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Abstract. The first part of this paper is devoted to the theory of Poisson–Lie groups in the
Banach setting. Our starting point is the straightforward adaptation of the notion of Manin
triples to the Banach context. The difference with the finite-dimensional case lies in the fact
that a duality pairing between two non-reflexive Banach spaces is necessary weak (as opposed
to a strong pairing where one Banach space can be identified with the dual space of the other).
The notion of generalized Banach Poisson manifolds introduced in this paper is compatible with
weak duality pairings between the tangent space and a subspace of the dual. We investigate
related notion like Banach Lie bialgebras and Banach Poisson–Lie groups, suitably generalized
to the non-reflexive Banach context.

The second part of the paper is devoted to the treatment of particular examples of Banach
Poisson–Lie groups related to the restricted Grassmannian and the KdV hierarchy. More pre-
cisely, we construct a Banach Poisson–Lie group structure on the unitary restricted Banach
Lie group which acts transitively on the restricted Grassmannian. A“dual” Banach Lie group
consisting of (a class of) upper triangular bounded operators admits also a Banach Poisson–Lie
group structure of the same kind. We show that the restricted Grassmannian inherits a gen-
eralized Banach Poisson structure from the unitary Banach Lie group, called Bruhat-Poisson
structure. Moreover the action of the triangular Banach Poisson–Lie group on it is a Poisson
map. This action generates the KdV hierarchy, and its orbits are the Schubert cells of the
restricted Grassmannian.

Keywords: restricted Grassmannian; Bruhat decomposition; Poisson manifold; coadjoint orbits;
Poisson maps; Poisson–Lie groups, Lie bialgebras, Lie–Poisson spaces, Schatten ideals.
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Introduction

Poisson–Lie groups and Lie bialgebras were introduced by Drinfel’d in [15]. From this starting
point, these notions and their relations to integrable systems were extensively studied. We refer
the readers to the very well documented papers [25], [56], [31] and the references therein. For a
more algebraic approach to Poisson–Lie groups and their relation to quantum groups we refer
to [9]. For more details about dual pairs of Poisson manifolds we refer to [61], applications
to the study of equations coming from fluid dynamics were given in [16], [17] and [18], and
applications to geometric quantization can be found in [3]. The motivation to write the present
paper comes mainly from the reading of [32], [52] and [42]. In [32], the Bruhat-Poisson structure
of finite-dimensional Grassmannians were studied. In [52], the relation between the infinite-
dimensional restricted Grassmannian and equations of the KdV hierarchy was established. In
[42], the Schubert cells of the restricted Grassmannian were shown to be homogeneous spaces
with respect to the natural action of some triangular group, which appears to contain the group
that generates the KdV hierarchy in [52]. It is therefore natural to ask the following questions :

Question 0.1. Does the restricted Grassmannian carry a Bruhat-Poisson structure? Can the
KdV hierarchy be related to a Poisson action of a Poisson–Lie group on the restricted Grass-
mannian?

The difficulties to answer these questions come mainly from the following facts

• taking the upper triangular part of some infinite-dimensional matrix does not preserve
the Banach space of bounded operators, nor the Banach space of trace-class operators.

• Iwasawa decompositions may not exist in the context of infinite-dimensional Banach Lie
groups (see however [4] and [7] where some Iwasawa type factorisations where estab-
lished).

Related papers on Poisson geometry in the infinite-dimensional setting are [13], [35], [37] and [66]
(see Section 3). Let us mention that a hierarchy of commuting Hamiltonian equations related to
the restricted Grassmannian was described in [20]. In the aforementionned paper, the method
of F. Magri was used to generate the integrals of motions. It would be interesting to explore
the link between equations studied in [20] and the Bruhat-Poisson structure of the restricted
Grassmannian introduced in the present paper. Some integrable systems on subspaces of Hilbert-
Schmidt operators were also introduced in [14]. There, the coinduction method suggested in [39]
was used to construct Banach Lie–Poisson spaces obtained from the ideal of real Hilbert-Schmidt
operators, and Hamiltonian systems related to the k-diagonal Toda lattice were presented. Last
but not least, the relation between the Bruhat-Poisson structure on the restricted Grassmannian
constructed in the present paper and the Poisson–Lie group of Pseudo-Differential symbols
considered in [21] in relation to the Korteweg-de Vries hierarchy needs further study, and the
link with the Poisson–Lie Grassmannian introduced in [66] has to be clarified.

The present paper just approaches some aspects of the theory of Banach Poisson–Lie groups,
and a more systematic study of the infinite-dimensional theory would be interesting. It is written
to be as self-contained as possible, and we hope that our exposition enables functional-analysts,
geometers and physicists to read it. However the notions of Banach manifold and fiber bundles
over Banach manifolds will not be recalled and we refer the readers to [30] for more introductory
exposition.

The paper is organized as follows. Part 1 is devoted to the general theory of Banach Poisson–
Lie groups and related structures. The exposition goes in the opposite direction of the usual
exposition in the finite-dimensional setting, where the notion of finite-dimensional Poisson–Lie
groups is introduced first, followed by the notion of Lie bialgebra (which is the structure that a
Lie algebra of a Poisson–Lie group inherits), and at last the notion of Manin triples. Here we
start with the notion of Banach Manin triples, since it is a notion of linear algebra that is easy
to adapted to the Banach context, and which provides a good entry point into the theory of
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(Banach) Poisson–Lie groups. This point of view allows us to introduce little by little notation
and notions that are fundamental for the paper : the notion of duality pairing is recalled in
Section 1.1, the notion of coadjoint action on bounded multilinear maps on subspaces of the
dual is defined in Section 2.3, and the notion of 1-cocycles on a Banach Lie group or a Banach
Lie algebra is explained in Section 2.5. Generalized Banach Poisson manifolds are defined in
Section 3.1. In Section 3.2 we show that weak symplectic Banach manifolds are examples of
generalized Banach Poisson manifolds. In Section 3.3, we adapt the notion of Banach Lie–
Poisson spaces introduced in [37] to the case of an arbitrary duality pairing between two Banach
Lie algebras, and show that they are generalized Banach Poisson manifolds (Theorem 3.14).
The notion of Banach Lie bialgebras is introduced in Section 4, and its relation to the notion of
Banach Manin triples is given by the following Theorem :

Theorem 0.2 (Theorem 4.9). Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in duality. Denote by g the Banach space g = g+ ⊕ g− with norm ‖ · ‖g = ‖ · ‖g+ + ‖ · ‖g− . The
following assertions are equivalent.

(1) g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g−;
(2) (g, g+, g−) is a Banach Manin triple for the non-degenerate symmetric bilinear map given

by
〈·, ·〉g : g× g → K

(x, α) × (y, β) 7→ 〈x, β〉g+ ,g− + 〈y, α〉g+ ,g− .

Finally Section 5 is devoted to the notion of Banach Poisson–Lie groups. Basic examples are
given in Section 5.3. In Section 5.4, we prove that the Lie algebra g of a Banach Poisson–Lie
group (G,F, π) carries a natural structure of Banach Lie bialgebra with respect to Fe, and, with
an additional condition on the Poisson tensor, is a Banach Lie–Poisson space with respect to Fe.

The generalized notion of Banach Poisson manifolds introduced in Part 1 is adapted to the
particular examples of Poisson–Lie groups we present in Part 2. Examples of Banach Poisson–
Lie group in our sense include the restricted unitary group Ures(H) and the restricted triangular
group B+

res(H), which are modelled on non-reflexive Banach spaces (see Section 7.3). In Section 8,
we show that the restricted Grassmannian viewed as homogeneous space under Ures(H) inherits
a Poisson structure in analogy to the finite-dimensional picture developped in [32] and called
Bruhat-Poisson structure. Moreover, the natural action of the Poisson–Lie group B+

res(H) on
the restricted Grassmannian is a Poisson map, and its orbits are the Schubert cells described in
[42]. These results are summarized in the following Theorem (see Theorem 8.3, Theorem 9.1,
and Theorem 9.5).

Theorem 0.3. The restricted Grassmannian

Grres(H) = Ures(H)/U(H+)×U(H−) = GLres(H)/Pres(H)

carries a natural Poisson structure such that :

(1) the canonical projection p : Ures(H) → Grres(H) is a Poisson map,
(2) the natural action of Ures(H) on Grres(H) by left translations is a Poisson map,
(3) the following right action of B+

res(H) on Grres(H) = GLres(H)/Pres(H) is a Poisson
map :

Grres(H)× B+
res(H) → Grres(H)

(g Pres(H), b) 7→ (b−1g) Pres(H).

(4) the symplectic leaves of Grres(H) are the Schubert cells and are the orbits of B+
res(H).

Let us mention that the infinite-dimensional abelian subgroup of B+
res(H) generated by the shift

induces the KdV hierarchy as explained in [52].
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Part 1. Banach Poisson–Lie groups and related structures

This Part is devoted to the general theory of Banach Poisson–Lie groups that will be needed
in Part 2. Examples of Banach Poisson–Lie groups are given in Section 5.3. The Banach Lie
bialgebra struture of the Lie algebra of a Banach Poisson–Lie group is constructed in Section 5.4.

1. Manin triples in the infinite-dimensional setting

We start in this Section with the easiest notion related to Poisson–Lie groups, namely the
notion of Manin triples. It will allow us to set up some notation used in the present paper, and
recall the notion of duality pairing, which is crucial for the following Sections. The unbound-
edness of the triangular truncation on the space of trace class operators and on the space of
bounded operators (see Section 1.4) will have important consequences in Section 7.2. Examples
of Banach Manin triples coming from Iwasawa decompositions are given in Section 1.5. In par-
ticular, the Manin triple

(

L2(H), u2(H), b+2 (H)
)

of Hilbert-Schmidt operators will have a key
rôle in the proofs of most Theorems in Part 2.

1.1. Duality pairings of Banach spaces. In this paper, we will consider real or complex
Banach spaces, and we will denote by K ∈ {R,C} the scalar field. The dual g∗ of a Banach
space g will mean the continuous dual, i.e. the Banach space of bounded linear forms with
values in K. In a lot of applications, the dual of a Banach space g is to big to work with, and
one uses proper subspaces of g∗. A duality pairing between two Banach spaces allows to identify
one Banach space with a subspace of the dual of the other. Additional structures on one of the
Banach spaces (like a Lie bracket for instance) give rise to additional structures on the other
Banach space via duality.

1.1.1. Definition of strong and weak duality pairings. Let us recall the notion of duality pairing
in the infinite-dimensional setting (see [1], supplement 2.4.C).

Definition 1.1. Let g1 and g2 be two normed vector spaces over the same field K ∈ {R,C}, and
let

〈·, ·〉g1,g2 : g1 × g2 → K

be a continuous bilinear map. One says that the map 〈·, ·〉g1 ,g2 is a duality pairing between g1
and g2 if and only if it is non-degenerate, i.e. if the following two conditions hold :

(〈x, y〉g1,g2 = 0, ∀x ∈ g1) ⇒ y = 0 and (〈x, y〉g1,g2 = 0, ∀y ∈ g2) ⇒ x = 0.

Definition 1.2. A duality pairing 〈·, ·〉g1 ,g2 is a strong duality pairing between g1 and g2 if
and only if the two continuous linear maps

(1.1)
g1 −→ g∗2
x 7−→ 〈x, ·〉g1,g2

and
g2 −→ g∗1
y 7−→ 〈·, y〉g1,g2

are isomorphisms. In all other cases, the duality pairing is called weak.

The non-degenerate condition of a duality pairing implies that the maps (1.1) are injective.
In other words, the existence of a duality pairing between g1 and g2 allows to identify g1 with
a subspace (not necessary closed!) of the continuous dual g∗2 of g2, and g2 with a subspace of
g∗1, wheras a strong duality pairing gives isomorphisms g1 ≃ g∗2 and g2 ≃ g∗1. Therefore the
existence of a strong duality pairing between g1 and g2 implies that g1 and g2 are reflexive
Banach spaces. Note that in the finite-dimensional case, a count of the dimensions shows that
any duality pairing is a strong duality pairing.

Remark 1.3. By Hahn-Banach Theorem, the natural pairing between a Banach space g and
its continuous dual g∗ is a duality pairing. It is a strong duality pairing in the reflexive case
g∗∗ = g.
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1.1.2. Notation and Examples. In order to give examples of duality pairings, let us introduce
some notation used in the present paper. The letter H will refer to a general complex separable
infinite-dimensional Hilbert space. The inner product in H will be denoted by 〈·|·〉 : H×H → H
and will be complex-linear in the second variable, and conjugate-linear in the first variable.

Banach algebra L∞(H) of bounded operators over a Hilbert space H. Denote by L∞(H) the
space of bounded linear maps from H into itself. It is a Banach space for the norm of operators
‖A‖∞ := sup‖x‖≤1 ‖Ax‖ and a Banach Lie algebra for the bracket given by the commutator of

operators : [A,B] = A ◦ B − B ◦ A, for A, B ∈ L∞(H). In the following, we will denote the
composition A ◦B of the operators A and B simply by AB.

Hilbert algebra L2(H) of Hilbert-Schmidt operators. A bounded operator A admits an adjoint
A∗ which is the bounded linear operator defined by 〈A∗x|y〉 = 〈x|Ay〉. A positive operator is a
bounded operator such that 〈ϕ|Aϕ〉 ≥ 0 for any ϕ ∈ H. By polarization, if A is positive then
A∗ = A. The trace of a positive operator A is defined as

TrA :=

+∞
∑

n=1

〈ϕn|Aϕn〉 ∈ [0,+∞],

where ϕn is any orthonormal basis of H (the right hand side does not depend on the choice
of orthonormal basis, see Theorem 2.1 in [57]). The Schatten class L2(H) of Hilbert-Schmidt
operators is the subspace of L∞(H) consisting of bounded operators A such that ‖A‖2 :=

(Tr (A∗A))
1

2 is finite. It is a Banach Lie algebra for ‖ · ‖2 and for the bracket given by the
commutator of operators. It is also an ideal of L∞(H) in the sense that for any A ∈ L2(H) and
any B ∈ L∞(H), one has AB ∈ L2(H) and BA ∈ L2(H).

Banach algebra L1(H) of trace-class operators. For a bounded linear operator A, the square root

of A∗A is well defined, and denoted by (A∗A)
1

2 (see Theorem VI.9 in [43]). The Schatten class
L1(H) of trace class operators is the subspace of L∞(H) consisting of bounded operators A such

that ‖A‖1 := Tr (A∗A)
1

2 is finite. It is a Banach Lie algebra for ‖ · ‖1 and for the bracket given
by the commutator of operators. We recall that for any A ∈ L1(H) (not necessarly positive),
the trace of A is defined as

TrA :=

∞
∑

n=1

〈ϕn|Aϕn〉,

where {ϕn} is any orthonormal basis of H (the right hand side does not depend on the orthonor-
mal basis, see Theorem 3.1 in [57]) and that we have

|TrA| ≤ ‖A‖1.

Moreover L1(H) is an ideal of L∞(H), i.e. for any A ∈ L1(H) and any B ∈ L∞(H), AB ∈ L1(H)
and BA ∈ L1(H), and furthermore TrAB = TrBA. Finally for A and B in L2(H), one has
AB ∈ L1(H), BA ∈ L1(H), and TrAB = TrBA (see Corollary 3.8 in [57]).

Banach algebras Lp(H). For any 1 < p < ∞, the Schatten class Lp(H) is the subspace of L∞(H)
consisting of bounded operators A such that

‖A‖p :=
(

Tr (A∗A)
p
2

) 1

p

is finite. It is a Banach algebra for the norm ‖ · ‖p and for the bracket given by the commutator
of operators. Moreover Lp(H) is an ideal of L∞(H) : for any A ∈ Lp(H) and any B ∈ L∞(H),
AB ∈ Lp(H) and BA ∈ Lp(H).
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Remark 1.4. For 1 < p < 2 < q < ∞, one has

L1(H) →֒ Lp(H) →֒ L2(H) →֒ Lq(H) →֒ L∞(H),

where each injection is a continuous map between Banach spaces. In the following, we will
repeatedly use these inclusions.

Let us now give some examples of duality pairings.

Example 1.5. The trace of the product of two operators (A,B) 7→ TrAB is a strong duality
pairing between L2(H) and itself.

Example 1.6. Since L1(H) is a dense subspace of L2(H), one obtains a weak duality pairing
between L1(H) and L2(H) by considering the bilinear map (A,B) 7→ TrAB with A ∈ L1(H)
and B ∈ L2(H).

Example 1.7. Since the dual of L1(H) can be identified with L∞(H) using the trace, one has a
weak duality pairing between L1(H) and L∞(H) by considering the bilinear map (A,B) 7→ TrAB
with A ∈ L1(H) and B ∈ L∞(H). Note that the dual space of L∞(H) stricktly contains L1(H)
as a closed subspace.

Example 1.8. For 1 < p < ∞, define 1 < q < ∞ by the relation 1
p +

1
q = 1. For any A ∈ Lp(H)

and any B ∈ Lq(H), AB ∈ L1(H) and BA ∈ L1(H) with

‖AB‖1 ≤ ‖A‖p‖B‖q and ‖BA‖1 ≤ ‖A‖p‖B‖q,

(see Proposition 5, page 41 in [44]) and furthermore TrAB = TrBA. Moreover the trace of
the product of two operators (A,B) 7→ TrAB is a strong duality pairing between Lp(H) and
Lq(H) and gives rise to the following identifications (see Proposition 7, page 43 in [44] and
Theorem VI.26, page 212 in [43]) :

(Lp(H))∗ ≃ Lq(H) and (Lq(H))∗ ≃ Lp(H)

1.2. Duals and injection of Banach spaces. Suppose that h is a Banach space that injects
continuously into another Banach space g, i.e. one has a continuous injection ι : h →֒ g. Then
one can consider two different dual spaces : the dual space h∗ which consists of linear forms on
the Banach space h which are continuous with respect to the operator norm associated to the
Banach norm ‖ · ‖h on h, and the norm dual ι(h)∗ of the subspace ι(h) ⊂ g endowed with the
norm ‖ · ‖g of g, consisting of continuous linear forms on the normed vector space (ι(h), ‖ · ‖g).
Note that, since R is complete, ι(h)∗ is complete even if ι(h) is not closed in g (see for instance
[10] section 1.1). Let us compare these two duals : h∗ on one hand and ι(h)∗ on the other hand.
First note that one gets a well-defined map

ι∗ : g∗ → h∗

f 7→ f ◦ ι

since f ◦ι is continuous for the operator norm induced by the norm of h whenever f is continuous
for the operator norm induced by the norm on g. Note that ι∗ is surjective if and only if any
continuous form on h can be extended to a continuous form on g. On the other hand, ι∗ is
injective if and only if the only continuous form on g that vanishes on ι(h) is the zero form.

Suppose that the range of ι : h →֒ g is closed. Then ι(h) endowed with the norm of g is a
Banach space. It follows that ι is a continuous bijection from the Banach space h onto the Banach
space ι(h), therefore by the open mapping theorem, it is an isomorphism of Banach spaces (see
for instance Corollary 2.7 in [10]). In this case, any continuous form on h is continuous for the
norm of g i.e. one has h∗ = ι(h)∗. By Hahn-Banach theorem, any continuous form on ι(h) can
be extended to a continuous form on g with the same norm (see Corollary 1.2 in [10]). Therefore
the dual map ι∗ : g∗ → h∗ is surjective. Its kernel is the annihilator ι(h)0 of ι(h) and h∗ is
isomorphic to the quotient space g∗/ι(h)0.
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Example 1.9. The injection of the Banach space of compact operators K(H) on a separable
Hilbert space H into the Banach space of bounded operators L∞(H) is closed. The dual map
ι∗ : L∞(H)∗ → K(H)∗ is surjective and K(H)∗ can be identified with the space L1(H) of trace
class operators on H using the trace. Therefore L1(H) is isomorphic to the quotient space
L∞(H)∗/K(H)0.

Suppose now that the range of ι : h →֒ g is dense in g. In this case, any continuous form on
ι(h) extends in a unique way to a continuous form on g with the same norm i.e. ι(h)∗ = g∗. The
kernel of ι∗ consists of continuous maps on g that vanish on the dense subspace ι(h), hence is
reduced to 0. In other words ι∗ : g∗ → h∗ is injective (see also Corollary 1.8 in [10]).

Example 1.10. Consider the inclusion ι : L1(H) →֒ L2(H) of the space of trace-class operators
into the space of Hilbert-Schmidt operators on H. Then the range of ι is dense. This leads to
the injection ι∗ : L2(H)∗ = L2(H) →֒ L1(H)∗ = L∞(H).

1.3. Definition of Banach Manin triples. The notion of Manin triple is a notion of linear
algebra that can be adapted in a straightforward way to the Banach context.

Definition 1.11. A Banach Manin triple consists of a triple of Banach Lie algebras (g, g+, g−)
over a field K and a non-degenerate symmetric bilinear continuous map 〈·, ·〉g on g such
that

(1) the bilinear map 〈·, ·〉g is invariant with respect to the bracket [·, ·]g of g, i.e.

(1.2) 〈[x, y]g, z〉g + 〈y, [x, z]g〉g = 0, ∀x, y, z ∈ g;

(2) g = g+ ⊕ g− as Banach spaces;
(3) both g+ and g− are Banach Lie subalgebras of g;
(4) both g+ and g− are isotropic with respect to the bilinear map 〈·, ·〉g.

Note that in the Banach context, it is important to ask for the continuity of the bilinear map
〈·, ·〉g, as well as for a decomposition g = g+ ⊕ g− of g into the sum of two closed Banach
subspaces. Let us make some remarks which are simple consequences of the definition of a
Manin triple.

Remark 1.12. Given a Manin triple (g, g+, g−), condition (2) implies that any continuous linear
form α on g decomposes in a continuous way as

α = α ◦ pg+ + α ◦ pg− ,

where pg+ (resp. pg−) is the continuous projection onto g+ (resp. g−) with respect to the
decomposition g = g+ ⊕ g−. In other words, one has a decomposition of the continuous dual g∗

of g as
g∗ = g0− ⊕ g0+,

where g0± is the annihilator of g±, i.e.

g0± := {α ∈ g∗ : α(x) = 0, ∀x ∈ g±}.

Moreover any continuous linear form β on g+ can be extended in a unique way to a continuous
linear form on g belonging to g0− by β 7→ β ◦ p+. It follows that one has an isomorphism

g∗+ ≃ g0−,

and similarly
g∗− ≃ g0+.

Remark 1.13. Given a Manin triple (g, g+, g−) where 〈·, ·〉g is a strong duality pairing, any
continuous linear form on g can be written as 〈x, ·〉g for some x ∈ g. In particular, for any
subspace h ⊂ g, one has

h0 ≃ h⊥,
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where
h⊥ := {x ∈ g : 〈x, y〉g = 0, ∀y ∈ h}.

Moreover, any continuous linear form β on g+ can be represented as β(x) = 〈x, y〉g for a unique
element y ∈ g−. Therefore, in this case,

g− ≃ g∗+

and similarly
g+ ≃ g∗−.

1.4. Triangular truncations of operators. Endow the separable complex Hilbert space H
with an orthonormal basis {|n〉}n∈Z ordered according to decreasing values of n. For 1 ≤ p ≤ ∞,
consider the following Banach Lie subalgebras of Lp(H)

(1.3)

Lp(H)− := {x ∈ Lp(H) : x|n〉 ∈ span{|m〉,m ≤ n}}
(lower triangular operators)

Lp(H)++ := {x ∈ Lp(H) : x|n〉 ∈ span{|m〉,m > n}}
(strictly upper triangular operators).

and

(1.4)

Lp(H)+ := {α ∈ Lp(H) : α|n〉 ∈ span{|m〉,m ≥ n}}
(upper triangular operators)

Lp(H)−− := {α ∈ Lp(H) : α|n〉 ∈ span{|m〉,m < n}}
(strictly lower triangular operators).

The linear transformation T− consisting in taking the lower triangular part of an operator with
respect to the orthonormal basis {|n〉}n∈Z of H is called a triangular truncation or triangular
projection (see [2]) and is defined as follows :

(1.5) 〈m|T−(A)n〉 :=

{

〈m|An〉 if m ≤ n
0 if m > n

Similarly, the linear transformation T++ consisting in taking the stricktly upper triangular part
of an operator with respect to {|n〉}n∈Z is defined as follows :

(1.6) 〈m|T++(A)n〉 :=

{

〈m|An〉 if m > n
0 if m ≤ n

The linear transformation D consisting in taking the diagonal part of a linear operator is defined
by

(1.7) 〈m|D(A)n〉 :=

{

〈m|An〉 if n = m
0 if n 6= m

Remark 1.14. The triangular truncations T− and T++ are unbounded on L∞(H) and on L1(H),
but are bounded on Lp(H) for 1 < p < ∞ (see [33], [28], [19] as well as Proposition 4.2 in [2]
for the proof and more detail on the subject). See also [12] for an example of bounded operator
whose triangular truncation is unbounded (Hilbert matrix). As far as we know the existence
and construction of a trace class operator whose triangular projection is not trace class is an
open problem. We refer the reader to [5] for related functional-analytic issues in the theory of
Banach Lie groups.

Denote by T+ = T++ + D (resp. T−− = T− − D) the linear transformation consisting in
taking the upper triangular part (resp. strictly lower triangular part) of an operator. One has
for 1 < p < ∞,

(1.8) Lp(H) = Lp(H)+ ⊕ Lp(H)−−,
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and

(1.9) Lp(H) = Lp(H)− ⊕ Lp(H)++.

1.5. Example of Iwasawa Manin triples. The Iwasawa decomposition of a finite-dimensional
semi-simple Lie group is a generalization of the decomposition of GL(n,C) as the product of
SU(n)×A×N , where A is the abelian group of diagonal matrices with positive real coefficients,
and N is the group of triangular matrices whose diagonal entries are all equal to 1. The
product A × N is often denoted by B for Borel subgroup. At the level of Lie algebras, the
Iwasawa decomposition gives rise to the decomposition M(n,C) = u(n) ⊕ b(n), where b(n) is
the Lie algebra of complex triangular matrices with real coefficients on the diagonal. Since
the triangular truncation defined in Section 1.4 is bounded on Lp(H) for 1 < p < ∞, we can
generalize this decomposition to the Banach context (see Lemma 1.15). As explained in [32],
(M(n,C), u(n), b(n)) is an example of Manin triple, where the duality pairing is given by the
imaginary part of the trace. This duality pairing can be defined on Lp(H) for 1 < p ≤ 2 because
in this case Lp(H) injects into its dual. This gives rise to Banach Manin triples, that we will
call Iwasawa Manin triples (see Proposition 1.16 below).

We will use the following notation. The real Banach Lie algebra up(H) is the Lie algebra of
skew-Hermitian operators in Lp(H) :

(1.10) up(H) := {A ∈ Lp(H) : A∗ = −A}.

The real Banach subalgebras b+p (H) and b−p (H) of Lp(H) are the triangular Banach algebras
defined as follows :

(1.11)
b+p (H) := {α ∈ Lp(H) : α|n〉 ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z},
b−p (H) := {α ∈ Lp(H) : α|n〉 ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

Lemma 1.15. For 1 < p < ∞, one has the following direct sum decompositions of Lp(H) into
the sum of closed subalgebras

(1.12) Lp(H) = up(H)⊕ b+p (H),

and

(1.13) Lp(H) = up(H)⊕ b−p (H).

The projection pup,+ onto up(H) with respect to the decomposition (1.12) reads

(1.14) pup,+(A) = T−−(A)− T−−(A)
∗ +

1

2
[D(A)−D(A)∗] , where A ∈ Lp(H).

Similarly, the projection pup,− onto up(H) with respect to the decomposition (1.13) reads :

(1.15) pup,−(A) = T++(A)− T++(A)
∗ +

1

2
[D(A)−D(A)∗] , where A ∈ Lp(H).

Proof. Since the triangular truncations T+ : Lp(H) → Lp(H) and T++ : Lp(H) → Lp(H) are
bounded for 1 < p < ∞ (see remark 1.14), the same is true for the operator D = T+ − T++.
The Lemma follows as in the finite-dimensional case. �

Proposition 1.16. For 1 < p ≤ 2, the triples of Banach Lie algebras (Lp(H), up(H), b+p (H))

and (Lp(H), up(H), b−p (H)) are real Banach Manin triples with respect to the pairing given by
the imaginary part of the trace

(1.16)
〈·, ·〉R : Lp(H)× Lp(H) −→ R

(x, y) 7−→ ℑTr (xy) .
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Proof. • Let us show that the bilinear form on Lp(H) given by the imaginary part of the
trace is invariant with respect to the bracket given by the commutator. Set q := p

p−1 .

Then 1 < p ≤ 2 ≤ q < ∞. For any x, y, z ∈ Lp(H), recall that Lp(H) · Lp(H) ⊂ Lp(H),
Lp(H) ⊂ Lq(H), and Lp(H) · Lq(H) ⊂ L1(H). Therefore one has

Tr ([x, y]z) = Tr (xyz − yxz) = Tr (xyz)− Tr (yxz)
= Tr (yzx)− Tr (yxz) = −Tr y[x, z],

where the second equality follows from the fact that both xyz and yxz are in L1(H), and
the third is justified since yz belongs to L1(H) and x is bounded. Taking the imaginary
part of the trace preserves this invariance. Hence 〈·, ·〉R is invariant with respect to the
Lie bracket of Lp(H).

• By Lemma 1.15, one has the direct sum decompositions

Lp(H) = up(H)⊕ b±p (H).

• Note that 〈·, ·〉R is well-defined because Lp(H) ⊂ Lq(H) for 1 < p ≤ 2. It is clearly
symmetric and continuous. Let us show that 〈·, ·〉R is a non-degenerate bilinear form on
Lp(H). Denote by HR the real Hilbert space generated by {|n〉}n∈Z. Any bounded linear
operator A on the complex Hilbert space H = HR + iHR can be written in blocks as

A =

(

ℜA −ℑA
ℑA ℜA

)

.

where ℜA : HR → HR and ℑA : HR → iHR. In particular, A ∈ Lp(H) is the C-linear
extension of ℜA+ iℑA (note that this is not the decomposition of A into its symmetric
and skew-symmetric parts). Therefore, for any A,B ∈ Lp(H),

ℑTr (AB) = Tr (ℜAℑB + ℑAℜB) .

Suppose that ℑTr (AB) = 0 for any B ∈ Lp(H). Since Lp(H) is dense in L2(H), this
implies that TrℜA · C = 0 for any operator C ∈ L2(HR), and TrℑA · D = 0 for any
D ∈ L2(HR). It follows that ℜA = 0 and ℑA = 0 because the trace is a strong duality
pairing between L2(HR) and itself.

• It is easy to show that up(H) ⊂ (up(H))⊥, b+p (H) ⊂
(

b+p (H)
)⊥

and b−p (H) ⊂
(

b−p (H)
)⊥

,

in other words up(H), b+p (H) and b−p (H) are isotropic subspaces with respect to the
pairing 〈·, ·〉R.

�

Remark 1.17. In the previous Proposition, the condition 1 < p ≤ 2 is necessary in order to
define the trace of the product of two elements in Lp(H) (Lp(H) is contained in its dual Lq(H)
for 1 < p ≤ 2).

2. From Manin triples to 1-cocycles

The existence of a Lie bracket on a Banach space g+ has consequences on any Banach space
g− in duality with g+. Under some stability and continuity conditions (see Section 2.2), g+ will
act on g− by coadjoint action, as well as on the space of bounded multilinear maps on g− (see
Section 2.3). When g+ and g− form a Banach Manin triple, a natural 1-cocycle with respect
to the action of g+ on the space of skew-symmetric bilinear maps on g− can be defined (see
Section 2.6).

2.1. Adjoint and coadjoint actions. Recall that a Banach Lie algebra g+ acts on itself, its
continuous dual g∗+ and bidual g∗∗+ by the adjoint and coadjoint actions :

ad : g+ × g+ −→ g+
(x, y) 7−→ adxy := [x, y],
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−ad∗ : g+ × g∗+ −→ g∗+
(x, α) 7−→ −ad∗xα := −α ◦ adx,

and

ad∗∗ : g+ × g∗∗+ −→ g∗∗+
(x,F) 7−→ ad∗∗x F := F ◦ ad∗x.

Here the notation ad∗x : g∗+ → g∗+ means the dual map of adx : g+ → g+. Remark that the
actions ad and ad∗∗ coincide on the subspace g+ of g∗∗+ . These actions extend in a natural way
to spaces of bounded multilinear maps from any Banach product of copies of g+ and g∗+. For
Banach spaces g1, . . . , gk and h, we will use the notation L(g1, g2, . . . gk; h) to denote the Banach

space of continuous k-multilinear maps from the product Banach space g1×· · ·×gk to the
Banach space h (note the semi-colon separating the initial Banach spaces from the final one).
Let us recall (see Proposition 2.2.9 in [1]) that one has the following isometric isomorphisms of
Banach spaces

(2.1) L(g∗+; L(g+, g+;K)) ≃ L(g∗+, g+, g+;K) ≃ L(g+, g
∗
+; L(g+;K)) ≃ L(g+, g

∗
+; g

∗
+).

In particular, since the map ad : g+ × g+ → g+ is bilinear and continuous, its dual map ad∗

is continuous as a map from g∗+ to L(g+, g+;K) and, following the sequence of isomorphisms in
(2.1), it follows that ad∗ : g+ × g∗+ → g∗+ is continuous. Similarly, using the following isometric
isomorphisms of Banach spaces

L(g∗∗+ ; L(g+, g
∗
+;K)) ≃ L(g∗∗+ , g+, g

∗
+;K) ≃ L(g+, g

∗∗
+ ; L(g∗+;K)) ≃ L(g+, g

∗∗
+ ; g∗∗+ ),

it follows that ad∗∗ : g+ × g∗∗+ → g∗∗+ is continuous.

2.2. Coadjoint action on a subspace of the dual. Suppose that we have a continuous
injection from a Banach space g− into the dual space g∗+ of a Banach Lie algebra g+, in such a
way that g− is stable by the coadjoint action of g+ on its dual, i.e. is such that

(2.2) ad∗xα ∈ g−, ∀x ∈ g+,∀α ∈ g−.

Then the coadjoint action −ad∗ : g+×g∗+ → g∗+ restricts to a continuous bilinear map −ad∗|g− :

g+ × g− → g∗+, where g+ × g− is endowed with the Banach structure of the product of Banach
spaces g+ and g−. In other words

−ad∗|g− ∈ L(g+, g−; g
∗
+) ≃ L(g+;L(g−; g

∗
+)).

Moreover, condition (2.2) implies that −ad∗ takes values in g−, i.e. that one gets a well-defined
action

−ad∗|g− : g+ × g− −→ g−
(x, α) 7−→ −ad∗xα := −α ◦ adx.

However, this action will in general not be continuous if one endows the target space with its
Banach space topology. Nevertheless it is continuous if the target space is equipped with the
topology induced from g∗+. Under the additional assumption that −ad∗|g− : g+ × g− → g− is

continuous with respect to the Banach space topologies of g+ and g− (for instance in the case
where g− is a closed subspace of the dual g∗+), g+ acts also continuously on g∗− by

(ad∗|g−)
∗ : g+ × g∗− −→ g∗−

(x,F) 7−→ F ◦ ad∗x.



BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN 13

2.3. Adjoint action on the space of continuous multilinear maps. Suppose that we
have a continuous injection from a Banach space g− into the dual space g∗+ of a Banach Lie
algebra g+ and that g+ acts continously on g− by coadjoint action, i.e. suppose that −ad∗|g−
takes values in g− and that −ad∗|g− : g+ × g− → g− is continuous. In order to simplify

notation, we will write just ad∗ for ad∗|g− and ad∗∗ for (ad∗|g−)
∗. In order to compactify notations,

let us denote by Lr,s(g−, g+;K) the Banach space of continuous multilinear maps from
g− × · · · × g− × g+ × · · · × g+ to K, where g− is repeated r-times and g+ is repeated s-times.
Since g+ acts continuously by adjoint action on itself and by coadjoint action on g−, one can
define a continuous linear action of g+ on Lr,s(g−, g+;K), also called adjoint action, by

ad(r,s)x t(α1, . . . , αr, x1, . . . , xs) =

r
∑

i=1

t(α1, . . . , ad
∗
xαi, . . . , αr, x1, . . . , xs)

−

s
∑

i=1

t(α1, . . . , αr, x1, . . . , adxxi, . . . xs),

where t ∈ Lr,s(g−, g+;K), for i ∈ {1, . . . , r}, αi ∈ g−, and for i ∈ {1, . . . , s}, xi ∈ g+. In
particular, the adjoint action of g+ on L2,0(g−, g+;K) := L(g−, g−;K) reads :

(2.3) ad(2,0)x t(α1, α2) = t(ad∗xα1, α2) + t(α1, ad
∗
xα2).

2.4. Subspaces of skew-symmetric bilinear maps. Note that the adjoint action ad(2,0)

defined in (2.3) preserves the subspace of skew-symmetric continuous bilinear maps on g−,
denoted by Λ2g∗− :

Λ2g∗− := {t ∈ L(g−, g−;K) : ∀e1, e2 ∈ g−, t(e1, e2) = −t(e2, e1)} .

For any subspace g+ ⊂ g∗−, the subspace Λ2g+ ⊂ Λ2g∗− refers to the subspace consisting of

elements t ∈ Λ2g∗− such that, for α ∈ g−, the maps α 7→ t(e1, α) belong to g+ ⊂ g∗− for any
e1 ∈ g−.

Λ2g+ :=
{

t ∈ Λ2g∗− : ∀e1 ∈ g−, t(e1, ·) ∈ g+
}

.

2.5. Definition of 1-Cocycles. Let us recall the notion of 1-cocycle. Let G be a Banach Lie
group, and consider an affine action of G on a Banach space V , i.e. a group morphism Φ of G into
the Affine group Aff(V ) of transformations of V . Using the isomorphism Aff(V ) = GL(V )⋊ V ,
Φ decomposes into (ϕ,Θ) where ϕ : G → GL(V ) and Θ : G → V . The condition that Φ is a
group morphism implies that ϕ is a group morphism and that Θ satisfies :

(2.4) Θ(gh) = Θ(g) + ϕ(g)(Θ(h)),

where g, h ∈ G. One says that Θ is a 1-cocycle on G relative to ϕ. The derivative dΦ of Φ at
the unit element of G is a Lie algebra morphism of the Lie algebra g of G into the Lie algebra
aff(V ) of Aff(V ). By the isomorphism aff(V ) = gl(V )⋊ V , dΦ decomposes into (dϕ, dΘ) where
dϕ : g → gl(V ) is the Lie algebra morphism induced by ϕ and dΘ : g → V satisfies :

(2.5) dΘ([x, y]) = dϕ(x) (dΘ(y)) − dϕ(y) (dΘ(x)) ,

for x, y ∈ g. One says that dΘ is a 1-cocycle on g relative to dϕ.

Example 2.1. Let us consider in particular the Banach space V = L(g−, g−;K) of bilinear
maps on g−, where g− is a Banach space that injects continuously in the dual space g∗+ of a
Banach Lie algebra g+, is stable under the coadjoint action of g+, and such that the coadjoint

action of g+ on g− is continuous. A 1-cocycle θ on g+ relative to the natural action ad(2,0) of
g+ on L(g−, g−;K) given by (2.3) is a map θ : g+ → L(g−, g−;K) which satisfies :

θ ([x, y]) = ad
(2,0)
x (θ(y))− ad

(2,0)
y (θ(x))
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where x, y ∈ g+. For α and β in g−, previous condition reads

(2.6) θ ([x, y]) (α, β) = θ(y)(ad∗xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗yα, β)− θ(x)(α, ad∗yβ).

Remark 2.2. A continuous map θ : g+ → L(g−, g−;K) from a Banach Lie algebra g+ to the
Banach space of bilinear maps on g− satisfying equation (2.6) defines an affine action of g+ on

L(g−, g−;K) whose linear part is the adjoint action ad(2,0) given by equation (2.3).

2.6. Manin triples and associated 1-cocycles. The following proposition enable to define
1-cocycles naturally associated to a Manin triple.

Theorem 2.3. Let (g, g+, g−) be a Manin triple for a non-degenerate symmetric bilinear con-
tinuous map 〈·, ·〉g : g× g → K. Then

(1) The map 〈·, ·〉g restricts to a duality pairing 〈·, ·〉g+ ,g− : g+ × g− → K.
(2) The subspace g+ →֒ g∗− is stable under the coadjoint action of g− on g∗− and

ad∗α(x) = −pg+ ([α, x]g)

for any x ∈ g+ and α ∈ g−. In particular, the map

ad∗g− : g− × g+ → g+
(α, x) 7→ −pg+ ([α, x]g)

is continuous.
(3) The subspace g− →֒ g∗+ is stable under the coadjoint action of g+ on g∗+ and

ad∗x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. In particular, the map

ad∗g+ : g+ × g− → g−
(x, α) 7→ −pg− ([x, α]g)

is continuous.
(4) The dual map to the bracket [·, ·]g− restricts to a 1-cocycle θ+ : g+ → Λ2g+ with respect

to the adjoint action ad(2,0) of g+ on Λ2g+ ⊂ Λ2g∗−.
(5) The dual map to the bracket [·, ·]g+ restricts to a 1-cocycle θ− : g− → Λ2g− with respect

to the adjoint action ad(2,0) of g− on Λ2g− ⊂ Λ2g∗+.

Proof. (1) Let us show that the restriction of the non-degenerate bilinear form 〈·, ·〉g :
g× g → K to g+ × g− denoted by

〈·, ·〉g+ ,g− : g+ × g− → K

is a non-degenerate duality pairing between g+ and g−. Suppose that there exists x ∈ g+
such that 〈x, α〉g+ ,g− = 0 for all α ∈ g−. Then, since g+ is isotropic for 〈·, ·〉g, one has
〈x, y〉g = 0 for all y ∈ g, and the non-degeneracy of 〈·, ·〉g implies that x = 0. The
same argument apply interchanging g+ and g−, thus 〈·, ·〉g+,g− is non-degenerate. As a
consequence, one obtains two continuous injections

g− →֒ g∗+
α 7→ 〈·, α〉g+ ,g− ,

and
g+ →֒ g∗−
x 7→ 〈x, ·〉g+ ,g− .

(2)-(3) Let us show that both

g+ ⊂ g∗−

and

g− ⊂ g∗+
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are stable under the coadjoint action of g− on g∗− and g+ on g∗+ respectively. Indeed,
the invariance of the bilinear form 〈·, ·〉g with respect to the bracket [·, ·]g implies that
for any x ∈ g+ and α ∈ g−,

〈x, [α, ·]g〉g = −〈[α, x]g, ·〉g.

Hence, since g− is isotropic,

〈x, [α, ·]g〉g+,g− = −〈pg+ ([α, x]g) , ·〉g+ ,g− ,

for any x ∈ g+ and any α ∈ g−. It follows that

ad∗α(x) = −pg+ ([α, x]g)

and similarly

ad∗x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. The continuity of the corresponding adjoint maps follows
from the continuity of the bracket [·, ·]g and of the projections pg+ and pg− .

(4)-(5) Let us prove that the dual map of the Lie bracket on g− restricts to a 1-cocycle with
respect to the adjoint action of g+ on Λ2g+. The dual map

[·, ·]∗g− : g∗− → L(g−, g−;K)

to the bilinear map [·, ·]g− assigns to F(·) ∈ g∗− the bilinear form F
(

[·, ·]g−
)

and takes

values in Λ2g∗−. Since by (2), g− ⊂ g∗+ is stable under the coadjoint action of g+ and since
the coadjoint action ad∗ : g+ × g− → g− is continuous, one can consider the adjoint
action of g+ on Λ2g∗− defined by (2.3). Since the duality pairing 〈·, ·〉g+ ,g− induces a

continuous injection g+ →֒ g∗−, one can consider the subspace Λ2g+ of Λ2g∗− defined in
Section 2.4. Denote by θ+ : g+ → L(g−, g−;K) the restriction of [·, ·]∗g− to the subspace
g+ ⊂ g∗− :

θ+(x) = 〈x, [·, ·]g−〉g+,g− .

Using the identification L(g−, g−;K) ≃ L(g−; g
∗
−), one has

θ+(x)(α) = 〈x, [α, ·]g− 〉g+,g− = ad∗αx(·).

One sees immediately that the map θ+ takes values in Λ2g+ if and only if ad∗αx ∈ g+ for
any α ∈ g− and for any x ∈ g+, which is verified by (2). Using the fact that the duality
pairing 〈·, ·〉g+ ,g− is the restriction of 〈·, ·〉g and that 〈·, ·〉g is invariant with respect to the
bracket [·, ·]g, one has

〈[x, y], [α, β]〉g− ,g+ = −〈[α, [x, y]], β〉g,

and the Jacobi identity verified by [·, ·]g implies

〈[x, y], [α, β]〉g− ,g+ = −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g.

Using the decomposition

−[α, x] = −pg− [α, x] − pg+ [α, x] = −ad∗xα+ ad∗αx,

and similarly

−[α, y] = −pg− [α, y] − pg+ [α, y] = −ad∗yα+ ad∗αy,

one gets

〈[x, y], [α, β]〉g+ ,g− = 〈[ad∗αx− ad∗xα, y], β〉g + 〈[x, ad∗αy − ad∗yα], β〉g,

hence

(2.7)
〈[x, y], [α, β]〉g+ ,g− = 〈[ad∗αx, y], β〉g + 〈[x, ad∗αy], β〉g

+〈y, [ad∗xα, β]〉g − 〈x, [ad∗yα, β]〉g.
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It follows that

ad∗α[x, y] = [ad∗αx, y] + [x, ad∗αy] + ad∗ad∗xαy − ad∗ad∗yαx.

On the other hand, the condition (2.6) that θ+ is a 1-cocycle reads :

(2.8)
〈[x, y], [α, β]〉g+ ,g− = +〈y, [ad∗xα, β]〉g+ ,g− + 〈y, [α, ad∗

xβ]〉g+,g−

−〈x, [ad∗yα, β]〉g+ ,g− − 〈x, [α, ad∗
yβ]〉g+,g− .

The first and third terms in the RHS of (2.8) equal the last two terms in the RHS of
(2.7). Using the invariance (1.2) of the bilinear form 〈·, ·〉g with respect to the bracket
[·, ·]g, the last term in the RHS of (2.8) reads

−〈x, [α, ad∗
yβ]〉g+,g− = 〈[α, x], ad∗

yβ〉g = 〈pg+([α, x]), ad
∗
yβ〉g+,g−

= −〈ad∗αx, ad
∗
yβ〉g+,g− = −〈[y, ad∗αx], β〉g+ ,g− ,

and similarly the second term in the RHS of (2.8) reads

〈y, [α, ad∗xβ]〉g+,g− = 〈[x, ad∗αy], β〉g+,g− .

Hence the equivalence between (2.8) and (2.7) follows. By interchanging the roles of g+
and g−, one proves (5) in a similar way.

�

In the proof of Theorem 2.3, we have showed the following :

Proposition 2.4. Let g = g+ ⊕ g− be a decomposition of a Banach Lie algebra g into the
direct sum of two Banach Lie subalgebras, and suppose that g is endowed with a non-degenerate
symmetric bilinear map 〈·, ·〉g, invariant with respect to the Lie bracket in g. Then the cocycle
condition (2.6) for the restriction θ+ of [·, ·]∗g− : g∗− → Λ2g∗− to the subspace g+ ⊂ g∗− reads

(2.9) ad∗α[x, y] = [ad∗αx, y] + [x, ad∗αy] + ad∗ad∗xαy − ad∗ad∗yαx,

where x, y ∈ g+ and α ∈ g−.

Remark 2.5. Equation (2.9) is exactly the formula given in [32] page 507, but with the opposite
sign convention for the coadjoint map ad∗.

3. Generalized Banach Poisson manifolds and related notions

In this Section, we generalize the definition of Poisson manifolds to the Banach context (Sec-
tion 3.1). Example of generalized Banach Poisson manifolds are Banach symplectic manifolds
(Section 3.2) and Banach Lie–Poisson spaces (Section 3.2).

3.1. Definition of generalized Banach Poisson manifolds. The notions of Banach Poisson
manifolds and Banach Lie–Poisson spaces were introduced in [37]. The notion of sub Poisson
structures in the Banach context was introduced in [11]. In the case of locally convex spaces, an
analoguous definition of weak Poisson manifold structure was defined in [35]. In the symplectic
case, related notions were introduced in [13] enabling the study of the orbital stability of some
Hamiltonian PDE’s. In the present paper, we restrict ourselves to the Banach setting but
generalize slightly these notions to the case where an arbitrary duality pairing is considered,
and where the existence of Hamiltonian vector fields is not assumed (this last point is assumed
in [35] and [11]). Moreover, instead of working with subalgebras of the space of smooth functions
C∞(M) on a Banach manifold M , we will work with subbundles of the cotangent bundle (see
Remark 3.2 below).

Definition 3.1. Consider a unital subalgebra A ⊂ C∞(M) of smooth functions on a Banach
manifold M , i.e. A is a vector subspace of C∞(M) containing the constants and stable under
pointwise multiplication. An R-bilinear operation {·, ·} : A × A → A is called a Poisson

bracket on M if it satisfies :
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(i) anti-symmetry : {f, g} = −{g, f} ;
(ii) Jacobi identity : {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0 ;
(iii) Leibniz formula : {f, gh} = {f, g}h + g{f, h} ;

Remark 3.2. (1) Note that the Leibniz rule implies that for any f ∈ A, {f, ·} acts by
derivations on the subalgebra A ⊂ C∞(M). When M is finite-dimensional and A =
C∞(M), this condition implies that {f, ·} is a smooth vector field Xf on M , called the
Hamiltonian vector field associated to f , uniquely defined by its action on C∞(M) :

Xf (h) = dh(Xf ) = {f, h}.

It is worth noting that on an infinite-dimensional Hilbert space, there exists derivations
of order greater than 1, i.e. that do not depend only on the differentials of functions
(see Lemma 28.4 in [27], chapter VI). It follows that, contrary to the finite-dimensional
case, one may not be able to associate a Poisson tensor (see Definition 3.5 below) to a
given Poisson bracket. Examples of Poisson brackets not given by Poisson tensors were
constructed in [6].

(2) Given a covector ξ ∈ T ∗
pM , it is always possible to extend it to a locally defined 1-

form α with αp = ξ (for instance by setting α equal to a constant in a chart around
p ∈ M). However, it may not be possible to extend it to a smooth 1-form on M . It may
therefore not be possible to find a smooth real function on M whose differential equals
ξ at p ∈ M . The difficulty resides in defining smooth bump functions, which are, in
the finite dimensional Euclidean case, usually constructed using the differentiability of
the norm. In [45], it was shown that a Banach space admits a C1-norm away from the
origin if and only if its dual is separable. Remark that L∞(H) is not separable (since
it contains the nonseparable Banach space l∞ as the space of diagonal operators). It
follows that the dual of L∞(H) is nonseparable (since by Theorem III.7 in [43], if the
dual of a Banach space is separable, so is the Banach space itself). Therefore working
with unital subalgebras of smooth functions on a Banach manifold modelled on L∞(H)
(or on Lres(H) and ures(H) defined below) may lead to unexpected difficulties. For this
reason, we will adapt the definition of Banach Poisson manifold and work with local
sections of subbundles of the cotangent bundle. The link between unital subalgebras of
C∞(M) and subbundles of the cotangent bundle is given by next definition.

Definition 3.3. Let M be a Banach manifold and A be a unital subalgebra of C∞(M). The
first jet of A, denoted by J1(A) is the subbundle of the cotangent bundle T ∗M whose fiber over
p ∈ M is the space of differentials of functions in A,

J1(A)p = {dfp : f ∈ A}.

Definition 3.4. We will say that F is a subbundle of T ∗M in duality with the tangent bundle
to M if, for every p ∈ M ,

(1) Fp is an injected Banach space of T ∗
pM , i.e. Fp admits a Banach space structure such

that the injection Fp →֒ T ∗
pM is continuous,

(2) the natural duality pairing between T ∗
pM and TpM restricts to a duality pairing between

Fp and TpM , i.e. Fp separates points in TpM .

We will denote by Λ2
F
∗ the vector bundle over M whose fiber over p is the Banach space of

continuous skew-symmetric bilinear maps on the subspace Fp of T ∗
pM .

Definition 3.5. Let M be a Banach manifold and F a subbundle of T ∗M in duality with TM .
A smooth section π of Λ2

F
∗ is called a Poisson tensor on M with respect to F if :

(1) for any closed local sections α, β of F, the differential d (π(α, β)) is a local section of F;
(2) (Jacobi) for any closed local sections α, β, γ of F,

(3.1) π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0.
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Remark 3.6. (1) The first condition in Definition 3.5 is necessary in order to make sence
of equation (3.1) since the Poisson tensor is defined only on local sections of F.

(2) Consider a unital subalgebra A of C∞(M) and set F = J1(A) the first jet of functions in
A. Then equation (3.1) for a Poisson tensor π on M with respect to F is equivalent to
the Jacobi identity for the Poisson bracket defined for f, g ∈ A by {f, g} = π(df, dg).

Definition 3.7. A generalized Banach Poisson manifold is a triple (M,F, π) consisting
of a smooth Banach manifold M , a subbundle F of the cotangent bundle T ∗M in duality with
TM , and a Poisson tensor π on M with respect to F.

Remark 3.8. Let us make the link between our definition of generalized Banach Poisson man-
ifold and related notions in the literature. Consider a unital subalgebra A of C∞(M), set
F = J1(A) the first jet of functions in A, and consider a Poisson bracket on A given by a Pois-
son tensor : {f, g} = π(df, dg). Our definition of generalized Banach Poisson manifold differs
from the one given in [35] and the definition of sub Poisson manifold given in [11] by the fact
that we do not assume the existence of Hamiltonian vector fields associated to functions f ∈ A
(condition P3 in Definition 2.1 in [35] and condition P : T ♭M → TM in [11]). In other words,
for f ∈ A, {f, ·} is a derivation on A ⊂ C∞(M) that may not –with our definition of Poisson
manifold– be given by a smooth vector field on M . However, since the Poisson bracket is given
by a smooth Poisson tensor, {f, ·} is a smooth section of the bundle J1(A)∗ whose fiber over
p ∈ M is the dual Banach space to J1(A)p. Moreover, in order to stay in the Banach context,
we suppose that Fp has a structure of Banach space.

3.2. Banach Symplectic manifolds. An important class of finite-dimensional Poisson man-
ifolds is provided by symplectic manifolds. As we will see below, this is also the case in the
Banach setting, i.e. general Banach symplectic manifolds (not necessarily strong symplectic)
are particular examples of generalized Banach Poisson manifolds. Let us recall the following
definitions. The exterior derivative d associates to a n-form on a Banach manifold M a (n+1)-
form on M . In particular, for any 2-form ω on a Banach manifold M , the exterior derivative of
ω is the 3-form dω defined by :

dωp(X,Y,Z) = −ωp([X̃, Ỹ ], Z̃) + ωp([X̃, Z̃], Ỹ )− ωp([Ỹ , Z̃], X̃) +
〈

dp

(

ω(Ỹ , Z̃)
)

, X̃
〉

T ∗
pM,TpM

−
〈

dp

(

ω(X̃, Z̃)
)

, Ỹ
〉

T ∗
pM,TpM

+
〈

dp

(

ω(X̃, Ỹ )
)

, Z̃
〉

T ∗
pM,TpM

,

where X̃, Ỹ , Z̃ are any smooth extensions of X, Y and Z ∈ TpM around p ∈ M . An expression

of this formula in a chart shows that it does not depend on the extensions X̃, Ỹ , Z̃, but only on
the values of these vector fields at p ∈ M , i.e. it defines an tensor (see Proposition 3.2, chapter V
in [30]). The contraction or interior product iXω of a n-form ω with a vector field X is the
(n − 1)-form defined by

iXω(Y1, · · · , Yn−1) := ω(X,Y1, · · · , Yn−1).

The Lie derivative LX with respect to a vector field X can be defined using the Cartan formula

(3.2) LX = iXd+ d iX .

The Lie derivative, the bracket [X,Y ] of two vector fields X and Y , and the interior product
satisfy the following relation (see Proposition 5.3, chapter V in [30]) :

(3.3) i[X,Y ] = LXiY − iY LX .

Let us recall the definition of a Banach (weak) symplectic manifold.

Definition 3.9. A Banach symplectic manifold is a Banach manifold M endowed with a
2-form ω ∈ Γ

(

Λ2T ∗M
)

such that
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(1) ω is non-degenerate : ω♯
p : TpM → T ∗

pM , X 7→ iXω := ω(X, ·) is injective ∀p ∈ M ;
(2) ω is closed : dω = 0.

Lemma 3.10. Let (M,ω) be a Banach symplectic manifold. Consider α and β two closed local
sections of ω♯(TM), i.e. dα = dβ = 0, α = ω(Xα, ·) and β = ω(Xβ, ·) for some local vector
fields Xα and Xβ. Then

(1) Xα and Xβ are symplectic vector fields : LXαω = 0 = LXβ
ω

(2) i[Xα,Xβ ]ω = −d(ω(Xα,Xβ)).

Proof. (1) Using the Cartan formula (3.2), one has LXαω = iXαdω+ d iXαω = d iXαω, since
ω is closed. But by definition iXαω = α is closed. Using d ◦ d = 0 (see Supplement 6.4A
in [1] for a proof of this identity in the Banach context), it follows that LXαω = 0.
Similarly LXβ

ω = 0.
(2) By relation (3.3), one has

i[Xα,Xβ ]ω = LXαiXβ
ω − iXβ

LXαω,

where the second term in the RHS vanishes by (1). Using Cartan formula, one gets

i[Xα,Xβ ]ω = d iXαiXβ
ω + iXαd (iXβ

ω) = d iXαiXβ
ω = d (ω(Xβ,Xα)) = −d (ω(Xα,Xβ)) ,

where we have used that iXβ
ω = β is closed.

�

Proposition 3.11. Any Banach symplectic manifold (M,ω) is naturally a generalized Banach
Poisson manifold (M,F, π) with

(1) F = ω♯(TM);
(2) π : ω♯(TM) × ω♯(TM) → R defined by (α, β) 7→ ω(Xα,Xβ) where Xα and Xβ are

uniquely defined by α = ω(Xα, ·) and β = ω(Xβ, ·).

Proof. (1) By Lemma 3.10, for any closed local sections α and β of F, with α = ω(Xα, ·)
and β = ω(Xβ , ·), one has

d (π(α, β)) := d (ω(Xα,Xβ)) = −i[Xα,Xβ ]ω,

hence is a local section of F = ω♯(TM).
(2) Let us show that π satisfies the Jacobi identity (3.1). Consider closed local sections α, β

and γ of F and define the local vector fields Xα, Xβ and Xγ by α = iXαω, β = iXβ
ω and

γ = iXγω. Using Lemma 3.10, the differential of ω satisfies

dω(Xα,Xβ ,Xγ) = 2 (−ω([Xα,Xβ ],Xγ) + ω([Xα,Xγ ],Xβ)− ω([Xβ ,Xγ ],Xα))
= 2 (π (d (π(α, β), γ))) + π (d (π(γ, α)) , β) + π (d (π(β, γ)) , α) .

Since ω is closed, the Jacobi identity (3.1) is satisfied.
�

3.3. Banach Lie–Poisson spaces. Banach Lie–Poisson spaces were introduced in [37]. Here
we extend this notion to an arbitrary duality pairing.

Definition 3.12. Consider a duality pairing 〈·, ·〉g+ ,g− : g+ × g− → K between two Banach
spaces. We will say that g+ is a Banach Lie–Poisson space with respect to g− if g− is a
Banach Lie algebra (g−, [·, ·]g−) which acts continuously on g+ →֒ g∗− by coadjoint action, i.e.

ad∗αx ∈ g+,

for all x ∈ g+ and α ∈ g−, and ad∗ : g− × g+ → g+ is continuous.

Remark 3.13. A Banach Lie–Poisson space g+ with respect to its continuous dual space g∗+ is
a Banach Lie–Poisson space in the sense of Definition 4.1 in [37].



20 A. B. TUMPACH

The following Theorem is a generalization of Theorem 4.2 in [37] to the case of an arbitrary
duality pairing between two Banach spaces g+ and g−. See also Corollary 2.11 in [35] for an
analogous statement. We will include the proof for sake of completeness.

Theorem 3.14. Consider a duality pairing 〈·, ·〉g+,g− : g+ × g− → K between two Banach
spaces, and suppose that g+ is a Banach Lie–Poisson space with respect to g−.

Denote by F the subbundle of T ∗g+ ≃ g+ × g∗+ whose fiber at x ∈ g+ is given by

Fx = {x} × g− ⊂ {x} × g∗+ ≃ T ∗
xg+.

For α and β any two local sections of F, define a tensor π ∈ Λ2
F
∗ by :

πx(α, β) :=
〈

x, [α(x), β(x)]g−
〉

g+,g−
.

Then (g+,F, π) is a generalized Banach Poisson manifold, and π takes values in Λ2g+ ⊂ Λ2
F
∗.

Let A be the unital subalgebra of C∞(g+) consisting of all functions with differentials in g− :

A := {f ∈ C∞(g+) : dxf ∈ g− ⊂ g∗+ for any x ∈ g+}.

Define the bracket of two functions f, h in A by

(3.4) {f, h}(x) := πx(dfx, dhx) =
〈

x, [dfx, dhx]g−
〉

g+,g−
,

where x ∈ g+, and df and dh denote the Fréchet derivatives of f and h respectively. Then
{·, ·} : A×A → A is a Poisson bracket on g+. If h is a smooth function on g+ belonging to A,
the associated Hamiltonian vector field is given by

Xh(x) = −ad∗dhx
x ∈ g+.

Proof. Let α and β be any closed local sections of F. Then α and β are functions from g+ to
g−, and we will denote by Txα : Txg+ ≃ g+ → g− ≃ Tα(x)g− and similarly Txβ : g+ → g−
their derivatives at x ∈ g+. For any tangent vector X ∈ Txg+ ≃ g+, one has

dxπ (α, β) (X) =
〈

X, [α(x), β(x)]g−
〉

g+,g−
+
〈

x, [Txα(X), β]g−
〉

g+,g−
+

〈

x, [α, Txβ(X)]g−
〉

g+,g−

=
〈

X, [α(x), β(x)]g−
〉

g+,g−
−
〈

ad∗βx, Txα(X)
〉

g+,g−
+ 〈ad∗αx, Txβ(X)〉g+,g−

Since α and β are closed local sections of F ⊂ T ∗g+, by Poincaré Lemma (see Theorem 4.1
in [29]), there exist locally real valued smooth functions f and g on g+ such that α = df and
β = dg. It follows that Txα ∈ L (g+;L(g+,R)) ≃ L2(g+;R) is the second derivative d2xf of f
at x ∈ g+ and is symmetric (see Proposition 3.3 in [29]). Similarly Txβ = d2xg is a symmetric
bilinear map on g+. Consequently

−
〈

ad∗βx, Txα(X)
〉

g+,g−
= −

〈

X,Txα(ad
∗
βx)

〉

g+,g−

and
〈ad∗αx, Txβ(X)〉g+,g−

= 〈X,Txβ(ad
∗
αx)〉g+,g−

.

Therefore, for any closed local section α and β of F, and any x ∈ g+,

(3.5) dxπ (α, β) = [α(x), β(x)]g− − Txα(ad
∗
βx) + Txβ(ad

∗
αx)

belongs to g−. It follows that dπ (α, β) a local section of F. Let us show that π satisfies the
Jacobi identity (3.1). One has

πx (α, d (π(β, γ))) =
〈

x, [α(x), [β(x), γ(x)]g− ]g−
〉

g+,g−
−

〈

ad∗αx, Txβ(ad
∗
γx)

〉

g+,g−

+
〈

ad∗αx, Txγ(ad
∗
βx)]g−

〉

g+,g−

By the Jacobi identity for the Lie bracket [·, ·]g− and by the symmetry of Txα, Txβ and Txγ, the
Jacobi identity for π is satisfied. Moreover, for any local section α of F, πx(α, ·) = ad∗αx belongs
to g+ since g+ is a Banach Lie–Poisson space with respect to g−. Therefore π ∈ Λ2g+ ⊂ Λ2

F
∗.

The bracket (3.4) of two functions f, g ∈ A takes values in A because, by equation (3.5),
dx{f, g} belongs to g−. By definition {·, ·} is skew-symmetric and satisfies the Leibniz rule. The
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Jacobi identity for {·, ·} follows from the Jacobi identity for π. The expression of the hamiltonian
vector field associated to h ∈ A is straightforward. �

We give below some examples of Banach Lie–Poisson spaces (see [37], [38], and [8] for more
information on these spaces).

Example 3.15. Dual Banach Lie algebras of operators. Let p and q be such that 1 < p ≤ q < ∞
and 1

p + 1
q = 1. Then Lp(H)∗ ≃ Lq(H) and Lq(H)∗ ≃ Lp(H) where the duality pairing is given

by the trace (see example 1.8). Moreover

ad∗αx(β) = Tr
(

x[α, β]Lq(H)

)

= Tr (xαβ − xβα) = Tr (xαβ − αxβ) = Tr ([x, α]β) ,

where the first bracket is the Lie bracket of the dual space Lq(H), and the second is the com-
mutator of the bounded linear operators x ∈ Lp(H) and α ∈ Lq(H). Since Lp(H) is an ideal of
L∞(H), [x, α] ∈ Lp(H), and the pairing given by the trace being non-degenerate, one has

ad∗αx = [x, α] ∈ Lp(H)

for any x ∈ Lp(H) and any α ∈ Lq(H). Therefore Lp(H) is a Banach Lie–Poisson space with
respect to Lq(H). In the same manner, one has for any x ∈ Lp(H) and any α ∈ Lq(H)

ad∗xα = [α, x] ∈ Lq(H),

hence Lq(H) is a Banach Lie–Poisson space with respect to Lp(H).

Example 3.16. Trace class operators and bounded operators. For the same reasons as in the
previous example, the Banach Lie algebra L1(H) is a Banach Lie–Poisson space with respect to
L∞(H) and L∞(H) is a Banach Lie–Poisson space with respect to L1(H), the (weak) duality
pairing being given by the trace.

Example 3.17. Trace class operators and Hilbert-Schmidt operators. Since the trace is a weak
duality pairing between L1(H) and L2(H) ⊂ L∞(H) (see Example 1.6), one can consider the
coadjoint action of L1(H) on L2(H) and vice-versa. For any x ∈ L1(H) and any α ∈ L2(H), one
has

ad∗xα = −ad∗αx = [α, x] ∈ L1(H) ∩ L2(H),

therefore L1(H) is Banach Lie–Poisson space with respect to L2(H), and L2(H) is a Banach
Lie–Poisson space with respect to L1(H). Using (3.4), one obtains a Poisson bracket on L1(H)
defined on the algebra of functions on L1(H) with differentials in L2(H) ⊂ L∞(H), as well as a
Poisson bracket on L2(H) defined on those functions on L2(H) which have their differential in
L1(H) ⊂ L2(H).

Example 3.18. Banach Lie algebras of upper and lower triangular operators. For 1 < p < ∞,
consider the Banach algebra Lp(H)− of lower triangular operators in Lp(H) defined by (1.4) and
its complement Lp(H)++ consisting in stricktly upper triangular operators in Lp(H). One can

identify Lp(H)∗− with Lp(H)∗/ (Lp(H)−)
0 where

(Lp(H)−)
0 := {α ∈ Lq(H),Tr (αx) = 0, ∀x ∈ Lp(H)−}

Recall that Lp(H)∗ ≃ Lq(H) where 1
p + 1

q = 1, the duality pairing being given by the trace.

It is easy to see that (Lp(H)−)
0 is isomorphic to the Banach space Lq(H)−− of stricktly lower

triangular operators in Lq(H). Therefore, by the direct sum decomposition (1.8), one has

Lp(H)∗− ≃ Lq(H)+.

The coadjoint action of an element α ∈ Lq(H)+ on x ∈ Lp(H)− ⊂ (Lp(H)−)
∗∗ reads

ad∗αx(β) = Tr
(

x[α, β]Lq(H)+

)

= Tr ([x, α]β) ,
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where β is an arbitrary element in Lq(H)+. Since Lp(H) and Lq(H) are ideals in L∞(H), one
has

[x, α] ∈ [Lp(H), Lq(H)] ⊂ Lp(H) ∩ Lq(H).

The relation Lp(H)++ ⊂ (Lq(H)+)
0 then implies

ad∗αx(β) = Tr
(

pLp(H)− ([x, α]) β
)

, ∀β ∈ Lq(H)+,

where pLp(H)− is the projection onto Lp(H)− with respect to the direct sum decomposition (1.9).

From Lp(H)− ⊂ (Lq(H)−−)
0 and from the direct sum decomposition (1.8), it follows that

ad∗αx = pLp(H)− ([x, α]) .

In particular, ad∗αx ∈ Lp(H)− for any x ∈ Lp(H)− and any α ∈ Lq(H)+. Therefore Lp(H)− is a
Banach Lie–Poisson space with respect to Lq(H)+. Similarly one has

ad∗xα = pLq(H)+ ([α, x]) ,

for any x ∈ Lp(H)− and any α ∈ Lq(H)+. Therefore Lq(H)+ is a Banach Lie–Poisson space with
respect to Lp(H)−. Note that the existence of the projections pLp(H)− and pLq(H)+ is crucial in
this example. This is the reason why we have excluded the case p = 1 and q = ∞.

Example 3.19. Iwasawa Banach Lie algebras. For 1 < p < ∞, consider the unitary algebra
up(H) defined by (1.10), and its complement b+p (H) defined by (1.11). For q := p

p−1 , let us

denote by 〈·, ·〉R the continuous bilinear map given by the imaginary part of the trace :

〈·, ·〉R : Lp(H)× Lq(H) −→ R

(x, α) 7−→ ℑTr (xα) .

It is a strong duality pairing between Lp(H) and Lq(H) viewed as real Banach spaces. By
Lemma 1.15, one has the direct sum decomposition

Lp(H) = up(H)⊕ b+p (H).

Since (up(H))0 ≃ uq(H) and
(

b+p (H)
)0

≃ b+q (H), one has

up(H)∗ ≃ Lq(H)/ (up(H))0 ≃ Lq(H)/uq(H) ≃ b+q (H)

and similarly

b+p (H)∗ = uq(H).

Consider the coadjoint action of an element α ∈ b+q (H) on an element x ∈ up(H) ⊂ up(H)∗∗

ad∗αx(β) = 〈x, [α, β]〉Lp ,Lq = ℑTr
(

x[α, β]bq
)

= ℑTr ([x, α]β) ,

where β is an arbitrary element in b+q (H). Since b+p (H) ⊂
(

b+q (H)
)0

and [Lp(H), Lq(H)] ∈
Lp(H) ∩ Lq(H), one has

ad∗αx(β) = ℑTr
(

pup,+ ([x, α]) β
)

= 〈pup,+ ([x, α]) , β〉Lp,Lq , ∀β ∈ b+q (H),

where pup,+ is the projection onto up(H) defined by (1.14). Therefore

ad∗αx = pup,+ ([x, α]) .

Analogously one has

ad∗xα = pb+q ([α, x]) ,

for any x ∈ up(H) and any α ∈ b+q (H). Consequently up(H) and b+q (H) are dual Banach

Lie–Poisson spaces. Similarly up(H) and b−q (H) are dual Banach Lie–Poisson spaces.
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4. Banach Lie bialgebras

In the finite dimensional case, a couple (g, g∗) of Lie algebras is a Lie bialgebra if and only if
the triple of Lie algebras (g ⊕ g∗, g, g∗) form a Manin triple. In that case, (g∗, g) is also a Lie
bialgebra. The symmetry of the situation comes from the fact that g∗∗ = g for finite dimensional
spaces. In Section 4.1, we introduce the notion of Banach Lie bialgebra with respect to an
arbitrary duality pairing. In Section 4.2, we show that a Banach Lie bialgebra g+ with respect
to a Banach Lie algebra g− gives rise to a Manin triple (g+⊕ g−, g+, g−) if and only if g+ is also
a Banach Lie–Poisson space with respect to g− (see Theorem 4.9).

4.1. Definition of Banach Lie bialgebras. Let us introduce the notion of Banach Lie bial-
gebras. We refer the reader to [32] for the corresponding notion in the finite-dimensional case.

Definition 4.1. Let g+ be a Banach Lie algebra over the field K ∈ {R,C}, and consider a
duality pairing 〈·, ·〉g+ ,g− between g+ and a Banach space g−. One says that g+ is a Banach

Lie bialgebra with respect to g− if

(1) g+ acts continuously by coadjoint action on g− ⊂ g∗+ ;
(2) there is given a Banach Lie algebra structure on g− such that the dual map of the Lie

bracket [·, ·]g− : g−×g− → g− restricts to a 1-cocycle θ : g+ → Λ2g∗− with respect to the

adjoint action ad(2,0) of g+ on Λ2g∗− (recall that g+ can be viewed as a subspace of g∗−).

Remark 4.2. A finite-dimensional Lie bialgebra (g, g∗) (see Definition 1.7 in [32]) is a Banach
Lie bialgebra g with respect to its dual space g∗, where the duality pairing is the natural pairing
between g and g∗.

Remark 4.3. (1) The first condition in Definition 4.1 means that g− is preserved by the
coadjoint action of g+, i.e

ad∗xg− ⊂ g− ⊂ g∗+

for any x ∈ g+, and that the action map

g+ × g− → g−
(x, α) 7→ ad∗xα

is continuous. This condition is necessary in order to define the action of g+ on the space
Λ2g∗− of continuous skew-symmetric maps on g− by (2.3).

(2) The map θ is a 1-cocycle on g+ if it satisfies :

θ ([x, y]) = ad
(2,0)
x (θ(y))− ad

(2,0)
y (θ(x))

where x, y ∈ g+. The second condition in Definition 4.1 means therefore that (see
section 2.5)

(4.1) θ ([x, y]) (α, β) = θ(y)(ad∗xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗yα, β)− θ(x)(α, ad∗yβ),

for any x, y in g+ and any α, β in g−. In a more explicite form, the cocycle condition
reads

(4.2)
〈[x, y]g+ , [α, β]g− 〉g+,g− = 〈y, [ad∗xα, β]g−〉g+,g− + 〈y, [α, ad∗

xβ]g−〉g+,g−

−〈x, [ad∗yα, β]g− 〉g+,g− − 〈x, [α, ad∗yβ]g−〉g+,g− ,

for any x, y in g+ and any α, β in g−.
(3) Let us remark that we do not assume that the cocycle θ takes values in the subspace

Λ2g+ of Λ2g∗−. This is related to the generalized notion of Poisson manifolds given in
Definition 3.7.

Let us first give examples of Banach Lie algebras which are Banach Lie–Poisson spaces (see
Section 3.3) but not Banach Lie bialgebras.
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Example 4.4. For 1 ≤ p ≤ ∞, consider g+ := Lp(H) and its dual space g− := Lq(H), the duality
pairing 〈·, ·〉g+,g− being given by the trace. By example 3.15, Lp(H) is a Banach Lie–Poisson
space with respect to Lq(H). For x ∈ Lp(H) and α ∈ Lq(H), one has ad∗αx = [x, α] ∈ Lp(H) and
ad∗xα = [α, x] ∈ Lq(H). Therefore, for any α, β ∈ Lq(H) and x, y ∈ Lp(H), one has
(4.3)

〈y, [ad∗xα, β]g−〉g+,g− + 〈y, [α, ad∗
xβ]g−〉g+,g− − 〈x, [ad∗yα, β]g− 〉g+,g− − 〈x, [α, ad∗yβ]g−〉g+,g−

= 2 〈ad∗α[x, y], β〉g+ ,g− .

This implies that Lp(H) is not a Banach Lie bialgebra with respect to Lq(H) (compare with the
cocycle condition (4.2)).

Example 4.5. By example 3.16, L1(H) is a Banach Lie–Poisson space with respect to L∞(H). A
computation analoguous as in previous example shows that L1(H) is not a Banach Lie bialgebra
with respect to L∞(H).

Example 4.6. By example 3.17, L1(H) is a Banach Lie–Poisson space with respect to L2(H).
It is easy to see that equation (4.3) is satisfied for any α, β ∈ L2(H) and x, y ∈ L1(H), hence
L1(H) is not a Banach Lie bialgebra with respect to L2(H).

Let us now give examples of Banach Lie–Poisson spaces which are also Banach Lie bialgebras.
In Example 4.7 and Example 4.8, the cocycle condition can be checked by hand using the
expression of the coadjoint actions.

Example 4.7. Banach Lie bialgebra of upper and lower triangular operators. For 1 < p < ∞,
consider the Banach algebra Lp(H)− of lower triangular operators in Lp(H) defined by (1.4) and
its dual space Lq(H)+, where

1
p + 1

q = 1 and where the duality pairing is given by the trace.

Then Lp(H)− is a Banach Lie bialgebra with respect to Lq(H)+.

Example 4.8. Iwasawa Banach Lie bialgebras. Let p and q be such that 1 < p < ∞, 1 < q < ∞
and 1

p+
1
q = 1. Consider the Banach Lie algebra up(H) and its dual Banach space b+q (H), endowed

with its natural Banach Lie algebra structure, which makes up(H) into a Banach Lie–Poisson
space (see example 3.19). In this case the duality pairing is given by the imaginary part of the
trace. Then up(H) is a Banach Lie bialgebra with respect to b+q (H).

4.2. Banach Lie bialgebras versus Manin triples. In the finite-dimensional case, the notion
of Lie bialgebra is equivalent to the notion of Manin triple (see [15] or section 1.6 in [25]). In
the infinite-dimensional case the notion of Banach Lie–Poisson space comes into play.

Theorem 4.9. Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in duality. De-
note by g the Banach space g = g+ ⊕ g− with norm ‖ · ‖g = ‖ · ‖g+ + ‖ · ‖g− . The following
assertions are equivalent.

(1) g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g− with
cocycle θ+ := [·, ·]∗g− : g+ → Λ2g∗−;

(2) (g, g+, g−) is a Manin triple for the natural non-degenerate symmetric bilinear map

〈·, ·〉g : g× g → K

(x, α) × (y, β) 7→ 〈x, β〉g+,g− + 〈y, α〉g+,g−

with bracket given by

(4.4)
[·, ·]g : g× g → g = g+ ⊕ g−

(x, α) × (y, β) 7→
(

[x, y]g+ + ad∗βx− ad∗αy, [α, β]g− + ad∗yα− ad∗xβ
)

.

(3) g− is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g+ with
cocycle θ− := [·, ·]∗g+ : g− → Λ2g∗+;

Proof. (2) ⇒ (1) follows from Theorem 2.3. Let us prove (1) ⇒ (2).
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• Since g+ is a Banach Lie–Poisson space with respect to g−, g− is a Banach Lie algebra
(g−, [·, ·]g− ) such that the coadjoint action of g− on g∗− preserves the subspace g+ ⊂ g∗−
and the map

ad∗g− : g− × g+ → g+
(α, x) 7→ ad∗αx,

is continuous. Since g+ is a Banach Lie bialgebra, the coadjoint action of g+ on g∗+
preserves the subspace g− ⊂ g∗+ and the map

ad∗g+ : g+ × g− → g−
(x, α) 7→ ad∗xα,

is continuous. Therefore bracket (4.4) is continuous on g = g+ ⊕ g−.
• Let us show that the symmetric non-degenerate pairing 〈·, ·〉g is invariant with respect
to the bracket [·, ·]g. For this, we will use the fact that g+ and g− are isotropic subspaces
for 〈·, ·〉g. For x ∈ g+ and α ∈ g−, one has

(4.5) [x, α]g = (ad∗αx,−ad∗xα).

Therefore, for any x ∈ g+ and any α, β ∈ g−, one has

〈[x, α]g, β〉g = 〈ad∗αx, β〉g = 〈x, adαβ〉g = 〈x, [α, β]g〉g
= −〈x, [β, α]g〉g = −〈ad∗βx, α〉g = 〈[β, x]g, α〉g.

Similarly, for any x, y ∈ g+ and any β ∈ g−, one has

〈[x, y]g, β〉g = 〈y, ad∗xβ〉g = 〈y, [β, x]g〉g = −〈ad∗yβ, x〉g = 〈[y, β]g, x〉g.

By linearity, it follows that 〈·, ·〉g is invariant with respect to [·, ·]g.
• It remains to verify that [·, ·]g satisfies the Jacobi identity. Let us first show that for any
x, y ∈ g+ and any α ∈ g−,

[α, [x, y]] = [[α, x], y] + [x, [α, y]].

The dual map [·, ·]∗g− : g∗− → Λ2g∗− of the bilinear map [·, ·]g− : Λ2g− → g− is

[·, ·]∗g−(F) = F([·, ·]g− ).

In particular, its restriction θ+ : g+ → Λ2g∗− to g+ ⊂ g∗− reads

θ(x)(α, β) = 〈x, [α, β]g− 〉 = 〈[x, α]g, β〉g = 〈ad∗αx, β〉g.

Since g+ is a Banach Lie–Poisson space, the cocycle θ+ = [·, ·]∗g− restricted to g+ ⊂ g∗−
takes values in Λ2g+. The cocycle condition (4.1) reads

(4.6)
〈[x, y], [α, β]〉g+ ,g− = +〈y, [ad∗xα, β]〉g+ ,g− + 〈y, [α, ad∗

xβ]〉g+,g−

−〈x, [ad∗yα, β]〉g+ ,g− − 〈x, [α, ad∗
yβ]〉g+,g− ,

where x, y ∈ g+ and α, β ∈ g−. Using the definition of the bracket 〈·, ·〉g and its invariance
with respect to [·, ·]g, this is equivalent to

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g − 〈[α, y], ad∗
xβ〉g

+〈[ad∗yα, x], β〉g + 〈[α, x], ad∗
yβ〉g.

Using the fact that g+ and g− are isotropic subspaces for 〈·, ·〉g and relation (4.5), one
gets

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g + 〈ad∗αy, ad
∗
xβ〉g+,g−

+〈[ad∗yα, x], β〉g − 〈ad∗αx, ad
∗
yβ〉g+,g− .

Using the definition of the coadjoint actions, one obtains

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g + 〈[x, ad∗αy], β〉g+,g−

+〈[ad∗yα, x], β〉g − 〈[y, ad∗αx], β〉g+,g− ,
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or, in a more compact manner,

−〈[α, [x, y]], β〉g = 〈[ad∗αx− ad∗xα, y], β〉g + 〈[x, ad∗αy − ad∗yα], β〉g.

Using [x, α]g = ad∗αx− ad∗xα, and [y, α]g = ad∗αy − ad∗yα, one eventually gets

(4.7) − 〈[α, [x, y]], β〉g = −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g,

for any x, y ∈ g+ and any α, β ∈ g−. Since 〈·, ·〉g restricts to the duality pairing between
g+ and g−, it follows that

(4.8) pg+ [α, [x, y]] = pg+ [[α, x], y] + pg+ [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−. On the other hand, considering the projection on g−
one has

pg− [α, [x, y]] = ad∗[x,y]α,

as well as
pg− [[α, x], y] = ad∗yad

∗
xα,

and
pg− [x, [α, y]] = −ad∗xad

∗
yα.

Since the bracket in g+ satisfied Jacobi identity, it follows that

〈α, [[x, y], z]〉g+ ,g− = 〈α, [x, [y, z]]〉g+ ,g− − 〈α, [y, [x, z]]〉g+ ,g− ,

therefore

(4.9) pg− [α, [x, y]] = pg− [[α, x], y] + pg− [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−. Combining (4.8) and (4.9), it follows that

[α, [x, y]] = [[α, x], y] + [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−.
• It remains to show that for any x ∈ g+ and any α, β ∈ g−,

[x, [α, β]] = [[x, α], β] + [α, [x, β]].

Since the bracket in g− satisfies Jacobi identity, similarly to (4.9) remplacing g− by g+,
one has

(4.10) pg+ [x, [α, β]] = pg+ [[x, α], β] + pg+ [α, [x, β]].

Let us show that

pg− [x, [α, β]] = pg− [[x, α], β] + pg− [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. For any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg− [x, [α, β]]〉g+ ,g− = −〈y, ad∗x[α, β]〉g+ ,g− = −〈[x, y], [α, β]〉g+ ,g− = 〈[α, [x, y]], β〉g.

On the other hand, for any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg− [[x, α], β]〉g+ ,g− = 〈y, [[x, α], β]〉g = 〈[[α, x], y], β〉g,

and
〈y, pg− [α, [x, β]]〉g+ ,g− = 〈y, [α, [x, β]]〉g = 〈[x, [α, y]], β〉g.

By (4.7), it follows that

(4.11) pg− [x, [α, β]] = pg− [[x, α], β] + pg− [α, [x, β]].

Combining (4.10) and (4.11), it follows that

[x, [α, β]] = [[x, α], β] + [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. This ends the proof of (1) ⇒ (2). The equivalence
with (3) follows by symmetry of (2) with respect to exchange of g+ into g−.
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�

Remark 4.10. It is noteworthy that the cocycle condition needs only to be verified for one of
the Banach Lie algebra g+ or g−. The following Corollary is therefore a direct consequence of
the proof of Theorem 4.9.

Corollary 4.11. Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in duality. If
g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g−, then g− is a
Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g+.

Example 4.12. By Proposition 1.16, the triple
(

Lp(H), up(H), b+p (H)
)

is a Banach Manin triple
for 1 < p ≤ 2. Under this condition on p, it follows from Theorem 4.9 that up(H) is a Banach
Lie–Poisson space and a Banach Lie bialgebra with respect to b+p (H), and b+p (H) is a Banach
Lie–Poisson space and a Banach Lie bialgebra with respect to up(H).

Example 4.13. For 1 < p < ∞, by Example 3.19, up(H) is a Banach Lie–Poisson space with

respect to b+q (H), where 1
p + 1

q = 1. By Example 4.8, up(H) is a Banach Lie bialgebra with

respect to b+q (H). We deduce from Theorem 4.9 that
(

up(H)⊕ b+q (H), up(H), b+q (H)
)

form a

Banach Manin triple, and that b+q (H) is a Banach Lie bialgebra with respect to up(H).

Example 4.14. From Example 3.18, we know that Lp(H)− is a Banach Lie–Poisson space with
respect to Lq(H)+. By Example 4.7, Lp(H)− is a Banach Lie bialgebra with respect to Lq(H)+.
By Theorem 4.9, the triple of Banach Lie algebras (Lp(H)− ⊕ Lq(H)+,Lp(H)−, Lq(H)+) is a
Banach Manin triple. By corollary 4.11, Lq(H)+ is a Banach Lie bialgebra with respect to
Lp(H)−.

5. Banach Poisson–Lie groups

This Section is devoted to the notion of Banach Poisson–Lie groups in the general framework
of generalized Banach Poisson manifolds (see Section 3.1). We start in Section 5.1 with the
definition, and show that the compatibility condition between the Poisson tensor and the multi-
plication on the group gives rise to a 1-cocycle on the group. In Section 5.2, we use the triviality
of the tangent and cotangent bundles in order to write the Jacobi identity for a Poisson tensor
on a group at the level of the Lie algebra (Theorem 5.8). This allows us to give examples of
Banach Poisson–Lie groups in Section 5.3. Finally, in Section 5.4, we prove that the tangent
space at the unit element e of a Banach Poisson–Lie group (G,F, π) admits a natural Banach Lie
bialgebra structure with respect to Fe, and, in the case when the Poisson tensor π is a section of
Λ2TG, is also a Banach Lie–Poisson space. The integrability problem of a Banach Lie bialgebra
into a Banach Poisson–Lie group remains open.

5.1. Definition of Banach Poisson–Lie groups. In order to be able to define the notion of
Banach Poisson–Lie groups, we need to recall the construction of a Poisson structure on the
product of two Poisson manifolds. The following Proposition is straightforward.

Proposition 5.1. Let (M1,F1, π1) and (M2,F2, π2) be two generalized Banach Poisson mani-
folds. Then the product M1×M2 carries a natural generalized Banach Poisson manifold structure
(M1 ×M2,F, π) where

(1) M1×M2 carries the product Banach manifold structure, in particular the tangent bundle
of M1 ×M2 is isomorphic to the direct sum TM1 ⊕TM2 of the vector bundles TM1 and
TM2 and the cotangent bundle of M1 ×M2 is isomorphic to T ∗M1 ⊕ T ∗M2,

(2) F is the subbundle of T ∗M1 ⊕ T ∗M2 defined as

F(p,q) = (F1)p ⊕ (F2)q,

(3) π is defined on F by

π(α1 + α2, β1 + β2) = π1(α1, β1) + π2(α2, β2), α1, β1 ∈ F1, α2, β2 ∈ F2.
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Definition 5.2. Let (M1,F1, π1) and (M2,F2, π2) be two generalized Banach Poisson manifolds
and F : M1 → M2 a smooth map. One says that F is a Poisson map at p ∈ M1 if

(1) the tangent map TpF : TpM1 → TF (p)M2 satisfies TpF
∗(F2)F (p) ⊂ (F1)p, i.e. for any

covector α ∈ (F2)F (p), the covector α ◦ TpF belongs to (F1)p ;
(2) (π1)p (α ◦ TpF, β ◦ TpF ) = (π2)F (p) (α, β) for any α, β ∈ (F2)F (p).

One says that F is a Poisson map if it is a Poisson map at any p ∈ M1.

Definition 5.3. A Banach Poisson–Lie group G is a Banach Lie group equipped with a
generalized Banach Poisson manifold structure such that the group multiplication m : G×G → G
is a Poisson map, where G×G is endowed with the product Poisson structure.

The compatibility condition between the multiplication in the group and the Poisson tensor
can be checked at the level of the Lie algebra. To see this, let us introduce some notation.
Denote by Lg : G → G and Rg : G → G the left and right translations by g ∈ G. By abuse of
notation, we will also denote by Lg and Rg the induced actions of g ∈ G on the tangent bundle
TG. The induced actions on the cotangent bundle T ∗G will be denoted by L∗

g and R∗
g, and on

the dual T ∗∗G of the cotangent bundle by L∗∗
g and R∗∗

g . In particular, for g ∈ G and α ∈ T ∗
uG,

L∗
gα ∈ T ∗

g−1u
G is defined by L∗

gα(X) := α(LgX). The smooth adjoint action of G on its Lie

algebra g will be denoted by Adg = Lg ◦R
−1
g , the induced smooth coadjoint action of G on the

dual space g∗ by Ad∗g = L∗
g ◦R

∗
g−1 , and the induced smooth action of G on the bidual space g∗∗

by Ad∗∗g = L∗∗
g ◦R∗∗

g−1 . For any subspace g− ⊂ g∗ invariant under the coadjoint action of G, the

restriction
Ad∗ : G× g− → g−

which maps (g, β) ∈ G × g− to the element Ad∗(g)β ∈ g− is continuous when g− is endowed
with the norm of g∗. In that case, one can define the coadjoint action Ad∗∗(g) of g ∈ G on Λ2g∗−
by

Ad∗∗(g)t := t(Ad(g)∗·,Ad(g)∗·), for t ∈ Λ2g∗−.

By abuse of notation, we will also denote by L∗∗
g the action of g ∈ G on a section π of Λ2T ∗∗G :

L∗∗
g πu(α, β) = πu(L

∗
gα,L

∗
gβ), with α, β ∈ T ∗

guG.

Similarly, one defines

R∗∗
u πg(α, β) = πg(R

∗
uα,R

∗
uβ), with α, β ∈ T ∗

guG.

Proposition 5.4. A Banach Lie group G equipped with a generalized Banach Poisson structure
(G,F, π) is a Banach Poisson–Lie group if and only if

(1) F is invariant under left and right translations by elements in G
(2) the Poisson tensor π is a section of Λ2

F
∗ satisfying

(5.1) πgu = L∗∗
g πu +R∗∗

u πg, ∀g, u ∈ G.

Proof. The tangent map T(g,u)m : TgG ⊕ TuG → TguG to the multiplicatin m in G maps
(Xg,Xu) to TgRu(Xg) + TuLg(Xu). The invariance of F by left and right translations means
that for any α ∈ Fgu, the covector α ◦ TuLg belongs to Fu ⊂ T ∗

uG and the covector α ◦ TgRu

belongs to Fg ⊂ T ∗
gG. This is equivalent to the first condition in definition 5.2. The second

condition in definition 5.2 reads

πG×G

(

α ◦ T(g,u)m,β ◦ T(g,u)m
)

= πgu(α, β),

for any α and β in Fgu. By definition of the Poisson structure on the product manifold G×G,
one has :

πG×G

(

α ◦ T(g,u)m,β ◦ T(g,u)m
)

= πu (α ◦ TuLg, β ◦ TuLg) + πg (α ◦ TgRu, β ◦ TgRu) ,

hence m is a Poisson map if and only if (5.1) is satisfied. �
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Corollary 5.5. The Poisson tensor π of a Banach Poisson–Lie group vanishes at the unit
element.

Proof. By equation (5.1), one has πe = πe + πe, hence πe = 0. �

Proposition 5.6. Let (G,F, π) be a Banach Poisson–Lie group. Then the fiber Fe ⊂ T ∗
e G over

the unit element e ∈ G is stable by the coadjoint action of G.

Proof. Suppose that (G,F, π) is a Banach Poisson–Lie group. The invariance of F by left trans-
lations implies that for any α ∈ Fe and any g ∈ G, the covector L∗

gα := α ◦ Tg−1Lg belongs
to Fg−1 ⊂ T ∗

g−1G. The invariance of F by right translations then implies that the covector

Ad∗(g)α := R∗
g−1 ◦ L

∗
gα = α ◦ Tg−1Lg ◦ TeRg−1 belongs to Fe ⊂ T ∗

eG. Hence Fe is stable by the

coadjoint action of G. �

In next Proposition, we introduce a 1-cocycle naturally associated to a generalized Banach
Poisson–Lie group (see Theorem 1.2 in [32] for the finite-dimensional case).

Proposition 5.7. A Banach Lie group G equipped with a generalized Banach Poisson structure
(G,F, π) is a Banach Poisson–Lie group if and only if

(1) F is invariant under left and right translations by elements in G
(2) the map Πr : G → Λ2

F
∗
e defined by g 7→ Πr(g) := R∗∗

g−1πg is a 1-cocycle on G with

respect to the coadjoint action Ad∗∗ of G on Λ2
F
∗
e, i.e. for any g, u ∈ G,

(5.2) Πr(gu) = Ad(g)∗∗Πr(u) + Πr(g).

Proof. Using the relation R∗∗
(gu)−1 = R∗∗

g−1 ◦ R∗∗
u−1 , the condition πgu = L∗∗

g πu + R∗∗
u πg for all

g, u ∈ G is equivalent to

R∗∗
(gu)−1πgu = R∗∗

g−1 ◦R
∗∗
u−1 ◦ L

∗∗
g πu +R∗∗

g−1 ◦R
∗∗
u−1 ◦R

∗∗
u πg.

Since R∗∗
u−1 and L∗∗

g commutes, the previous equality simplifies to give

Πr(gu) = R∗∗
g−1 ◦ L

∗∗
g Πr(u) + Πr(g) = Ad(g)∗∗Πr(u) + Πr(g),

which is the cocycle condition (see Section 2.5). �

5.2. Jacobi tensor and local sections. The following Lemma will be used in Section 5.3 and
Section 7.3 in order to check the Jacobi identity for Poisson–Lie groups in the Banach setting.

Lemma 5.8. Let G be a Banach Lie group with Lie algebra g, F a subbundle of T ∗G in duality
with TG, invariant by left and right translations by elements in G, and π a smooth section of
Λ2

F
∗. Then

(1) Any closed local section α of F in a neighborhood Vg of g ∈ G is of the form α(u) =
R∗

u−1α0(u), where α0 : Vg → Fe ⊂ g∗ satisfies :

(5.3) 〈α0(g), [X0, Y0]〉 = 〈Tgα0(RgY0),X0〉 − 〈Tgα0(RgX0), Y0〉,

with Tgα0 : Tg G → g∗ the tangent map of α0 at g ∈ Vg, and X0, Y0 any elements in g.
(2) Let Πr : G → Λ2

F
∗
e be defined by Πr(g) := R∗∗

g−1π(g). Then for any closed local sections

α, β of F around g ∈ G, the differential d (π(α, β)) at g reads
(5.4)
d (π(α, β)) (Xg) = TgΠr(Xg)(α0(g), β0(g)) + Πr(g)(Tgα0(Xg), β0(g)) + Πr(g)(α0(g), Tgβ0(Xg)),

where Xg ∈ Tg G, TgΠr : Tg G → Λ2F∗
e is the tangent map of Πr at g, α = R∗

g−1α0 and

β = R∗
g−1β0.
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(3) Suppose that iα0
Πr(g) ∈ g ⊂ F

∗ for any α = R∗
gα0 ∈ F. Then for any closed local

sections α, β, γ of F,

(5.5)

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) =
TgΠr(Rgiα0

Πr(g))(β0(g), γ0(g)) + 〈α0(g), [iγ0(g)Πr(g), iβ0(g)Πr(g)]〉
+TgΠr(Rgiβ0

Πr(g))(γ0(g), α0(g)) + 〈β0(g), [iα0(g)Πr(g), iγ0(g)Πr(g)]〉
+TgΠr(Rgiγ0Πr(g))(α0(g), β0(g)) + 〈γ0(g), [iβ0(g)Πr(g), iα0(g)Πr(g)]〉

where α = R∗
g−1α0, β = R∗

g1−
β0, and γ = R∗

g−1γ0. In particular the left hand side of

equation (5.5) defines a tensor.

Proof. (1) Since α is closed, one has :

dα(X,Y ) = LXα(Y )− LY α(X) − α([X,Y ]) = 0

for any local vector fields X and Y around g ∈ Vg. But since dα is a tensor (see
Proposition 3.2, chapter V in [30]), the previous identity depends only on the values
of X and Y at g. In other words, α is closed if and only if the previous identity is
satisfied for any right invariant vector fields X and Y . Set Xg = RgX0 and Yg = RgY0

for X0, Y0 ∈ g. One has

dα(X,Y ) = LXα0(g)(Rg−1Yg)− LY α0(g)(Rg−1Xg)− α0(g)(Rg−1 [X,Y ]g)
= LXα0(g)(Y0)− LY α0(g)(X0) + α0(g)([X0, Y0]g)

Denote by f : Vg → R the function defined by f(g) = α0(g)(Y0) = 〈α0(g), Y0〉, where
the bracket denotes the natural pairing between g∗ and g. Then

dfg(Xg) = 〈Tgα0(RgX0), Y0〉.

It follows that

dα(X,Y ) = 〈Tgα0(RgX0), Y0〉 − 〈Tgα0(RgY0),X0〉+ 〈α0(g), [X0, Y0]g〉.

Therefore dα(X,Y ) = 0 for any X and Y if and only if

〈α0(g), [X0, Y0]g〉 = 〈Tgα0(RgY0),X0〉 − 〈Tgα0(RgX0), Y0〉,

for any X0 and Y0 in g.
(2) This is a straighforward application of the chain rule.
(3) In the case where iα0

Πr(g) belongs to g, one has the following expression of the differential
of π :

d (π(β, γ)) (Xg) = TgΠr(Xg)(β0(g), γ0(g)) − 〈Tgβ0(Xg), iγ0(g)Πr(g)〉 + 〈Tgγ0(Xg), iβ0(g)Πr(g)〉,

where 〈·, ·〉 denotes the duality pairing between g∗ and g. Therefore

π(α, d (π(β, γ)) = Πr(g)
(

α0(g), R
∗
gd (π(β, γ))

)

= d (π(β, γ)) (Rgiα0(g)Πr(g))
= TgΠr(Rgiα0(g)Πr(g))(β0(g), γ0(g))

−〈Tgβ0(Rgiα0(g)Πr(g)), iγ0(g)Πr(g)〉
+〈Tgγ0(Rgiα0(g)Πr(g)), iβ0(g)Πr(g)〉.

It follows that

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= −〈Tgβ0(Rgiα0(g)Πr(g)), iγ0(g)Πr(g)〉 + 〈Tgγ0(Rgiα0(g)Πr(g)), iβ0(g)Πr(g)〉

−〈Tgγ0(Rgiβ0(g)Πr(g)), iα0(g)Πr(g)〉 + 〈Tgα0(Rgiβ0(g)Πr(g)), iγ0(g)Πr(g)〉
−〈Tgα0(Rgiγ0(g)Πr(g)), iβ0(g)Πr(g)〉 + 〈Tgβ0(Rgiγ0(g)Πr(g)), iα0(g)Πr(g)〉
+TgΠr(Rgiα0

Πr(g)) (β0(g), γ0(g)) + TgΠr(Rgiβ0
Πr(g)) (γ0(g), α0(g))

+TgΠr(Rgiγ0Πr(g)) (α0(g), β0(g))

Using (5.3), the previous equation simplifies to (5.5).
�
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5.3. Example of Banach Poisson–Lie groups Up(H) and B±
p (H) for 1 < p ≤ 2. Let us

give some examples of Banach Poisson–Lie groups. We will need to introduce classical Banach
Lie groups of operators.

General linear group GL(H). The general linear group of H, denoted by GL(H) is the group
consisting of bounded operators A on H which admit a bounded inverse, i.e. for which there
exists a bounded operator A−1 satisfying AA−1 = A−1A = Id, where Id : H → H denotes the
identity operator x 7→ x.

General linear group GLp(H). The Banach Lie algebra Lp(H) is the Banach Lie algebra of the
following Banach Lie group :

(5.6) GLp(H) := GL(H) ∩ {Id +A : A ∈ Lp(H)}.

Unitary group U(H). The unitary group of H is defined as the subgroup of GL(H) consisting
of operators A such that A−1 = A∗ and is denoted by U(H).

Unitary groups Up(H). The Banach Lie algebra up(H) defined by (1.10) is the Banach Lie
algebra of the following Banach Lie group

(5.7) Up(H) := U(H) ∩ {Id +A : A ∈ Lp(H)}.

Triangular groups B±
p (H). To the Banach Lie algebra b±p (H) defined by (1.11) is associated the

following Banach Lie group :

B±
p (H) := {α ∈ GL(H) ∩

(

Id + b±p (H)
)

: α−1 ∈ Id + b±p (H) and 〈n|α|n〉 ∈ R
+∗, for n ∈ Z},

where R
+∗ is the group of strictly positive real numbers.

Let us now give some examples of Banach Poisson–Lie groups. Similar results will be proved
in the more involved restricted case in Section 7.3. Recall that the orthogonal projections pup,+
and pup,− are defined by (1.14) and (1.15) respectively.

Proposition 5.9. For 1 < p ≤ 2, consider the Banach Lie group B±
p (H) with Banach Lie

algebra b±p (H), and the duality pairing 〈·, ·〉R : b±p (H)× up(H) → R given by the imaginary part
of the trace (1.16). Consider

(1) Bb := R∗
b−1up(H) ⊂ T ∗

b B±
p (H), b ∈ B±

p (H).

(2) Π
B±

p
r : B±

p (H) → Λ2up(H)∗ defined by

(5.8) Π
B±

p
r (b)(x1, x2) := ℑTr pb±p (b

−1x1b)
[

pup,±(b
−1x2b)

]

,

where b ∈ B±
p (H) and x1, x2 ∈ up(H).

(3) πB±
p : B±

p → Λ2T B±
p (H) given by πB±

p (b) := R∗∗
b Π

B±
p

r (b).

Then (B±
p (H),B, πB±

p ) is a Banach Poisson–Lie group.

Proof. The expression of the Poisson tensor makes sense because Lp(H) ⊂ Lq(H) for 1 < p ≤ 2
with 1

p + 1
q = 1. The Jacobi identity is a consequence of equation (5.5). The compatibility of

the Poisson tensor and the multiplication of the group can be checked using equation (5.2). �

Similarly one has :

Proposition 5.10. For 1 < p ≤ 2, consider the Banach Lie group Up(H) with Banach Lie
algebra up(H) and the duality pairing 〈·, ·〉R : b±p (H)× up(H) → R given by the imaginary part
of the trace (1.16). Consider

(1) Uu := R∗
u−1b

±
p (H) ⊂ T ∗

u Up(H), u ∈ Up(H),
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(2) Π
U±

p
r : Up(H) → Λ2b±p (H)∗ defined by

(5.9) Π
U±

p
r (u)(b1, b2) := ℑTr pup,±(u

−1b1u)
[

pb±p (u
−1b2u)

]

,

where u ∈ Up(H) and b1, b2 ∈ b±p (H).

(3) πU±
p : Up(H) → Λ2T Up(H) given by πU±

p (g) := R∗∗
g Π

U±
p

r (g).

Then (Up(H),U, πU±
p ) is a Banach Poisson–Lie group.

5.4. The tangent Banach Lie bialgebra of a Banach Poisson–Lie group. In this Section,
we show that the Banach Lie algebra g of any Banach Poisson–Lie group (G,F, π) carries an
natural Banach Lie bialgebra structure with respect to Fe (see Theorem 5.11 below). Moreover,
when the Poisson tensor is a section of Λ2TG ⊂ Λ2T ∗∗G, then g is a Banach Lie–Poisson space
with respect to Fe (see Theorem 5.13).

Theorem 5.11. Let (G+,F, π) be a Banach Poisson–Lie group and suppose that g− := Fe is a
Banach subspace of g∗+. Then g+ is a Banach Lie bialgebra with respect to g−. The Lie bracket
in g− is given by

(5.10) [α1, β1]g− := TeΠr(·)(α1, β1) ∈ g− ⊂ g∗+, α1, β1 ∈ g− ⊂ g∗+,

where Πr := R∗∗
g−1π : G+ → Λ2g∗−, and TeΠr : g+ → Λ2g∗− denotes the differential of Πr at the

unit element e ∈ G+.

Proof. • Let us show that the dual map TeΠ
∗
r :

(

Λ2g∗−
)∗

→ g∗+ defines a skew-symmetric
bilinear map [·, ·]g− on g− with values in g− ⊂ g∗+. Let α and β be any local sections
of F in a neighboorhood Ve of the unit element e ∈ G+. Define α0 : Ve → g− and
β0 : Ve → g− by α0(u) := R∗

uα(u) and β0(u) := R∗
uβ(u). It follows from equation (5.4),

that for any X ∈ g+,

de (π(α, β)) (X) = TeΠr(X)(α0(e), β0(e)) + Πr(e)(Teα0(X), β0(e)) + Πr(e)(α0(g), Tgβ0(Xg)).

By Corollary 5.5, Πr(e) = 0. Hence

(5.11) de (π(α, β)) (X) = TeΠr(X)(α0(e), β0(e)).

By the first condition in the definition of a Poisson tensor, d (π(α, β)) is a local section
of F, therefore de (π(α, β)) belongs to Fe = g−. It follows that the formula

[α1, β1]g− := TeΠr(·)(α1, β1)

defines a bracket on g−. The skew-symmetry of [·, ·]g− is clear.
• Let us show that [·, ·]g− satisfies the Jacobi identity, hence is a Lie algebra structure on
g−. Consider any closed local sections α, β, γ of F defined in a neighborhood of e ∈ G+.
Since π is a Poisson tensor, one has

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0.

Differentiating the above identity at e ∈ G+, one gets

(5.12) de (π (α, dπ(β, γ))) + de (π (β, dπ(γ, α))) + de (π (γ, dπ(α, β))) = 0.

Define α0(u) := R∗
uα(u), and δ0(u) := R∗

udu (π(β, γ)). Note that α0(e) = α(e) and
δ0(e) = de (π(β, γ)). Hence, by equation (5.11) and (5.10), for any X ∈ g+,

de (π (α, dπ(β, γ))) (X) = TeΠr(X)(α0(e), δ0(e)) = TeΠr(X)(α(e), de (π(β, γ)))
= TeΠr(X) (α(e), TeΠr(·)(β(e), γ(e))
= [α(e), [β(e), γ(e)]g− ]g−(X).

It follows that equation (5.12) can be rewritten as

[α(e), [β(e), γ(e)]g− ]g− + [β(e), [γ(e), α(e)]g− ]g− + [γ(e), [α(e), β(e)]g− ]g− = 0.



BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN 33

To show that the bracket [·, ·]g− satisfies Jacobi identity, it remains to prove that any
element α1 ∈ g− can be extended to a closed local section α of F such that α(e) = α1.
For this, it suffices to find a scalar function f defined in a neighborhood Ve of e ∈ G+

such that dgf ∈ Fg for any g ∈ Ve and def = α1. This can be done using a chart around
e ∈ G+ and a local trivialisation of F. Then α := df is a closed local section of F such
that α1 = α(e).

• Let us show that g+ acts continuously on g− ⊂ g∗+ by coadjoint action. By Proposi-
tion 5.6, g− := Fe is invariant by the coadjoint action of G+ on g∗+. By differentiation,
g− ⊂ g∗+ is stable by the coadjoint action of g+ on g∗+. This action is continuous when
g− is endowed with the topology of g∗+.

• Let us show that the dual map of the bracket [·, ·]g− restricts to a 1-cocycle θ : g+ → Λ2g∗−
with respect to the adjoint action ad(2,0) of g+ on Λ2g∗−. By definition of the bracket
(5.10), θ = TeΠr. By Proposition 5.7, Πr is a 1-cocycle on G+ with respect to the
coadjoint action Ad∗∗ of G+ on Λ2g∗−. Hence TeΠr is a 1-cocycle on g+ with respect to

the adjoint action ad(2,0) of g+ on Λ2g∗− (see Section 2.5).
�

Example 5.12. The tangent bialgebras of the Banach Poisson–Lie groups B±
p (H) and Up(H)

defined in Proposition 5.9 and Proposition 5.10, are the Banach Lie bialgebra b±p (H) and up(H) in

duality, which combine into the Manin triple (Lp(H), up(H), b±p (H)) given in Proposition 1.16.

Indeed, the derivative at the unit element e of Π
U±

p
r : Up(H) → Λ2b±p (H)∗ defined by equa-

tion (5.9) reads :

deΠ
U±

p
r (x)(b1, b2) = ℑTr

(

pup,±([x, b1])pb±p (b2)
)

+ ℑTr
(

pup,±(b1)pb±
2

([x, b2])
)

,

= ℑTr
(

pup,±([x, b1])b2
)

= ℑTr [x, b1]b2 = ℑTrx[b1, b2]b±p ,

with x ∈ up(H) and b1, b2 ∈ b±p (H), where we have used that b±p (H) is an isotropic subspace.

It follows that deΠ
U±

p
r (·)(b1, b2) = [b1, b2]b±p ∈ b±p (H) ⊂ up(H)∗. Similarly, the derivative of Π

B±
p

r

defined by equation (5.8) is given by

deΠ
B±

p
r (b)(x1, x2) = ℑTr b[x1, x2]up , b ∈ b±p (H), x1, x2 ∈ up(H),

and is the dual map of the bracket [·, ·]up .

Theorem 5.13. Let (G+,F, π) be a Banach Poisson–Lie group. If the map π♯ : F → F
∗ defined

by π♯(α) := π(α, ·) takes values in TG+ ⊂ F
∗, then g+ is a Banach Lie–Poisson space with

respect to g− := Fe.

Proof. Let α1 ∈ g− and define α(g) = R∗
g−1(α1) ∈ Fg. Then π(R∗

g−1α1, ·) = π(α, ·) takes values

in TgG+ ⊂ F
∗
g, and Πr(g)(α1, ·) = π(R∗

g−1α1, R
∗
g−1 ·) takes values in g+ ⊂ g∗−. It follows that Πr

takes values in Λ2g+ ⊂ Λ2g∗−. By differentiation, it follows that TeΠr takes also values in Λ2g+.
Using equation (5.10) for the bracket in g−, one has

(5.13) 〈ad∗α1
X,β1〉g+,g− := 〈X, [α1, β1]g−〉g+,g− = TeΠr(X)(α1, β1).

where X ∈ g+ and α1, β1 ∈ g−. Hence ad∗α1
X = TeΠr(X)(α1, ·), therefore ad∗α1

X belongs to g+
for any α1 ∈ g−. Consequently g+ is a Banach Lie–Poisson space with respect to g−. �

Remark 5.14. In the finite-dimensional case, any Lie bialgebra can be integrated to a connected
simply-connected Poisson–Lie group. The Banach situation is more complicated, since not
every Banach Lie algebra can be integrated into a Banach Lie group (see [36] for a survey on the
problem of integrability of Banach Lie algebras and on Lie theory in the more general framework
of locally convex spaces). Even in the case when a Banach Lie bialgebra is a Lie algebra of a
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connected and simply-connect Banach Lie group, it is still an open problem to determine if the
bialgebra structure can be integrated into a Poisson–Lie group structure on the group.

Part 2. Poisson–Lie groups and the restricted Grassmannian

In this Part we use the notions introduced in Part 1 in order to construct Banach Poisson–Lie
group structures on the restricted unitary group Ures(H) and on the triangular group B±

res(H),
and a generalized Banach Poisson manifold structure on the restricted Grassmannian such that
both actions of Ures(H) and B±

res(H) on the restricted Grassmannian are Poisson.
In Section 6, we set the notation. In Section 7.1, we introduce weak duality pairings between

the Banach Lie algebras ures(H) and b±1,2(H), and between b±res(H) and u1,2(H). In Section 7.2
we use the unboundedness of the triangular truncation on the space of trace class operators to
show that b±1,2(H) is not a Banach Lie–Poisson space with respect to ures(H). Similarly u1,2(H)

is not a Banach Lie–Poisson space with respect to b±res(H). This implies in particular that
there is no Banach Poisson–Lie group structure on B±

res(H) defined on the translation invariant
subbundle whose fiber at the unit element is u1,2(H) ⊂ b±res(H)∗. In Section 7.3 we overcome

this difficulty by replacing u1,2(H) by the quotient Banach space L1,2(H)/b±1,2(H), and construct

a Banach Poisson–Lie group structure on B±
res(H). The Banach Poisson–Lie group structure

of Ures(H) can be constructed in a similar way. In Section 8, we show that the restricted
Grassmannian is a quotient Poisson homogeneous space of Ures(H), the stabilizer H of a point
being a Banach Poisson–Lie subgroup of Ures(H). In Section 9.1, we show that the actions of
Ures(H) and B±

res(H) on the restricted Grassmannian are Poisson actions. In Section 9.2, we
show that the symplectic leaves of the Poisson structure of the restricted Grassmannian are the
orbits of B±

res(H) and coincides with Schubert cells. At last, we mention that the action of the
subgroup Γ+ of B±

res(H) generated by the shift gives rise to the KdV hierachy.

6. Preliminaries

Let us introduce some notation. If not stated otherwise, the Banach Lie algebras and related
notions are over the field of real numbers. Endow the infinite-dimensional separable complex
Hilbert space H with orthonormal basis {|n〉, n ∈ Z} ordered with respect to decreasing values
of n, and consider the decomposition H = H+ ⊕ H−, where H+ := span{|n〉 : n ≥ 0} and
H− := span{|n〉 : n < 0}. Denote by p+ (resp. p−) the orthogonal projection onto H+ (resp.
H−), and set d = i(p+ − p−) ∈ L∞(H).

6.1. Restricted Banach Lie algebra Lres(H) and its predual L1,2(H). The restricted Ba-
nach Lie algebra is the Banach Lie algebra

(6.1) Lres(H) = {A ∈ L∞(H) : [d,A] ∈ L2(H)}

for the norm ‖A‖res = ‖A‖∞ + ‖[d,A]‖2 and the bracket given by the commutator of operators.
A predual of Lres is

(6.2) L1,2(H) := {A ∈ L∞(H) : [d,A] ∈ L2(H), p±A|H±
∈ L1(H±)}.

It is a Banach Lie algebra for the norm given by

‖A‖1,2 = ‖p+A|H+
‖1 + ‖p−A|H−

‖1 + ‖[d,A]‖2.

The duality pairing between L1,2(H) and Lres(H) is given by

〈·, ·〉Lres,L1,2
: Lres(H)× L1,2(H) → C

(A,B) 7→ Trres(AB),

where the restricted trace Trres (see [20])) is defined on L1,2(H) by

(6.3) Tr resA = Tr p+A|H+
+Tr p−A|H−

.
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According to Proposition 2.1 in [20], one has Tr resAB = Tr resBA for any A ∈ L1,2(H) and any
B ∈ Lres(H).

6.2. Restricted general linear group GLres(H) and its “predual” GL1,2(H). The re-
stricted general linear group, denoted by GLres(H) is defined as

(6.4) GLres(H) := GL(H) ∩ Lres(H).

It is an open subset of Lres(H) hence carries a natural Banach Lie group structure with Banach
Lie algebra Lres(H). It is not difficult to show that GLres(H) is closed under the operation that
takes an operator A ∈ GLres(H) to its inverse A−1 ∈ GL(H). It follows that GLres(H) is a
Banach Lie group.

The Banach Lie algebra L1,2(H), predual to Lres(H), is the Banach Lie algebra of the following
Banach Lie group

(6.5) GL1,2(H) := GL(H) ∩ {Id +A : A ∈ L1,2(H)}.

6.3. Unitary Banach Lie algebras u(H), ures(H), u1,2(H). The subspace

(6.6) u(H) := {A ∈ L∞(H) : A∗ = −A}

of skew-Hermitian bounded operators is a real Banach Lie subalgebra of L∞(H) considered as
a real Banach space. The unitary restricted algebra ures(H) is the real Banach Lie subalgebra
of Lres(H) consisting of skew-Hermitian operators :

(6.7) ures(H) := {A ∈ u(H) : [d,A] ∈ L2(H)} = Lres(H) ∩ u(H).

By Proposition 2.1 in [8], a predual of the unitary restricted algebra ures(H) is the subalgebra
u1,2(H) of Lres(H) consisting of skew-Hermitian operators (see also Remark 7.2 below) :

(6.8) u1,2(H) := {A ∈ L1,2(H) : A∗ = −A}.

Remark 6.1. It follows from Proposition 2.5 in [8] with γ = 0 that u1,2(H) is a Banach Lie–
Poisson space with respect to ures(H). A direct computation shows that u1,2(H) is not a Banach
Lie bialgebra with respect to ures(H).

6.4. Restricted unitary group Ures(H) and its “predual” U1,2(H). The restricted unitary
group is defined as

(6.9) Ures(H) := GLres(H) ∩U(H).

It has a natural structure of Banach Lie group with Banach Lie algebra ures(H). The Banach
Lie algebra u1,2(H), predual to ures(H), is the Banach Lie algebra of the following Banach Lie
group

(6.10) U1,2(H) := U(H) ∩ {Id +A : A ∈ L1,2(H)}.

6.5. The restricted Grassmannian Grres(H). In the present paper, the restricted Grassman-
nian Grres(H) denotes the set of all closed subspaces W of H such that the orthogonal projection
p− : W → H− is a Hilbert-Schmidt operator. The restricted Grassmannian is a homogeneous
space under the restricted unitary group (see [42]),

Grres(H) = Ures(H)/ (U(H+)×U(H−)) ,

and under the restricted general linear group GLres(H),

Grres(H) = GLres(H)/Pres(H),

where

(6.11) Pres(H) = {A ∈ GLres(H) : p−A|H+
= 0}.

It follows that Grres(H) is a homogeneous Kähler manifold (see [65], [8], [59], [60] for more
informations on the geometry of the restricted Grassmannian).
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6.6. Triangular Banach Lie subalgebras b±1,2(H) and b±res(H). Let us define the following

triangular subalgebras of L1,2(H) and Lres(H) :

b+1,2(H) := {α ∈ L1,2(H) : α (|n〉) ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−1,2(H) := {α ∈ L1,2(H) : α (|n〉) ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z},

b+res(H) := {α ∈ Lres(H) : α (|n〉) ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−res(H) := {α ∈ Lres(H) : α (|n〉) ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

6.7. Triangular Banach Lie groups B±
1,2(H), and B±

res(H). Consider

B±
1,2(H) := {α ∈ GL(H) ∩

(

Id + b±1,2(H)
)

: α−1 ∈ Id + b±1,2(H),∀ n ∈ Z, 〈n|α|n〉 ∈ R
+∗}.

For any A ∈ b±1,2(H) with ‖A‖1,2 < 1, and any α ∈ B±
1,2(H), the operator α − αA belongs to

B±
1,2(H), since

(α− αA)−1 = (Id−A)−1α−1,

and (Id−A)−1 =
∑∞

n=0A
n is a convergent series in

(

Id + b±1,2(H)
)

, whose limit admits strictly

positive diagonal coefficients. Hence B±
1,2(H) is an open subset of

(

Id + b±1,2(H)
)

, stable under

group multiplication and inversion. It follows that B±
1,2(H) is a Banach Lie group with Banach

Lie algebra b±1,2(H).
Similarly define the following Banach Lie groups of triangular operators :

B±
res(H) := {α ∈ GLres(H) ∩ b±res(H) : α−1 ∈ GLres(H) ∩ b±res(H) and ∀ n ∈ Z, 〈n|α|n〉 ∈ R

+∗}.

Remark 6.2. Remark that B+
res(H) does not contain the shift operator S : H → H, |n〉 7→ |n+1〉

since the diagonal coefficients of any element in B+
res(H) are non-zero. However S belongs to the

Lie algebra b+res(H), whereas S−1 belongs to b−res(H).

7. Example of Banach Lie bialgebras and Banach Poisson–Lie groups related

to the restricted Grassmannian

7.1. Iwasawa Banach Lie bialgebras. Recall that 〈·, ·〉Lres,L1,2
denote the continuous bilinear

map given by the imaginary part of the restricted trace (see equation (6.3)) :

〈·, ·〉Lres,L1,2
: Lres(H)× L1,2(H) −→ R

(x, y) 7−→ ℑTr res (xy) .

Proposition 7.1. The continuous bilinear map 〈·, ·〉Lres,L1,2
restricts to a weak duality pairing

between ures(H) and b±1,2(H) denoted by

〈·, ·〉
ures ,b

±

1,2
: ures(H)× b±1,2(H) −→ R

(x, y) 7−→ ℑTr res (xy) .

Similarly the continuous bilinear map 〈·, ·〉Lres ,L1,2
restricts to a weak duality pairing between

b±res(H) and u1,2(H) denoted by

〈·, ·〉b±res ,u1,2 : b±res(H)× u1,2(H) −→ R

(x, y) 7−→ ℑTr res (xy) .

Proof. Let us show that the map (a, b) 7→ ℑTr resab is non-degenerate for a ∈ ures(H) and
b ∈ b+1,2(H).

Suppose that a ∈ ures(H) is such that ℑTr resab = 0 for any b ∈ b+1,2(H) and let us show that a

necessary vanishes. Since {|n〉}n∈Z is an orthonormal basis of H and a is bounded, it is sufficient
to show that for any n,m ∈ Z, 〈m|an〉 = 0. In fact, since a is skew-symmetric, it is enough to
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show that 〈m|an〉 = 0 for m ≤ n. For n ≥ m, the operator Enm = |n〉〈m| of rank one given by
x 7→ 〈m,x〉|n〉 belongs to b+1,2(H). Hence for n ≥ m, one has

ℑTr resaEnm = ℑ





∑

j∈Z

〈j|m〉〈j|an〉



 = ℑ〈m|an〉 = 0.

In particular, for m = n, since 〈n|an〉 is purely imaginary, one has 〈n|an〉 = 0, ∀n ∈ Z. For
n > m, the operator iEnm belongs also to b+1,2(H) and

ℑTr resaiEnm = ℑ





∑

j∈Z

i〈j|m〉〈j|an〉



 = ℜ〈m|an〉 = 0.

This allows to conclude that 〈m|an〉 = 0 for any n,m ∈ Z, hence a = 0 ∈ ures(H).
On the other hand, consider an element b ∈ b+1,2(H) such that ℑTr ab = 0 for any a ∈ ures(H).

We will show that 〈n|bm〉 = 0 for any n,m ∈ Z such that n ≥ m. For n > m, the operator
Emn − Enm belongs to ures(H), and for n ≥ m, iEmn + iEnm ∈ ures(H). Therefore for n > m,
one has

ℑTr res (Emn − Enm) b = ℑ (〈n|bm〉 − 〈m|bn〉) = ℑ〈n|bm〉 = 0,

and for n ≥ m, one has

ℑTr res (iEmn + iEnm) b = ℑ (i〈n|bm〉+ i〈m|bn〉) = ℜ〈n|bm〉 = 0.

It follows that 〈n|bm〉 = 0 for all n,m ∈ Z such that n > m. Moreover, since 〈n|bn〉 ∈ R for any
n ∈ Z, one also has 〈n|bn〉 = 0,∀n ∈ Z. Consequently b = 0.

It follows that 〈·, ·〉
ures,b

±

1,2
: ures(H) × b+1,2(H) → R, (x, y) 7→ ℑTr resxy, is non-degenerate

and defines a duality pairing between ures(H) and b+1,2(H). One shows in a similar way that

〈·, ·〉Lres,L1,2
induces a duality pairing between ures(H) and b−1,2(H), between u1,2(H) and b+res(H),

and between u1,2(H) and b−res(H). �

Remark 7.2. Recall that by Proposition 2.1 in [8], the dual space u1,2(H)∗ can be identified with
ures(H), the duality pairing being given by (a, b) 7→ Tr res(ab). By previous Proposition, one has
a continuous injection from b+res(H) into u1,2(H)∗ by a 7→ (b 7→ ℑTr res(ab)). The corresponding
injection from b+res(H) into ures(H) ≃ u1,2(H)∗ reads :

ι : b+res(H) →֒ ures(H)
b 7→ − i

2(b+ b∗).

The range of ι is the subspace of ures(H) consisting of those x ∈ ures(H) such that the triangular
truncation T−(x) is bounded. Recall that T− is unbounded on L∞(H), as well as on L1(H)
(see [33], [28], [19]), and that there exists skew-symmetric bounded operators whose triangular
truncation is not bounded (see [12]). Therefore ι is not surjective.

Theorem 7.3. The Banach Lie algebra b±1,2(H) is a Banach Lie bialgebra with respect to ures(H).

Similarly the Banach Lie algebra u1,2(H) is a Banach Lie bialgebra with respect to b±res(H).

Proof. Let us show that the Lie algebra structure [·, ·]ures on ures(H) is such that

(1) b±1,2(H) acts continuously by coadjoint action on ures(H);

(2) the dual map [·, ·]∗ures : u∗res(H) → Λ2u∗res(H) to the Lie bracket [·, ·]ures : ures(H) ×

ures(H) → ures(H) restricts to a 1-cocycle θ : b±1,2(H) → Λ2u∗res(H) with respect to the

adjoint action ad(2,0) of b±1,2(H) on Λ2u∗res(H).
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• Let us first prove (1). Since by Proposition 7.1, 〈·, ·〉b±
1,2 ,ures

is a duality pairing between

ures(H) and b±1,2(H), the Banach space ures(H) is a subspace of the continuous dual of

b±1,2(H). Recall that the coadjoint action of b±1,2(H) on its dual reads

−ad∗ : b±1,2(H)× b±1,2(H)∗ −→ b±1,2(H)∗

(x, α) 7−→ −ad∗xα := −α ◦ adx.

Let us show that ures(H) is invariant under coadjoint action. This means that when α is
given by α(y) = ℑTr resay for some a ∈ ures(H), then, for any x ∈ b±1,2(H), the one form

β = −ad∗xα reads β(y) = ℑTr resãy for some ã ∈ ures(H). One has

β(y) = −ad∗xα(y) = −α(adxy) = −α([x, y])
= −ℑTr resa[x, y] = −ℑTr res(axy − ayx),

where a ∈ ures(H), x, y ∈ b±1,2(H). Since ay and x belong to L2(H), ayx and xay belong

to L1(H) and Tr res(ayx) = Tr (ayx) = Tr (xay). Since axy belongs also to L1(H), one
has

β(y) = −ℑTr (axy) + ℑTr (ayx) = −ℑTr (axy) + ℑTr (xay) = −ℑTr ([a, x]y).

Note that [a, x] belongs to L2(H). Recall that by Proposition 1.16, the triples of
Hilbert Lie algebras (L2(H), u2(H), b+2 (H)) and (L2(H), u2(H), b−2 (H)) are real Hilbert
Manin triples with respect to the pairing 〈·, ·〉R given by the imaginary part of the
trace. Using the decomposition L2(H) = u2(H)⊕ b+2 (H), and the continuous projection
p
u±
2

: L2(H) → u2(H) with kernal b±2 (H), one therefore has

β(y) = −ℑTr pu±
2

([a, x])y,

since y ∈ b±1,2(H) ⊂ b±2 (H) and b±2 (H) is isotropic. It follows that β(y) = ℑTr ãy with

ã = −p
u±
2

([a, x]) ∈ u2(H) ⊂ ures(H).

In other words, the coadjoint action of x ∈ b±1,2(H) maps a ∈ ures(H) to −ad∗xa =

−pu±
2

([a, x]) ∈ ures(H). The continuity of the map

−ad∗ : b±1,2(H)× ures(H) → ures(H)

(x, a) 7→ −ad∗xa = −p
u±
2

([a, x])

follows from the continuity of the product

b±1,2(H)× ures(H) → L1(H)

(x, a) 7→ ax,

from the continuity of the projection pu±
2

and from the continuity of the injections

L1(H) ⊂ L2(H) and u2(H) ⊂ ures(H).
• Let us now prove (2). The dual map of the bilinear map [·, ·]ures is given by

[·, ·]u∗res : u∗res(H) −→ L(ures(H), ures(H);K) ≃ L(ures(H); u∗res(H))
F(·) 7−→ F ([·, ·]ures ) 7→ (α 7→ F ([α, ·]ures ) = ad∗αF(·)) ,

and takes values in Λ2u∗res(H). Since by (1), ures(H) ⊂ b±1,2(H)∗ is stable under the

coadjoint action of b±1,2(H) and the coadjoint action ad∗ : b±1,2(H)×ures(H) → ures(H) is

continuous, one can consider the adjoint action of b±1,2(H) on Λ2u∗res(H) defined by (2.3).

Denote by θ the restriction of [·, ·]∗ures to the subspace b±1,2(H) ⊂ ures(H)∗ :

θ : b±1,2(H) −→ L(ures(H), ures(H);K) ≃ L(ures(H); ures(H)∗)

x 7−→ 〈x, [·, ·]ures 〉b±
1,2,ures

7→
(

α 7→ 〈x, [α, ·]ures 〉b±
1,2,ures

= ad∗αx(·)
)

.



BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN 39

The condition (4.1) expressing that θ is a 1-cocycle reads :

(7.1)
〈[α, β], [x, y]〉

b±
1,2 ,ures

= +〈y, [ad∗xα, β]〉b±
1,2 ,ures

+ 〈y, [α, ad∗
xβ]〉b±

1,2,ures

−〈x, [ad∗yα, β]〉b±
1,2 ,ures

− 〈x, [α, ad∗
yβ]〉b±

1,2,ures
.

The first term in the RHS reads

+〈y, [ad∗xα, β]〉b±
1,2 ,ures

= ℑTr y[pu±
2

([α, x]), β] = ℑTr [β, y]pu±
2

([α, x]).

Using the fact that [β, y] ∈ L2(H), and that u2(H) ⊂ L2(H) and b±2 (H) ⊂ L2(H) are
isotropic subspaces with respect to the pairing given by the imaginary part of the trace,
one has

+〈y, [ad∗xα, β]〉b±
1,2,ures

= ℑTr pb±
2

([β, y])pu±
2

([α, x]).

Similarly the second, third and last term in the RHS of equation (7.1) read respectively

+〈y, [α, ad∗xβ]〉b±
1,2,ures

= ℑTr pb±
2

([y, α])pu±
2

([β, x]),

−〈x, [ad∗yα, β]〉b±
1,2 ,ures

= −ℑTr p
b±
2

([β, x])p
u±
2

([α, y]),

−〈x, [α, ad∗
yβ]〉b±

1,2,ures
= −ℑTr pb±

2

([x, α])pu±
2

([β, y]).

Using once more the fact that u2(H) ⊂ L2(H) and b±2 (H) ⊂ L2(H) are isotropic sub-
spaces with respect to the pairing given by the imaginary part of the trace, it follows
that the first and last term in the RHS of equation (7.1) sum up to give

+〈y, [ad∗xα, β]〉b±
1,2,ures

− 〈x, [α, ad∗
yβ]〉b±

1,2,ures
= −ℑTr [β, y][x, α],

and the second and third term in equation (7.1) simplify to

+〈y, [α, ad∗
xβ]〉b±

1,2,ures
− 〈x, [ad∗yα, β]〉b±

1,2,ures
= −ℑTr [β, x][α, y].

Developping the brackets and using that, for A and B bounded such that AB and BA
are trace class, one has TrAB = TrBA, the RHS of equation (7.1) becomes

ℑTr [β, y][x, α] + ℑTr [β, x][α, y] = ℑTr (−βyxα− yβαx+ βxyα+ xβαy)
= ℑTr (xyαβ − xyβα− yxαβ + yxβα)
= ℑTr [x, y][α, β]
= 〈[x, y], [α, β]〉b±

1,2 ,ures
,

hence θ satisfies the cocycle condition.
One can show in a similar way that the Lie algebra structure [·, ·]b±res on b±res(H) is such

that
(1) u1,2(H) acts continuously by coadjoint action on b±res(H);
(2) the dual map [·, ·]∗

b±res
: b±res(H)∗ → Λ2b±res(H)∗ to the Lie bracket [·, ·]

b±res
: b±res(H)×

b±res(H) → b±res(H) restricts to a 1-cocycle θ : u1,2(H) → Λ2b±res(H)∗ with respect to

the adjoint action ad(2,0) of u1,2(H) on Λ2b±res(H)∗.

�

7.2. Unbounded coadjoint actions. Recall that for 1 < p < ∞ and q := p
p−1 , up(H) and

b±q (H) are dual Banach Lie–Poisson spaces (see Example 3.19), and that the coadjoint actions
are given by

ad∗αx = pup,± ([x, α]) and ad∗xα = pb±q ([α, x]) ,

where x ∈ up(H) and α ∈ b±q (H). In this example, the continuity of the triangular truncation
T+ on Lp(H) and Lq(H) (see Section 1.4) is crucial in order to define the orthogonal projections
pup,± and pb±q using equations (1.14) and (1.15).
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The situation is different for the Banach Lie algebras u1,2(H) and b±res(H). We will show
that u1,2(H) is not a Banach Lie–Poisson space with respect to b±res(H) since the coadjoint
action of b±res(H) on u1,2(H) is unbounded. To prove this result, we will use the fact that the
triangular truncation is unbounded on the space of trace class operators. In a similar way,
the coadjoint action of ures(H) on b+1,2(H) is unbounded (see also [58]) Using Theorem 4.9, we

conclude that there is no Banach Manin triple associated to the pair (u1,2(H), b±res(H)) nor to
the pair (b+1,2(H), ures(H)) for the duality pairing given by the imaginary part of the restricted

trace (see Theorem 7.7 below).

Proposition 7.4. There exist a bounded sequence of elements xn ∈ u1,2(H) and an element
y ∈ b±res(H) such that

‖T+([xn, y]|H+
)‖1 → +∞.

Proof. Consider the Hilbert space H = H+ ⊕H−, with orthonormal basis {|n〉, n ∈ Z} ordered
with respect to decreasing values of n, where H+ = span{|n〉, n > 0} and H− = span{|n〉, n ≤
0}. Furthermore decompose H+ into the Hilbert sum of Heven

+ := span{|2n + 2〉, n ∈ N} and

Hodd
+ := span{|2n + 1〉, n ∈ N}. We will denote by u : Hodd

+ → Heven
+ the unitary operator

defined by u|2n+ 1〉 = |2n + 2〉.
Since the triangular truncation is not bounded on the Banach space of trace class operators,

there exists a sequence Kn ∈ L1(H
odd
+ ) such that ‖Kn‖1 ≤ 1 and ‖T+(Kn)‖1 > n for all

n ∈ N. It follows that either ‖T+(Kn +K∗
n)/2‖1 > n/2 or ‖T+(Kn −K∗

n)/2‖1 > n/2. Modulo
the extraction of a subsequence, we can suppose that Kn is either Hermitian Kn = K∗

n or
skew-Hermitian Kn = −K∗

n. Moreover, since the triangular truncation is complex linear, the
existence of a sequence of skew-Hermitian operators such that ‖Kn‖1 ≤ 1 and ‖T+(Kn)‖1 > n/2
implies that the sequence iKn is a sequence of Hermitian operators such that ‖iKn‖1 ≤ 1 and
‖T+(iKn)‖1 > n/2. Therefore without loss of generality we can suppose that Kn are Hermitian.

Consider the bounded operators xn defined by 0 on H−, preserving H+ and whose expression
with respect to the decomposition H+ = Heven

+ ⊕Hodd
+ reads

(7.2) xn|H+
=

(

0 uKn

−K∗
nu

∗ 0

)

.

By construction, xn is skew-Hermitian. The restriction of x∗nxn to H+ decomposes as follows
with respect to H+ = Heven

+ ⊕Hodd
+ ,

x∗nxn|H+
=

(

uK∗
nKnu

∗ 0
0 K∗

nKn

)

,

therefore xn belongs to u1,2(H) since the singular values of xn are the singular values of Kn but
with doubled multiplicities. Moreover ‖xn‖1 ≤ 2.

Now let y : H → H be the bounded linear operator defined by 0 on Heven
+ , by 0 on H−,

and by y = u on Hodd
+ . Remark that y belongs to b+res(H). Since xn and y vanish on H− and

preserve H+, one has

[xn, y] =

(

[xn, y]|H+
0

0 0

)

,

where the operators [xn, y]|H+
have the following expression with respect to the decomposition

H+ = Heven
+ ⊕Hodd

+ ,

[xn, y]|H+
=

(

uK∗
nu

∗ 0
0 −K∗

n

)

.

It follows that

(7.3) ‖T+([xn, y]|H+
)‖1 = 2‖T+(Kn)‖1 ≥ n,

hence ‖T+([xn, y]|H+
)‖1 → +∞. �
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Lemma 7.5. Let xn ∈ u1,2(H) and y ∈ b+res(H) be as in the proof of Proposition 7.4. Then
‖xn‖u1,2 ≤ 2 but ‖ad∗yxn‖u1,2 → +∞. Consequently the coadjoint action of b+res(H) on u1,2(H) is
unbounded.

Proof. Consider the linear forms αn on b+res(H) given by αn(A) = ℑTrxnA for xn ∈ u1,2(H)
defined by (7.2). Then the linear forms βn = −ad∗yαn read

βn(A) = −ad∗yαn(A) = −αn(adyA) = −αn([y,A]) = −ℑTrx[y,A] = −ℑTr (xyA− xAy).

According to Proposition 2.1 in [20], one has TrxAy = Tr yxA, therefore

βn(A) = −ℑTr [xn, y]A.

The unique skew-symmetric operator Tn such that −ℑTrTnA = −ℑTr [xn, y]A for any A in the
subspace b+2 (H) of b+res(H) is

Tn = pu+
2

([xn, y]) = T−−([xn, y])− T−−([xn, y])
∗ + 1

2 (D([xn, y])−D([xn, y])
∗)

Since Kn are Hermitian, [xn, y]|H+
are Hermitian and we get

Tn = [xn, y]− 2T+([xn, y]) +D([xn, y]).

In particular,

2T+([xn, y]) = Tn − [xn, y]−D([xn, y]).

By equation (7.3), 2T+([xn, y]) ≥ 2n. Therefore

‖Tn‖u1,2 + ‖[xn, y]‖u1,2 + ‖D([xn, y])‖u1,2 ≥ ‖Tn − [xn, y]−D([xn, y])‖u1,2 ≥ 2n,

for all n ∈ N, and

‖Tn‖u1,2 ≥ 2n − 2− ‖D([xn, y])‖u1,2 .

The operator D consisting in taking the diagonal is bounded in L1(H) with operator norm less
than 1 (see Theorem 1.19 in [57] or [19] page 134), therefore

‖Tn‖u1,2 > 2n− 4.

It follows that ‖ − ad∗yαn‖u1,2 = ‖Tn‖u1,2 → +∞.
�

Using the same kind of arguments (see also [58]), we have :

Lemma 7.6. The coadjoint action of ures(H) on b+1,2(H) is unbounded.

From the previous discussion, we obtain the following theorems.

Theorem 7.7. The Banach Lie algebra u1,2(H) is not a Banach Lie–Poisson space with respect
to b±res(H). Consequently there is no Banach Manin triple structure on the triple of Banach Lie
algebras (b±res(H)⊕ u1,2(H), b±res(H), u1,2(H)) for the duality pairing defined in Proposition 7.1.

Proof. The Banach space u1,2(H) is not a Banach Lie–Poisson space with respect to b±res(H) as
a consequence of Lemma 7.5. By Theorem 4.9, there is no Banach Manin triple structure on
the Banach Lie algebras (u1,2(H)⊕ b±res(H), u1,2(H), b±res(H)) for the duality pairing given by the
imaginary part of the restricted trace. �

Along the same lines, we have the analoguous Theorem :

Theorem 7.8. The Banach Lie algebra b±1,2(H) is not a Banach Lie–Poisson space with respect

to ures(H). Consequently there is no Banach Manin triple structure on the triple of Banach Lie

algebras
(

b±1,2(H)⊕ ures(H), b±1,2(H), ures(H)
)

for the duality pairing defined in Proposition 7.1.
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7.3. The Banach Poisson–Lie groups B±
res(H) and Ures(H). In this Section we will construct

a Banach Poisson–Lie group structure on the Banach Lie group B+
res(H). A similar construction

can be of course carried out for the Banach Lie group B−
res(H) instead. Recall that the coajoint

action of B+
res(H) is unbounded on u1,2(H) (see Section 7.2, in particular Lemma 7.5). Therefore,

in order to construct a Poisson–Lie group structure on B+
res(H), we need a larger subspace of

the dual b+res(H)∗ which will play the role of g− := Fe (compare with Theorem 5.4). Consider
the following map :

F : L1,2(H) → b+res(H)∗

a 7→ (b 7→ ℑTr ab) .

Proposition 7.9. The kernel of F equals b+1,2(H), therefore L1,2(H)/b+1,2(H) injects into the

dual space b+res(H)∗. Moreover L1,2(H)/b+1,2(H) is preserved by the coadjoint action of B+
res(H)

and strictly contains u1,2(H) as a dense subspace.

Proof. In order to show that the kernel of F is b+1,2(H), consider, for n ≥ m, the operator

Enm = |n〉〈m| ∈ b+res(H) given by x 7→ 〈m|x〉|n〉 and, for n > m, the operator iEnm ∈ b+res(H).
As in the proof of Proposition 7.1, an element a ∈ L1,2(H) satisfying F (a)(Enm) = 0 and
F (a)(iEnm) = 0 is such that 〈m|an〉 = 0 for n > m and 〈n|an〉 ∈ R for n ∈ Z, i.e. belongs to
b+1,2(H). Let us show that the range of F is preserved by the coadjoint action of B+

res(H). Let

g ∈ B+
res(H) and a ∈ L1,2(H). For any b ∈ b+res(H), one has :

Ad∗(g)F (a)(b) = F (a)(Ad(g)(b)) = F (a)(gbg−1)
= ℑTr agbg−1 = ℑTr g−1agb = F (g−1ag)(b),

where, in the fourth equality, we have used Proposition 2.1 in [20] (since the product agb belongs
to L1,2(H) and b to Lres(H)). In fact, B+

res(H) acts continuously on the right on L1,2(H) by

a · g = g−1ag.

Then one has the equivariance property

F (a · g) = Ad∗(g)F (a).

Moreover the subalgebra b+1,2(H) is preserved by the right action of B+
res(H) on L1,2(H). It

follows that there is a well-defined right action of B+
res(H) on the quotient space L1,2(H)/b+1,2(H)

defined by

[a] · g = [a · g],

where [a] denotes the class of a ∈ L1,2(H) modulo b+1,2(H).

Let us show that u1,2(H) ⊕ b+1,2(H) is dense in L1,2(H). To do this, we will show that any

continuous linear form on L1,2(H) which vanishes on u1,2(H) ⊕ b+1,2(H) is equal to the zero

form. Recall that the dual space of L1,2(H) is Lres(H), the duality pairing being given by
the restricted trace. Consider X ∈ Lres(H) such that TrXa = 0 and TrXb = 0 for any
a ∈ u1,2(H) and any b ∈ b+1,2(H). Letting b = Enm with n ≥ m, we get 〈m|Xn〉 = 0 for n ≥ m.

Letting a = Enm − Emn ∈ u1,2(H), we get 〈m|Xn〉 − 〈n|Xm〉 = 0 for n ≥ m. It follows that
〈m|Xn〉 = 0 for any m,n ∈ Z, which implies that the bounded linear operator X vanishes,
hence u1,2(H)⊕ b+1,2(H) is dense in L1,2(H). It follows from Section 7.2, that u1,2(H)⊕ b+1,2(H)

is strictly contained in L1,2(H).
Let us show that u1,2(H) is dense in L1,2(H)/b+1,2(H). Consider a class [a] ∈ L1,2(H)/b+1,2(H),

where a is any element in L1,2(H). Since u1,2(H)⊕b+1,2(H) is dense in L1,2(H), there is a sequence

ui ∈ u1,2(H) and a sequence bi ∈ b+1,2(H) such that ui + bi converge to a in L1,2(H). It follows

that [ui + bi] = [ui] converge to [a] in L1,2(H)/b+1,2(H). �

Now we are able to state the following Theorem. The proof uses Lemma 5.8.



BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN 43

Theorem 7.10. Consider the Banach Lie group B+
res(H), and

(1) g− := L1,2(H)/b+1,2(H) ⊂ b+res(H)∗,

(2) B ⊂ T ∗B+
res(H), Bb := R∗

b−1g−,

(3) ΠB+
res

r : B+
res(H) → Λ2g∗− defined by

ΠB+
res

r (b)([x1]b+
1,2
, [x2]b+

1,2
) = ℑTr (b−1 pu+

2

(x1) b)
[

pb+
2

(b−1 pu+
2

(x2) b)
]

,

(4) πB+
res(b) = R∗∗

b ΠB+
res

r (b).

Then
(

B+
res(H),B, πB+

res

)

is a Banach Poisson–Lie group.

Proof. • Let us show that ΠB+
res

r satisfies the cocycle condition.

ΠB+
res

r (u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= ΠB+
res

r (u)
(

[g−1 x1 g]b+
1,2
, [g−1x2 g]b+

1,2

)

= ℑTr (u−1p
u+
2

(g−1x1 g)u)
[

p
b+
2

(u−1p
u+
2

(g−1x2 g)u)
]

Using the decomposition pu+
2

(g−1x1 g) = g−1x1 g − pb+
2

(g−1x1 g), the fact that b+2 is

preserved by conjugation by elements in B+
res(H), and the fact that b+2 is isotropic, one

has :

ΠB+
res

r (u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= ℑTr (u−1g−1x1 g u)
[

pb+
2

(u−1pu+
2

(g−1x2 g)u)
]

= ℑTr (u−1g−1x1 g u)
[

pb+
2

(u−1g−1x2 gu)
]

−ℑTr (u−1g−1x1 g u)
[

pb+
2

(u−1pb+
2

(g−1x2 g)u)
]

= ℑTr (u−1g−1x1 g u)
[

p
b+
2

(u−1g−1x2 gu)
]

−ℑTr g−1x1 g pb+
2

(g−1x2 g)

Using the decompositions x1 = p
u+
2

(x1) + p
b+
2

(x1) and x2 = p
u+
2

(x2) + p
b+
2

(x2), one gets

8 terms but 4 of them vanish since b+2 is isotropic. The remaining terms are:

ΠB+
res

r (u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= ℑTr (u−1g−1pu+
2

(x1) g u)
[

pb+
2

(u−1g−1pu+
2

(x2) gu)
]

+ℑTr (u−1g−1pu+
2

(x1) g u)
[

pb+
2

(u−1g−1pb+
2

(x2) gu)
]

−ℑTr g−1p
u+
2

(x1) g pb+
2

(g−1p
u+
2

(x2) g)

−ℑTr g−1pu+
2

(x1) g pb+
2

(g−1pb+
2

(x2) g)

The first term in the right hand side equals ΠB+
res

r (gu)([x1]b+
1,2
, [x2]b+

1,2
), the third term

equals−ΠB+
res

r (g)([x1]b+
1,2
, [x2]b+

1,2
), whereas the second term equals +ℑTr (pu+

2

(x1)pb+
2

(x2)),

and the last terms equals −ℑTr (p
u+
2

(x1)pb+
2

(x2)).

• It remains to check that πB+
res satisfies the Jacobi identity (3.1). We will use Lemma 5.8.

Using the cocycle identity, one has for any X in b+res(H) and g ∈ B+
res,

TgΠ
B+

res
r (LgX)([x1], [x2]) = TeΠ

B+
res

r (X)(Ad∗(g)[x1],Ad
∗(g)[x2]),

in particular,

TgΠ
B+

res
r (RgX)([x1], [x2]) = TgΠ

B+
res

r (LgAd(g
−1)(X))([x1], [x2])

= TeΠ
B+

res
r (Ad(g−1)(X))(Ad∗(g)[x1],Ad

∗(g)[x2])

= TeΠ
B+

res
r (Ad(g−1)(X))([g−1 x1 g], [g

−1 x2 g])

On the other hand

TeΠ
B+

res
r (Y )([x1], [x2]) = −ℑTr [Y, pu+

2

(x1)]pb+
2

(pu+
2

(x2))−ℑTr pu+
2

(x1)pb+
2

([Y, pu+
2

(x2)])

= −ℑTr pu+
2

(x1)[Y, pu+
2

(x2)] = ℑTrY [pu+
2

(x1), pu+
2

(x2)].
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It follows that

(7.4) TgΠ
B+

res
r (RgX)([x1], [x2]) = ℑTr g−1 X g[pu+

2

(g−1 x1 g), pu+
2

(g−1 x2 g)].

In particular, for any x1 and x2 in L1,2(H), the 1-form on b+res given by

X 7→ TgΠ
B+

res
r (LgX)([x1], [x2])

belongs to u1,2(H) and is given by

TgΠ
B+

res
r (Lg(·))([x1], [x2]) = [pu+

2

(g−1 x1 g), pu+
2

(g−1 x2 g)]

Moreover for g ∈ B+
res(H), x3 ∈ L1,2(H) and y ∈ L1,2(H), one has

ΠB+
res

r (g)([x3], [y]) = ℑTr (g−1 pu+
2

(x3) g)pb+
2

(g−1 pu+
2

(y) g)

= ℑTr pu+
2

(g−1 pu+
2

(x3) g)pb+
2

(g−1 pu+
2

(y) g)

= −ℑTr pb+
2

(g−1 pu+
2

(x3) g)pu+
2

(g−1 pu+
2

(y) g)

= −ℑTr g p
b+
2

(g−1 p
u+
2

(x3) g) g
−1 p

u+
2

(y)

= −ℑTr g pb+
2

(g−1 pu+
2

(x3) g) g
−1(y)

In particular i[x3]Π
B+

res
r (g) = −g pb+

2

(g−1 pu+
2

(x3) g) g
−1 belongs to b+2 (H) ⊂ b+res(H). Us-

ing (7.4), it follows that
(7.5)

TgΠ
B+

res
r (Rgi[x3]Π

B+
res

r (g))([x1], [x2]) = −ℑTr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 x1 g), pu+
2

(g−1 x2 g)]

= −ℑTr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)],

where we have used that g−1 pb+
2

(xi) g ∈ b+2 for any xi ∈ L1,2(H) and any g ∈ B+
res(H).

Moreover
(7.6)

〈x1, [i[x3]Π
B+

res
r (g), i[x2]Π

B+
res

r (g)]〉 = ℑTrx1[g pb+
2

(g−1 pu+
2

(x3) g) g
−1, g pb+

2

(g−1 pu+
2

(x2) g) g
−1]

= ℑTr pu+
2

(x1)[g pb+
2

(g−1 pu+
2

(x3) g) g
−1, g pb+

2

(g−1 pu+
2

(x2) g) g
−1]

= ℑTr g−1p
u+
2

(x1)g[pb+
2

(g−1 p
u+
2

(x3) g), pb+
2

(g−1 p
u+
2

(x2) g)]

= ℑTr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x3) g), pb+
2

(g−1 pu+
2

(x2) g)]

= −ℑTr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x2) g), pb+
2

(g−1 pu+
2

(x3) g)]

Consider α = R∗
g−1 [x1] ∈ (Tg B

+
res)

∗, β = R∗
g−1 [x2] ∈ (Tg B

+
res)

∗ and γ = R∗
g−1 [x3] ∈

(Tg B
+
res)

∗, for x1, x2 and x3 in L1,2(H). Injecting (7.5) and (7.6) into (5.5) and using
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the fact that the left hand side of (5.5) defines a tensor, one gets :

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= −ℑTr p

b+
2

(g−1 p
u+
2

(x3) g)[pu+
2

(g−1 p
u+
2

(x1) g), pu+
2

(g−1 p
u+
2

(x2) g)]

−ℑTr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x2) g), pb+
2

(g−1 pu+
2

(x3) g)]

−ℑTr pb+
2

(g−1 pu+
2

(x1) g)[pu+
2

(g−1 pu+
2

(x2) g), pu+
2

(g−1 pu+
2

(x3) g)]

−ℑTr p
u+
2

(g−1p
u+
2

(x2)g)[pb+
2

(g−1 p
u+
2

(x3) g), pb+
2

(g−1 p
u+
2

(x1) g)]

−ℑTr p
b+
2

(g−1 p
u+
2

(x2) g)[pu+
2

(g−1 p
u+
2

(x3) g), pu+
2

(g−1 p
u+
2

(x1) g)]

−ℑTr pu+
2

(g−1pu+
2

(x3)g)[pb+
2

(g−1 pu+
2

(x1) g), pb+
2

(g−1 pu+
2

(x2) g)]

= −ℑTr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)]

−ℑTr p
b+
2

(g−1 p
u+
2

(x3) g)[pu+
2

(g−1p
u+
2

(x1)g), pb+
2

(g−1 p
u+
2

(x2) g)]

−ℑTr pu+
2

(g−1 pu+
2

(x3) g)[pb+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)]

−ℑTr pb+
2

(g−1 pu+
2

(x3) g)[pb+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1pu+
2

(x2)g)]

−ℑTr pu+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pb+
2

(g−1 pu+
2

(x2) g)]

−ℑTr p
u+
2

(g−1p
u+
2

(x3)g)[pb+
2

(g−1 p
u+
2

(x1) g), pb+
2

(g−1 p
u+
2

(x2) g)]

= −ℑTr g−1pu+
2

(x3)g)[g
−1 pu+

2

(x1) g, g
−1 pu+

2

(x2) g]

= −ℑTr g−1pu+
2

(x3)[pu+
2

(x1), pu+
2

(x2)]g

= −ℑTr pu+
2

(x3)[pu+
2

(x1), pu+
2

(x2)]

= 0,

hence π is a Poisson tensor.
�

Remark 7.11. In the proof of the previous Theorem, we have established that

TeΠ
B+

res
r (Y )([x1]b+

1,2
, [x2]b+

1,2
) = ℑTrY [pu+

2

(x1), pu+
2

(x2)],

where x1, x2 ∈ L1,2(H) and Y ∈ b+res(H). It follows that TeΠ
B+

res
r is the dual map of

(7.7)
L1,2(H)/b+1,2(H)× L1,2(H)/b+1,2(H) → L1,2(H)/b+1,2(H)

([x1]b+
1,2
, [x2]b+

1,2
) 7→ [p

u+
2

(x1), pu+
2

(x2)],

which is well defined on L1,2(H)/b+1,2(H) since [pu+
2

(x1), pu+
2

(x2)] ∈ L1(H) for any x1, x2 ∈

L1,2(H). Note that this bracket is continuous and extends the natural bracket of u1,2(H).

Along the same lines (see also [58]), we obtain the following Theorem :

Theorem 7.12. Consider the Banach Lie group Ures(H), and

(1) g+ := L1,2(H)/u1,2(H) ⊂ u∗res(H),
(2) U ⊂ T ∗Ures(H), Ug = R∗

g−1g+,

(3) ΠUres
r : Ures(H) → Λ2g∗+ defined by

ΠUres

r (g)([x1]u1,2 , [x2]u1,2) = ℑTr (g−1 pb+
2

(x1) g)
[

pu2(g
−1 pb+

2

(x2) g)
]

,

(4) πUres(g) = R∗∗
g ΠUres

r (g).

Then
(

Ures(H),U, πUres
)

is a Banach Poisson–Lie group.
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8. Bruhat-Poisson structure of the restricted Grassmannian

In this Section, we construct a generalized Banach Poisson structure on the restricted Grass-
mannian, and called it Bruhat-Poisson structure by reference to the finite-dimensional picture
developped in [32].

8.1. A Poisson–Lie subgroup of Ures(H). The following definition is identical to the defini-
tion in the finite-dimensional case.

Definition 8.1. A Banach Lie subgroup H of a Banach Poisson–Lie group G is called a Banach

Poisson–Lie subgroup if it is a Banach Poisson submanifold of G, i.e. if it carries a Poisson
structure such that the inclusion map ι : H →֒ G is a Poisson map.

Let us show the following Proposition.

Proposition 8.2. The Banach Lie group H := U(H+) × U(H−) is a Poisson–Lie subgroup of
Ures(H).

Proof. Denote by ι : H →֒ Ures(H) the inclusion map. It is clear that H is a Banach submanifold
of Ures(H). Denote by h its Lie algebra. Recall that U is the subbundle of T ∗Ures(H) given
by Ug = R∗

g−1g+ where g+ := L1,2(H)/u1,2(H). Denote by 〈·, ·〉ures the duality pairing between

g+ and ures(H), and by h0 the closed subspace of g+ consisting of those covectors in g+ which
vanish on the closed subspace h of ures(H). For any covector α ∈ ι∗g+ acting on h, and any
vector X ∈ h, denote by [α]h0 the class of α ∈ i∗g+ in i∗g+/h

0. Then the formula

〈[α]h0 ,X〉h := 〈α,X〉ures ,

defines a duality pairing between He := i∗g+/h
0 and h. It follows that H := i∗U/(TH)0 is a

subbundle of T ∗H in duality with TH. Recall that the Poisson tensor on Ures(H) is defined as
follows

ΠUres

r (h)(α, β) = ℑTr (h−1p
b+
2

(x1)h)
[

p
u+
2

(h−1p
b+
2

(x2)h)
]

where α, β ∈ g+ = L1,2(H)/u1,2 and x1, x2 ∈ L1,2(H) are such that α = [x1]u1,2 and β = [x2]u1,2 .

Note that an element x2 =
(

A B
C D

)

∈ L1,2(H) belongs to h0 if and only if A ∈ u1(H) and
D ∈ u1(H). In that case, one has

x2 =
(

A −C∗

C D

)

+
(

0 B+C∗

0 0

)

,

with p
u+
2

(x2) =
(

A −C∗

C D

)

and p
b+
2

(x2) =
(

0 B+C∗

0 0

)

. Note also that for any h =
(

h1 0
0 h2

)

∈

U(H+)×U(H−), one has

h−1pb+
2

(x2)h =
(

0 h−1

1
(B+C∗)h2

0 0

)

∈ b+2 (H).

It follows that ΠUres
r (h)(·, β) = 0 whenever β ∈ h0. By skew-symmetry of ΠUres

r , one also has
ΠUres

r (h)(α, ·) = 0 whenever α ∈ h0. This allows to define the following map

ΠH
r : H → Λ2

H
∗
e

by

ΠH
r (h)([α]h0 , [β]h0) := ΠUres

r (h)(α, β)

for α, β ∈ g+ = L1,2(H)/u1,2. Set πH
g := R∗∗

g ΠH
r . The Jacobi identity for πH follows from the

Jacobi identity for πUres . By construction, the injection ι : H →֒ Ures(H) is a Poisson map. �
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8.2. The restricted Grassmannian as a quotient Poisson homogeneous space.

Theorem 8.3. The restricted Grassmannian Grres(H) = Ures(H)/U(H+) × U(H−) carries a
natural Poisson structure (Grres(H), T ∗ Grres(H), πGrres) such that :

(1) the canonical projection p : Ures(H) → Grres(H) is a Poisson map,
(2) the natural action Ures(H)×Grres(H) → Grres(H) by left translations is a Poisson map.

Proof. (1) The tangent space at eH ∈ Grres(H) = Ures(H)/U(H+)×U(H−) can be identified
with the quotient Banach space ures(H)/ (u(H+)⊕ u(H−)) which is isomorphic to the
Hilbert space

m := {
(

0 A
−A∗ 0

)

∈ u2(H)}.

The duality pairing between ures(H) and g+ = L1,2(H)/u1,2(H) induces a strong duality
pairing between the quotient space ures(H)/ (u(H+)⊕ u(H−)) = m and h0 ⊂ g+. For
α, β ∈ T ∗

gH Grres(H), identify p∗α ∈ T ∗
g Ures(H) with an element L∗

g−1x1 in L∗
g−1h

0, and

p∗β with L∗
g−1x2 ∈ L∗

g−1h
0. Define

πGrres
gH (α, β) = πUres

g (p∗α, p∗β).

We have to check that the right hand side is invariant by the natural right action of
H on Ures(H), which induces an action of H on forms in T ∗

g Ures(H) by γ → R∗
h−1γ ∈

T ∗
ghUres(H). In other words, we have to check that

(8.1) πUres
g ((p∗α)g, (p

∗β)g) = πUres

gh (R∗
h−1(p

∗α)g, R
∗
h−1(p

∗β)g)

⇔ πUres

g (L∗
g−1x1, L

∗
g−1x2) = πUres

gh (R∗
h−1L

∗
g−1x1, R

∗
h−1L

∗
g−1x2)

⇔ ΠUres
r (g)(Ad∗

g−1x1,Ad
∗
g−1x2) = ΠUres

r (gh)(R∗
ghR

∗
h−1L

∗
g−1x1, R

∗
ghR

∗
h−1L

∗
g−1x2)

Note that R∗
ghγ(X) = γ(RghX) = γ(Xgh) = R∗

hγ(Xg) = R∗
gR

∗
hγ(X). Therefore R∗

gh =

R∗
gR

∗
h. It follows that (8.1) is equivalent to

ΠUres
r (g)(Ad∗g−1x1,Ad

∗
g−1x2) = ΠUres

r (gh)(Ad∗g−1x1,Ad
∗
g−1x2)

By the cocycle identity ΠUres
r (gh) = Ad(g)∗∗ΠUres

r (h) + ΠUres
r (g), one has

ΠUres
r (gh)(Ad∗

g−1x1,Ad
∗
g−1x2) = ΠUres

r (h)(Ad∗gAd
∗
g−1x1,Ad

∗
gAd

∗
g−1x2)

+ΠUres
r (g)(Ad∗g−1x1,Ad

∗
g−1x2)

Since ΠUres
r (h) vanishes on h0, one has

ΠUres

r (h)(Ad∗h−1x1,Ad
∗
h−1x2) = 0,

therefore equation (8.1) is satisfied. The Jacobi identity for πGrres follows from the Jacobi
identity for πUres . Moreover p is a Poisson map by construction.

(2) Consider the action

aU : Ures(H)×Grres(H) → Grres(H)
(g1, gH) 7→ g1gH

by left translations. Note that the tangent map to aU is given by

T(g1,gH)aU : Tg1 Ures(H)⊕ TgH Grres(H) → Tg1gH Gr0res(H)
(Xg1 ,XgH) 7→ p∗[(Rg)∗Xg1 ] + (Lg1)∗XgH .

Therefore, for any α ∈ T ∗
g1gH

Grres(H),

α ◦ T(g1,gH)aU (Xg1 ,XgH) = α(p∗[(Rg)∗Xg1 ]) + α((Lg1)∗XgH)
= R∗

gp
∗α(Xg1) + L∗

g1α(XgH).

In other words
α ◦ T(g1,gH)aU = R∗

gp
∗α+ L∗

g1α,
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where R∗
gp

∗α ∈ Tg1 Ures(H) and L∗
g1α ∈ TgH Grres(H). In order to show that aU is a

Poisson map, we have to show that
(a) for any α ∈ T ∗

g1gH
Grres(H), the covector R∗

gp
∗α belongs to

Ug1 = R∗
(g1)−1L1,2(H)/u1,2(H),

(b) the Poisson tensors πUres and πGrres are related by

πGrres
g1gH

(α, β) = πUres

g1 (R∗
gp

∗α,R∗
gp

∗β) + πGrres
gH (L∗

g1α,L
∗
g1β).

For point (a), let us show that for α ∈ T ∗
g1gH

Grres(H), and g1, g ∈ Ures(H), one

has R∗
g1R

∗
gp

∗α ∈ L1,2(H)/u1,2(H). Recall that p∗α can by identified with an element

L∗
(g1g)−1x1 where x1 ∈ h0. Therefore R∗

g1R
∗
gp

∗α = Ad∗(g1g)−1x1. For X ∈ Te Ures(H), one

has
R∗

g1R
∗
gp

∗α(X) = ℑTrx1Ad(g1g)−1(X) = ℑTrx1(g1g)
−1Xg1g

= ℑTr g1gx1(g1g)
−1X.

Since g1gx1(g1g)
−1 ∈ L1,2(H) for any g1, g ∈ Ures(H) and x1 ∈ L1,2(H), it follows that

R∗
g1R

∗
gp

∗α ∈ L1,2(H)/u1,2(H).
In order to prove (b), we will the cocycle identity. Note that for α, β ∈ T ∗

g1gH
Grres(H),

one has

πGrres
g1gH

(α, β) = πUres
g1g (p∗α, p∗β) = ΠUres

r (g1g)(R
∗
g1gp

∗α,R∗
g1gp

∗β)

= Ad(g1)
∗ΠUres

r (g)(R∗
g1gp

∗α,R∗
g1gp

∗β) + ΠUres
r (g1)(R

∗
g1gp

∗α,R∗
g1gp

∗β)

= ΠUres
r (g)(L∗

g1R
∗
gp

∗α,L∗
g1R

∗
gp

∗β) + ΠUres
r (g1)(R

∗
g1R

∗
gp

∗α,R∗
g1R

∗
gp

∗β)
= πUres

g (L∗
g1p

∗α,L∗
g1p

∗β) + πUres
g1 (R∗

gp
∗α,R∗

gp
∗β)

= πUres
g (p∗L∗

g1α, p
∗L∗

g1β) + πUres
g1 (R∗

gp
∗α,R∗

gp
∗β)

= πGrres
gH (L∗

g1α,L
∗
g1β) + πUres

g1 (R∗
gp

∗α,R∗
gp

∗β).

Hence the left action of Ures(H) onGrres(H) is a Poisson map.
�

9. Poisson action of B+
res(H) on Grres(H) and Schubert cells

9.1. Poisson action of B±
res(H) on Grres(H). The next Theorem shows that the action of

B±
res(H) on Grres(H) is a Poisson map, where B±

res(H) is endowed with the Banach Poisson–Lie
group structure defined in Section 7, and where Grres(H) is endowed with the Bruhat-Poisson
structure defined in Section 8.

Theorem 9.1. The following right action of B±
res(H) on Grres(H) = GLres(H)/Pres(H) is a

Poisson map :
aB : Grres(H)× B±

res(H) → Grres(H)
(g Pres(H), b) 7→ (b−1g) Pres(H).

Proof. The tangent map to the action aB reads

T(gH,b)aB : TgH Grres(H)⊕ TbB
±
res(H) → Tb−1gPres

Grres(H)
(XgH ,Xb) 7→ (L(b−1))∗XgH − p∗(Rg)∗(b

−1Xbb
−1).

Therefore, for any α ∈ T ∗
b−1gPres

Grres(H),

α ◦ T(gH,b)aB(XgH ,Xb) = α((L(b−1))∗XgH)− α(p∗(Rg)∗b
−1Xbb

−1)
= L∗

b−1α(XgH)−R∗
b−1L

∗
b−1R

∗
gp

∗α(Xb),

and

α ◦ T(gH,b)aB = L∗
b−1α−R∗

b−1L
∗
b−1R

∗
gp

∗α,

where L∗
b−1α ∈ T ∗

gH Grres(H) and R∗
b−1L

∗
b−1R

∗
gp

∗α ∈ T ∗
b B±

res(H).
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(a) Let us show that for any α ∈ T ∗
b−1gPres

Grres(H) and any b ∈ B±
res(H), the formR∗

b−1L
∗
b−1R

∗
gp

∗α

belongs to Bb = R∗
b−1L1,2(H)/b1,2(H). Recall that α can be identified with an element

L∗
(b−1g)−1x1 where x1 ∈ h0. For X ∈ Te B

±
res(H), one has

L∗
b−1R

∗
gp

∗α(X) = α(p∗Rg∗(Lb−1)∗X) = ℑTrx1(Lg−1b)∗p∗Rg∗(Lb−1)∗X)
= ℑTrx1p∗(Ad(g

−1)X) = ℑTr pb+
2

(x1)g
−1Xg

= ℑTr gpb+
2

(x1)g
−1X.

Recall that for x1 =
(

A B
C D

)

∈ h0, p
b+
2

(x1) =
(

0 B+C∗

0 0

)

. Since for any g ∈ GLres(H) and

any x1 ∈ h0, gpb+
2

(x1)g
−1 ∈ L1,2(H), the form R∗

b−1L
∗
b−1R

∗
gp

∗α belongs to Bb.

(b) Let us show that the Poisson tensors πB+
res and πGrres are related by

πGrres
b−1gPres

(α, β) = πGrres
gH (L∗

b−1α,L
∗
b−1β) + πB+

res

b (R∗
b−1L

∗
b−1R

∗
gp

∗α,R∗
b−1L

∗
b−1R

∗
gp

∗β).

One has

πB+
res

b (R∗
b−1L

∗
b−1R

∗
gp

∗α,R∗
b−1L

∗
b−1R

∗
gp

∗β) = ΠB+
res

r (b)([gpb+
2

(x1)g
−1]b+

1,2
, [gpb+

2

(x2)g
−1]b+

1,2
)

= ℑTr
(

b−1pu+
2

(gpb+
2

(x1)g
−1)b

) [

pb+
2

(b−1pu+
2

(gpb+
2

(x2)g
−1)b)

]

= ℑTr p
u+
2

(gp
b+
2

(x1)g
−1)b

[

p
b+
2

(b−1p
u+
2

(gp
b+
2

(x2)g
−1)b)

]

b−1

= ℑTr (b−1gpb+
2

(x1)g
−1b)

[

pb+
2

(b−1pu+
2

(gpb+
2

(x2)g
−1)b)

]

= ℑTr (b−1gpb+
2

(x1)g
−1b)

[

pb+
2

(b−1gpb+
2

(x2)g
−1b)

]

−ℑTr (b−1gp
b+
2

(x1)g
−1b)

[

p
b+
2

(b−1p
b+
2

(gp
b+
2

(x2)g
−1)b)

]

Therefore
(9.1)

πB+
res

b (R∗
b−1L

∗
b−1R

∗
gp

∗α,R∗
b−1L

∗
b−1R

∗
gp

∗β) =

ℑTr (b−1gp
b+
2

(x1)g
−1b)

[

p
b+
2

(b−1gp
b+
2

(x2)g
−1b)

]

−ℑTr (gp
b+
2

(x1)g
−1)

[

p
b+
2

(gp
b+
2

(x2)g
−1)

]

.

On the other hand

πGrres
gH (L∗

b−1α,L
∗
b−1β) = ΠUres

r (g)([gpb+
2

(x1)g
−1], [gpb+

2

(x2)g
−1])

= ℑTr (g−1pb+
2

(gpb+
2

(x1)g
−1)g)

[

pu+
2

(g−1pb+
2

(gpb+
2

(x1)g
−1)g)

]

= ℑTr pb+
2

(x1)
[

pu+
2

(g−1pb+
2

(gpb+
2

(x1)g
−1)g)

]

= ℑTr pb+
2

(x1)(g
−1pb+

2

(gpb+
2

(x1)g
−1)g

= ℑTr gpb+
2

(x1)g
−1pb+

2

(gpb+
2

(x1)g
−1)

which is the second term in the right hand side of equation (9.1) with the opposite sign.
Moreover, since

Grres(H) = GLres(H)/Pres(H) = Ures(H)/ (U(H+)×U(H−))

there exist g1 ∈ Ures(H) and p1 ∈ Pres(H) such that b−1g = g1p1. In fact, the pair
(g1, p1) is defined modulo the right action by H given by (g1, p1) · h = (g1h, h

−1p1). It
follows that the first term in the right hand side of equation (9.1) reads

ℑTr (b−1gpb+
2

(x1)g
−1b)

[

pb+
2

(b−1gpb+
2

(x2)g
−1b)

]

= ℑTr (g1p1pb+
2

(x1)p
−1
1 g−1

1 )
[

pb+
2

(g1p1pb+
2

(x2)p
−1
1 g−1

1 )
]

Recall that for any x1 =
(

A B
C D

)

∈ h0, one has

x1 =
(

A −C∗

C D

)

+
(

0 B+C∗

0 0

)

,
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with p
u+
2

(x1) =
(

A −C∗

C D

)

and p
b+
2

(x1) =
(

0 B+C∗

0 0

)

. Note that for any p1 =
(

P1 P2

0 P3

)

∈

Pres(H), one has

p−1
1 =

(

P−1

1
−P−1

1
P2P

−1

3

0 P−1

3

)

∈ Pres(H),

and

p1pb+
2

(x1)p
−1
1 =

(

0 P1(B+C∗)P−1

3

0 0

)

∈ b+2 (H).

Therefore

ℑTr (b−1gpb+
2

(x1)g
−1b)

[

pb+
2

(b−1gpb+
2

(x2)g
−1b)

]

= ℑTr (g1p1pb+
2

(x1)p
−1
1 g−1

1 )
[

p
b+
2

(g1p1pb+
2

(x2)p
−1
1 g−1

1 )
]

= ΠUres
r (g1)([g1p1pb+

2

(x1)p
−1
1 g−1

1 ], [g1p1pb+
2

(x2)p
−1
1 g−1

1 ])

= ΠUres
r (g1)([b

−1gp
b+
2

(x1)g
−1b], [b−1gp

b+
2

(x2)g
−1b])

= πGrres
g1H

(α, β) = πGrres
b−1gPres

(α, β).

It follows that the right action of B+
res(H) on Grres(H) is a Poisson map.

�

9.2. Schubert cells of the restricted Grassmannian. In this Section, H will be specified
to be the space L2(S1,C) of complex square-integrable functions defined almost everywhere
on the unit circle S

1 = {z ∈ C, |z| = 1} modulo the equivalence relation that identifies two
functions that are equal almost everywhere. In that case, the inner product of two elements f
and g in L2(S1,C) reads 〈f, g〉 =

∫

S1
f(z)g(z)dµ(z), where dµ(z) denotes the Lebesgue mesure

on the circle. Let us recall some geometric facts about the restricted Grassmannian that were
established in [42], Chapter 7. Set H+ = span{zn, n ≥ 0} and H− = span{zn, n < 0}.

The restricted Grassmannian admits a stratification {ΣS , S ∈ S} as well as a decomposition
into Schubert cells {CS , S ∈ S}, which are dual to each other in the following sense :

(i) the same set S indexes the cells {CS} and the strata {ΣS};
(ii) the dimension of CS is the codimension of ΣS;
(iii) CS meets ΣS transversally in a single point, and meets no other stratum of the same

codimension.

A element S of the set S is a subset of Z, which is bounded from below and contains all
sufficiently large integers. Given S ∈ S, define the subspace HS of the restricted Grassmannian
Grres(H) by :

HS = span{zs, s ∈ S}.

Recall the following Proposition :

Proposition 9.2 (Proposition 7.1.6 in [42]). For any W ∈ Grres(H) there is a set S ∈ S such
that the orthogonal projection W → HS is an isomorphism. In other words the sets {US , S ∈ S},
where

US = {W ∈ Grres(H), the orthogonal projection W → HS is an isomorphism},

form an open covering of Grres(H).

Following [42], let us introduce the Banach Lie groups N+
res(H) and N−

res(H) :

N+
res(H) = {A ∈ GLres(H), A(zkH+) = zkH+ and (A− Id)(zkH+) ⊂ zk+1H+, ∀k ∈ Z},

N−
res(H) = {A ∈ GLres(H), A(zkH−) = zkH− and (A− Id)(zkH−) ⊂ zk+1H−, ∀k ∈ Z}.

In other words, the group N±
res(H) is the subgroup of B±

res(H) consisting of the triangular oper-
ators with respect to the basis {|n〉 := zn, n ∈ Z} which have only 1’s on the diagonal.
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Proposition 9.3. The Banach Lie group N±
res(H) is a normal subgroup of B±

res(H) and the
quotient group B±

res(H)/N±
res(H) is isomorphic to the group of bounded linear positive definite

operators which are diagonal with respect to the orthonormal basis {|zk〉, k ∈ Z}.

Proof. For a triangular operator g ∈ B±
res(H), the diagonal coefficients of g and g−1 are inverses

of each other : 〈n|g−1n〉 = 〈n|gn〉−1, ∀n ∈ Z. Therefore, for any element h ∈ N±
res(H), the

composed operator ghg−1 has only 1’s on it’s diagonal and belong to N±
res(H). This implies

that N±
res(H) is a normal subgroup of B±

res(H). Recall that D denotes the linear transforma-
tion consisting in taking the diagonal part of a linear operator (see equation (1.7)). Since
|〈n|D(A)m〉| ≤ ‖A‖ and D(A) is diagonal, the linear transformation D maps bounded operators
to bounded operators. By the definition of B±

res(H), the range of D : B±
res(H) → L∞(H) is

the group of bounded linear positive definite operators which are diagonal with respect to the
orthonormal basis {|zk〉 : k ∈ Z}. Moreover, the kernel of D : B±

res(H) → L∞(H) is exactly
N±

res(H). �

Proposition 9.4. (i) The cell CS is the orbit of HS under B+
res(H).

(ii) The stratum ΣS is the orbit of HS under B−
res(H).

Proof. It follows from Proposition 7.4.1 in [42], that the cell CS is the orbit of HS under N+
res(H).

Symmetrically, it follows from Proposition 7.3.3 in [42], that the stratum ΣS is the orbit of HS

under N−
res(H). Since the diagonal part of an operator in B±

res(H) acts trivially, one gets the
same result replacing N±

res(H) by B±
res(H). �

Recall that the restricted Grassmannian is a Hilbert manifold endowed with the Poisson
structure constructed in Theorem 8.3. In this Hilbert context, the Poisson tensor πGrres defines

a bundle map
(

πGrres
)♯

: T ∗Grres(H) → T Grres(H). The range of this map is called the
characteristic distribution of the Poisson structure, and the maximal integral submanifolds
of this distribution are called symplectic leaves (see [37] Section 7 for a general discussion on
characteristic distributions and symplectic leaves in the Banach context).

Theorem 9.5. The Schubert cells {CS , S ∈ S} are the symplectic leaves of Grres(H).

Proof. The integrability of the characteristic distribution follows from Theorem 6 in [40], since
Grres(H) is a Hilbert manifold. The fact that the symplectic leaves are the orbits of B+

res(H)
follows from the construction as in the finite-dimensional case (see Theroem 4.6 (3) in [32]). It
follows from Proposition 9.4 that the orbits of B+

res(H) coincide with the Schubert cells {CS , S ∈
S}. �

Remark 9.6. Let Γ+ be the group of real-analytic functions g : S1 → C
∗, which extend to

holomorphic functions g from the unit disc D = {z ∈ C : |z| ≤ 1} to C∗, satisfying g(0) = 1. Any
such function g ∈ Γ+ can be written g = ef , where f is a holomorphic function on D such that
f(0) = 0. The group Γ+ acts by multiplication operators onH and therefore also on Grres(H). As
explained in [52] (see Proposition 5.13), the action of Γ+ on (some subgrassmannians of) Grres(H)
generates the KdV hierarchy. It is easy to see that Γ+ ⊂ B+

res(H). Indeed, by Proposition 2.3
in [52], Γ+ ⊂ GLres(H) := GL(H) ∩ Lres(H). Since g ∈ Γ+ is holomorphic in D and satisfies
g(0) = 1, the Fourier decomposition of g reads g(z) = 1 +

∑

k>0 gkz
k. Therefore g(z) · zn =

zn+
∑

k>0 gkz
k+n. It follows that the multiplication operator by g is a upper triangular operator

Mg ∈ B+
res(H), with diagonal elements equal to 1. Therefore Γ+ ⊂ B+

res(H) and, by Theorem 9.1,
the action of B+

res(H) on the restricted Grassmannian is a Poisson action.
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of D. Beltiţă who not only gave me the references indicating where the problem of triangulating an operator was
studied, but who also gave me the electronic version of the documents when I was unable to go to any library. My



52 A. B. TUMPACH

paper was finally produced thanks to the support of the CNRS, of the University of Lille (France), in particular
thanks to the CEMPI Labex (ANR-11-LABX-0007-01), as well as to the Pauli Institute in Vienna (Austria)
offering very nice working conditions. The special assistance given by the CNRS for the promotion of women
scientists was crucial for the inception of this paper which also benefited from the exchange in the early months of
2015 with other researchers during the Shape Analysis programme at the Erwin Schrodinger Institute in Vienna.
The discussions with C. Vizman, K.-H. Neeb and F. Gay-Balmaz were particularly fruitful as were the WGMP
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[6] D. Beltiţă, T. Golinski, A.B.Tumpach, Queer Poisson brackets, Journal of Geometry and Physics, Vol. 132
(2018), 358–362.
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