based on the stratification of the assertional base into
priority levels that are automatically induced from the ontol-
ogy. We propose a method that selects repairs based on the
Euclidean distance between facts and define a new repair-
ing strategy that first classifies the facts into a set of clusters
and then use the Euclidean distance between their centroids
to select one repair. We show that all obtained repairs are
tractable. As future work, we plan consider other methods
for inducing the prioritized ontology such as principal com-
ponent analysis and singular value decomposition.
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