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The long-range part of the interatomic interactions plays a substantial role in the collisional dynamics of

ultracold gases. Here, we report on the calculation of the isotropic and anisotropic C6 coefficients characterizing

the van der Waals interaction between dysprosium or erbium atoms in the two lowest energy levels and the

ground-state alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba) atoms. The

calculations are done using the integral of dynamic dipole polarizabilities at so-called imaginary frequencies of

the two interacting atoms. For all atom pairs, we find that the isotropic C6 coefficients are two or three orders of

magnitude larger than the anisotropic ones. Those coefficients are essential for modeling collisional properties

of heteronuclear quantum mixtures containing highly magnetic dysprosium or erbium atoms and alkali-metal or

alkaline-earth-metal atoms.

I. INTRODUCTION

Dipolar quantum gases have been experiencing a surge in

interest over the last years, driven by the experimental break-

throughs in reaching quantum degeneracy with ultracold gases

of highly magnetic atoms [1–7] and continuous advances in

the production of ultracold polar molecules [8, 9]. Ultra-

cold gases composed of particles possessing a large intrinsic

magnetic or/and electric dipole moment are characterized by

the unique combination of tunable short-range contact inter-

actions and long-range anisotropic dipole-dipole interactions,

offering exceptional controllability with external electromag-

netic fields. This feature of dipolar quantum gases has opened

up new possibilities for exploring few-body and many-body

physics of strongly correlated systems [10, 11], controlled

chemistry [12, 13], quantum information [14, 15], and physics

beyond the Standard Model [16].

Numerous fascinating phenomena have already been ob-

served with dipolar gases composed of highly magnetic lan-

thanide dysprosium and erbium atoms, just to mention the

chaotic spectra of Feshbach resonances [17], Fermi surface

deformation [18], and quantum-stabilized states – self-bound

droplets [19, 20] and supersolids [21–23]. While the experi-

mental studies of ultracold polar molecules have been focused

so far mainly on heteronuclear bialkali molecules [24–29], the

production of dimers possessing much more complex inter-

nal structure, such as Er2 [30] and DyK [31], has also been

demonstrated. The ongoing advances in the production and

manipulation of ultracold dipolar molecules hold promise for

the realization of novel exotic states of quantum matter, like

molecular superfluids and supersolids [32–34].

Recently, there has been a growing interest in degener-

ate mixtures containing highly magnetic atoms, such as Cr

(7S3; magnetic dipole moment of 6 Bohr magnetons, µB),

Eu (8S7/2; 7µB), Er (3H6; 7µB), Ho (4Io15/2; 9µB), or Dy

(5I8; 10µB), as they offer great versatility in exploring novel
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physical phenomena. Heteronuclear molecules formed via

magneto- or photoassociation will possess large both electric

and magnetic dipole moments, combining strong anisotropic

interactions of both electric and magnetic nature with the

complexity of molecular electronic structure. Aside from

the formation of molecules in non-trivial electronic states,

such heteronuclear mixtures can be employed in studies of

polaron physics in systems with dominant dipolar interac-

tions [35–37], Efimov physics [38], exotic Fulde-Ferrell-

Larkin-Ovchinnikov states in systems with significant mass

imbalance [39, 40], and binary supersolids [41]. With current

experiments on degenerate mixtures of Dy and K atoms [42–

44], Dy and Er atoms [45–47], Er and Li atoms [48], Cr and

Li atoms [49, 50], and Er and Yb atoms [51], the realization

of theoretical proposals is becoming more and more feasi-

ble. Therefore, the electronic structure of molecules contain-

ing highly magnetic transition-metal and lanthanide atoms,

such as Cr– [52, 53] and Eu–alkali-metal and alkaline-earth-

metal dimers [54], have been theoretically investigated along-

side the collisional properties of ultracold heteronuclear mix-

tures: Cr+Li [55], Cr+Rb [52], Cr+Ca+/Sr+/Ba+/Yb+ [56],

Eu+Li/Rb [57], Er+Li [58], Er+Yb [59, 60], Er+Sr [60], and

Dy+Sr/Yb [60]. Additionally, the ab initio studies of inter-

atomic interactions in homonuclear dimers of highly magnetic

lanthanide atoms such as Eu2 [61], Er2 [62], and Tm2 [62]

have also been reported.

Despite the significant increase in computational power and

development of computational methods for electronic struc-

ture calculations over the last decades, a full ab initio ap-

proach to characterize the interatomic interactions in dimers

containing heavy atoms in non-trivial electronic states would

require the use of an enormous active space to account for

all possible electron configurations, and that far exceeds cur-

rently available computational resources. In the case of lan-

thanide atoms, the unpaired electrons occupying the 4f or 5d
shells, submerged under a closed 6s shell, give rise to large

magnetic moments and large electronic orbital angular mo-

menta of the atoms, which in turn lead to anisotropic inter-

atomic interactions. Large basis sets would need to be em-

ployed in electronic structure calculations for dimers involv-
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ing these atoms to ensure proper description of interactions

at large internuclear distances. It is, therefore, impossible

to compute Born-Oppenheimer potential-energy curves cov-

ering the full range of internuclear distances with the accuracy

needed to precisely predict the scattering properties in ultra-

cold systems containing highly magnetic lanthanides.

At ultralow temperatures, neutral atoms interact mainly via

short-range van der Waals (vdW) interactions, whose lead-

ing term scales as 1/R6 with internuclear distance R, and,

for atoms with magnetic moments, also via long-range and

anisotropic magnetic dipole-dipole interactions that scale as

1/R3. In the case of atoms whose electronic state is not spher-

ically symmetric, the vdW interactions are also anisotropic.

This anisotropy of interactions induces couplings between

the scattering states in the open channels and bound molec-

ular states in the closed channels, significantly modifying the

collisional properties of an ultracold quantum gas containing

magnetic atoms in non-S states. Due to the large number of

scattering channels involved, a complete coupled-channels ap-

proach to quantum scattering calculations would be extremely

computationally demanding. Therefore, simplified models for

the ultracold atom-atom collisions have been developed [63].

Since the tail of the interaction potential plays the most sig-

nificant role in the two-body dynamics, it is crucial to know

accurate values of the van der Waals (dispersion) C6 coeffi-

cients that enter the leading term of the multipole expansion,

−C6/R
6, while the effect of short-range spin-exchange in-

teractions can be included within the phase of the scattering

wave function.

The aim of the present study is to compute the leading van

der Waals coefficients, C6, for Dy and Er atoms in their two

lowest electronic states interacting with ground-state alkali-

metal (Li, Na, K, Rb, Cs, Fr) and alkaline-earth-metal (Be,

Mg, Ca, Sr, Ba) atoms, and to establish a general computa-

tional scheme applicable to other similar systems. To this end,

we employ the sum-over-states method to calculate the dy-

namic electric dipole polarizabilities, which are further used

to compute the C6 coefficients with the Gaussian quadrature

method. We derive the formulas for the C6 coefficients in the

basis of both fine and hyperfine atomic levels and present the

numeric values of the isotropic C6,00 and anisotropic C6,20

coefficients.

The outline of this paper is as follows. In Section II, we

introduce the electronic structure of the considered atoms, de-

fine the dynamic electric dipole polarizability, recall the for-

mula for the second-order energy correction resulting from

the vdW interactions between two neutral atoms in the pres-

ence of both fine and hyperfine interactions and, finally, we

provide the formulas for the C6 coefficients: isotropic C6,00

and anisotropicC6,20. In Section III, we present the computed

values of C6,00 and C6,20 coefficients for Dy/Er+alkali-metal/

alkaline-earth-metal atom pairs and discuss the obtained re-

sults. Section IV contains a summary of our findings and con-

cluding remarks.

II. METHODOLOGY

A. Electronic structure

The electronic configuration of ground-state dysprosium

Dy(5I8) is [Xe]4f106s2 with total electronic angular momen-

tum J = 8, orbital angular momentum L = 6 and spin an-

gular momentum S = 2. The first excited level Dy(5I7)

with J = 7 has the same electronic configuration and be-

longs to the same LS manifold as the ground state. The low-

est electronic configuration of erbium is [Xe]4f126s2 with the

ground state Er(3H6) (J = 6, L = 5, S = 1) and first ex-

cited state Er(3F4) (J = 4, L = 3, S = 1). Ground-state

alkali-metal atoms (AMs) and ground-state alkaline-earth-

metal atoms (AEMs) possess a much simpler electronic struc-

ture, with spherically-symmetric ground states described by
2S1/2 (J = 1/2, L = 0, S = 1/2) and 1S0 (J = 0, L = 0,

S = 0) terms, respectively. The total angular momenta J and

their projections on the quantization axis M are good quantum

numbers in the presence of a spin-orbit coupling, and we use

them to label the atomic energy levels throughout our deriva-

tions in Sec. II B – D.

B. Long-range potential energy

We consider two distant charge distributions A and B,

whose centers of mass are separated by distance R, in a ref-

erential frame whose z axis points from A to B. In spherical

coordinates and in atomic units (used throughout this paper),

the multipolar expansion of their interaction energy can be

written as [64–67]:

VAB(R) =

+∞
∑

lA,lB=0

+l<
∑

m=−l<

flAlBm

R1+lA+lB
QlA,m(A)QlB ,−m(B) ,

(1)

where lA and lB describe the tensor rank related to the mul-

tipole moments QlA,m(A) and QlB ,−m(B) of the charge dis-

tributions A and B, respectively, and −l< ≤ m ≤ l<, where

l< = min(lA, lB). The number factor flAlBm equals to:

flAlBm = (−1)lB

√

(2lA + 2lB)!

(2lA)!(2lB)!
ClA+lB ,0

lAmlB−m (2)

with Caα
bβcγ denoting a Clebsch-Gordan (CG) coefficient.

If we assume that A and B are two atoms, and B is in an

S state, the first-order correction of the multipolar expansion

of Eq. (1) is equal to zero. The matrix element describing the
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second-order energy correction reads [68]:

〈βAJAM
′
AβBJBM

′
B|V̂

(2)
AB |βAJAMAβBJBMB〉

= −
∑

lAlBl′
A
l′
B

(−1)lB+l′B+2JA+2JB

R2+lA+lB+l′
A
+l′

B

×

√

(2lA + 2lB + 1)!(2l′A + 2l′B + 1)!

(2lA)!(2lB)!(2l′A)!(2l
′
B)!

×

∑

kAkBkq

(−1)kA+kB (2kA + 1)(2kB + 1)

×Ck0
lA+lB ,0,l′

A
+l′

B
,0C

k0
kAqkB−q

×







l′B lB kB
l′A lA kA

l′A + l′B lA + lB k







∑

β′′
A
J′′
A
β′′
B
J′′
B

×

〈βAJA||Q̂lA ||β′′
AJ

′′
A〉〈β′′

AJ
′′
A||Q̂l′

A
||βAJA〉

Eβ′′
A
J′′
A
− EβAJA

+ Eβ′′
B
J′′
B
− EβBJB

× 〈βBJB||Q̂lB ||β′′
BJ

′′
B〉〈β′′

BJ
′′
B||Q̂l′

B
||βBJB〉

×

{

l′A lA kA
JA JA J ′′

A

}{

l′B lB kB
JB JB J ′′

B

}

×

C
JAM ′

A

JAMAkAqC
JBM ′

B

JBMBkB ,−q
√

(2JA + 1)(2JB + 1)
,

(3)

where the subscripts denote values corresponding to atoms A
and B, respectively, Eβ{A,B}J{A,B}

(Eβ′′
{A,B}

J′′
{A,B}

) is the en-

ergy of level |β{A,B}J{A,B}〉 (|β′′
{A,B}J

′′
{A,B}〉) (β denotes all

remaining quantum numbers describing the state of an atom),

and 〈β{A,B}J{A,B}||Q̂l{A,B}
||β′′

{A,B}J
′′
{A,B}〉 is the reduced

transition multipole moment between |β{A,B}J{A,B}〉 and

|β′′
{A,B}J

′′
{A,B}〉 levels. The selection rules impose that MA+

MB = M ′
A + M ′

B . The pairs (kA, kB) and the value of k
are constrained by the values of (lA, l′A, lB , l′B) and define

the possible ranks of the tensorial terms; q is limited by the

minimum of kA and kB [69]. The first curly brackets contain

a Wigner 9-j symbol, whereas the latter two contain a Wigner

6-j symbol.

In this paper, we consider the induced-dipole–induced-

dipole interaction term (lA = lB = l′A = l′B =
1) and neglect higher-order terms as they decay faster

than R−6. In our particular case, atom A =
{Dy(5I8), Dy(5I7), Er(3H6), Er(3F4)} and atom B =
{AM(2S1/2), AEM(1S0)}. Therefore, kA = {0, 2} and

kB = 0, which implies that k = kA = {0, 2} and q = 0.

The CG coefficient Cαa
αa00 equals to 1. With the above as-

sumptions, the matrix element from Eq. (3) reads:

〈βAJAM
′
AβBJBM

′
B|V̂

(2)
AB |βAJAMAβBJBMB〉

= − 30

R6

∑

β′′
A
J′′
A
β′′
B
J′′
B

(−1)JA+J′′
A(−1)JB+J′′

B

√

(2JA + 1)(2JB + 1)

×
|〈βAJA||Q̂1||β′′

AJ
′′
A〉|2|〈βBJB||Q̂1||β′′

BJ
′′
B〉|

Eβ′′
A
J′′
A
− EβAJA

+ Eβ′′
B
J′′
B
− EβBJB

×

∑

kA=0,2

(2kA + 1)CkA0
2020C

JAM ′
A

JAMAkA0

×







1 1 0
1 1 kA
2 2 kA







{

1 1 kA
JA JA J ′′

A

}{

1 1 0
JB JB J ′′

B

}

× δMA,M ′
A
δMB ,M ′

B
,

(4)

which can be written as −C6(MA)/R
6 with the leading MA-

dependent van der Waals C6 coefficient equal to:

C6(MA) = 30
∑

β′′
A
J′′
A
β′′
B
J′′
B

(−1)JA+J′′
A(−1)JB+J′′

B

√

(2JA + 1)(2JB + 1)

×
|〈βAJA||Q̂1||β′′

AJ
′′
A〉|2|〈βBJB||Q̂1||β′′

BJ
′′
B〉|2

Eβ′′
A
J′′
A
− EβAJA

+ Eβ′′
B
J′′
B
− EβBJB

×

∑

kA=0,2

(2kA + 1)CkA0
2020C

JAMA

JAMAkA0

×







1 1 0
1 1 kA
2 2 kA







{

1 1 kA
JA JA J ′′

A

}{

1 1 0
JB JB J ′′

B

}

.

(5)

Note that in Eq. (4), we have used the relation

〈βJ‖Q̂1‖β′′J ′′〉 = (−1)J
′′−J〈β′′J ′′‖Q̂1‖βJ〉 for A

and B. In our upcoming developments, we will also use [70]

{

1 1 0
J J J ′′

}

=
(−1)1+J+J′′

√

3(2J + 1)
. (6)

In the Dy- and Er-AEM systems, each C6(MA) is associ-

ated with a Hund’s case (c) potential-energy curve (PEC) Ωσ,

where Ω = MA goes from −JA to +JA, and σ = + for

Ω = 0 [71]. In the Dy- and Er-AM systems, each C6(MA) is

associated with two PECs with Ω = MA ± 1/2, going from

−JA − 1/2 to JA + 1/2.

C. Dynamic dipole polarizabilities

The dynamic electric dipole polarizability describes the dy-

namical response of an atom to an external oscillating electric

field and, when calculated as a function of imaginary frequen-

cies, it can be employed in the calculations of C6 coefficients,

as discussed in the next subsection. For an atom in a level

|βJ〉, the zz component of the dynamic electric dipole polar-



4

izability αzz at imaginary frequency iω can be written as:

αzz(iω;β, J,M) = 2
∑

(β′′J′′) 6=(βJ)

Eβ′′J′′ − EβJ

(Eβ′′J′′ − EβJ)2 + ω2

× |〈βJ ||Q̂1||β′′J ′′〉|2(−1)J+J′′ ∑

k=0,2

√

2k + 1

2J + 1
Ck0

1010C
JM
JMk0

×

{

1 1 k
J J J ′′

}

=
∑

k=0,2

Ck0
1010C

JM
JMk0√

2J + 1
αk(iω;β, J) .

(7)

We can further decompose αzz into isotropic (or scalar), M -

independent αscal
β,J (k = 0) and anisotropic αaniso

β,J,M (k = 2)

components, expressed in terms of the coupled polarizabilities

αk as [72, 73]:

αscal
β,J (iω) = − 1

√

3(2J + 1)
α0(iω;β, J) , (8)

αaniso
β,J,M (iω) =

√
2(3M2 − J(J + 1))

√

3J(J + 1)(2J + 3)(4J2 − 1)
α2(iω;β, J) ,

(9)

where

αk(iω;β, J) = 2
√
2k + 1

∑

(β′′J′′) 6=(βJ)

Eβ′′J′′ − EβJ

(Eβ′′J′′ − EβJ)2 + ω2

× |〈βJ ||Q̂1||β′′J ′′〉|2(−1)J+J′′

{

1 1 k
J J J ′′

}

;

(10)

αaniso
β,J,M can be further related to the so-called tensor polariz-

ability αtens
β,J in the following way:

αaniso
β,J,M (iω) =

3M2 − J(J + 1)

J(2J − 1)
αtens
β,J (iω) , (11)

where

αtens
β,J (iω) =

√

2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α2(iω;β, J).

(12)

The anisotropic part of the polarizability is zero when J < 1,

thus for AMs and AEMs.

As one can tell from Eq. (7), the calculation of the dynamic

electric dipole polarizabilities requires an accurate knowl-

edge of transition energies and transition dipole moments.

For Dy and Er, those atomic data are computed with the

semi-empirical method described in Refs. [68, 74–76], which

gives a good agreement with experimental polarizabilities at

real frequencies (see Sec. III). The polarizability data for the

alkali-metal AM(2S1/2) and alkaline-earth-metal AEM(1S0)
atoms used in this paper were provided by Derevianko et al. in

Ref. [77].

D. van der Waals C6 coefficients

In a similar way to polarizabilities, the C6 coefficients

of Eq. (5) can be written as a sum of an isotropic C6,00

and anisotropic ∝ C6,20 contributions, C6,20 being the only

anisotropic contribution since atom B is spherically symmet-

ric [78, 79], namely:

C6(MA) = C6,00 +
3M2

A − JA(JA + 1)

2JA(2JA − 1)
C6,20 , (13)

where C6,00 and C6,20 can be conveniently expressed in terms

of scalar αscal
β,J and tensor αtens

β,J dynamic polarizabilities at

imaginary frequencies. To this end, we apply the residue the-

orem to Eq. (5):

1

a+ b
=

2

π

∫ ∞

0

ab

(a2 + u2)(b2 + u2)
du (14)

where a, b > 0: in our case a = Eβ′′
A
J′′
A
− EβAJA

, b =
Eβ′′

B
J′′
B
−EβBJB

, and u = ω. We find that the isotropic coef-

ficient C6,00 can be computed using the integral:

C6,00 =
3

π

∫ ∞

0

dωαscal
βA,JA

(iω)αscal
βB ,JB

(iω) , (15)

while the C6,20 coefficient is given by:

C6,20 =
3

π

∫ ∞

0

dωαtens
βA,JA

(iω)αscal
βB ,JB

(iω) . (16)

Note that our C6,20 coefficient does not have the definition as

in Ref. [78, 79]. Following Ref. [77], we compute the C6,kA0

coefficients using the 50-point Gauss-Legendre quadrature

method:

C6,{0,2}0 =
3

π

50
∑

κ=0

wκα
{scal,tens}
βA,JA

(iωκ)α
scal
βB ,JB

(iωκ) . (17)

The values of Gaussian quadrature abscissas ωκ and weights

wκ are provided in Ref. [77].

E. Hyperfine structure

Both dysprosium and erbium possess stable fermionic iso-

topes: 161Dy and 163Dy with nuclear spins I = 5/2, and
167Er with nuclear spin I = 7/2. Due to the coupling be-

tween the total electronic angular momentum J and the nu-

clear spin angular momentum I, the total angular momentum

F = J + I needs to be introduced. The associated pro-

jections of the angular momenta onto the quantization axis

will be denoted as M , MI , and MF for J , I , and F , respec-

tively. The hyperfine levels are labeled in the coupled basis

|βJIFMF 〉 =
∑

M,MI
CFMF

JMIMI
|βJM〉 |IMI〉.

Assuming that the hyperfine-structure energies are negligi-

ble compared to Eβ′′
A
J′′
A
− EβAJA

and Eβ′′
B
J′′
B
− EβBJB

, the

matrix elements of the second-order operator V
(2)

AB in the cou-

pled basis |βAJAIAFAMF,AβBJBIBFBMF,B〉 can be ex-

pressed as those in the uncoupled one, given in Eq. (3),
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〈βAJAIAF
′
AM

′
F,AβBJBIBF

′
BM

′
F,B|V̂

(2)
AB |βAJAIAFAMF,AβBJBIBFBMF,B〉

=
∑

M ′
A
M ′

I,A

C
F ′

AM ′
F,A

JAM ′
A
IAM ′

I,A

∑

M ′
B
M ′

I,B

C
F ′

BM ′
F,B

JBM ′
B
IBM ′

I,B

∑

MAMI,A

C
FAMF,A

JAMAIAMI,A

∑

MBMI,B

C
FBMF,B

JBMBIBMI,B

× 〈βAJAM
′
AβBJBM

′
B|V̂

(2)
AB |βAJAMAβBJBMB〉〈IAM ′

I,A|IAMI,A〉〈IBM ′
I,B|IBMI,B〉.

(18)

Because V̂
(2)
AB does not act on nuclear spins, M ′

I,A = MI,A and M ′
I,B = MI,B. Moreover, Eq. (3) depends on the pairs

(MA,M
′
A) and (MB,M

′
B) through the CG coefficients C

JAM ′
A

JAMAkAq and C
JBM ′

B

JBMBkB ,−q. Applying the relation [70]

∑

MM ′MI

C
F ′M ′

F

JM ′IMI
CJM ′

JMkqC
FMF

JMIMI
= (−1)I+F+k+J

√

(2J + 1)(2F + 1)

{

J I F
F ′ k J

}

C
FM ′

F

FMF kq (19)

to A and B separately, one obtains

〈βAJAIAF
′
AM

′
F,AβBJBIBF

′
BM

′
F,B|V̂

(2)
AB |βAJAIAFAMF,AβBJBIBFBMF,B〉

= −
∑

lAlBl′
A
l′
B

(−1)lB+l′B−JA+IA+FA−JB+IB+FB

R2+lA+lB+l′
A
+l′

B

√

(2lA + 2lB + 1)!(2l′A + 2l′B + 1)!

(2lA)!(2lB)!(2l′A)!(2l
′
B)!

×

∑

kAkBkq

(2kA + 1)(2kB + 1)Ck0
lA+lB ,0,l′

A
+l′

B
,0C

k0
kAqkB−q







l′B lB kB
l′A lA kA

l′A + l′B lA + lB k







×

∑

β′′
A
J′′
A
β′′
B
J′′
B

〈βAJA‖Q̂lA‖β′′
AJ

′′
A〉〈β′′

AJ
′′
A‖Q̂l′

A
‖βAJA〉〈βBJB‖Q̂lB‖β′′

BJ
′′
B〉〈β′′

BJ
′′
B‖Q̂l′

B
‖βBJB〉

Eβ′′
A
J′′
A
− EβAJA

+ Eβ′′
B
J′′
B
− EβBJB

×

{

l′A lA kA
JA JA J ′′

A

}{

JA IA FA

F ′
A kA J ′

A

}{

l′B lB kB
JB JB J ′′

B

}{

JB IB FB

F ′
B kB J ′

B

}

√

(2FA + 1)(2FB + 1)C
F ′

AM ′
F,A

FAMF,AkAqC
F ′

BM ′
F,B

FBMF,BkB ,−q .

(20)

Next, we apply Eq. (20) to the van der Waals interaction with A = {Dy(5I8), Dy(5I7), Er(3H6), Er(3F4)} and atom B =
{AM(2S1/2), AEM(1S0)}. Again, the B atom is only characterized by an isotropic term kB = q = 0 involving the scalar

polarizability. This implies F ′
B = FB , M ′

F,A = MF,A and M ′
F,B = MF,B. But, due to the term with kA = 2, different FA

states can be applied, such that |F ′
A − FA| ≤ 2. The van der Waals interaction is thus characterized by possibly off-diagonal

C6(F
′
A, FA;FB,MF,A,MF,B) coefficients:

C6(F
′
A, FA;FB,MF,A,MF,B)

= 30
√

(2FA + 1)(2FB + 1)
∑

kA=0,2

(2kA + 1)CkA0
2020C

FAMF,A

FAMF,AkA0







1 1 0
1 1 kA
2 2 kA







{

FA FA kA
JA JA IA

}{

FB FB 0
JB JB IB

}

×

∑

β′′
A
J′′
A
β′′
B
J′′
B

(−1)IA+FA−J′′
A+IB+FB−J′′

B |〈βAJA‖Q̂1‖β′′
AJ

′′
A〉|2|〈βBJB‖Q̂1‖β′′

BJ
′′
B〉|2

×
2

π

∫ ∞

0

dω
Eβ′′

A
J′′
A
− EβAJA

(Eβ′′
A
J′′
A
− EβAJA

)2 + ω2
×

Eβ′′
B
J′′
B
− EβBJB

(Eβ′′
B
J′′
B
− EβBJB

)2 + ω2

{

1 1 kA
JA JA J ′′

A

}{

1 1 0
JB JB J ′′

B

}

= C6,00 +
(−1)IA+FA+JA

2

√

(JA + 1)(2JA + 1)(2JA + 3)(2FA + 1)

JA(2JA − 1)

{

FA F ′
A 2

JA JA IA

}

C
F ′

AMF,A

FAMF,A20C6,20

(21)

where C6,00 and C6,20 are respectively given by Eqs. (15) and

(16). Equation (21) shows that the C6 coefficients form a

matrix whose elements are linear combinations of C6,00 and

C6,20, which will be presented in the next section.

III. RESULTS AND DISCUSSION

A. Static polarizabilities

We start with showing in Table I the scalar and tensor static

polarizabilities of the ground and first excited states of Dy and
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TABLE I. Scalar and tensor static polarizabilities (in a.u.) of the

ground and first excited states of Dy and Er.

Atom state α
scal

α
tens

Dy 5
I8 163.6 1.1

5
I7 163.6 1.2

Er 3
H6 149.3 -1.9

3
F4 149.1 0.1

Er. Except for Er(3F4) state, those results have been pub-

lished in our previous papers [68, 74, 75, 80, 81], and have

proven to be in satisfactory agreement with literature [79, 82–

84]. The small differences with earlier results are due to

the fact that here we include into the sum-over-state formu-

las of Eqs. (7)–(12) the experimental energies where they are

known.

In addition to static polarizabilities, ac values have also

been measured in the context of ultracold gases at the wave-

length of 1064 nm. The latter is sufficiently far from absorp-

tion resonances, not to depend on a given energetically close

transition. In this respect, it resembles polarizabilities at imag-

inary frequencies which do not possess any peak in wave num-

ber due to the +ω2 term at the denominator. With the present

atomic data set, we obtain for ground-state Dy, αscal
β,J = 192.9

and αtens
β,J = 1.5 a.u., while the experimental values are 184.4

and 1.7 a.u. [85]. For ground-state Er, αscal
β,J = 173 and

αtens
β,J = −3.2 a.u., while the experimental values are 168 and

-1.9 a.u. [75]. For the scalar polarizability, our result is 4.6

and 4.2 % higher for Dy and Er, respectively. Therefore, we

estimate our range of uncertainty on polarizabilities (resp. C6

coefficients) to be 5 % of the scalar (resp. isotropic) values.

B. C6 coefficients

In Tables II–V, we present the computed isotropic

C6,00 and anisotropic C6,20 coefficients characterizing

the leading term of van der Waals interactions be-

tween: Dy(5I8)/Dy(5I7) and alkali-metal AM(2S1/2)

atoms (Table II), Dy(5I8)/Dy(5I7) and alkaline-earth-metal

AEM(1S0) atoms (Table III), Er(3H6)/Er(3F4) and alkali-

metal AM(2S1/2) atoms (Table IV), and Er(3H6)/Er(3F4) and

alkaline-earth-metal AEM(1S0) atoms (Table V).

For a given lanthanide atom, say Dy(5I8), the hierarchy of

C6,00 coefficients follows the hierarchy of partners’ static po-

larizabilities. Among AMs, C6,00 increases with an atomic

number except for Fr. For AEMs, C6,00 increases with an

atomic number from Be to Ba. Moreover, the C6,00 coeffi-

cients are almost equal for ground-state and first-excited lan-

thanide atoms, just like the static polarizabilities (see Table I).

For all atom pairs, the isotropic coefficients strongly dom-

inate the anisotropic ones, to the same extent as the scalar

polarizabilities dominate the tensor ones (see Table I). Note

also that the AM- and AEM-Er(3H6) C6,20 coefficients are

all negative, exactly like αtens
3H6

. Finally, the C6,20 coefficients

TABLE II. C6 coefficients (in a.u.) characterizing the van der Waals

interactions of dysprosium atoms in the ground 5
I8 and first excited

electronic state 5
I7 with alkali-metal (AM) atoms in the ground elec-

tronic state 2
S1/2.

AM
Dy(5I8) + AM(2S1/2) Dy(5I7) + AM(2S1/2)

C6,00 C6,20 C6,00 C6,20

Li 1725 7.809 1725 8.104

Na 1850 8.033 1850 8.301

K 2857 13.13 2857 13.66

Rb 3139 14.29 3139 14.85

Cs 3762 17.24 3763 17.94

Fr 3372 14.47 3373 14.95

TABLE III. C6 coefficients (in a.u.) characterizing the van der Waals

interactions of dysprosium atoms in the ground 5
I8 and first excited

electronic state 5
I7 with alkaline-earth metal (AEM) atoms in the

ground electronic state 1
S0.

AEM
Dy(5I8) + AEM(1S0) Dy(5I7) + AEM(1S0)

C6,00 C6,20 C6,00 C6,20

Be 671 1.997 671 1.973

Mg 1174 3.822 1174 3.821

Ca 2193 8.250 2193 8.393

Sr 2651 10.21 2651 10.41

Ba 3405 13.69 3406 14.03

TABLE IV. C6 coefficients (in a.u.) characterizing the van der Waals

interactions of erbium atoms in the ground 3
H6 and first excited elec-

tronic state 3
F4 with alkali-metal (AM) atoms in the ground elec-

tronic state 2
S1/2.

AM
Er(3H6) + AM(2S1/2) Er(3F4) + AM(2S1/2)

C6,00 C6,20 C6,00 C6,20

Li 1609 -9.210 1607 0.6894

Na 1729 -8.956 1727 0.6578

K 2664 -15.89 2661 1.169

Rb 2929 -17.13 2925 1.242

Cs 3509 -20.95 3506 1.501

Fr 3156 -16.14 3152 1.105

involving Er(3F4) are at least one order of magnitude smaller

than those involving Er(3H6), in consistency with the ratio

−1/19 of their tensor polarizabilities. This surprising result

is likely to come from the peculiar nature of Er’s first excited

state, namely 68 % (3F4)+25 % (1G4); it could be confirmed

by a measurement of its static or 1064-nm tensor polarizabil-

ity.
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TABLE V. C6 coefficients (in a.u.) characterizing the van der Waals

interactions of erbium atoms in the ground 3
H6 and first excited elec-

tronic state 3
F4 with alkaline-earth metal (AEM) atoms in the ground

electronic state 1
S0.

AEM
Er(3H6) + AEM(1S0) Er(3F4) + AEM(1S0)

C6,00 C6,20 C6,00 C6,20

Be 636 -0.8894 636 0.0029

Mg 1110 -2.367 1109 0.0950

Ca 2063 -7.279 2061 0.4608

Sr 2491 -9.435 2489 0.6117

Ba 3195 -13.68 3192 0.9187

IV. SUMMARY AND CONCLUSIONS

In the present work, we have provided analytical expres-

sions for the isotropic and anisotropic C6 van der Waals coef-

ficients for the interaction between a non-S-state atom and an

S-state atom, including the atomic hyperfine quantum num-

bers. We have applied the derived formulas to compute the

C6 coefficients for the Dy(5I8)/Dy(5I7)/Er(3H6)/Er(4F3) +

AM(2S1/2)/AEM(1S0) systems, where AM = Li, Na, K, Rb,

Cs, Fr and AEM = Be, Mg, Ca, Sr, Ba. For all atom pairs,

the isotropic C6 coefficients are two or three orders of magni-

tude larger than the anisotropic ones, following the hierarchy

between scalar and tensor static polarizabilities. Those results

are similar to those obtained for Dy-Dy [68] and Er-Er pairs

[74].

With the rapid developments in the field of dipolar quan-

tum gases and ongoing experiments involving highly mag-

netic lanthanide atoms, the present results will be beneficial

for studies of collisional properties of heteronuclear quan-

tum mixtures containing dysprosium or erbium atoms and

alkali-metal or alkaline-earth metal atoms. In particular, the

anisotropic C6,20 coefficients are expected to be the main

source of coupling between scattering channels, and so of the

emergence of Feshbach resonances in those systems. The de-

rived formulas can also be employed to calculate long-range

coefficients for other similar neutral or ionic atomic combina-

tions.
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New J. Phys. 22, 023024 (2020).

[60] M. D. Frye, S. L. Cornish, and J. M. Hutson,

Phys. Rev. X 10, 041005 (2020).

[61] A. A. Buchachenko, G. Chalasinski, and M. M. Szczesniak,

J. Chem. Phys. 131, 241102 (2009).

[62] E. Tiesinga, J. Kłos, M. Li, A. Petrov, and S. Kotochigova,

New J. Phys. 23, 085007 (2021).

[63] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga,

Rev. Mod. Phys. 82, 1225 (2010).

[64] A. Stone, The Theory of Intermolecular Forces (Oxford Univer-

sity Press, New York, 1996).

[65] I. Kaplan, Intermolecular interactions: physical picture, com-

putational methods and model potentials (John Wiley & Sons,

2006).

[66] G. C. Groenenboom, X. Chu, and R. V. Krems,

J. Chem. Phys. 126, 204306 (2007).

[67] M. Lepers and O. Dulieu, Cold Chemistry: Molecular Scatter-

ing and Reactivity Near Absolute Zero, , 150 (2018).

[68] H. Li, J.-F. Wyart, O. Dulieu, S. Nascimbène, and M. Lepers,

J. Phys. B: At. Mol. Opt. Phys. 50, 014005 (2016).

[69] M. Lepers and O. Dulieu,

Phys. Chem. Chem. Phys. 13, 19106 (2011).

[70] D. A. Varshalovich, A. N. Moskalev, and V. K. Kherson-

skii, Quantum Theory of Angular Momentum (World Scientific,

1988).

[71] T. Y. Chang, Rev. Mod. Phys. 39, 911 (1967).

[72] J. Angel and P. Sandars,

Proc. R. Soc. London A 305, 125 (1968).

[73] H. Li, J.-F. Wyart, O. Dulieu, and M. Lepers,

Phys. Rev. A 95, 062508 (2017).

[74] M. Lepers, J.-F. Wyart, and O. Dulieu,

Phys. Rev. A 89, 022505 (2014).

[75] J. H. Becher, S. Baier, K. Aikawa, M. Lepers, J.-F. Wyart,

O. Dulieu, and F. Ferlaino, Phys. Rev. A 97, 012509 (2018).

[76] M. Lepers, O. Dulieu, and J.-F. Wyart,

J. Quant. Spectrosc. Rad. Transf. 297, 108470 (2023).

[77] A. Derevianko, S. G. Porsev, and J. F. Babb,

At. Data Nucl. Data Tables 96, 323 (2010).

[78] X. Chu, A. Dalgarno, and G. C. Groenenboom, Phys. Rev. A

72, 032703 (2005).

[79] X. Chu, A. Dalgarno, and G. Groenenboom,

Phys. Rev. A 75, 032723 (2007).

[80] T. Chalopin, V. Makhalov, C. Bouazza, A. Evrard, A. Barker,

M. Lepers, J.-F. Wyart, O. Dulieu, J. Dalibard, R. Lopes, et al.,

Phys. Rev. A 98, 040502 (2018).

[81] A. Patscheider, B. Yang, G. Natale, D. Petter, L. Chomaz,

M. J. Mark, G. Hovhannesyan, M. Lepers, and F. Ferlaino,

Phys. Rev. Research 3, 033256 (2021).

[82] R.-H. Rinkleff and F. Thorn, Z. Phys. D 32, 173 (1994).

[83] L. Ma, J. Indergaard, B. Zhang, I. Larkin, R. Moro, and W. A.

de Heer, Phys. Rev. A 91, 010501 (2015).

[84] V. Dzuba, Phys. Rev. A 93, 032519 (2016).

[85] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer,

S. Tzanova, E. Kirilov, and R. Grimm,

http://dx.doi.org/10.1126/science.1184121
http://dx.doi.org/10.1103/PhysRevLett.113.255301
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1103/PhysRevLett.116.205303
http://dx.doi.org/10.1126/sciadv.aaq0083
http://dx.doi.org/10.1103/PhysRevLett.115.203201
http://dx.doi.org/10.1103/PhysRevResearch.5.033117
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1038/srep27448
http://dx.doi.org/10.1103/PhysRevResearch.4.013235
http://dx.doi.org/10.1103/PhysRevA.89.023612
http://dx.doi.org/10.1088/1402-4896/aadd72
http://dx.doi.org/10.1088/1361-6455/aaf35e
http://dx.doi.org/10.1103/PhysRevLett.112.250404
http://dx.doi.org/10.1088/0034-4885/73/7/076501
http://dx.doi.org/10.1038/srep39783
http://dx.doi.org/10.1103/PhysRevA.106.053322
http://dx.doi.org/10.1103/PhysRevA.98.063624
http://dx.doi.org/10.1103/PhysRevLett.124.203402
http://dx.doi.org/10.1103/PhysRevA.106.043314
http://dx.doi.org/10.1103/PhysRevLett.121.213601
http://dx.doi.org/10.1103/PhysRevA.102.033330
http://dx.doi.org/10.1103/PhysRevA.105.023304
http://dx.doi.org/10.1103/PhysRevA.105.012816
http://dx.doi.org/10.1103/PhysRevA.106.053318
http://dx.doi.org/10.1103/PhysRevLett.129.093402
http://dx.doi.org/10.1103/PhysRevA.107.L031306
http://dx.doi.org/10.1103/PhysRevA.81.052706
http://dx.doi.org/10.1103/PhysRevA.88.012519
http://dx.doi.org/10.1103/PhysRevA.90.022514
http://dx.doi.org/10.1103/PhysRevA.92.062701
http://dx.doi.org/10.1103/PhysRevA.98.032704
http://dx.doi.org/10.1103/PhysRevA.92.022708
http://dx.doi.org/10.1088/1367-2630/ab6c36
http://dx.doi.org/10.1103/PhysRevX.10.041005
http://dx.doi.org/10.1063/1.3282332
http://dx.doi.org/10.1088/1367-2630/ac1a9a
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1063/1.2733643
http://dx.doi.org/10.1088/1361-6455/50/1/014005
http://dx.doi.org/10.1039/C1CP21568J
http://dx.doi.org/10.1103/RevModPhys.39.911
http://dx.doi.org/10.1098/rspa.1968.0109
http://dx.doi.org/10.1103/PhysRevA.95.062508
http://dx.doi.org/10.1103/PhysRevA.89.022505
http://dx.doi.org/10.1103/PhysRevA.97.012509
http://dx.doi.org/10.1016/j.jqsrt.2022.108470
http://dx.doi.org/https://doi.org/10.1016/j.adt.2009.12.002
http://dx.doi.org/10.1103/PhysRevA.75.032723
http://dx.doi.org/10.1103/PhysRevA.98.040502
http://dx.doi.org/10.1103/PhysRevResearch.3.033256
http://dx.doi.org/10.1007/BF01437144
http://dx.doi.org/10.1103/PhysRevA.91.010501
http://dx.doi.org/10.1103/PhysRevA.93.032519


9

Phys. Rev. Lett. 120, 223001 (2018).

http://dx.doi.org/10.1103/PhysRevLett.120.223001

