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Abstract

Individual-level monitoring is essential in many behavioural and bioacoustics studies.
Collecting and annotating those data is costly in terms of human effort, but necessary prior
to conducting analysis. In particular, many studies on bird vocalisations also involve ma-
nipulating the animals or human presence during observations, which may bias vocal pro-
duction. Autonomous recording units can be used to collect large amounts of data without
human supervision, largely removing those sources of bias. Deep learning can further fa-
cilitate the annotation of large amounts of data, for instance to detect vocalisations, identify
the species, or recognise the vocalisation types in recordings. Acoustic individual identifi-
cation, however, has so far largely remained limited to a single vocalisation type for a given
species. This has limited the use of those techniques for automated data collection on raw
recordings, where many individuals can produce vocalisations of varying complexity, po-
tentially overlapping one another, with the additional presence of unknown and varying
background noise. This paper aims at bridging this gap by developing a system to iden-
tify individual animals in those difficult conditions. Our system leverages a combination
of multi-scale information integration, multi-channel audio and multi-task learning. The
multi-task learning paradigm is based the overall task into four sub-tasks, three of which
are auxiliary tasks: the detection and segmentation of vocalisations against other noises,
the classification of individuals vocalising at any point during a sample, and the sexing of
detected vocalisations. The fourth task is the overall identification of individuals. To test
our approach, we recorded a captive group of rooks, a Eurasian social corvid with a diverse
vocal repertoire. We used a multi-microphone array and collected a large scale dataset of
time-stamped and identified vocalisations recorded, and found the system to work reliably
for the defined tasks. To our knowledge, the system is the first to acoustically identify
individuals regardless of the vocalisation produced. Our system can readily assist data col-
lection and individual monitoring of groups of animals in both outdoor and indoor settings,
even across long periods of time, and regardless of a species’ vocal complexity. All data

and code used in this article is available online.
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1 Introduction

Deep learning systems have become invaluable tools in the ecological sciences in recent years.
They allow the automation of many monitoring tasks, enabling much wider spatio-temporal
coverage than previous methods (Christin, 2019; Weinstein, 2018). Deep learning system have
been applied to tasks as diverse as detecting species in complex environments (e.g Conrady
et al., 2022; Dufourq et al., 2022; Fu et al., 2022; She et al., 2022; van Klink et al., 2022),
censusing populations (Adi et al., 2010), surveying breeding success of potentially endangered
species (Teixeira et al., 2022), or tracking invasive species both for plants and animals (Cam-
pos et al., 2022; Li et al., 2021; Takimoto et al., 2021). Beyond the species level, observing
individual animals remains a challenge for researchers (Ferreira et al., 2020) despite its essen-
tial role in ecological and behavioural studies (Clutton-Brock and Sheldon, 2010; Terry et al.,
2005). Extensive research has evidenced the possibility of identifying individual animals by
their vocalisations (see e.g. Beecher, 1989; Bradbury and Vehrencamp, 1998; Linhart et al.,
2019), opening the possibility of applying passive acoustic monitoring techniques (Schneider
et al., 2019) to individual monitoring. Bird vocalisations have been studied in the ecological
and evolutionary sciences due to their pervasive importance to the life history of birds (see e.g.
Catchpole and Slater (2008) and Marler and Slabbekoorn (2004) for reviews), but also because
of their potential analogies with human language (e.g. Sainburg et al., 2019). Current research
questions investigate, for example, the interplay between vocal production and sociality in the
form of conversations, dialects and vocal signatures in many bird species.

The vocal signature is the set of bioacoustic features that are individually distinctive within
a given call type. Such signatures have been found throughout the animal kingdom (Jansen
et al., 2012; Kershenbaum et al., 2013; Linhart et al., 2019; McCordic et al., 2016). However,
most studies in vocal signature have been limited to a single vocalisation type (e.g. Benti et
al., 2019; Boeckle et al., 2012, 2018; Laiolo et al., 2000; Mates et al., 2015; Stowell et al.,
2016; Stowell, Petruskova, et al., 2019; Yorzinski et al., 2006). When encompassing multiple
different vocalisation types, the concept of vocal signature becomes a lot more nebulous, as
different vocalisation types can bear different signatures (Elie and Theunissen, 2018; Keenan

et al., 2020). This plurality of signatures obviously complicates the identification of individ-



uals in species with a rich repertoire, at least with classical methods (Catchpole and Slater,
2008; Elie and Theunissen, 2018). Despite this, there have been a few cases of successful in-
dividual identification with multiple vocalisation types (Cheng et al., 2012; Fox et al., 2008;
Kirschel et al., 2009), most successfully with pre-deep learning era neural networks. Still, these
approaches were based on supervised algorithms trained on vocalisations manually extracted
from the recordings, limiting their applicability to field recordings (Kershenbaum et al., 2014;
Thompson et al., 1994.

Neural networks appear as the most appropriate tool to acoustically classify birds down to
the individual level. Recent breakthroughs in general machine learning and specifically deep
learning (Stowell, 2022) have brought state-of-the-art results just in bird vocalisation detection
(Fanioudakis and Potamitis, 2017; Grill and Schluter, 2017; Kong et al., 2017; Liaqat et al.,
2018; Lostanlen et al., 2019; Sevilla and Glotin, 2017; Stowell, Wood, et al., 2019), species
classification (Kahl et al., 2019; Kahl et al., 2021), and segmentation of song with classification
of vocalisation types (Cohen et al., 2022). But the deep learning community has so far only
rarely investigated the problem of individual identification. One possible explanation is that
in situ recording remains challenging, in particular recording individual birds (Folliot et al.,
2022; Stowell, Petruskova, et al., 2019), due to interferences from other sound sources, in-
cluding conspecifics, and simple wariness preventing the observer from approaching enough to
obtain many recordings of good quality. As such, many studies relying on individual record-
ings simply record the bird alone in a separate chamber (e.g. Sainburg et al., 2019); however,
this experimental setting deprives birds of their natural and social environment and can bias vo-
cal production. In addition, acquiring manually individually annotated data is time consuming
and generally costly (Stowell, Petruskova, et al., 2019). Autonomous recording units (ARUs)
can be used to record audio in a more ecologically valid environment, i.e. outdoor, in a social
group, and without the need for human presence. They have been increasingly used in ecolog-
ical surveys, since they allow wide coverage with little human effort (Blumstein et al., 2011;
Darras et al., 2019; Fristrup and Mennitt, 2012; Potamitis et al., 2014; Schneider et al., 2019;
Shonfield and Bayne, 2017).

Deep learning is adequately suited to process the vast amount of complex data that can



be collected with ARUs thanks to the representational power offered by these networks. Fur-
thermore, the network’s architecture can be adapted to treat the various tasks at (in our case,
detection of vocalisation and individualisation). For instance, multiple tasks can be tackled
using a multi-task learning approach, i.e. by learning the tasks jointly within a single network.
This approach enables the network to learn a shared representation, which has been suggested
to effectively bias the learning process towards representations that benefit all tasks (Caruana,
1997, Liebel and Korner, 2018; Ruder, 2017). This shared representation can not only enhance
training, but also the generalisation ability of the network. This is usually implemented by
sharing early parts of the network, before splitting into task-specific heads. For instance, one
head may learn to detect objects over the background, and another may learn to classify the
detected objects (Morfi and Stowell, 2018; Pankajakshan et al., 2019). In our approach, we
define four such sub-tasks: the detection sub-task whose objective is to detect for each audio
frame whether a bird is vocalising or not (versus any other sound), the sexing sub-task whose
objective is to further classify whether the individual producing the vocalisation is a male or
a female, the presence sub-task whose objective is to identity the presence of a vocalisation
of a particular individual within a large audio clip regardless to its precise time position, and
the identification sub-task, which returns time-stamped vocalisations with the identity of the
individual producing each vocalisation.

We then tested the performance of the system on rooks (Corvus frugilegus), held in a social
group and in an outdoor setting. Rooks are a European social corvid with a rich vocal repertoire
(Rgskaft and Espmark, 1982). Corvids are known for producing a large number of different
vocalisations with a chaotic structure and a wide frequency range (Brown, 1985; Marzluff and
Angell, 2005; Rgskaft and Espmark, 1982), particularly difficult to parametrise using classical
acoustic measures (Fagerlund and Hiarma, 2005; Fletcher, 2000). Furthermore, individuals only
share some of their repertoire with their conspecifics (Boeckle et al., 2012; Kondo et al., 2010;
Mates et al., 2015), further limiting the use of classical methods for individual identification.
Rooks, in particular, may possess an even richer repertoire than previously thought, as they
produce series of vocalisations similar to the song of many other oscines (Coombs, 1960),

that have never been described in detail. While further description is beyond the scope of this



paper, rooks appear to be of particular interest to develop a network capable of vocalisation-
independent individual identification.
To summarise, in this paper we present the following contributions, to overcome the afore-

mentioned limitations:

1. We present the first system able to acoustically identify individual birds whatever their
vocalisation types, which detects vocalisations from raw recordings and attributes them
to the individual emitter. Furthermore, the system was developed using data sampled
in an outdoors aviary and was trained to learn its tasks in an environment with multiple
sources of noise. The system is trained in a fully supervised manner, on a dataset of

identified rook vocalisations. The code for this system is available online.

2. The architecture is based on a multi-task learning approach. This architecture is used in
order to learn information useful for multiple related tasks, and to increase the general-
isation ability of the system compared to multiple single-task networks. The multi-task
approach exploits information from a shared representation learned by all tasks, followed
by task-specific heads. This formulation also lets us fuse the predictions of several sub-
tasks together as an attention-like mechanism (e.g. where the detection head returns a
low score, there is no need for the identification head to learn to identify an individual).
Furthermore, a multi-scale module is added to allow the network to exploit informa-
tion from very local cues in the spectrogram up to vocalisation-wide patterns to find

individually-distinctive information.

3. The proposed multi-task network operates on multi-channel audio signals, as recorded
from a multi-microphone array. This allows the system to exploit spatial information to
enhance the detection of rook vocalisations as well as the subsequent tasks. The multi-
channel recording also adds redundancy in the case of degraded, noisy or weak signals
(e.g. saturation due to a bird vocalising close to the microphone, or strong non-vocal
noises). To our knowledge, this is the first implementation of a neural network that

exploits spatial information in the domain acoustic individual identification.

Thttps://gitlab.com/kimartin/rook-vocalisation-detection



4. We collected the first large scale annotated dataset of rook vocalisations. This dataset
includes vocalisations from 15 individual rooks collected over the course of one year,
with each vocalisation time-stamped and attributed to the individual producing it. The
data collection involved a multi-microphone array spread throughout the aviary to record
each bird from as close as possible. As such, the recordings are composed of multi-
channel audio, unlike most approaches in the literature. The entire annotated dataset is

freely available online under a Creative Common (CC/BY 4.0) Licence?.

2 Material and methods

2.1 Data collection

We recorded the vocalisations produced by a captive colony of 15 adult rooks (8 males, 7 fe-
males) housed in an outdoor aviary in Strasbourg, France. All birds were identified by coloured
leg rings and had been housed together since they had been caught as fledglings, except one
adult male added shortly before the start of the recordings (H). We recorded the group using a
multi-microphone array constituted of up to three ARUs, each with two microphones on 3 m
cables (Song Meter 4 and SMM-A2 microphones, Wildlife Acoustics, USA). The ARUs were
programmed to record for several consecutive hours each morning from January 2020 onwards.
The microphones were spaced across the aviary so the distance between microphone and bird
was at most approximately 10 m. The resulting multi-channel recordings were digitised at 48
kHz with a 16-bit resolution. A schematic layout of the aviary, with microphone placements
and the usual spots the birds stayed at during observations, can be found in the supplementary
material (Fig. S1).

Among the daily recordings, eleven long sessions and a number of shorter recordings were
conducted in the presence of an expert observer (KM). During these sessions, a custom Python
program allowed the observer to note the identity of the bird that emitted each vocalisation
(thanks to their leg rings). The program also recorded the time of each annotation, which later

allowed synchronisation with the audio recordings. These on-site annotations were completed

Zhttps://doi.org/10.5281/zenodo.6091940



with video recordings also synchronisable to both the annotation and audio files. These videos
were used to help resolve potential ambiguities (e.g. to identify which one of two birds vo-
calised if both were close to each other). These synchronised files, obtained throughout 2020
and 2021 (see Fig. S2 for a timeline) were used to build an annotated dataset by the same
expert observer with the AudioSculpt software (Bogaards et al., 2004). Each vocalisation was
annotated with the start time, end time, emitter identity, and whether it was part of a sequence.
Due to the multi-microphone array and sound propagation speed, the start and end times were
defined as the time when a vocalisation was perceived on any audio channel for the first and
last time, respectively. A vocalisation was defined as either an uninterrupted sound or a short
succession of small, similar elements that were always produced together. Despite both notes
and video assistance, ambiguities sometimes remained regarding the identity of emitters. When
this was the case, the emitter was noted as either "Unknown” (single emitter could not be iden-
tified), or "Multiple” (multiple emitters vocalised simultaneously). The final annotated dataset
included 17,662 vocalisations in 17.4h of audio recordings. The vocalisations were not equally
distributed among individuals; one male in particular vocalised much more often than all the
other birds (Fig. 1). Rooks, like many birds, vocalise following two general modes, calls and
song-like sequences. Since our objective is to identify individuals regardless of what vocalisa-
tions they produce, we do not separate the two classes in this study.

All EU ethical guidelines (Directive 2010/63/EU) were followed for the care of the rooks

throughout the study. No experimental procedure was necessary for the data collection.

2.2 Audio representation

From the multi-channel raw audio recordings, we extracted Mel-spectrograms corresponding
to 10 s of audio, using all microphones available (up to 6). The length of the clips was based
on Grill and Schluter (2017), itself based on the lengths of most clips in the Bird Audio De-
tection Challenge dataset (Stowell, Wood, et al., 2019). This length was the largest value that
fit in computer memory with the batch size chosen for the networks. We extracted 10 s clips,
applied a pre-emphasis filter with the following equation: y[t] = x[t] — x[f — 1], where x[¢] is the

original audio at time ¢ and y[t] is the corresponding filter output. From the output of this filter,
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Figure 1: Number of vocalisations per bird and dataset, in decreasing order based on the train-
ing dataset. The numbers next to the bars represent the exact number of vocalisations produced
by each bird in this dataset. Bar colours represent the sex of the individual. Multiple and
Unknown represent cases where vocalisations could not be attributed to an individual bird.

we computed the Short Time Fourier Transform of each clip using a 50 ms Hamming window
with 75% overlap, then extracted the squared magnitude of the output. The spectrograms were
then downscaled to 80 Mel-scale frequency coefficients to emphasise lower frequencies. We
chose these parameters empirically based on the values that produced spectrograms with good
time and frequency resolution during the annotations. This resulted in Mel-spectrograms with
dimensions FxTxC, where F is the number of Mel-coefficients, T is the number of spectro-

gram time frames (800 in our implementation), and C is the number of microphones (6 in our

implementation). Smaller clips were zero-padded at the end of each dimension.

2.3 Network architecture

Shared front-end encoder. The front-end (illustrated in Fig. 2B) encodes information from
the input Mel-spectrograms through successive convolution and pooling operations. The first
layer is a Per-Channel Energy Normalisation layer (PCEN, Wang et al., 2017) implemented so
that all parameters of the PCEN operation are learned during the training process, with each
parameter encoded as a vector of size 80, so that each frequency band has its own value for each

parameter of the PCEN equation. The rest of its architecture is based on the sparrow network
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Figure 2: The Rookognise system. A) Overview of the system. Elements in light blue (the MSD
module and the two fusion operation, element-wise product and element-wise minimum) are
optionally included at training time. On the right: example clip containing three vocalisations,
two from a female and one from a male. Under the Mel-spectrogram are the corresponding
ground truth labels (in the case of the presence output, stretched in time to match the shape of
the other outputs). B) Front-end encoder detail. C) Head detail for the detection, identification
and sexing tasks. D) Head detail for the presence task. E) MSD module detail. B-E: boxes
represent one layer, with activation layers and Batch Renormalisation layers omitted for read-
ability. Convolution layers (Conv) used the parameters in each box in the following manner,
taking for instance the first grey Conv box in B: Conv 64, k=3x1, s=3x1 means a convolution
with 64 filters of size 3x1 (3 along the frequency axis, 1 along the time axis) and stride 3x1
(likewise). Boxes coloured according to operation type (green: normalisation, white: convolu-
tion, grey: pooling, blue: LSTM, red: dropout, yellow: concatenation). N: number of classes
for a particular task (detection: 1, sexing: 2, presence and identification: 15).



proposed by Grill and Schluter (2017), variants of which were used in Schliiter (2018) and Kahl
et al. (2021) to classify bird species with excellent results. Following Grill and Schluter (2017),
we standardise each frequency band and audio channel separately with a Batch Normalisation
layer between the PCEN layer and the rest of the front-end. Formally, the front-end corresponds
to the following equation:

hg = E(X)

where E is the front-end neural encoder, X is the input Mel-spectrogram, of dimensions (80,
800, 6), and Af is the corresponding latent encoding of X by E, of dimensions (1, 800, 512).
E has an overall receptive field size of (80, 39, 6), corresponding to the entire frequency axis,
slightly under 0.5 s of time, and all audio channels.

Multi-Scale Densely-connected (MSD) module. Salient information for individual identi-
fication may be present at multiple scales from local to vocalisation-wide. Several mechanisms
exist to integrate multi-scale information, but we chose a module proposed by Pelt and Sethian
(2017) for its simple design, which the authors note make it applicable to a wide variety of
tasks aside from their original task in medical imaging. This module is built by stacking M
successive blocks, each with L parallel dilated convolutional layers with identical parameters
except for the dilation rate d. We build the module with M = 2 blocks and L = 3 convolutions
per block, using dilation rates d of 1, 2, and 4 (Fig. 2E), although we did not extensively ex-
periment with these settings. All convolutions use the same parameters except for this dilation
rate: 64 filters, 1x3 filter size. The module is placed directly after the front-end. Formally, this
corresponds to the equation:

hy = MSD(hg)

where M SD is the module and A, is the latent encoding of Ag by MSD, of dimensions (1, 800,
512).

Task-specific heads. We implemented the multi-task learning objective by defining heads
with dedicated architecture for each classification task. All heads received the output of either
the front-end or the MSD module. The detection, sexing and identification head shared the

same architecture (Fig. 2C) including a pointwise convolution layer, a spatial dropout layer,
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a bidirectional LSTM layer, and a final pointwise convolution. All three heads thus preserved
time resolution. The presence head summarised over the time axis using three convolutions
with kernel size 1x9 and stride 1x5, followed by a convolution summarising along the remain-
ing time axis information, and finally a pointwise convolution. All heads end with a sigmoid

activation for the specific classification task. Formally, this corresponds to:

Vrask = Hrask(hx ), task € {det,sex, pres,id}

such that y,,, is the output of the detection head H;,; of dimensions (1, 800, 1), Y, is the output
of the sexing head Hj,, of dimensions (1, 800, 2), ¥,.s 1s the output of the presence head H),e;
of dimensions (1, 1, 15) (15 corresponding to the number of individuals in the study group),
and y;; is the output of the identification head H;; of dimensions (1, 800, 15). hx can be the
encoded output of either the front-end /g or the MSD module £y,;.

Fusing decisions. We finally investigated whether explicitly combining the outputs of dif-
ferent heads could facilitate learning. For instance, combining detection and identification may
allow the latter to only attend to frames containing vocalisations, as frames with low detection
outputs are unlikely to contain vocalisations. This combination operation was always added
after the sigmoid at the end of each head. We tested two operations: element-wise minimum
and element-wise product. In our experiments, we only fused outputs with shapes naturally
compatible with element-wise operations: 1) detection, presence and identification, and 2) de-

tection and sexing (Fig. 2A).

2.4 Implementation details

In this section we detail the implementation of the neural network. We first describe non-
standard elements used in the architecture, followed by the regularisation strategies used to
prevent overfitting, and finally the loss function and the optimizer algorithm used to actually
train the network.

Non-standard architecture elements. The field of deep learning has been extremely active

in recent years, with both new applications and new architecture elements regularly proposed
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to improve previous results. We selected some of these elements for their theoretical benefits
on performance, briefly described below, and included them in the final system after experi-
mentally validating these benefits. As these elements are not part of our contributions, we do
not focus on them further; however, in Table S2 we show how using these non-standard ele-
ments improved the system compared to their standard counterparts. First, we used the Mish
activation function instead of the ReL.U family of activations, for its continuous derivability and
self-regularising property, that prevent gradient vanishing and thereby improve training (Misra,
2019). Second, we used Batch Renormalisation (Ioffe, 2017) instead of Batch Normalisation.
Batch Normalisation improves training efficiency and adds robustness to specific initialisation
quirks (Ioffe and Szegedy, 2015), but suffers when batches are not independent and identically
distributed, which Batch Renormalisation aims to correct. Third, we used strided convolutional
pooling (Pankajakshan et al., 2018) instead of max pooling. Max pooling essentially discards
the majority of the data when downsampling since only the highest value for each pooling
operation is kept. We expected this may learning, as individual identity may be encoded by
fine-grained cues. Therefore, we chose strided convolutional pooling to avoid discarding any
information during training.

Regularisation. Regularisation prevents the network from overfitting the training data,
which risks losing generalisation ability to unseen data. We used several of these techniques in
our experiments. First, we used early stopping with a waiting period of 15 epochs, to directly
stop training when validation data performance no longer improved. The waiting period was
based on the learning rate cycle (see below), to allow at least two minima of the learning rate to
occur before stopping. Second, we used spatial dropout with a rate of 20% before the final layer
of each head. Spatial dropout prevents overfitting by randomly dropping entire feature maps
at each iteration of training, which prevents feature co-adaptation that could lead to overfitting
(Srivastava et al., 2014). Third, we applied L2-norm weight decay with a strength of 10™%.
This penalises large absolute values of the weights that can destabilise training (Smith, 2018).
Fourth, we used label smoothing so that the actual training labels used to minimise the loss
functions were not 0 and 1 but 0.05 and 0.95, respectively. Label smoothing similarly encour-

ages lower weights for stable training, particularly in the last layer of the network (Szegedy

12



et al., 2016).
Objective function and optimizer. All networks were trained to minimise a focal binary

cross-entropy loss (Lin et al., 2020, FL, ) with the formula:

FL(y,9)=—y-(1—=9)"-1log(y) — (1 —y)-5"-log(1 — )

where y is a ground truth label, y is the corresponding network prediction, and ¥ is a focusing
parameter, which reduces the contribution of correctly classified samples to the loss. When
Y = 0, FL reduces to the standard binary cross-entropy. We chose ¥ = 2 in our experiments
as it improved over the standard binary cross-entropy (see Table S2 for details). The mean of
the FL over all samples was used for each head. In the multi-task configurations, we used the

unweighted sum of the loss corresponding to all four tasks:

FLyutti—task = Z FLtask(ytaska)?task)
taske{det sex,pres,id }

We used the Ranger21 optimiser (Wright and Demeure, 2021), with weight decay 1074
Ranger21 serves to solve some issues with more usual optimisers such as Adam, which can
be unstable at the beginning of the training process and so derail the training procedure, along
with integrating a number of heuristics which improve various aspects of training (see Table
S2 for a comparison between Ranger21 and Adam). We chose a cyclical learning rate sched-
ule (Smith, 2018), linearly interpolating between 10~® and 103 with cycles of 6 epochs, and
halved the maximum learning rate after each cycle. Cyclical learning rates can greatly acceler-
ate convergence by allowing the network to update much faster when the learning rate grows,
and converge to more precise minima of the loss when the learning rate decreases. Finally, we
used mixed precision training (Narang et al., 2018) to accelerate training and decrease memory

footprint.

13



2.5 Training procedure

The networks were trained for a maximum of 50 epochs to minimise the FL on the Mel-
spectrograms of the multichannel recordings. We semi-randomly distributed the annotated
sessions at the start of the experiments. We adjusted the distribution in the training data so all
individuals were represented as equally as possible, although this also means not all individuals
could be represented in the validation and test data (Fig. 1). The annotation files were not split
during either training or evaluation, to avoid data leakage due to the way vocalisations were
sampled during training.

For the training data, clips were randomly sampled around each vocalisation so as to include
this vocalisation in its entirety (although other vocalisations in the same clip could be cut off).
This meant the network was unlikely to ever receive the same spectrogram twice, encouraging
it to learn the underlying structure of the data. Additional clips were randomly sampled from
background-only parts of the recordings to increase the variety of background noises. For the
validation and the test data, the recordings were simply split into adjacent, non-overlapping
clips and sent in order to the network.

Vocalisations from the Unknown or Multiple classes were excluded from training by as-
signing them a weight of 0 during loss computation. The detection task was exempt from this,
as identity is irrelevant to whether or not a vocalisation occurs.

Finally, we used the same random seed to initialise all runs for fair comparison. This meant
all networks started from the same initial weights, and the training data was always fed to the
network in the same order at a given epoch, so all differences between networks should be due

to differences in architecture.

2.6 Experiments

We investigated and compared several configurations to build the final network, following the
description in section 2.3. For clarity, all configurations were named using the nomenclature
in Table 1. First, single-task networks were trained and evaluated to form a baseline. For each
sub-task, one network was trained without and with the MSD module. Then, we trained the

multi-task network, using the best configurations of each sub-task from the single-task exper-
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Table 1: Description and nomenclature of the configurations in the experiments. From left to
right: Configuration is the name used in the text for each network, the Task learning column
denotes whether the network learned a single task or used the multi-task approach, the Task
column corresponds to the task(s) learned in a given configuration, the MSD module column
corresponds to whether the MSD module is included or not in a given configuration, and the
Combination column refers to the element-wise operation used for combining decisions in the
configuration, if any.

Configuration Task learning Task MSD module Combination
ST Det Single Detection No

ST _Det MSD Single Detection Yes

ST_Sex Single Sexing No

ST_Sex MSD Single Sexing Yes

ST Pres Single Presence No

ST Pres MSD Single Presence Yes

ST_1d Single Identification No

ST_1d_MSD Single Identification Yes

MT _None Multi All Yes

MT _Product Multi All Yes Product
MT _Min Multi All Yes Minimum

iment. Following this, we included either of the two fusion operations described above in the
multi-task network. As a final test, we investigated the impact of using multi-channel audio
compared to using only one channel. We hypothesised that multi-channel audio is more ef-
ficient due to including additional information that the network may access, such as delays
between channels or simple differences in distance: while with all six microphones the maxi-
mum distance between bird and microphone was only about 10 m, with one channel distance to
microphone it might increase up to about 26 m. The configuration corresponding to this case of

using a single audio channel was named the Rookognise RC (Random Channel) configuration.

2.7 Evaluation

We ranked our models using the Area Under the Receiver Operating Curve (AUROC) and the
Area Under the Precision-Recall Curve (AUPRC). AUROC and AUPRC both summarise the
performance of a network over its entire output range. AUROC indicates the probability a clas-
sifier will score a random positive sample higher than a random negative sample. No matter
the dataset, random guessing leads to 50% AUROC and perfect classification to 100% AUROC

(Fawcett, 2006). However, AUROC can over-emphasise the correct rejection of negative sam-
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ples, especially if negative samples outnumber positive samples, in which case AUPRC can be
more representative (Saito and Rehmsmeier, 2015). AUPRC is based on precision (the ratio of
true positives over predicted positives) and recall (the ratio of true positives over labelled pos-
itives), and evaluates the ability of the classifier to correctly classify positive samples without
false positives or negatives, and ignores true negatives (i.e. correct rejections). Unlike AU-
ROC, AUPRC is not independent of the proportion of positive samples in the dataset, and so
cannot be compared between different datasets. During our experiments, we saved the models
at the epoch with the highest AUPRC, as computed on the validation dataset. In the multi-task
configurations, only the identification task validation AUPRC was used. The reported values
of AUROC and AUPRC were the average of the AUROC and AUPRC associated with each
class. The average was computed from the classes present in a given dataset (i.e., only 13 of
the 15 birds were present in the test dataset, so the corresponding results were averaged over
13 classes instead of 15).

The ROC and PRC curves represent the performance of the network at various decision
thresholds. The AUROC and AUPRC metrics integrate over all possible threshold values; as
such, while they are convenient to evaluate network performance, they are not sufficient when
we are interested in selecting a threshold when we apply the network to actual unseen data. To
do so, we used the curves themselves. Since our dataset is heavily imbalanced, we used the
AUPRC curve, and we chose to directly plot precision and recall as a function of the threshold

value for clearer visualisation.

3 Results

We first built the Rookognise system by comparing single-task networks with and without the
MSD module, before combining the best configurations into a single multi-task network. We
then compared the multi-task learning-only approach to the approaches incorporating output fu-
sions, to arrive at the final system. We briefly investigated the benefit of using the multi-channel
audio dataset compared to a mono-channel version of the dataset. Finally, we illustrated the

use of the Rookognise system on unseen data from the test dataset.
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3.1 Integrating multi-scale information with the MSD module

In this section we investigated the benefits of multi-scale information integrated by the MSD
module. We established the baseline performance of the system by training single-task net-
works dedicated to each of the four sub-tasks, with and without the MSD module (Table 2). In
the following, we report results on the test data: positive numbers where the MSD module im-
proved performance, and negative numbers otherwise. For the detection sub-task, ST_Det out-
performed ST_Det MSD (-7.34% AUROC, -3.23% AUPRC). For the sexing sub-task, ST_Sex
outperformed ST_Sex_MSD (-0.07% AUROC, -0.01% AUPRC). For the presence sub-task,
ST Pres MSD outperformed ST Pres (+2.88% AUROC, +1.28% AUPRC). Finally, for the
identification sub-task, ST _Id_MSD outperformed ST_1d (+0.94% AUROC, +3.22% AUPRC).
Overall, the MSD module improved performance for the tasks involving more complex classifi-
cation (in this case, with higher number of possible outputs). Though the improvement was not
systematic for all the sub-tasks, the integration of multi-scale information in the MSD module
likely improved the ability of the network to disentangle important information at both local
and global scales to identify specific individuals. Overall, the MSD module efficiently captured
multi-scale time-frequency information in audio signals for complex tasks. On the other hand,
the front-end encoder alone was sufficient to detect rook vocalisations against all other sounds,

and to classify rook vocalisations by sex, likely simpler tasks to learn.

3.2 Multi-task learning and fusing sub-task decisions

In this section, we investigated the impact of multi-task learning. We compare the best single-
task networks determined in section 3.1 with the multi-task configurations MT_None, MT _Product,
and MT_Minimum (Table 2, middle part). In this case, we report positive numbers where
the MT configurations outperformed the ST networks, and negative numbers otherwise. The
MT None configuration already outperformed the single-task configurations on the presence
(+1.47% AUROC, +8.34% AUPRC) and identification (+0.69% AUROC, +2.36% AUPRC)
sub-tasks) sub-tasks, though not on the detection sub-task (-4.57% AUROC, -4.69% AURPC).
Adding either fusion operation maintained or even amplified the improved performance on

presence and identification, and also improved detection performance. In particular, MT_Product
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Table 2: Test data performance of the networks, at the best epoch determined by validation
data AUPRC. For each column, the best performance is emphasised in bold (separately for
single-task and multi-task configurations). Underlined values represent where the multi-task
configurations outperformed the corresponding best single-task network. The last line corre-
sponds to the mono-channel configuration, obtained by training the network using only one of
the microphones randomised for each audio clip.

Detection Sexing Presence Identification

Configuration AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
ST Det 94.03 81.04
ST Det MSD 86.69 77.81
ST_Sex 98.88 89.72
ST_Sex MSD 98.81 89.71
ST _Pres 83.62 53.11
ST_Pres MSD 86.50 54.39
ST_1d 92.87 55.28
ST_1d_MSD 93.81 58.50
MT None 89.46 76.35 97.83 87.26 87.97 62.73 94.50 60.86
MT Min 94.69 81.72 97.64 87.47 89.94 64.65 93.47 61.30
MT _Product (Rookognise)  96.95 89.31 98.21 88.95 88.03 63.64 96.11 63.06
Rookognise_RC 92.35 81.78 95.04 81.65 84.15 58.70 93.70 59.29

obtained greatly improved performance on all three sub-tasks compared to any other configu-
ration. Interestingly, none of the MT configurations outperformed the single-task networks on
the sexing sub-task, although MT_Product was only slightly worse (-0.67% AUROC, -0.77%
AUPRC). Overall, the multi-task approach greatly improved learning ability on the more com-
plex tasks. Fusing the decisions of multiple sub-tasks further boosted performance, especially
in the detection sub-task which did not benefit from the multi-task approach alone. In particular,
using the element-wise product resulted in the strongest overall performance. Following these
experiments, we selected the MT _Product configuration as the final system, which hereafter

corresponds to the "Rookognise” system.

3.3 The impact of multi-channel audio

Using multi-channel audio includes a lot more information than using only one audio channel.
As just one example, vocalisations clearly audible on one channel may not be audible on an-
other (Fig. 3). In a final experiment, we investigated to what extent the Rookognise system
may benefit from the multi-channel aspect of the training data. To do so, we simply re-trained

the system in the Rookognise configuration, using a single-channel version of the dataset ob-
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Figure 3: Schematic illustration of the multi-channel setup. Here, a rook is vocalising closest to
the rightmost microphone (left), corresponding to the fourth channel from the top in the audio
recording (middle) and in the corresponding Mel-spectrograms (right). On the other hand, the
leftmost microphone, furthest from the rook, barely records anything over the background noise
tained by randomly sampling one audio channel for each sample, resulting in the Rookog-
nise_RC configuration (Table 2, last line). This configuration obtained lower performance than
the Rookognise system on all sub-tasks (detection: -4.59% AUROC, -7.53% AUPRC; sexing:
-2.94% AUROC, -7.30% AUPRC; presence: -3.89% AUROC, -4.94% AUPRC; identification:
-2.41% AUROC, -3.7% AUPRC). This shows the ability of the network to efficiently capture
additional (e.g. spatial) information as provided by the multi-channel microphone array, in
particular for the detection of rook vocalisations. Nevertheless, Rookognise RC still obtained

reasonable performance despite using a single audio channel, making it usable if storage space

for the audio recordings is a concern.

3.4 Detecting vocalisations with the Rookognise system

We examined in further detail the performance of the Rookognise system on unseen data, start-
ing with the detection of rook vocalisations from raw recordings. We computed the precision
(ratio of true positives to predicted positives) and recall (ratio of true positives to labelled posi-
tives) metrics, as well as the proportion of the recording data retained as a function of threshold
value (be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>