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ABSTRACT. The first part of this paper is devoted to the theory of Poisson—Lie groups in the
Banach setting. Our starting point is the straightforward adaptation of the notion of Manin
triples to the Banach context. The difference with the finite-dimensional case lies in the fact
that a duality pairing between two non-reflexive Banach spaces is necessary weak (as opposed
to a strong pairing where one Banach space can be identified with the dual space of the other).
The notion of generalized Banach Poisson manifolds introduced in this paper is compatible with
weak duality pairings between the tangent space and a subspace of the dual. We investigate
related notion like Banach Lie bialgebras and Banach Poisson—Lie groups, suitably generalized
to the non-reflexive Banach context.

The second part of the paper is devoted to the treatment of particular examples of Banach
Poisson—Lie groups related to the restricted Grassmannian and the KdV hierarchy. More pre-
cisely, we construct a Banach Poisson—Lie group structure on the unitary restricted Banach
Lie group which acts transitively on the restricted Grassmannian. A “dual” Banach Lie group
consisting of (a class of) upper triangular bounded operators admits also a Banach Poisson-Lie
group structure of the same kind. We show that the restricted Grassmannian inherits a gen-
eralized Banach Poisson structure from the unitary Banach Lie group, called Bruhat-Poisson
structure. Moreover the action of the triangular Banach Poisson—Lie group on it is a Poisson
map. This action generates the KdV hierarchy, and its orbits are the Schubert cells of the
restricted Grassmannian.

Keywords: restricted Grassmannian; Bruhat decomposition; Poisson manifold; coadjoint orbits;
Poisson maps; Poisson—Lie groups, Lie bialgebras, Lie-Poisson spaces, Schatten ideals.
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INTRODUCTION

Poisson-Lie groups and Lie bialgebras were introduced by Drinfel’d in [I5]. From this starting
point, these notions and their relations to integrable systems were extensively studied. We refer
the readers to the very well documented papers [25], [56], [31] and the references therein. For a
more algebraic approach to Poisson—Lie groups and their relation to quantum groups we refer
to [9]. For more details about dual pairs of Poisson manifolds we refer to [61], applications
to the study of equations coming from fluid dynamics were given in [16], [I7] and [I8], and
applications to geometric quantization can be found in [3]. The motivation to write the present
paper comes mainly from the reading of [32], [62] and [42]. In [32], the Bruhat-Poisson structure
of finite-dimensional Grassmannians were studied. In [52], the relation between the infinite-
dimensional restricted Grassmannian and equations of the KAV hierarchy was established. In
[42], the Schubert cells of the restricted Grassmannian were shown to be homogeneous spaces
with respect to the natural action of some triangular group, which appears to contain the group
that generates the KAV hierarchy in [52]. It is therefore natural to ask the following questions :

Question 0.1. Does the restricted Grassmannian carry a Bruhat-Poisson structure? Can the
KdV hierarchy be related to a Poisson action of a Poisson—Lie group on the restricted Grass-
mannian?

The difficulties to answer these questions come mainly from the following facts

e taking the upper triangular part of some infinite-dimensional matrix does not preserve
the Banach space of bounded operators, nor the Banach space of trace-class operators.
e [wasawa decompositions may not exist in the context of infinite-dimensional Banach Lie
groups (see however [4] and [7] where some Iwasawa type factorisations where estab-
lished).
Related papers on Poisson geometry in the infinite-dimensional setting are [13], [35], [37] and [66]
(see Section 3). Let us mention that a hierarchy of commuting Hamiltonian equations related to
the restricted Grassmannian was described in [20]. In the aforementionned paper, the method
of F. Magri was used to generate the integrals of motions. It would be interesting to explore
the link between equations studied in [20] and the Bruhat-Poisson structure of the restricted
Grassmannian introduced in the present paper. Some integrable systems on subspaces of Hilbert-
Schmidt operators were also introduced in [14]. There, the coinduction method suggested in [39)
was used to construct Banach Lie—Poisson spaces obtained from the ideal of real Hilbert-Schmidt
operators, and Hamiltonian systems related to the k-diagonal Toda lattice were presented. Last
but not least, the relation between the Bruhat-Poisson structure on the restricted Grassmannian
constructed in the present paper and the Poisson—Lie group of Pseudo-Differential symbols
considered in [2I] in relation to the Korteweg-de Vries hierarchy needs further study, and the
link with the Poisson—Lie Grassmannian introduced in [66] has to be clarified.

The present paper just approaches some aspects of the theory of Banach Poisson—Lie groups,
and a more systematic study of the infinite-dimensional theory would be interesting. It is written
to be as self-contained as possible, and we hope that our exposition enables functional-analysts,
geometers and physicists to read it. However the notions of Banach manifold and fiber bundles
over Banach manifolds will not be recalled and we refer the readers to [30] for more introductory
exposition.

The paper is organized as follows. Part 1 is devoted to the general theory of Banach Poisson—
Lie groups and related structures. The exposition goes in the opposite direction of the usual
exposition in the finite-dimensional setting, where the notion of finite-dimensional Poisson-Lie
groups is introduced first, followed by the notion of Lie bialgebra (which is the structure that a
Lie algebra of a Poisson—Lie group inherits), and at last the notion of Manin triples. Here we
start with the notion of Banach Manin triples, since it is a notion of linear algebra that is easy
to adapted to the Banach context, and which provides a good entry point into the theory of
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(Banach) Poisson—Lie groups. This point of view allows us to introduce little by little notation
and notions that are fundamental for the paper : the notion of duality pairing is recalled in
Section 1.1, the notion of coadjoint action on bounded multilinear maps on subspaces of the
dual is defined in Section 2.3, and the notion of 1-cocycles on a Banach Lie group or a Banach
Lie algebra is explained in Section 2.5. Generalized Banach Poisson manifolds are defined in
Section 3.1. In Section 3.2 we show that weak symplectic Banach manifolds are examples of
generalized Banach Poisson manifolds. In Section 3.3, we adapt the notion of Banach Lie—
Poisson spaces introduced in [37] to the case of an arbitrary duality pairing between two Banach
Lie algebras, and show that they are generalized Banach Poisson manifolds (Theorem [B.14)).
The notion of Banach Lie bialgebras is introduced in Section 4, and its relation to the notion of
Banach Manin triples is given by the following Theorem :

Theorem 0.2 (Theorem [4.9). Consider two Banach Lie algebras (g+, ° g+) and (g ,
in duality. Denote by g the Banach space g = g+ ® g— with norm || - ||g = || - [lg4 + 1 - Hg . The
following assertions are equivalent.

(1) g+ is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to g_;
(2) (g,8+,9-) is a Banach Manin triple for the non-degenerate symmetric bilinear map given
by
()e gxg - K
(1’,04) X (wa) = <x7/8>9+797 + <y7a>9+797'
Finally Section 5 is devoted to the notion of Banach Poisson—-Lie groups. Basic examples are
given in Section 5.3. In Section 5.4, we prove that the Lie algebra g of a Banach Poisson—Lie
group (G, F, ) carries a natural structure of Banach Lie bialgebra with respect to Fe, and, with
an additional condition on the Poisson tensor, is a Banach Lie—Poisson space with respect to F..
The generalized notion of Banach Poisson manifolds introduced in Part 1 is adapted to the
particular examples of Poisson—Lie groups we present in Part 2. Examples of Banach Poisson—
Lie group in our sense include the restricted unitary group U,es(#H) and the restricted triangular
group B (H), which are modelled on non-reflexive Banach spaces (see Section 7.3). In Section 8,
we show that the restricted Grassmannian viewed as homogeneous space under U,es(H) inherits
a Poisson structure in analogy to the finite-dimensional picture developped in [32] and called
Bruhat-Poisson structure. Moreover, the natural action of the Poisson-Lie group B (#) on
the restricted Grassmannian is a Poisson map, and its orbits are the Schubert cells described in
[42]. These results are summarized in the following Theorem (see Theorem [R.3, Theorem [0.1],
and Theorem [0.5]).

Theorem 0.3. The restricted Grassmannian
Grres(H) = Ures(H)/ U(H4) x U(H-) = GLyes(H)/ Pres(H)
carries a natural Poisson structure such that :

(1) the canonical projection p : Uyes(H) — Gries(H) is a Poisson map,
(2) the natural action of Ures(H) on Gryes(H) by left translations is a Poisson map,
(3) the following right action of Bl (H) on Gries(H) = GLyes(H)/ Pres(H) is a Poisson
map :
. Grres(H) x BLy(H) —  Grpes(H)
(9 Pres(H),b) = (b71g) Pres(H).
(4) the symplectic leaves of Gryes(H) are the Schubert cells and are the orbits of Bl (H).

Let us mention that the infinite-dimensional abelian subgroup of B/ (H) generated by the shift
induces the KdV hierarchy as explained in [52].
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Part 1. Banach Poisson—Lie groups and related structures

This Part is devoted to the general theory of Banach Poisson—Lie groups that will be needed
in Part 2. Examples of Banach Poisson—-Lie groups are given in Section 5.3. The Banach Lie
bialgebra struture of the Lie algebra of a Banach Poisson—Lie group is constructed in Section 5.4.

1. MANIN TRIPLES IN THE INFINITE-DIMENSIONAL SETTING

We start in this Section with the easiest notion related to Poisson—Lie groups, namely the
notion of Manin triples. It will allow us to set up some notation used in the present paper, and
recall the notion of duality pairing, which is crucial for the following Sections. The unbound-
edness of the triangular truncation on the space of trace class operators and on the space of
bounded operators (see Section [[.4]) will have important consequences in Section [7.2] Examples
of Banach Manin triples coming from Iwasawa decompositions are given in Section In par-
ticular, the Manin triple (La(H),uz(H), b3 (H)) of Hilbert-Schmidt operators will have a key
role in the proofs of most Theorems in Part 2.

1.1. Duality pairings of Banach spaces. In this paper, we will consider real or complex
Banach spaces, and we will denote by K € {R,C} the scalar field. The dual g* of a Banach
space g will mean the continuous dual, i.e. the Banach space of bounded linear forms with
values in K. In a lot of applications, the dual of a Banach space g is to big to work with, and
one uses proper subspaces of g*. A duality pairing between two Banach spaces allows to identify
one Banach space with a subspace of the dual of the other. Additional structures on one of the
Banach spaces (like a Lie bracket for instance) give rise to additional structures on the other
Banach space via duality.

1.1.1. Definition of strong and weak duality pairings. Let us recall the notion of duality pairing
in the infinite-dimensional setting (see [I], supplement 2.4.C).

Definition 1.1. Let g1 and go be two normed vector spaces over the same field K € {R,C}, and
let

()arg 101 xg2 > K
be a continuous bilinear map. One says that the map (-,-)q, 4. 1 @ duality pairing between g,
and g2 if and only if it is non-degenerate, i.e. if the following two conditions hold :

(<$7y>g1,gg :07 V$€gl) :>y:0 and (<33,y>gl,gg :07 \V/yEQQ):>$:0

Definition 1.2. A duality pairing (-,-)g, g, i a strong duality pairing between g and go if
and only if the two continuous linear maps

(11) gl — 92 and 92 — gl
r <x7.>91792 y <'7y>g1792

are isomorphisms. In all other cases, the duality pairing is called weak.

The non-degenerate condition of a duality pairing implies that the maps (I.I]) are injective.
In other words, the existence of a duality pairing between g; and go allows to identify g; with
a subspace (not necessary closed!) of the continuous dual g4 of go, and go with a subspace of
g7, wheras a strong duality pairing gives isomorphisms g; ~ g5 and go ~ g]. Therefore the
existence of a strong duality pairing between g; and go implies that g; and go are reflexive
Banach spaces. Note that in the finite-dimensional case, a count of the dimensions shows that
any duality pairing is a strong duality pairing.

Remark 1.3. By Hahn-Banach Theorem, the natural pairing between a Banach space g and
its continuous dual g* is a duality pairing. It is a strong duality pairing in the reflexive case
g** — g'
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1.1.2. Notation and Examples. In order to give examples of duality pairings, let us introduce
some notation used in the present paper. The letter H will refer to a general complex separable
infinite-dimensional Hilbert space. The inner product in H will be denoted by (-|-) : HxXH — H
and will be complex-linear in the second variable, and conjugate-linear in the first variable.

Banach algebra Loo(H) of bounded operators over a Hilbert space H. Denote by Lo (#H) the
space of bounded linear maps from # into itself. It is a Banach space for the norm of operators
[Alloo := supj|<1 [[Az|| and a Banach Lie algebra for the bracket given by the commutator of
operators : [A,B] = Ao B — Bo A, for A, B € Lo(H). In the following, we will denote the
composition A o B of the operators A and B simply by AB.

Hilbert algebra Lo(H) of Hilbert-Schmidt operators. A bounded operator A admits an adjoint
A* which is the bounded linear operator defined by (A*x|y) = (x|Ay). A positive operator is a
bounded operator such that (p|Ap) > 0 for any ¢ € H. By polarization, if A is positive then
A* = A. The trace of a positive operator A is defined as

“+oo
TrA:= (¢nlApn) € [0,+00],

n=1

where ,, is any orthonormal basis of H (the right hand side does not depend on the choice
of orthonormal basis, see Theorem 2.1 in [57]). The Schatten class Lo(H) of Hilbert-Schmidt
operators is the subspace of Lo () consisting of bounded operators A such that ||Alls :=

(Tr (A*A))% is finite. It is a Banach Lie algebra for || - |2 and for the bracket given by the
commutator of operators. It is also an ideal of Lo () in the sense that for any A € Ly(#H) and
any B € Loo(H), one has AB € Ly(H) and BA € La(H).

Banach algebra Ly (H) of trace-class operators. For a bounded linear operator A, the square root

of A*A is well defined, and denoted by (A*A)% (see Theorem VI.9 in [43]). The Schatten class
L1(H) of trace class operators is the subspace of Lo (#H) consisting of bounded operators A such

that ||Alj; := Tr (A*A)% is finite. It is a Banach Lie algebra for || - ||; and for the bracket given
by the commutator of operators. We recall that for any A € Li(?H) (not necessarly positive),
the trace of A is defined as

TrA:= (pnlApy),

n=1
where {¢,, } is any orthonormal basis of H (the right hand side does not depend on the orthonor-
mal basis, see Theorem 3.1 in [57]) and that we have

Tr A[ < [|A]1-

Moreover L (H) is an ideal of Lo (H), i.e. for any A € Ly (H) and any B € Loo(H), AB € L1 (H)
and BA € Li(#), and furthermore Tr AB = Tr BA. Finally for A and B in Ly(H), one has
AB € L1(H), BA€ Li(H), and Tr AB = Tr BA (see Corollary 3.8 in [57]).

Banach algebras Ly(#H). For any 1 < p < oo, the Schatten class L, (#) is the subspace of Lo (#)
consisting of bounded operators A such that

Al = (Tr (a8 )?

is finite. It is a Banach algebra for the norm || - ||, and for the bracket given by the commutator
of operators. Moreover L,(7) is an ideal of Lo (H) : for any A € L,(#H) and any B € Lo (H),
AB € Ly(H) and BA € L,(H).
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Remark 1.4. For 1 < p < 2 < g < 0o, one has
Li(H) = Ly(H) = La(H) = Lg(H) = Loo(H),

where each injection is a continuous map between Banach spaces. In the following, we will
repeatedly use these inclusions.

Let us now give some examples of duality pairings.

Example 1.5. The trace of the product of two operators (A, B) — Tr AB is a strong duality
pairing between La(H) and itself.

Example 1.6. Since L;(#) is a dense subspace of Ly(#), one obtains a weak duality pairing
between Lj(H) and Lo(H) by considering the bilinear map (A, B) — Tr AB with A € Li(H)
and B € La(H).

Example 1.7. Since the dual of L;(#) can be identified with Lo, (H) using the trace, one has a
weak duality pairing between L;(H) and Lo (H) by considering the bilinear map (A, B) — Tr AB
with A € Lij(H) and B € Lo (H). Note that the dual space of Lo (H) stricktly contains L (H)
as a closed subspace.

Example 1.8. For 1 < p < 0o, define 1 < ¢ < oo by the relation %4—% = 1. For any A € L,(H)
and any B € Ly(H), AB € L1(H) and BA € L;(#H) with

[ABly < [[AllplBlly  and  [[BA[s < [|All[|Bllg;

(see Proposition 5, page 41 in [44]) and furthermore Tr AB = Tr BA. Moreover the trace of
the product of two operators (A, B) — Tr AB is a strong duality pairing between L,(H) and
Lqy(H) and gives rise to the following identifications (see Proposition 7, page 43 in [44] and
Theorem VI.26, page 212 in [43]) :

(Lp(H))" = Lg(H)  and (Lq(H))" ~ Lp(H)

1.2. Duals and injection of Banach spaces. Suppose that § is a Banach space that injects
continuously into another Banach space g, i.e. one has a continuous injection ¢ : h — g. Then
one can consider two different dual spaces : the dual space h* which consists of linear forms on
the Banach space §h which are continuous with respect to the operator norm associated to the
Banach norm || - || on b, and the norm dual ¢(h)* of the subspace ¢(h) C g endowed with the
norm || - ||g of g, consisting of continuous linear forms on the normed vector space (¢(h), || - |q)-
Note that, since R is complete, ¢(h)* is complete even if ¢(h) is not closed in g (see for instance
[10] section 1.1). Let us compare these two duals : h* on one hand and ¢(h)* on the other hand.
First note that one gets a well-defined map

*

A L
f = fou

since fo¢ is continuous for the operator norm induced by the norm of h whenever f is continuous
for the operator norm induced by the norm on g. Note that +* is surjective if and only if any
continuous form on h can be extended to a continuous form on g. On the other hand, .* is
injective if and only if the only continuous form on g that vanishes on ¢(h) is the zero form.

Suppose that the range of ¢ : h < g is closed. Then ¢(h) endowed with the norm of g is a
Banach space. It follows that ¢ is a continuous bijection from the Banach space h onto the Banach
space t(h), therefore by the open mapping theorem, it is an isomorphism of Banach spaces (see
for instance Corollary 2.7 in [10]). In this case, any continuous form on b is continuous for the
norm of g i.e. one has h* = «(h)*. By Hahn-Banach theorem, any continuous form on ¢(h) can
be extended to a continuous form on g with the same norm (see Corollary 1.2 in [I0]). Therefore
the dual map ¢* : g* — b* is surjective. Its kernel is the annihilator ¢(h)° of +(h) and b* is
isomorphic to the quotient space g*/1(h)°.
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Example 1.9. The injection of the Banach space of compact operators K(H) on a separable
Hilbert space H into the Banach space of bounded operators Lo, (#) is closed. The dual map
¥ Loo(H)* — K(H)* is surjective and K(H)* can be identified with the space Li(H) of trace
class operators on H using the trace. Therefore Lj(#) is isomorphic to the quotient space

Loo(H)*/K(H)°.

Suppose now that the range of + : h < g is dense in g. In this case, any continuous form on
t(h) extends in a unique way to a continuous form on g with the same norm i.e. ¢(h)* = g*. The
kernel of ¢* consists of continuous maps on g that vanish on the dense subspace ¢(h), hence is
reduced to 0. In other words ¢* : g* — h* is injective (see also Corollary 1.8 in [10]).

Example 1.10. Consider the inclusion ¢ : Lj(#H) < La(H) of the space of trace-class operators
into the space of Hilbert-Schmidt operators on . Then the range of ¢ is dense. This leads to
the injection ¢* : La(H)* = La(H) — Li(H)* = Loo(H).

1.3. Definition of Banach Manin triples. The notion of Manin triple is a notion of linear
algebra that can be adapted in a straightforward way to the Banach context.

Definition 1.11. A Banach Manin triple consists of a triple of Banach Lie algebras (g, g+,8-)
over a field K and a non-degenerate symmetric bilinear continuous map (-,-); on g such
that

(1) the bilinear map (-,-)q is invariant with respect to the bracket [-, |4 of g, i.e.

(12) <[$7y]9’z>g + <y7 [$7Z]g>g = 07 V$7yvz € g;

(2) g =9+ D g— as Banach spaces;
(3) both g+ and g_ are Banach Lie subalgebras of g;
(4) both g4 and g— are isotropic with respect to the bilinear map (-,-);.

Note that in the Banach context, it is important to ask for the continuity of the bilinear map
(-,-)g, as well as for a decomposition g = g4 @ g— of g into the sum of two closed Banach
subspaces. Let us make some remarks which are simple consequences of the definition of a
Manin triple.

Remark 1.12. Given a Manin triple (g, g+, g— ), condition (2) implies that any continuous linear
form « on g decomposes in a continuous way as
a=Qopg, +aopg_,

where pg, (resp. pg_) is the continuous projection onto g4 (resp. g—) with respect to the
decomposition g = g+ @ g—. In other words, one has a decomposition of the continuous dual g*
of g as

g- =g’ @,
where g% is the annihilator of g4, i.e.
gl ={aeg" afx)=0, Vreg}.

Moreover any continuous linear form 8 on g, can be extended in a unique way to a continuous
linear form on g belonging to g° by 8+ S opy. It follows that one has an isomorphism

o ~a2,
and similarly
gt ~gf.
Remark 1.13. Given a Manin triple (g, g4,g—) where (-,-), is a strong duality pairing, any

continuous linear form on g can be written as (x,-)q for some x € g. In particular, for any
subspace h C g, one has
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where

ht:={zeg :(z,y),=0, Vyech}.
Moreover, any continuous linear form 3 on g can be represented as §(x) = (x,y)q for a unique
element y € g_. Therefore, in this case,

g-~g}
and similarly
g+ =g,
1.4. Triangular truncations of operators. Endow the separable complex Hilbert space H
with an orthonormal basis {|n) },ez ordered according to decreasing values of n. For 1 < p < oo,
consider the following Banach Lie subalgebras of Ly(#)
L,(H)- :={x € L,(H) :x|n) € span{|m),m < n}}
(lower triangular operators)

(1.3)
L,(H)44 :={z € Lp(H) : z|n) € span{|m),m > n}}
(strictly upper triangular operators).
and
L,(H)+ ={a € L,(H) :aln) € span{|m),m > n}}
(upper triangular operators)
(1.4)

L,(H)-— :={a € L,(H) :aln) € span{|m),m < n}}
(strictly lower triangular operators).

The linear transformation 7 consisting in taking the lower triangular part of an operator with
respect to the orthonormal basis {|n)}nez of H is called a triangular truncation or triangular
projection (see [2]) and is defined as follows :

(1.5) (m|T_(A)n) = { mldn) ¥ m<n

Similarly, the linear transformation 75 4 consisting in taking the stricktly upper triangular part
of an operator with respect to {|n)},cz is defined as follows :

| (m|An) if m>n
(16) Tyt = { 2
The linear transformation D consisting in taking the diagonal part of a linear operator is defined
by

(L.7) mwmmw={mﬁm P

Remark 1.14. The triangular truncations 7_ and T’y ; are unbounded on Lo, (#) and on Ly (H),
but are bounded on L,(H) for 1 < p < oo (see [33], [28], [19] as well as Proposition 4.2 in [2]
for the proof and more detail on the subject). See also [12] for an example of bounded operator
whose triangular truncation is unbounded (Hilbert matrix). As far as we know the existence
and construction of a trace class operator whose triangular projection is not trace class is an
open problem. We refer the reader to [5] for related functional-analytic issues in the theory of
Banach Lie groups.

Denote by Ty = T4y + D (resp. T-_ = T_ — D) the linear transformation consisting in
taking the upper triangular part (resp. strictly lower triangular part) of an operator. One has
for 1 < p < o0,

(1.8) Lp(H) = Lp(H)+ @ Ly(H)—,
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and

(1.9) Ly(H) = Lp(H)- & Lp(H) 4+

1.5. Example of Iwasawa Manin triples. The Iwasawa decomposition of a finite-dimensional
semi-simple Lie group is a generalization of the decomposition of GL(n,C) as the product of
SU(n) x Ax N, where A is the abelian group of diagonal matrices with positive real coefficients,
and N is the group of triangular matrices whose diagonal entries are all equal to 1. The
product A x N is often denoted by B for Borel subgroup. At the level of Lie algebras, the
Iwasawa decomposition gives rise to the decomposition M (n,C) = u(n) @ b(n), where b(n) is
the Lie algebra of complex triangular matrices with real coefficients on the diagonal. Since
the triangular truncation defined in Section [[4] is bounded on LP(H) for 1 < p < oo, we can
generalize this decomposition to the Banach context (see Lemma [[.T5]). As explained in [32],
(M(n,C),u(n),b(n)) is an example of Manin triple, where the duality pairing is given by the
imaginary part of the trace. This duality pairing can be defined on LP(#) for 1 < p < 2 because
in this case LP(H) injects into its dual. This gives rise to Banach Manin triples, that we will
call Iwasawa Manin triples (see Proposition below).

We will use the following notation. The real Banach Lie algebra u,(#) is the Lie algebra of
skew-Hermitian operators in L,(#) :

(1.10) uy(H) :={Aely(H) : A" = —-A}.

The real Banach subalgebras b} (#) and b, (#) of L,(H) are the triangular Banach algebras
defined as follows :

bf (H) := {a € Ly(H) : aln) € span{|m),m > n} and (n|a|n) € R, for n € Z},

b, (H) :={a € Ly(H) :an) € span{|m),m < n} and (n|aln) € R, for n € Z}.

(1.11)

Lemma 1.15. For 1 < p < 0o, one has the following direct sum decompositions of L,(H) into
the sum of closed subalgebras

(1.12) Ly(H) = uy(H) ® by, (H),
and
(1.13) Ly(H) = uy(H) @ b, (H).
The projection py, + onto w,(H) with respect to the decomposition (LI2)) reads
1
(1.14) Pup+(A) =T__(A) —T__(A)" + 5 [D(A) — D(A)*], where A€ Ly(H).
Similarly, the projection py, — onto w,(H) with respect to the decomposition (LI3) reads :
* 1 *
(115) pup’_(A) = T++(A) — T++(A) + 5 [D(A) — D(A) ] N ’where A € LP(H)

Proof. Since the triangular truncations 7'y : L,(H) — Ly(H) and T 1 : L,(H) — Ly(H) are
bounded for 1 < p < oo (see remark [[LT4]), the same is true for the operator D = Ty — T’ 4.
The Lemma follows as in the finite-dimensional case. 0

Proposition 1.16. For 1 < p < 2, the triples of Banach Lie algebras (Ly(H),u,(H), b,y (H))
and (Ly(H),u,(H), b, (H)) are real Banach Manin triples with respect to the pairing given by
the imaginary part of the trace

Lp(H) x Ly(H)

<., > . R
(1.16) - (z,9) : STr (zy) .
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Proof. e Let us show that the bilinear form on L,(#) given by the imaginary part of the
trace is invariant with respect to the bracket given by the commutator. Set ¢ := = Lo
Then 1 < p <2< g < oo. For any z,y,z € L,(H), recall that L,(#) - L,(H) C L,(H),
L,(H) C Ly(H), and Ly(#H) - Ly(H) C L1(H). Therefore one has

Tr ([z,y]z) = Tr(zxyz —yxz) = Tr (zyz) — Tr (yz=z)
= Tr (yzzx) — Tr (yxz) = —Try[z, 2],

where the second equality follows from the fact that both zyz and yxz are in L1 (), and
the third is justified since yz belongs to Li(H) and z is bounded. Taking the imaginary
part of the trace preserves this invariance. Hence (-, -)g is invariant with respect to the
Lie bracket of L,(H).

e By Lemma [I.T5] one has the direct sum decompositions

Lp(H) = up(H) @ b, (H).

e Note that (-,-)r is well-defined because L,(H) C Ly(H) for 1 < p < 2. It is clearly
symmetric and continuous. Let us show that (-, -)r is a non-degenerate bilinear form on
L,(H). Denote by Hp the real Hilbert space generated by {|n)}nez. Any bounded linear
operator A on the complex Hilbert space H = Hr + ¢Hgr can be written in blocks as

A A —SA
LS4 RA O
where RA : Hr — Hr and SA : Hr — iHg. In particular, A € L,(#) is the C-linear

extension of RA + i3 A (note that this is not the decomposition of A into its symmetric
and skew-symmetric parts). Therefore, for any A, B € L,(H),

STr (AB) = Tr (RASB + SARB).

Suppose that STr (AB) = 0 for any B € L,(H). Since L,(H) is dense in Ly(#), this
implies that TrRA - C' = 0 for any operator C' € Ly(Hg), and Tr3A - D = 0 for any
D € Lo(Hr). It follows that RA = 0 and FA = 0 because the trace is a strong duality
pairing between Lo(HRr) and itself.

e Tt is easy to show that wu,(H) C (u,(H))™, bt (H) C (b;’,’(?‘-[))L and b, (H) C (b_(’H))l,

p
in other words u,(#), b} (H) and b, (#) are isotropic subspaces with respect to the
pairing (-, )R-

]

Remark 1.17. In the previous Proposition, the condition 1 < p < 2 is necessary in order to

define the trace of the product of two elements in L,(H) (L,(#) is contained in its dual L,(#)

for 1 <p <2).

2. FROM MANIN TRIPLES TO 1-COCYCLES

The existence of a Lie bracket on a Banach space g4 has consequences on any Banach space
g— in duality with g;. Under some stability and continuity conditions (see Section 2.2]), g4 will
act on g_ by coadjoint action, as well as on the space of bounded multilinear maps on g_ (see
Section 2.3]). When g4 and g_ form a Banach Manin triple, a natural 1-cocycle with respect
to the action of g4 on the space of skew-symmetric bilinear maps on g_ can be defined (see

Section [2.6]).

2.1. Adjoint and coadjoint actions. Recall that a Banach Lie algebra g, acts on itself, its
continuous dual g} and bidual g%* by the adjoint and coadjoint actions :

ad : g4 xg4 — g4
(,y) > adyy = [z,y],
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—ad® : gy xgl — g}
(z, ) — —adja = —aoad,

and
ad™ @ gy xg¥ — g¥f
(x,F) —  ad}*F := F oad].

Here the notation ad; : g% — g%} means the dual map of ad, : g4y — g4+. Remark that the
actions ad and ad™ coincide on the subspace g of g}*. These actions extend in a natural way
to spaces of bounded multilinear maps from any Banach product of copies of g, and g% . For
Banach spaces g1, . .., g, and b, we will use the notation L(g1, g2, - .- gx; h) to denote the Banach
space of continuous k-multilinear maps from the product Banach space g; x - -+ X g to the
Banach space h (note the semi-colon separating the initial Banach spaces from the final one).
Let us recall (see Proposition 2.2.9 in [1]) that one has the following isometric isomorphisms of
Banach spaces

(2.1) L(g%; L(g+, 9+ K)) ~ Lg%, 94,9+ K) ~ L(gy, g5 L(g45 K)) ~ L(g+, %5 97 ).

In particular, since the map ad : gy X g+ — g4 is bilinear and continuous, its dual map ad*
is continuous as a map from g% to L(g4,g+;K) and, following the sequence of isomorphisms in
(21, it follows that ad® : g4 x g — g7 is continuous. Similarly, using the following isometric
isomorphisms of Banach spaces

L(g7; Lgy, 055 K)) ~ L(gY", 94,055 K) ~ L(gy, 07 L(g%; K)) ~ L(g+, 975 87),

it follows that ad™ : gy x g7 — g7* is continuous.

2.2. Coadjoint action on a subspace of the dual. Suppose that we have a continuous
injection from a Banach space g_ into the dual space g’ of a Banach Lie algebra g, in such a
way that g_ is stable by the coadjoint action of g4 on its dual, i.e. is such that

(2.2) adjao€g_, Vr € g4,Vaeg_.

Then the coadjoint action —ad™ : g4 x g% — g restricts to a continuous bilinear map —ad|*97 :
g+ X g- — g3, where g x g_ is endowed with the Banach structure of the product of Banach
spaces g4+ and g_. In other words

—adj, € L(g+,9-39%) = L(g+; L(g-3;9%))-

Moreover, condition (22]) implies that —ad* takes values in g_, i.e. that one gets a well-defined
action
—adjy gy xg- — g-
(z,) — —adla = —«aoad,.

However, this action will in general not be continuous if one endows the target space with its
Banach space topology. Nevertheless it is continuous if the target space is equipped with the
topology induced from g% . Under the additional assumption that —ad‘*gi g4 X g — g is
continuous with respect to the Banach space topologies of g, and g_ (for instance in the case
where g_ is a closed subspace of the dual g* ), g4 acts also continuously on g* by

(adj; )™ : g+ xgZ — g
(x,F) +— Foad].
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2.3. Adjoint action on the space of continuous multilinear maps. Suppose that we
have a continuous injection from a Banach space g_ into the dual space g’ of a Banach Lie
algebra g, and that g, acts continously on g_ by coadjoint action, i.e. suppose that —ad‘*gi
takes values in g_ and that —ad|*97
notation, we will write just ad® for ad; and ad™ for (ad

© g4+ X g— — g is continuous. In order to simplify
I

g—
let us denote by L™*(g_, g+;K) the Banach space of continuous multilinear maps from

g X - X g X g4 X--- X gy to K, where g_ is repeated r-times and g4 is repeated s-times.
Since g4 acts continuously by adjoint action on itself and by coadjoint action on g_, one can
define a continuous linear action of g4 on L™*(g_, g+;K), also called adjoint action, by

)*. In order to compactify notations,

T
r,5 _ *
ad; )t(al,...,ar,xl,...,ajs)—E t(ag,...,adlag, ..., 21, .., Zs)
=1

S
— E t(ag,...,qp,x1,...,ad,x, ... Ts),
=1

where t € L™*(g_,9+;K), for i € {1,...,r}, oy € g—, and for i € {1,...,s}, x; € g+. In
particular, the adjoint action of g4 on L?%(g_,g,;K) := L(g_,g_;K) reads :

(2.3) ad®Ot (o, an) = tladion, ag) + t(ag, adiay).

2.4. Subspaces of skew-symmetric bilinear maps. Note that the adjoint action ad??)
defined in (2.3 preserves the subspace of skew-symmetric continuous bilinear maps on g_,
denoted by A%g* :

Ag* ={tc L(g_,9;K) : Ver,ex € g_,t(e1,e2) = —t(ea,e1)}.

For any subspace g, C g*, the subspace A%g, C A2g* refers to the subspace consisting of
elements t € A?g* such that, for a € g_, the maps a +— t(er,a) belong to g, C g* for any
RSN

A’gy = {t € A’g" : Ve; € g_,t(er,") €gs}.

2.5. Definition of 1-Cocycles. Let us recall the notion of 1-cocycle. Let G be a Banach Lie
group, and consider an affine action of G on a Banach space V, i.e. a group morphism ® of GG into
the Affine group Aff(V') of transformations of V. Using the isomorphism Aff(V) = GL(V) x V,
® decomposes into (¢,0) where ¢ : G — GL(V) and © : G — V. The condition that ® is a
group morphism implies that ¢ is a group morphism and that © satisfies :

(2.4) O(gh) = ©(g) + ¢(9)(O(h)),

where g, h € G. One says that © is a 1-cocycle on G relative to . The derivative d® of ¢ at
the unit element of G is a Lie algebra morphism of the Lie algebra g of GG into the Lie algebra
aff(V') of Aff(V'). By the isomorphism aff(V) = gl(V) x V, d® decomposes into (dy, d©) where
de :g— gl(V) is the Lie algebra morphism induced by ¢ and dO© : g — V satisfies :

(2.5) dO ([z,y]) = de(x) (dO(y)) — de(y) (dO(z)) ,

for z,y € g. One says that d© is a 1-cocycle on g relative to dop.

Example 2.1. Let us consider in particular the Banach space V' = L(g_,g—;K) of bilinear
maps on g, where g_ is a Banach space that injects continuously in the dual space g% of a
Banach Lie algebra g, is stable under the coadjoint action of g, , and such that the coadjoint

action of g4 on g_ is continuous. A 1-cocycle 6 on g4 relative to the natural action ad®0) of
g+ on L(g_,g—;K) given by (2.3]) is a map 6 : g+ — L(g—, g—;K) which satisfies :

0 ([z,y)) =ad?” (8(y)) — adS” (6(x))
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where x,y € g4. For @ and 8 in g_, previous condition reads
(26)  O([z,y]) (o, 8) = 0(y)(adzex, B) + O(y) (v, adB) — O(x)(adya, B) — O(z)(e, ad,3).

Remark 2.2. A continuous map 6 :g. — L(g—,g—;K) from a Banach Lie algebra g; to the
Banach space of bilinear maps on g_ satisfying equation (2.6]) defines an affine action of g4 on
L(g—,g—;K) whose linear part is the adjoint action ad ) given by equation (2.3)).

2.6. Manin triples and associated 1-cocycles. The following proposition enable to define
1-cocycles naturally associated to a Manin triple.

Theorem 2.3. Let (g,9+,9-) be a Manin triple for a non-degenerate symmetric bilinear con-
tinuous map (-,-)g : 9 x g — K. Then

(1) The map (-,-)q restricts to a duality pairing (-,-)g, o : 9+ X g— — K.
(2) The subspace g4+ — g* is stable under the coadjoint action of g— on g* and

adg () = —pg. ([, 7]q)

for any x € g+ and o € g_. In particular, the map

adg @ g-xgr — g+
(oz,x) — _pg+ ([a7$]g)
18 cONtinuous.
(3) The subspace g— — g7 is stable under the coadjoint action of g4 on g% and

ady (o) = —pg_ ([, ag)

for any x € g4 and o € g_. In particular, the map

adg, @ g+ xg- — g-
(‘Tv a) = —DPg_ ([‘Tv a]g)
18 continuous.
(4) The dual map to the bracket [-,-]y_ restricts to a 1-cocycle 04 : g4 — Ag with respect
to the adjoint action ad®®) of g, on A2g, C A2g*.
(5) The dual map to the bracket [-,-]q, restricts to a 1-cocycle 0_ : g_ — A*g_ with respect
to the adjoint action ad®9 of g_ on A2g_ C A2g*+.

Proof. (1) Let us show that the restriction of the non-degenerate bilinear form (-, -)q
gxg— Kto gy x g_ denoted by

(3 ere 94 xg- =K

is a non-degenerate duality pairing between g, and g_. Suppose that there exists = € g
such that (z,a)g, 4 = 0 for all @ € g_. Then, since gy is isotropic for (-,-)4, one has
(x,y)g = 0 for all y € g, and the non-degeneracy of (-,-); implies that = 0. The
same argument apply interchanging g4 and g_, thus (-,-)g, 4 is non-degenerate. As a
consequence, one obtains two continuous injections

g- = 9% and & T 9
« = <'7a>9+7977 x = <‘7:7 '>g+797‘
(2)-(3) Let us show that both
g+ C g~

and
g- Cg}
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are stable under the coadjoint action of g_ on g* and g4 on g7 respectively. Indeed,
the invariance of the bilinear form (:,-); with respect to the bracket [-,-]; implies that
for any x € g4+ and a € g_,

<$7 [Oé, ']9>9 = _<[a7$]gv '>g-

Hence, since g_ is isotropic,

(@, [0, Jg)gs.0- = —(Pas ([, 2]g) s Dot

for any = € g, and any a € g_. It follows that

ad;(x) = _pg+ ([a7$]g)
and similarly

ad (o) = —pg_ ([z, alg)
for any € g4+ and a € g_. The continuity of the corresponding adjoint maps follows
from the continuity of the bracket [-,-]; and of the projections pg, and p,_.
Let us prove that the dual map of the Lie bracket on g_ restricts to a 1-cocycle with
respect to the adjoint action of g, on A?g,. The dual map

[’7 ];, : gi — L(g—7g—7K)

to the bilinear map [-,-]g_ assigns to F(:) € g* the bilinear form F ([-,];_) and takes
values in A%g* . Since by (2), g_ C g’ is stable under the coadjoint action of g and since
the coadjoint action ad* : g4 X g_ — g_ is continuous, one can consider the adjoint
action of gy on A?g* defined by (Z3). Since the duality pairing (-, ), 4 induces a
continuous injection g, < g*, one can consider the subspace A%g, of A%g* defined in
Section 24l Denote by 6, : gy — L(g—,g—;K) the restriction of [, ]% to the subspace

. g
g+ Cg_:
9+($) = <$7 ['7 ']97>9+797‘
Using the identification L(g—,g—;K) ~ L(g—;g* ), one has
01 (x)(a) = (2, [, Jg_)g. g = adpa ().
One sees immediately that the map 6. takes values in A%g, if and only if ad®z € g, for
any «a € g_ and for any z € g, which is verified by (2). Using the fact that the duality

pairing (-, -)g, g_ is the restriction of (-, )4 and that (-, -)4 is invariant with respect to the
bracket [-,-]q, one has

<[1‘, y]? [a7 B]>9779+ = _<[a7 [1‘, y]]? B>g7
and the Jacobi identity verified by [-, ] implies

<[.’1‘, y]’ [Oé, B]>97 04+ = _<[[Oé, .Z'], y]? 5>g - <[‘T7 [Oé, y]]? 6>9
Using the decomposition
~fa,a) = —py_[a,7] — py, o 7] = —adja + ad}e,
and similarly
—[o,y] = —pg_[a,y] — pg, [, y] = —ad;o + adjy,
one gets
<[JI, y]? [a7 B]>Q+79— = <[a‘dzx - ad;a, y]? B>g + <[‘T7 adzy - adZa], /8>97

hence

<[£,y], [a,ﬁ]>g+7g, = <[adzl’ay]75>g + <[m7a‘dzy]u8>9
+<y7 [ad;av B]>Q - <‘T7 [a‘dzav B]>Q
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It follows that
adg [z, y] = [adgz, y] + [z, adgy] + adg ¥ — ad;dz(lx.
On the other hand, the condition (2.6]) that 6 is a 1-cocycle reads :

(28) <[$7 y]7 [Oé, ﬁ]>g+,gf = +<y7 [ad%(% 6]>g+,97 + <y7 [Oé, ad%6]>g+7gf
_<337 [adyav 5]>9+797 B <l‘, [Oé, ady5]>g+,gf .
The first and third terms in the RHS of (2Z.8) equal the last two terms in the RHS of
(Z7). Using the invariance (.2 of the bilinear form (-, )4 with respect to the bracket
[-,]g, the last term in the RHS of ([2.8) reads

—<l‘, [Oé, ad26]>9+797 = <[Oé, l‘], ad26>g = <pg+ ([Oé, l‘]), ad26>g+797
= —<ad233= adzﬂ>9+7gf - <[y7 adzx]a /8>E+ 9=

and similarly the second term in the RHS of (2.8]) reads

<y7 [Oé, ad;6]>9+797 = <[l‘, adzy]v ﬁ>9+797 .

Hence the equivalence between (2.8) and (2.7)) follows. By interchanging the roles of g,
and g_, one proves (5) in a similar way.
U

In the proof of Theorem [2.3] we have showed the following :

Proposition 2.4. Let g = g4+ @© g be a decomposition of a Banach Lie algebra g into the
direct sum of two Banach Lie subalgebras, and suppose that g is endowed with a non-degenerate
symmetric bilinear map (-,-)q, invariant with respect to the Lie bracket in g. Then the cocycle
condition (2Z.8)) for the restriction 04 of [-,-];  : g% — A%g* to the subspace g C g* reads

(2.9) adg [z, y] = [adg, y] + [z, adqy] + adjg 0y — ad;d;ax,
where x,y € g4 and o € g_.

Remark 2.5. Equation (2.9) is exactly the formula given in [32] page 507, but with the opposite
sign convention for the coadjoint map ad*.

3. GENERALIZED BANACH POISSON MANIFOLDS AND RELATED NOTIONS

In this Section, we generalize the definition of Poisson manifolds to the Banach context (Sec-
tion B.1). Example of generalized Banach Poisson manifolds are Banach symplectic manifolds
(Section [3.2]) and Banach Lie-Poisson spaces (Section [3.2)).

3.1. Definition of generalized Banach Poisson manifolds. The notions of Banach Poisson
manifolds and Banach Lie-Poisson spaces were introduced in [37]. The notion of sub Poisson
structures in the Banach context was introduced in [I1]. In the case of locally convex spaces, an
analoguous definition of weak Poisson manifold structure was defined in [35]. In the symplectic
case, related notions were introduced in [13] enabling the study of the orbital stability of some
Hamiltonian PDE’s. In the present paper, we restrict ourselves to the Banach setting but
generalize slightly these notions to the case where an arbitrary duality pairing is considered,
and where the existence of Hamiltonian vector fields is not assumed (this last point is assumed
in [35] and [I1]). Moreover, instead of working with subalgebras of the space of smooth functions
C*>°(M) on a Banach manifold M, we will work with subbundles of the cotangent bundle (see
Remark [3.2] below).

Definition 3.1. Consider a unital subalgebra A C C*(M) of smooth functions on a Banach
manifold M, i.e. A is a vector subspace of C>°(M) containing the constants and stable under
pointwise multiplication. An R-bilinear operation {-,-} : A x A — A is called a Poisson
bracket on M if it satisfies :
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(i) anti-symmetry : {f,g} = —{g, [} ;
(i) Jacobi identity : {{f, g}, h} + {{g,h}, f} +{{h, f}, 9} =0
(iii) Leibniz formula : {f,gh} = {f,g}th + g{f, h} ;

Remark 3.2. (1) Note that the Leibniz rule implies that for any f € A, {f,-} acts by
derivations on the subalgebra A C C>°(M). When M is finite-dimensional and A =
C* (M), this condition implies that {f,-} is a smooth vector field X; on M, called the
Hamiltonian vector field associated to f, uniquely defined by its action on C*°(M) :

Xg(h) = dh(Xy) = {f, h}.

It is worth noting that on an infinite-dimensional Hilbert space, there exists derivations
of order greater than 1, i.e. that do not depend only on the differentials of functions
(see Lemma 28.4 in [27], chapter VI). It follows that, contrary to the finite-dimensional
case, one may not be able to associate a Poisson tensor (see Definition below) to a
given Poisson bracket. Examples of Poisson brackets not given by Poisson tensors were
constructed in [6].

(2) Given a covector § € TyM, it is always possible to extend it to a locally defined 1-
form o with o, = £ (for instance by setting a equal to a constant in a chart around
p € M). However, it may not be possible to extend it to a smooth 1-form on M. It may
therefore not be possible to find a smooth real function on M whose differential equals
& at p € M. The difficulty resides in defining smooth bump functions, which are, in
the finite dimensional Euclidean case, usually constructed using the differentiability of
the norm. In [45], it was shown that a Banach space admits a C'-norm away from the
origin if and only if its dual is separable. Remark that L.,(H) is not separable (since
it contains the nonseparable Banach space [, as the space of diagonal operators). It
follows that the dual of Lo () is nonseparable (since by Theorem IIL.7 in [43], if the
dual of a Banach space is separable, so is the Banach space itself). Therefore working
with unital subalgebras of smooth functions on a Banach manifold modelled on Ly, (H)
(or on Lyes(H) and uyes(H) defined below) may lead to unexpected difficulties. For this
reason, we will adapt the definition of Banach Poisson manifold and work with local
sections of subbundles of the cotangent bundle. The link between unital subalgebras of
C*°(M) and subbundles of the cotangent bundle is given by next definition.

Definition 3.3. Let M be a Banach manifold and A be a unital subalgebra of C*°(M). The
first jet of A, denoted by J'(A) is the subbundle of the cotangent bundle T*M whose fiber over
p € M is the space of differentials of functions in A,

JHA), = {df, : fec AL
Definition 3.4. We will say that F is a subbundle of T*M in duality with the tangent bundle
to M if, for everyp € M,
(1) Ty, is an injected Banach space of Ty M, i.e. F, admits a Banach space structure such
that the injection IF,, — T7M is continuous,
(2) the natural duality pairing between Ty M and T,M restricts to a duality pairing between
F, and T,M, i.e. F, separates points in T,M.

We will denote by A2F* the vector bundle over M whose fiber over p is the Banach space of
continuous skew-symmetric bilinear maps on the subspace F, of Ty M.

Definition 3.5. Let M be a Banach manifold and F a subbundle of T*M in duality with T M.
A smooth section w of A°F* is called a Poisson tensor on M with respect to F if :
(1) for any closed local sections o, B of F, the differential d (7(c, B)) is a local section of F;
(2) (Jacobi) for any closed local sections «, B, v of F,

(3.1) ™ (o, d(m(8,7))) + 7 (B,d (x(v, ))) + 7 (7, d (7 (a, §))) = 0.
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Remark 3.6. (1) The first condition in Definition is necessary in order to make sence
of equation (B.]) since the Poisson tensor is defined only on local sections of F.
(2) Consider a unital subalgebra A of C>°(M) and set F = J'(A) the first jet of functions in
A. Then equation ([B1]) for a Poisson tensor m on M with respect to I is equivalent to
the Jacobi identity for the Poisson bracket defined for f,g € A by {f, g} = n(df, dg).

Definition 3.7. A generalized Banach Poisson manifold is a triple (M,F, ) consisting
of a smooth Banach manifold M, a subbundle F of the cotangent bundle T*M in duality with
TM, and a Poisson tensor w on M with respect to IF.

Remark 3.8. Let us make the link between our definition of generalized Banach Poisson man-
ifold and related notions in the literature. Consider a unital subalgebra A of C>°(M), set
F = J*(A) the first jet of functions in A, and consider a Poisson bracket on A given by a Pois-
son tensor : {f,g} = w(df,dg). Our definition of generalized Banach Poisson manifold differs
from the one given in [35] and the definition of sub Poisson manifold given in [II] by the fact
that we do not assume the existence of Hamiltonian vector fields associated to functions f € A
(condition P3 in Definition 2.1 in [35] and condition P : T°M — TM in [I1]). In other words,
for f € A, {f, -} is a derivation on A C C*°(M) that may not —with our definition of Poisson
manifold— be given by a smooth vector field on M. However, since the Poisson bracket is given
by a smooth Poisson tensor, {f,-} is a smooth section of the bundle J'(A)* whose fiber over
p € M is the dual Banach space to J 1(.A)p. Moreover, in order to stay in the Banach context,
we suppose that I, has a structure of Banach space.

3.2. Banach Symplectic manifolds. An important class of finite-dimensional Poisson man-
ifolds is provided by symplectic manifolds. As we will see below, this is also the case in the
Banach setting, i.e. general Banach symplectic manifolds (not necessarily strong symplectic)
are particular examples of generalized Banach Poisson manifolds. Let us recall the following
definitions. The exterior derivative d associates to a n-form on a Banach manifold M a (n+ 1)-
form on M. In particular, for any 2-form w on a Banach manifold M, the exterior derivative of
w is the 3-form dw defined by :

dp(X,Y, 2) = ~p([X, V1, 2) + (X, 20, 7) = (V. 2L, K) + (dp (w7, 2)) X)L

B <dp <w(f(, Z)) ’?>T;M7TPM+ <dp <W(X’f/)) .z

where XY, Z are any smooth extensions of X, Y and Z € T,M around p € M. An expression
of this formula in a chart shows that it does not depend on the extensions X,Y, Z, but only on
the values of these vector fields at p € M, i.e. it defines an tensor (see Proposition 3.2, chapter V

in [30]). The contraction or interior product ixw of a n-form w with a vector field X is the
(n — 1)-form defined by

bl
>T;; M,T,M

in(Yla"' 7Yn—1) = CL)(X,Y:[,“’ 7Yn—1)-
The Lie derivative Lx with respect to a vector field X can be defined using the Cartan formula
(3.2) Lx =ixd+dix.

The Lie derivative, the bracket [X,Y] of two vector fields X and Y, and the interior product
satisfy the following relation (see Proposition 5.3, chapter V in [30]) :

(3.3) ’L'[Xy} =Lxiy —iyLx.
Let us recall the definition of a Banach (weak) symplectic manifold.

Definition 3.9. A Banach symplectic manifold is a Banach manifold M endowed with a
2-formw €T (AZT*M) such that
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(1) w is non-degenerate : wg cTpM — Ty M, X w ixw:=w(X,-) is injective Vp € M ;
(2) w is closed : dw = 0.

Lemma 3.10. Let (M,w) be a Banach symplectic manifold. Consider a and 8 two closed local
sections of WHTM), i.e. da =dB =0, a = w(Xy,") and B = w(Xg,-) for some local vector
fields X, and Xg. Then

(1) Xo and X are symplectic vector fields : Lx,w =0 = Lx,w

(2) i[Xa7X/3]w = —d(w(Xa,Xﬁ)).

Proof. (1) Using the Cartan formula ([B8.2]), one has Lx, w = ix, dw+dix, w = dix,w, since
w is closed. But by definition ix_ w = « is closed. Using dod = 0 (see Supplement 6.4A
in [I] for a proof of this identity in the Banach context), it follows that Lx, w = 0.
Similarly £x,w = 0.
(2) By relation (B.3]), one has
Z'[XQ,X[;]W = £Xaixﬁw — ixﬁﬁxaw,
where the second term in the RHS vanishes by (1). Using Cartan formula, one gets
i[Xa,Xg]w = diXaiXBw + iXad(iXBw) = dZ'XQ’L'Xﬁw = d(w(XB,Xa)) =—d (W(Xa,XB)) ,
where we have used that ix,w = (3 is closed.
O
Proposition 3.11. Any Banach symplectic manifold (M,w) is naturally a generalized Banach
Poisson manifold (M,F, ) with
(1) F = wH(TM);
(2) m : WHTM) x W (TM) — R defined by (a,8) — w(Xa, Xg) where X, and Xg are
uniquely defined by o = w(Xq, ) and f = w(Xg,-).

Proof. (1) By Lemma B.I0] for any closed local sections o and 8 of F, with a = w(X,, ")
and 3 = w(Xg, ), one has

d(m(e, B)) := d(w(Xa, Xp)) = —i[x,,x5)%

hence is a local section of F = w!(TM).

(2) Let us show that 7 satisfies the Jacobi identity (B.II). Consider closed local sections «, /3
and v of F and define the local vector fields X,, X5 and X, by a = ix,w, f = ix,w and
v =ix,w. Using Lemma .10} the differential of w satisfies

dw(Xa7 Xﬁv X’Y) = 2 (_w([Xav Xﬁ]v X’Y) + w([Xav X’Y]’ Xﬁ) - w([Xﬁv X’Y]’ Xa )
= 2(r(d(n(a, 8),7))) + 7 (d(n(y,a)), ) + 7 (d(7(5,7)),a).
Since w is closed, the Jacobi identity (B.I]) is satisfied.
O

3.3. Banach Lie—Poisson spaces. Banach Lie-Poisson spaces were introduced in [37]. Here
we extend this notion to an arbitrary duality pairing.

Definition 3.12. Consider a duality pairing (-,-)q, o_ : g+ X g— — K between two Banach
spaces. We will say that g+ is a Banach Lie—Poisson space with respect to g_ if g_ is a
Banach Lie algebra (g—, [-,-]g_) which acts continuously on g1 — g* by coadjoint action, i.e.

adz$ € g+,
forallz € gy and o € g_, and ad®™ :g_ X g+ — g+ is continuous.

Remark 3.13. A Banach Lie-Poisson space g4 with respect to its continuous dual space g7 is
a Banach Lie—Poisson space in the sense of Definition 4.1 in [37].
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The following Theorem is a generalization of Theorem 4.2 in [37] to the case of an arbitrary
duality pairing between two Banach spaces g4 and g_. See also Corollary 2.11 in [35] for an
analogous statement. We will include the proof for sake of completeness.

Theorem 3.14. Consider a duality pairing (-,-)g, o : 8+ X g— — K between two Banach
spaces, and suppose that g+ is a Banach Lie—Poisson space with respect to g_.
Denote by F the subbundle of T*g4 ~ g4 x @' whose fiber at v € gy is given by

Fo ={a} x g C {a} x g} ~T7g+.
For o and 3 any two local sections of F, define a tensor m € A*F* by :

77:(:(0476) = <.Z', [a(m),ﬁ(m)]g,>

Then (g4, F,7) is a generalized Banach Poisson manifold, and 7 takes values in A%gy C A%F*.
Let A be the unital subalgebra of C*°(g4) consisting of all functions with differentials in g_ :

A={feC®gs) :def €g- Cgl foranyzcg,}.
Define the bracket of two functions f,h in A by

(3.4) (£, 1} (@) = moldfo, dhy) = (@, [dfe dhale ), o s

where © € g1, and df and dh denote the Fréchet derivatives of f and h respectively. Then
{-,;} : Ax A — Ais a Poisson bracket on gy. If h is a smooth function on gy belonging to A,
the associated Hamiltonian vector field is given by

[ AN,

Xp(x) = —ady, = € g4.
Proof. Let a and 8 be any closed local sections of F. Then o and g are functions from gy to
g-, and we will denote by Tpa : Thg+ ~ g4+ — g = Ty(,)9- and similarly T8 : g4 — g-
their derivatives at « € g,. For any tangent vector X € T,g.+ ~ g4, one has
dxﬂ- (Oé, 6) (X) = <X7 [Oé($), 5(517)]97 >g+ g + <$7 [TEQ(X)7 6]97 >g+797 =+ <l‘, [Oé, Twﬁ(X)]gf>
= <X, [a(z), B(x)]g_ >g+797 - <ad§x,Txa(X)>g+7gi + (adZm,Txﬂ(X»g%gi

Since «a and f are closed local sections of F C T*g,, by Poincaré Lemma (see Theorem 4.1
in [29]), there exist locally real valued smooth functions f and g on g4 such that a = df and
B = dg. Tt follows that Tya € L(gy;L(gs,R)) =~ L?(gy;R) is the second derivative d2f of f
at € g4 and is symmetric (see Proposition 3.3 in [29]). Similarly 7,3 = d2g is a symmetric
bilinear map on g,. Consequently

- <ad§x, Tyo(X))

9+,9—

= — (X, Tma(adg$)>g

9+,9— +,0—

and

(i, ToB(X))g, o = (X, TuBladia))y, o
Therefore, for any closed local section « and g of F, and any z € g4,
(3.5) d,7 (o, B) = [a(x), B(x)]g_ — Tra(adie) + T f(adyx)

belongs to g_. It follows that dm («, 8) a local section of F. Let us show that 7 satisfies the
Jacobi identity (B1). One has

o (0, d(m(B,7))) = (@, [a(@), [B(2),7(2)]g_la_ )y, , — (adaz, Tuf(adiz))
+ <ad;;:17, Tyy(adjz)]g_ >g+,g,

By the Jacobi identity for the Lie bracket [-,-]g_ and by the symmetry of T, T, and T}y, the
Jacobi identity for 7 is satisfied. Moreover, for any local section « of F, 7, (e, -) = ad},x belongs
to g4 since g is a Banach Lie-Poisson space with respect to g_. Therefore 7 € A2g, C A’F*.

The bracket ([34]) of two functions f,g € A takes values in A because, by equation (3.5,
d.{f,g} belongs to g_. By definition {-, -} is skew-symmetric and satisfies the Leibniz rule. The

9+,9—
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Jacobi identity for {-, -} follows from the Jacobi identity for 7. The expression of the hamiltonian
vector field associated to h € A is straightforward. O

We give below some examples of Banach Lie-Poisson spaces (see [37], [38], and [§] for more
information on these spaces).

Example 3.15. Dual Banach Lie algebras of operators. Let p and g be such that 1 < p < ¢ < o0
and % + % = 1. Then L,(H)* ~ L,(H) and Ly(H)* ~ L,(H) where the duality pairing is given
by the trace (see example [L.8]). Moreover

adiz(8) = Tr (sla, Al gy) = Tr (z0f — zfa) = Tt (vaf — azB) = Tr ([z,a]B)

where the first bracket is the Lie bracket of the dual space L,(#), and the second is the com-
mutator of the bounded linear operators x € L,(H) and o € Ly(H). Since L,(H) is an ideal of
Loo(H), [, a] € L,(H), and the pairing given by the trace being non-degenerate, one has

ad}x = [z,a] € L,(H)

for any « € L,(#H) and any a € Ly(H). Therefore L,(#) is a Banach Lie-Poisson space with
respect to Lqy(#). In the same manner, one has for any = € L,(H) and any a € Ly(H)

adja = [a, 2] € Ly(H),
hence L,(H) is a Banach Lie-Poisson space with respect to L,(#).

Example 3.16. Trace class operators and bounded operators. For the same reasons as in the
previous example, the Banach Lie algebra Li(H) is a Banach Lie-Poisson space with respect to
Loo(H) and Lo (H) is a Banach Lie-Poisson space with respect to Li(#), the (weak) duality
pairing being given by the trace.

Example 3.17. Trace class operators and Hilbert-Schmidt operators. Since the trace is a weak
duality pairing between Li(H) and Lo(H) C Loo(H) (see Example [L6]), one can consider the
coadjoint action of Lq(#H) on Lo(H) and vice-versa. For any x € L1(H) and any o € Lo(H), one
has

adya = —adz = [a,z] € Li(H) N La(H),

therefore L;(#) is Banach Lie-Poisson space with respect to Lo(#H), and Lo(H) is a Banach
Lie—Poisson space with respect to Li(H). Using (3.4]), one obtains a Poisson bracket on L;(H)
defined on the algebra of functions on L;(H) with differentials in Lao(H) C Loo(H), as well as a
Poisson bracket on Lo(?) defined on those functions on Lo(H) which have their differential in
Ll(H) C LQ(H).

Example 3.18. Banach Lie algebras of upper and lower triangular operators. For 1 < p < oo,
consider the Banach algebra L, (H)_ of lower triangular operators in L,(#) defined by (IL4)) and
its complement L, (H )44 consisting in stricktly upper triangular operators in L,(#). One can
identify L,(#)* with L,(H)*/ (Ly(H)_)" where

(Lp(H)_)° := {a € Ly(H), Tr () =0, Yo € Ly(H)_}
Recall that L,(H)* ~ L,(H) where % + % = 1, the duality pairing being given by the trace.

It is easy to see that (L,(H)_)" is isomorphic to the Banach space Ly(H)__ of stricktly lower
triangular operators in L,(#). Therefore, by the direct sum decomposition (L.8]), one has

Ly(H) = Ly(H);.
The coadjoint action of an element « € Ly(H)+ on @ € Ly(H)— C (Ly(H)-)™ reads
adjz(8) = Tr (z[o, B, 30, ) = Tr ([z,0]B)
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where [ is an arbitrary element in L,(#H)4. Since L,(#H) and L,(H) are ideals in Lo (), one
has

[z,a] € [Ly(H), Lg(H)] C Ly(H) 0 Ly(H).
The relation Ly(H), 4 C (Ly(#)+)° then implies
ads2(8) = Tr (pr,)_ ([2,0]) B), VB € Le(H)+,

where pr, (3)_ is the projection onto Ly, (H)- with respect to the direct sum decomposition (L9).
From L,(H)- C (Ly(H)--)? and from the direct sum decomposition (L), it follows that

adgz = pr, a0 ([x,0]).

In particular, ad},xz € L,(H)_ for any x € L,(H)— and any o € Ly(H ). Therefore L,(H)_ is a
Banach Lie-Poisson space with respect to Lq(H)4. Similarly one has

ad;a = qu(H)+ ([a,x]) )

for any = € L,(H)- and any a € Ly(H)+. Therefore L,(H)+ is a Banach Lie-Poisson space with
respect to Ly(#H)—. Note that the existence of the projections PL,(#)_ and pr,(3), is crucial in
this example. This is the reason why we have excluded the case p =1 and ¢ = occ.

Example 3.19. Iwasawa Banach Lie algebras. For 1 < p < oo, consider the unitary algebra
up(H) defined by (LI0), and its complement b, (#) defined by (LII). For ¢ := 2y, let us
denote by (-,-)r the continuous bilinear map given by the imaginary part of the trace :

(nor o Lp(H) x Lg(H) — R
(z,) —  STr (za).

It is a strong duality pairing between L,(#H) and L,(#) viewed as real Banach spaces. By
Lemma [[LT5] one has the direct sum decomposition

Ly(H) = up(H) @ by (H).
Since (u,(H))? =~ uy(H) and (b;;(’H))O ~ bl (H), one has
p(H)" = Ly(H)/ (up(H))" = Lg(H)/ug(H) ~ b (H)
and similarly
by (H)" = uq(H).
Consider the coadjoint action of an element o € b (H) on an element 2 € w,(H) C u,(H)

adzx(/@) = <x7 [aHBDLpJﬂ = 3Tr (x[a7/8:|bq) = 3T ([‘Tva]ﬂ)y

where (3 is an arbitrary element in b (#). Since bf(H) C (b;’(?—[))o and [L,(H), Ls(H)] €
L,(H) N Ly(#H), one has

ad(*ll’(ﬂ) = STr (pup,-i- ([‘Taa])/@) = <pup,+ ([1’,04]) 7/8>L7’7Lq7 V/B € b;—(,H)7
where p,, | is the projection onto u,(#) defined by (IL.I4)). Therefore

*k

adtr = puy 4 ([ ])
Analogously one has
adta = py: ([aval)

for any 2 € u,(H) and any o € bf(H). Consequently u,(H) and bf(#) are dual Banach
Lie-Poisson spaces. Similarly u,(#) and b, (H) are dual Banach Lie-Poisson spaces.
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4. BANACH LIE BIALGEBRAS

In the finite dimensional case, a couple (g, g*) of Lie algebras is a Lie bialgebra if and only if
the triple of Lie algebras (g @ g*, g,¢*) form a Manin triple. In that case, (g*,g) is also a Lie
bialgebra. The symmetry of the situation comes from the fact that g** = g for finite dimensional
spaces. In Section @Il we introduce the notion of Banach Lie bialgebra with respect to an
arbitrary duality pairing. In Section [£.2] we show that a Banach Lie bialgebra g, with respect
to a Banach Lie algebra g_ gives rise to a Manin triple (g+ @ g—, g+, 9—) if and only if g, is also
a Banach Lie—Poisson space with respect to g_ (see Theorem [£9)).

4.1. Definition of Banach Lie bialgebras. Let us introduce the notion of Banach Lie bial-
gebras. We refer the reader to [32] for the corresponding notion in the finite-dimensional case.

Definition 4.1. Let g+ be a Banach Lie algebra over the field K € {R,C}, and consider a
duality pairing (-,-)g, g between gy and a Banach space g_. One says that g4 is a Banach
Lie bialgebra with respect to g_ if

(1) g4+ acts continuously by coadjoint action on g— C g% ;
(2) there is given a Banach Lie algebra structure on g_ such that the dual map of the Lie
bracket [-,-]g_ :g— X g— — g restricts to a 1-cocycle § : gy — A%g* with respect to the

adjoint action ad®?) of gy on A’g* (recall that gy can be viewed as a subspace of g* ).

Remark 4.2. A finite-dimensional Lie bialgebra (g, g*) (see Definition 1.7 in [32]) is a Banach
Lie bialgebra g with respect to its dual space g*, where the duality pairing is the natural pairing
between g and g*.

Remark 4.3. (1) The first condition in Definition €] means that g_ is preserved by the
coadjoint action of g4, i.e

adyg- C g- C g}
for any = € gy, and that the action map
g+ X9- — 8-
(r,a) +— ad o

is continuous. This condition is necessary in order to define the action of g, on the space
A2g* of continuous skew-symmetric maps on g_ by (Z3).
(2) The map 6 is a 1-cocycle on g if it satisfies :

0 ([z,y]) =add” (B(y)) —adf” (6(z))

where x,y € g4+. The second condition in Definition 1] means therefore that (see

section [2.5])
41 0(z,y]) (@, 8) = 0(y)(adyev, B) + 0(y) (e, ady f) — () (adya, ) — O(x)(a, ady,B),

for any z,y in g4 and any «, in g_. In a more explicite form, the cocycle condition
reads

(4.2) (2, 9lgs s [ Blg Yoo = (Y, [adia, Blg )g, g + (Y [, adzBlg ). 6
' - <‘T7 [ad2a7 B]g— >E+ - <LE, [av adzﬂ]g— >E+79—7

for any z,y in g4 and any «, 3 in g_.
(3) Let us remark that we do not assume that the cocycle 6 takes values in the subspace

A%g, of A%2g*. This is related to the generalized notion of Poisson manifolds given in
Definition [3.71

Let us first give examples of Banach Lie algebras which are Banach Lie-Poisson spaces (see
Section [3.3)) but not Banach Lie bialgebras.



24 A. B. TUMPACH

Example 4.4. For 1 < p < oo, consider g := L,(#) and its dual space g_ := L, (H), the duality
pairing (-,-)g, g being given by the trace. By example B.I5] L,(H) is a Banach Lie-Poisson
space with respect to Ly(H). For x € L,(H) and a € Ly(H), one has ad},x = [z, ] € L,(H) and
adja = [a, x] € Ly(H). Therefore, for any «, 8 € Ly(H) and z,y € L,(#H), one has
(4.3)
<y7 [ad;‘coz, 5]gf>g+,gf + <y7 [Oé, ad:ﬁ]g— >9+797 - <l‘, [adzav ﬁ]g—>g+7gf - <$7 [Oé, adZﬁ]97>g+797
=2 <ad:;[a;, y]? B>g+,g, '

This implies that L,(#) is not a Banach Lie bialgebra with respect to Ly(#) (compare with the
cocycle condition (4.2])).

Example 4.5. By example[3.10, L; (H) is a Banach Lie—Poisson space with respect to Lo (H). A
computation analoguous as in previous example shows that L;(?) is not a Banach Lie bialgebra
with respect to Loo(H).

Example 4.6. By example 317, L;(#) is a Banach Lie-Poisson space with respect to Lo(H).
It is easy to see that equation (43]) is satisfied for any a, 8 € Lo(H) and x,y € Li(H), hence
L1(H) is not a Banach Lie bialgebra with respect to La(H).

Let us now give examples of Banach Lie—Poisson spaces which are also Banach Lie bialgebras.
In Example A7 and Example A8 the cocycle condition can be checked by hand using the
expression of the coadjoint actions.

Example 4.7. Banach Lie bialgebra of upper and lower triangular operators. For 1 < p < oo,
consider the Banach algebra L, (H)_ of lower triangular operators in L,(#) defined by (I.4)) and
its dual space Ly(#)4, where % + % = 1 and where the duality pairing is given by the trace.
Then L,(H)- is a Banach Lie bialgebra with respect to Lq(H).

Example 4.8. [wasawa Banach Lie bialgebras. Let p and g besuch that 1 < p < o0,1 < g < o0
and %4—% = 1. Consider the Banach Lie algebra u,(#) and its dual Banach space b/ (%), endowed
with its natural Banach Lie algebra structure, which makes u,(#) into a Banach Lie-Poisson
space (see example [3.19). In this case the duality pairing is given by the imaginary part of the
trace. Then u,(#) is a Banach Lie bialgebra with respect to b ().

4.2. Banach Lie bialgebras versus Manin triples. In the finite-dimensional case, the notion
of Lie bialgebra is equivalent to the notion of Manin triple (see [I5] or section 1.6 in [25]). In
the infinite-dimensional case the notion of Banach Lie—Poisson space comes into play.

Theorem 4.9. Consider two Banach Lie algebras (g+, [ -]g+) and (g_, [ -]97) in duality. De-
note by g the Banach space g = g4+ ® g— with norm || - |lg = || - g + || - llg_- The following
assertions are equivalent.

(1) g+ is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to g— with

cocycle 04 = [-,-]; g+ — A%g* ;
(2) (g,8+,9-) is a Manin triple for the natural non-degenerate symmetric bilinear map
()g gxg - K
(@,0) x (y,8) = (x.B)gr g + (¥ Wy -
with bracket given by

(4.4) [-]g - gxg - g=g+ Do
' (z,0) x (y,8) = ([z,9)g, +adjz —adhy, [0 By +adjo—ad}f).

(3) g— is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to gy with
cocycle 0 :=[-,-];. 19— — A%g*;

Proof. (2) = (1) follows from Theorem 2.3l Let us prove (1) = (2).
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e Since g, is a Banach Lie-Poisson space with respect to g_, g— is a Banach Lie algebra

(g—,[,"]g_) such that the coadjoint action of g_ on g* preserves the subspace g, C g*
and the map
adg 1 g-xgy — g+
(a,z) +— adiz,
is continuous. Since g4 is a Banach Lie bialgebra, the coadjoint action of g4 on g%
preserves the subspace g_ C g% and the map

adg, @ g+ xg- — g-
(x,a) +— adia,
is continuous. Therefore bracket (4.4]) is continuous on g = g4 & g—.
Let us show that the symmetric non-degenerate pairing (-,-)q is invariant with respect
to the bracket [-,-]g. For this, we will use the fact that g, and g_ are isotropic subspaces
for (-,-)g. For z € g1 and o € g_, one has
[z,a]y = (adjz, —ad)a).
Therefore, for any x € g4 and any «, 8 € g_, one has

<[l‘,0[]g,ﬁ>g = <ad:;$,5>g = <x7ada5>g = <$7 [a,ﬁ]g>g
= —(z,[B, alg)g = —(adjz, a)g = ([B, z]g, ).

Similarly, for any x,y € g+ and any 3 € g_, one has
<[$7y]975>g = <y7ad;5>g = <y7 [Ba$]g>g = _<ad2ﬁ7$>g = <[y7ﬁ]97$>9'

By linearity, it follows that (-,-)q is invariant with respect to [-, .
It remains to verify that [-, ], satisfies the Jacobi identity. Let us first show that for any
x,y € g+ and any o € g_,

[, [z, y]] = [[a, 2], y] + [z, o, 9]
The dual map [, -5 :g* — A?g* of the bilinear map [,-];  :A%g_ — g_ is

g
[lg (F) = F([Jgo)-
In particular, its restriction 6, : gy — A?g* to g4 C g* reads

0(z)(e, B) = (z,]a, flg_) = ([z; 0lg; B)g = {ady, B)g-

*

s restricted to g4 C g*

Since g4 is a Banach Lie—Poisson space, the cocycle 04 = [, ]
takes values in A%g,. The cocycle condition (&I]) reads

<[$7 y]7 [Oé, 5]>g+,gf = +<y7 [ad;ay 5]>g+,97 + <y7 [Oé, ad;5]>g+,gf
—<l‘, [adzav 5]>9+797 - <l‘, [Oé, ad25]>9+79—7

where 2,y € g4 and «, 8 € g_. Using the definition of the bracket (-, -)4 and its invariance
with respect to [-,]q, this is equivalent to

—<[Oé, [xay]]7ﬁ>g = _<[ad;aay]75>g - <[a7y]7ad::/8>9
+([adya, x], B)g + ([, 7], ady B),.

Using the fact that gy and g_ are isotropic subspaces for (-,-); and relation (4.3l), one
gets

—<[Oé, [‘Ta y]]7 /8>Q = _<[ad;a7 y]? 5>g + <adzy7 ad;/@>9+797
+([ad3a, .’L’], /8>Q - <adzx7 adZﬁ>g+7g, :

Using the definition of the coadjoint actions, one obtains

_<[a7 [‘Tvy“w@>g = _<[a‘d;a7y]7/8>g + <[x=adzy]=ﬁ>g+7gf
+<[adza7‘r]75>g - <[y7a‘dzx]7/8>g+7977
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or, in a more compact manner,
_<[a7 [x7y]]76>9 = <[adzx - a‘d;a7y]7/8>g + <[‘T7 adzy - a‘dza]75>g'

Using [7,a]y = adjx — adya, and [y, a]g = ad,y — adj«, one eventually gets

—la, [2,9]], B)g = —(llev, 2], 9], B)g — ([, [, W], Pg,

for any z,y € g4 and any «, 3 € g_. Since (-, -)4 restricts to the duality pairing between
g+ and g_, it follows that
pg+ [Oé, [xa y]] = pg+ [[aa x]? y] + pg+ [‘Ta [Oé, y]]v

for any z,y € g+ and any o € g_. On the other hand, considering the projection on g_
one has

py_la, [z, Y]] = ad?(%y]oz,
as well as
py_ [l 7], y] = adjad;a,
and
Py [z, [, y]] = —adjadye.
Since the bracket in g, satisfied Jacobi identity, it follows that
( [le 9, 2D g = foul Iy Mgy oo = (o0 [y T2 2gy s

therefore
pgf [Oé, [xa y]] = pgf [[aa x]? y] + pgf [xa [Oé, y]]v
for any x,y € g4 and any a € g_. Combining (£8]) and ([4.9), it follows that
[, [z,9]] = [la, 2], y] + [, [ev, ],

for any =,y € g+ and any o € g_.
It remains to show that for any « € g, and any o, 5 € g_,

[‘Tv [‘%BH = H‘TvaLB] + [a7 [‘T7IBH

Since the bracket in g_ satisfies Jacobi identity, similarly to (£9]) remplacing g_ by g+,
one has

Py [iL‘, [Oé, ﬁ“ = Pg+ [[l‘, Oé], ﬁ] + yg:m [Oé, [l‘, 6“
Let us show that

pgf [‘Ta [Oé, 6]] = pgf [[‘Ta a]7 6] + pgf [aa [.’1‘, 6]]7
for any = € g+ and any «, 8 € g_. For any z,y € g+ and any «, 5 € g_, one has

<y7pgf [33, [Oé, ﬁ“>9+797 = _<y7 ad;[av ﬁ]>g+7g— = —([l‘, y]v [O" 6]>9+ N <[O" [‘/Ev va ﬁ>g

On the other hand, for any x,y € g4 and any «, 3 € g_, one has
<yapg— H‘Tv a]? B]>Q+7g— = <y7 H‘Tv a]? B]>Q = <Ha7 x]? y]? /8>97

and

(W, pg_ [ [, Bl 0= = (Y, e, [2, B]])g = ([, [, 9], Blg-
By (@), it follows that
Py [z, [, ] = pg_ [, o], 8] + pg_[ev, [, B].
Combining (4.10)) and ([4.11]), it follows that
[‘Tv [‘%BH = H‘TvaLB] + [a7 [a:,ﬁ]],

for any x € g4 and any «, 8 € g_. This ends the proof of (1) = (2). The equivalence
with (3) follows by symmetry of (2) with respect to exchange of g into g_.
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0

Remark 4.10. It is noteworthy that the cocycle condition needs only to be verified for one of
the Banach Lie algebra g4 or g_. The following Corollary is therefore a direct consequence of
the proof of Theorem

Corollary 4.11. Consider two Banach Lie algebras (g4, [, ]g.) and (g—,[-,-]g_) in duality. If
g+ is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to g_—, then g_ is a
Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g .

Example 4.12. By Proposition [L.I6}, the triple (L, (H), u,(H), bt (H)) is a Banach Manin triple
for 1 < p < 2. Under this condition on p, it follows from Theorem that u,(H) is a Banach
Lie-Poisson space and a Banach Lie bialgebra with respect to bl (#), and b, (#) is a Banach
Lie-Poisson space and a Banach Lie bialgebra with respect to u,(H).

Example 4.13. For 1 < p < oo, by Example B.19] u,(H) is a Banach Lie-Poisson space with
respect to b (#H), where % + % = 1. By Example 4.8 u,(#) is a Banach Lie bialgebra with
respect to b} (H). We deduce from Theorem that (u,(H) ® b (H),u,(H), b (H)) form a
Banach Manin triple, and that b} (#) is a Banach Lie bialgebra with respect to u,(H).

Example 4.14. From Example BI8, we know that L,(#)_ is a Banach Lie-Poisson space with
respect to Ly(H)+. By Example 7], L,(H)— is a Banach Lie bialgebra with respect to Ly(#)+.
By Theorem L] the triple of Banach Lie algebras (L,(H)—- @ Lq(H)+,Lp(H)—, Lg(H)+) is a
Banach Manin triple. By corollary A1l L,(H)+ is a Banach Lie bialgebra with respect to
L,(H)-.

5. BANACH POISSON—LIE GROUPS

This Section is devoted to the notion of Banach Poisson—Lie groups in the general framework
of generalized Banach Poisson manifolds (see Section B.]). We start in Section [B.1] with the
definition, and show that the compatibility condition between the Poisson tensor and the multi-
plication on the group gives rise to a 1-cocycle on the group. In Section 5.2, we use the triviality
of the tangent and cotangent bundles in order to write the Jacobi identity for a Poisson tensor
on a group at the level of the Lie algebra (Theorem [5.8]). This allows us to give examples of
Banach Poisson—Lie groups in Section 5.3l Finally, in Section (.4, we prove that the tangent
space at the unit element e of a Banach Poisson—Lie group (G, F, 7) admits a natural Banach Lie
bialgebra structure with respect to F., and, in the case when the Poisson tensor 7 is a section of
A?TG, is also a Banach Lie-Poisson space. The integrability problem of a Banach Lie bialgebra
into a Banach Poisson—Lie group remains open.

5.1. Definition of Banach Poisson—Lie groups. In order to be able to define the notion of
Banach Poisson—Lie groups, we need to recall the construction of a Poisson structure on the
product of two Poisson manifolds. The following Proposition is straightforward.

Proposition 5.1. Let (My,Fy,m) and (M, Fo,ms) be two generalized Banach Poisson mani-
folds. Then the product My X My carries a natural generalized Banach Poisson manifold structure
(M x Ms,F, ) where
(1) My x My carries the product Banach manifold structure, in particular the tangent bundle
of My x My is isomorphic to the direct sum T My & T Ms of the vector bundles T My and
T M and the cotangent bundle of My x Ms is isomorphic to T My & T* M,
(2) F is the subbundle of T*M; & T* M, defined as

Fpg) = (F1)p @ (F2)q,
(8) m is defined on F by
(o + oo, B1 + B2) = mi(aa, B1) + ma(a2, B2), o, B € Fi, a0, 2 € Fo.
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Definition 5.2. Let (M;,Fq,m) and (Ms,Fa,m2) be two generalized Banach Poisson manifolds
and ' : My — Ms a smooth map. One says that F' is a Poisson map at p € My if
(1) the tangent map T,F : TpyMy — Trey)Ma satisfies T F*(Fa)pepy C (F1)p, i-e. for any
covector a € (Fo)p(py, the covector oo T, F belongs to (F1), ;
(2) (7‘(1)1) (a o TpF,,B o TpF) = (Wg)p(p) (a,ﬂ) fO’I” any a, B € (Fg)p(p)
One says that F is a Poisson map if it is a Poisson map at any p € M;.

Definition 5.3. A Banach Poisson—Lie group G is a Banach Lie group equipped with a
generalized Banach Poisson manifold structure such that the group multiplication m : GXG — G
is a Poisson map, where G X G is endowed with the product Poisson structure.

The compatibility condition between the multiplication in the group and the Poisson tensor
can be checked at the level of the Lie algebra. To see this, let us introduce some notation.
Denote by L, : G — G and R, : G — G the left and right translations by g € G. By abuse of
notation, we will also denote by L, and R, the induced actions of g € G on the tangent bundle
T'G. The induced actions on the cotangent bundle TG will be denoted by Lj and Ry, and on
the dual T"*G of the cotangent bundle by Ly* and Rj*. In particular, for g € G and o € TG,
Lya € T7, G is defined by Lya(X) = a(LyX). The smooth adjoint action of G' on its Lie
algebra g will be denoted by Ad, = L, o R;l, the induced smooth coadjoint action of G on the
dual space g* by Ady = L7 o R;,l, and the induced smooth action of G on the bidual space g**
by Ad," = Lj* o RZL. For any subspace g_ C g* invariant under the coadjoint action of G, the
restriction

Ad* :Gxg_ —g-

which maps (g,5) € G x g— to the element Ad*(g)8 € g_ is continuous when g_ is endowed
with the norm of g*. In that case, one can define the coadjoint action Ad**(g) of g € G on A%g*
by

Ad™(g)t :=t(Ad(g)"-,Ad(g9)*), for t € A%g*.
By abuse of notation, we will also denote by Ly* the action of g € G on a section 7 of AN2T™@ -

Ly mu(a, B) = mu(Lya, LyB),  with «a, 8 € T,,G.
Similarly, one defines

R mg(a, B) = mg(R,e, R, 8),  with o, €T,,G.

roposition 5.4. anach Lie group G equipped with a generalized Banach Poisson structure
P ition 5.4. A B h Li G ipped with lized B h Poi truct
,F, ) is a Banach Poisson—Lie group if and only i
G,F is a B h Poi Li f and only i
(1) F is invariant under left and right translations by elements in G
(2) the Poisson tensor m is a section of A>F* satisfying
(5.1) Tgu = L'y + R 1y, VYg,u€G.

Proof. The tangent map T(, , ym : T,G ® T,G — TypG to the multiplicatin m in G maps
(Xg, Xy) to TyR,(Xy) + Ty Lg(Xy). The invariance of F by left and right translations means
that for any o € Fy,, the covector oo T}, L4 belongs to F, C T,;G and the covector aw o Ty R,
belongs to F, C T7G. This is equivalent to the first condition in definition The second
condition in definition reads

TGxG (Oé © T(g,u)my Bo T(g,u)m) = 7"'gu(O‘a B),
for any « and 3 in Fg,. By definition of the Poisson structure on the product manifold G x G,
one has :

TGxG (a © T(g,u)my Bo T(g,u)m) = Ty (a o TuLga Bo TuLg) + Ty (a © Tng po TgRu) >
hence m is a Poisson map if and only if (B is satisfied. O
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Corollary 5.5. The Poisson tensor m of a Banach Poisson—Lie group vanishes at the unit
element.

Proof. By equation (5.1]), one has m. = m, + 7¢, hence 7 = 0. O

Proposition 5.6. Let (G,F,7) be a Banach Poisson—Lie group. Then the fiber Fe C TXG over
the unit element e € G is stable by the coadjoint action of G.

Proof. Suppose that (G,F, ) is a Banach Poisson—Lie group. The invariance of F by left trans-
lations implies that for any o € Fe and any g € G, the covector Lya := a o T 1L, belongs
to Fg-1 C Tg*,l G. The invariance of F by right translations then implies that the covector

Ad*(g)a = R;,l oLyja=aoT1LsoT. R, belongs to F. C T7G. Hence F, is stable by the
coadjoint action of G. O

In next Proposition, we introduce a 1-cocycle naturally associated to a generalized Banach
Poisson—Lie group (see Theorem 1.2 in [32] for the finite-dimensional case).

Proposition 5.7. A Banach Lie group G equipped with a generalized Banach Poisson structure
(G,F,m) is a Banach Poisson—Lie group if and only if

(1) F is invariant under left and right translations by elements in G
(2) the map I, : G — A’F! defined by g — I1,.(g) := R;’ilwg s a 1-cocycle on G with
respect to the coadjoint action Ad™* of G on A’F%, i.e. for any g,u € G,

(5.2) 1L (gu) = Ad(g)"™ I (u) + 11 (g).

Proof. Using the relation R’(*;u),l = RZL o R'*,, the condition mg, = Lj*m, + R} m, for all

g,u € G is equivalent to

k% . k% k% k% k% k% k%
R(gu)*lﬂ-gu = Rg,l oR "0 Lg Ty + Rg,l oR "o Rmy.

Since R;*, and Lj* commutes, the previous equality simplifies to give
I (gu) = R;%y o LIl (u) + 1L (g) = Ad(g) ™I, (u) + IL;(9),

which is the cocycle condition (see Section [2.3]). O

5.2. Jacobi tensor and local sections. The following Lemma will be used in Section 5.3 and
Section in order to check the Jacobi identity for Poisson—Lie groups in the Banach setting.

Lemma 5.8. Let G be a Banach Lie group with Lie algebra g, F a subbundle of T*G in duality
with TG, invariant by left and right translations by elements in G, and ™ a smooth section of
A’F*. Then
(1) Any closed local section o of F in a neighborhood V4 of g € G is of the form a(u) =
R _iag(u), where ag : Vy — Fe C g* satisfies :
(5.3) (a0(9), [Xo, Yol) = (Tyao(RyY0), Xo) — (Tyan(RgXo), Yo),
with Tyag : Ty G — g* the tangent map of o at g € V,, and Xo, Yy any elements in g.
(2) Let T, : G — A2F} be defined by I1,(g) = R;’iﬁr(g). Then for any closed local sections
a, B of F around g € G, the differential d (w(c, B)) at g reads
(5.4)
d(m(a, B)) (Xg) = Toll, (Xg)(a0(9), Bo(9)) + Hr(9)(Tgan(Xg), Bo(9)) + ILr(g)(a0(9), TyBo(Xg)),
where X, € T, G, T I, :T,G — A2F* is the tangent map of I, at g, a = R;,lao and
B =R:_.fo.
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(3) Suppose that in,11-(g9) € g C F* for any a = Rjag € F. Then for any closed local
sections a, B, v of I,

™ (o, d((B,7))) + 7 (B,d(x(v,))) + 7 (v, d ((a, B))) =

) Y )
(5.5) TyIL (Ryiag1L-(9))(Bo(9):70(9)) + (@0(9), lize (9) 11 (9) s i () L1 (9)])
+To1 (Ryig, I1:(9)) (70(9), @0(9)) + (B0(9), liag (9) 111 (9): ig () ILr (9)])
+T1L (Rying 11(9)) (20 (9), Bo(9)) + (10(9); [0 (9)r (9) g (9) 1 (9)])
where o = R;,lao, b= Rgl,ﬁo, and v = RZ,WO. In particular the left hand side of
equation (B.0)) defines a tensor.
Proof. (1) Since a is closed, one has :

do(X,)Y)=Lxa(Y) - Lya(X) —o([X,Y]) =0
for any local vector fields X and Y around g € V,. But since do is a tensor (see
Proposition 3.2, chapter V in [30]), the previous identity depends only on the values
of X and Y at g. In other words, « is closed if and only if the previous identity is
satisfied for any right invariant vector fields X and Y. Set X, = R;X(y and Y, = R;Y,
for Xo, Yy € g. One has
da(X,Y) = Lxag(g)(Rg-1Yy) — Lyag(g)(Reg-1Xy) — ap(g)(Rg-1[X,Y]g)

= Lxan(9)(Yo) — Lyao(g)(Xo) + ao(9)([Xo, Yolg)
Denote by f :V; — R the function defined by f(g) = ao(9)(Yo) = (ao(9), o), where
the bracket denotes the natural pairing between g* and g. Then

dfg(Xg) = (Tgao(RgXO)a Yo)-
It follows that
dO[(X, Y) = (Tga(](RgXO)a YE)> - (TgQO(RgYE))7X0> + (OZ(](g), [X(]v YO]9>
Therefore da(X,Y) = 0 for any X and Y if and only if
(a0(9), [ X0, Yolg) = (Tyao(RyY0), Xo) — (Tya0(RyXo), Yo),

for any Xy and Yj in g.

(2) This is a straighforward application of the chain rule.

(3) In the case where iy, 11, (g) belongs to g, one has the following expression of the differential
of m:

d(m(8,7)) (Xg) = Tyl (Xg)(Bo(9),70(9)) — (TgBo(Xg), ine(9)I1r(9)) + (Tg70(Xg), gy () ILr (9))
where (-, -) denotes the duality pairing between g* and g. Therefore

m(a,d(7(8,7)) = T(9) (a0(9), Rgd (7(B,7))) = d (x(8,7)) (Ryiay(q)TTr(9))
= Tyl (Ryiag(g)II ( ))(Bo(9),70(9))
(T4 B0(Rgiag(g)11r(9)); 1y (9) 11 (9))
+<T970(Rgiao 11:(9)), 1, (g) 1 (9))-
It follows that

m(a,d(m(B, 7)) + 7 (B, d (x(y,0))) + (7, d (n(a, §)))

= —( gﬁo(R o () 11r(9)): 3 (9) 1 (9)) + (T30 (Rglag () 1L (9)): P ()11 (9))

—(Ty0(Ryigy () I1r(9))s g (9)1r(9)) + (Tgao(Ryigy(g)[1r(9)), ing (9)11r (9))
_<Tga0(Rgivo( )Hr(g))viﬁo(g)n (9)) + ¢ gﬂO(Rngo(g I, (g )ala (o) 1r (g
+ToIL (RyiagILr (9)) (Bo(9),70(9)) + Tyl (Ryig, 11 (g)) (70(9), o (g))

+ 111 (Ryiy I (g)) (20(9), Bo(9))
Using (5.3)), the previous equation simplifies to (5.5]).
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5.3. Example of Banach Poisson—Lie groups U,(#) and B;,—L(”H) for 1 < p < 2. Let us
give some examples of Banach Poisson—Lie groups. We will need to introduce classical Banach
Lie groups of operators.

General linear group GL(H). The general linear group of H, denoted by GL(H) is the group
consisting of bounded operators A on H which admit a bounded inverse, i.e. for which there
exists a bounded operator A~! satisfying AA~! = A='A = 1d, where Id : H — H denotes the
identity operator = +— x.

General linear group GLy(#H). The Banach Lie algebra L,(#) is the Banach Lie algebra of the
following Banach Lie group :

(5.6) GL,(H) = GL(H)N{Id+ A : A€ L,(H)}.

Unitary group U(H). The unitary group of H is defined as the subgroup of GL(#) consisting
of operators A such that A~! = A* and is denoted by U(H).

Unitary groups Up(H). The Banach Lie algebra u,() defined by (I.I0) is the Banach Lie
algebra of the following Banach Lie group

(5.7) Uy(H) :=UH)N{Id+ A : A€ L,(H)}.

Triangular groups B;,—L (H). To the Banach Lie algebra b (H) defined by (III) is associated the
following Banach Lie group :

Bf(H) :={a € GL(H)N(Id+b:(H)) : ot €Id+ b (H) and (n|ajn) € R™, for n € Z},

where R is the group of strictly positive real numbers.
Let us now give some examples of Banach Poisson—Lie groups. Similar results will be proved
in the more involved restricted case in Section Recall that the orthogonal projections py, +

and py,,— are defined by (LI4) and (LI5) respectively.

Proposition 5.9. For 1 < p < 2, consider the Banach Lie group B;,—L(”H) with Banach Lie
algebra b (M), and the duality pairing (-,-)r : b (H) x wp(H) — R given by the imaginary part
of the trace (LI6). Consider

(1) By := R} w,(H) C Ty By (H), b € By (H).

+

(2) TI? : BE(H) — A2u,(H)* defined by

B - _
(5.8) IL7 (b) (w1, 2) = STrpye (b L210) [pu,,+ (0 a2b)]
where b € B3 (H) and x1,z2 € wy(H).
+

(3) 7B :BE — A2TBE(H) given by 7% (b) := RI*IL7 (b).

Then (B;E(H),IB%, FB;’t) is a Banach Poisson—Lie group.

Proof. The expression of the Poisson tensor makes sense because L,(H) C Ly(H) for 1 < p <2
with % + % = 1. The Jacobi identity is a consequence of equation (5.5]). The compatibility of
the Poisson tensor and the multiplication of the group can be checked using equation (5.2)). O

Similarly one has :

Proposition 5.10. For 1 < p < 2, consider the Banach Lie group U,(H) with Banach Lie
algebra up(H) and the duality pairing (-,-)r : b (H) x uy(H) — R given by the imaginary part
of the trace (LI6). Consider

(1) Uy := R:_,bE(H) C Ty Up(H), u € Uy(H),
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+
(2) TP Up(H) — A26E(H)* defined by

U;t (u)(b bo) = ST —lb [ -1
r 1,b2) := QTrpy, + (v bru) Py (u”"bau)|,
where u € Uy(H) and by, by € bE(H).
+
(3) U Uy(H) = A’T U,(H) given by Ve (9) = R;*HE” (9).
Then (Uy(H), U, ﬂUfzt) is a Banach Poisson—Lie group.

(5.9) i

5.4. The tangent Banach Lie bialgebra of a Banach Poisson—Lie group. In this Section,
we show that the Banach Lie algebra g of any Banach Poisson—Lie group (G,F,w) carries an
natural Banach Lie bialgebra structure with respect to F, (see Theorem [5.11] below). Moreover,
when the Poisson tensor is a section of A2T'G C A2T**@, then g is a Banach Lie-Poisson space
with respect to F. (see Theorem [5.13]).

Theorem 5.11. Let (G4,F,m) be a Banach Poisson—Lie group and suppose that g— :=F. is a
Banach subspace of g%.. Then gy is a Banach Lie bialgebra with respect to g_. The Lie bracket
in g_ is given by

(5.10) [, Bi]g_ = TeIl (-) (o, B1) €g- C gy, a1,b1 €9- C gl

where II, = R;’ilw : Gy — N%g*, and T I, : g — Ag* denotes the differential of II,. at the
unit element e € G4.

Proof. e Let us show that the dual map T.1I; : (A2 g*_)* — g’} defines a skew-symmetric
bilinear map [-,-];_ on g_ with values in g_ C g% . Let o and 3 be any local sections
of F in a neighboorhood V. of the unit element ¢ € G;. Define a9 : V. — g_ and
Bo Ve — g- by ap(u) := Rja(u) and Fo(u) := R} B(u). It follows from equation (5.4]),
that for any X € g4,

de (m(a, 8)) (X) = TeIL(X)(ao(e), Bo(e)) + I (e)(Teao(X), Bo(e)) + i (e) (o (g), TyBo(Xy))-
By Corollary 5.5 I1,.(e) = 0. Hence

(5.11) de (m(e, §)) (X) = Tl (X)(ao(e), fo(e))-
By the first condition in the definition of a Poisson tensor, d (7(a, 3)) is a local section
of F, therefore d (m(c, 8)) belongs to F, = g_. It follows that the formula

[, Bilg_ := TeIl, () (a1, B1)
defines a bracket on g_. The skew-symmetry of [, ];_ is clear.
e Let us show that [-,-];_ satisfies the Jacobi identity, hence is a Lie algebra structure on
g—. Consider any closed local sections «, 3, of F defined in a neighborhood of e € G .
Since 7 is a Poisson tensor, one has

m(a, d(7(8,7))) + 7 (B,d(n(7,@))) + 7 (7,d (7(a, §))) = 0.
Differentiating the above identity at e € G4, one gets
(5.12) de (7 (o, dm(,7))) + de (7 (B, dm (7, @))) + de (7 (v, dm(a, B))) = 0.
Define ap(u) = Ria(u), and do(u) := R}d, (7(B,7)). Note that ap(e) = a(e) and
do(e) = de (7(B,7)). Hence, by equation (5.11]) and (5.I0), for any X € gy,
de (m (o, dm(5,7))) (X) =TIl (X)(ao(e), do(e)) = TeIl(X)(ale), de (x(8,7)))
=TI (X) (a(e), TeIL () (B(e), v (e))
= lafe), [Ble);v(e)]g-lg (X))
It follows that equation (5.12]) can be rewritten as

[a(e), [B(e),v(e)]g_lg- + [B(e), [v(e), ale)lg_lg- + [v(e), [ale), Ble)lg_Jg- = 0.
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To show that the bracket [-,-];_ satisfies Jacobi identity, it remains to prove that any
element a1 € g_ can be extended to a closed local section « of F such that a(e) = ay.
For this, it suffices to find a scalar function f defined in a neighborhood V. of e € G
such that d,f € F, for any g € V. and d.f = 1. This can be done using a chart around
e € G+ and a local trivialisation of F. Then o := df is a closed local section of ' such
that a1 = a(e).

e Let us show that g acts continuously on g_ C g by coadjoint action. By Proposi-
tion 5.6l g_ := F, is invariant by the coadjoint action of G on g% . By differentiation,
g C g7 is stable by the coadjoint action of g4 on g% . This action is continuous when
g— is endowed with the topology of g7 .

e Let us show that the dual map of the bracket [-, -] restricts to a 1-cocycle 8 : g — A%g*

with respect to the adjoint action ad®0) of g+ on A?g* . By definition of the bracket
(510, 6 = T.II,. By Proposition (.7, II, is a 1-cocycle on G4 with respect to the
coadjoint action Ad** of G4 on A%g*. Hence T,II, is a 1-cocycle on g, with respect to
the adjoint action ad®?) of g+ on A%g* (see Section 7).

O

Example 5.12. The tangent bialgebras of the Banach Poisson—Lie groups B;,—L(”H) and U,(H)
defined in Proposition 5.9 and Proposition 510, are the Banach Lie bialgebra b () and u,(#) in
duality, which combine into the Manin triple (L, (), u,(H), b (H)) given in Proposition

+
Indeed, the derivative at the unit element e of HE” : Up(H) — A?6:E(H)* defined by equa-

tion (5.9) reads :

Ui
AL, (2)(b1,b2) = ST (puy ([, b))y (62) ) + STr (puy i ()py ([, 52)))
= GIr (pup,i([a:, bl])bg) = QTr [LE, bl]bg = %Trx[bl, bg]b;t,

2

9

with = € uy(H) and by, by € b (H), where we have used that b (H) is an isotropic subspace.
+ +
It follows that del'[TI?Ip (-)(b1,b2) = [b1, bg]b;t € bf(H) C up(H)*. Similarly, the derivative of HE”

defined by equation (5.8)) is given by

+
dT1,7 (b) (21, 22) = STrbler, wol,, b€ bE(H), w1, 25 € up(H),
and is the dual map of the bracket [-,-],,.

Theorem 5.13. Let (G ,F, w) be a Banach Poisson—Lie group. If the map w* : F — F* defined
by wt(a) = 7w(a,-) takes values in TG, C F*, then gy is a Banach Lie-Poisson space with
respect to g_ :=F..

Proof. Let oy € g— and define a(g) = R;,l(al) € Fy. Then m(R}_,on,-) = m(a, ) takes values

in TG4 C Fy, and II,(g) (1, ) = W(R;,lal,RZ,l-) takes values in gy C g*. It follows that IL,

takes values in A%g, C A%g* . By differentiation, it follows that T,II, takes also values in A?g,.
Using equation (5.10]) for the bracket in g_, one has

(5.13) (adg, X, Br)g, .- = (X, o1, Brlg_)gy 0o = TeIln(X)(0, B1).
where X € g4 and oy, 81 € g—. Hence ad;, X = TeIl.(X)(a1, -), therefore ad;,, X belongs to g
for any a; € g—. Consequently g is a Banach Lie—Poisson space with respect to g_. ([l

Remark 5.14. In the finite-dimensional case, any Lie bialgebra can be integrated to a connected
simply-connected Poisson—-Lie group. The Banach situation is more complicated, since not
every Banach Lie algebra can be integrated into a Banach Lie group (see [36] for a survey on the
problem of integrability of Banach Lie algebras and on Lie theory in the more general framework
of locally convex spaces). Even in the case when a Banach Lie bialgebra is a Lie algebra of a
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connected and simply-connect Banach Lie group, it is still an open problem to determine if the
bialgebra structure can be integrated into a Poisson—Lie group structure on the group.

Part 2. Poisson—Lie groups and the restricted Grassmannian

In this Part we use the notions introduced in Part 1 in order to construct Banach Poisson-Lie
group structures on the restricted unitary group Uses(H) and on the triangular group B (H),
and a generalized Banach Poisson manifold structure on the restricted Grassmannian such that
both actions of Uyes(H) and B, (H) on the restricted Grassmannian are Poisson.

In Section 6, we set the notation. In Section 7.1, we introduce weak duality pairings between
the Banach Lie algebras ues(H) and bfz(’H), and between b (H) and u; o(H). In Section 7.2
we use the unboundedness of the triangular truncation on the space of trace class operators to
show that bfz (M) is not a Banach Lie-Poisson space with respect to upes(#). Similarly g o(H)
is not a Banach Lie-Poisson space with respect to bt (#). This implies in particular that
there is no Banach Poisson-Lie group structure on BZ (#) defined on the translation invariant
subbundle whose fiber at the unit element is uj o(H) C b (#)*. In Section 7.3 we overcome
this difficulty by replacing u; 2(#) by the quotient Banach space Lj 2(#)/ bfz(H), and construct
a Banach Poisson-Lie group structure on BX (7). The Banach Poisson-Lie group structure
of Uyes(H) can be constructed in a similar way. In Section 8, we show that the restricted
Grassmannian is a quotient Poisson homogeneous space of Uyes(H), the stabilizer H of a point
being a Banach Poisson—Lie subgroup of Ues(#H). In Section 9.1, we show that the actions of
Uses(H) and BE (#H) on the restricted Grassmannian are Poisson actions. In Section 9.2, we
show that the symplectic leaves of the Poisson structure of the restricted Grassmannian are the
orbits of BE,(H) and coincides with Schubert cells. At last, we mention that the action of the

subgroup I't of BE (H) generated by the shift gives rise to the KdV hierachy.

res

6. PRELIMINARIES

Let us introduce some notation. If not stated otherwise, the Banach Lie algebras and related
notions are over the field of real numbers. Endow the infinite-dimensional separable complex
Hilbert space H with orthonormal basis {|n),n € Z} ordered with respect to decreasing values
of n, and consider the decomposition H = H4 & H_, where H, := span{|n) : n > 0} and
H_ :=span{|n) :n < 0}. Denote by p; (resp. p—) the orthogonal projection onto H (resp.
H_), and set d = i(p1 —p—) € Loo(H).

6.1. Restricted Banach Lie algebra L,.(#) and its predual L; 2(#). The restricted Ba-
nach Lie algebra is the Banach Lie algebra
(6.1) Lies(H) ={A € Loo(H) :[d,A] € La(H)}

for the norm || A|lyes = ||Alloo + ||[d, A]||2 and the bracket given by the commutator of operators.
A predual of L, is

(6.2) LLQ(H) = {A € LOO(H) : [d, A] S Lg(H),piA|7.[i € Ll(Hi)}.
It is a Banach Lie algebra for the norm given by

[AllL2 = [P+ Al [l + llp- Al + [[[d, Alll2-
The duality pairing between L o(H) and Lyes(H) is given by

(s MaesLrz © Lres(H) xL12(H) — C
(A, B) = Tres(AB),

where the restricted trace Tryes (see [20])) is defined on Ly o(H) by
(6.3) TriesA=TrpiAly, +Trp_Aly_.
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According to Proposition 2.1 in [20], one has Tr esAB = TrsBA for any A € L; 2(H) and any
B € Lyes(H).

6.2. Restricted general linear group GL,(H) and its “predual” GL;3(H). The re-
stricted general linear group, denoted by GL,es(H) is defined as

(64) GLres(,H) = GL(H) N LreS(H)'

It is an open subset of L;es(#) hence carries a natural Banach Lie group structure with Banach
Lie algebra Lyes(H). It is not difficult to show that GLyes(?) is closed under the operation that
takes an operator A € GLyes(H) to its inverse A~' € GL(H). It follows that GLs(H) is a
Banach Lie group.

The Banach Lie algebra L o(H), predual to Lyes(# ), is the Banach Lie algebra of the following
Banach Lie group

(6.5) GLLQ(H) = GL(’H) N {Id +A A€ Ll,g(’H)}.
6.3. Unitary Banach Lie algebras u(#), ues(H), u1,2(H). The subspace
(6.6) uw(H):={A€Lo(H) : A"=—-A}

of skew-Hermitian bounded operators is a real Banach Lie subalgebra of Lo, (#) considered as
a real Banach space. The unitary restricted algebra us(#H) is the real Banach Lie subalgebra
of Lyes(#H) consisting of skew-Hermitian operators :

(6.7) Ues(H) :={A € u(H) :[d,A] € La(H)} = Lyes(H) Nu(H).

By Proposition 2.1 in [§], a predual of the unitary restricted algebra u,es(#) is the subalgebra
uy 2(H) of Lyes(H) consisting of skew-Hermitian operators (see also Remark [T.2] below) :

(6.8) ul,g(’H) = {A S L172('H) AT = —A}.

Remark 6.1. It follows from Proposition 2.5 in [§] with v = 0 that u; 2() is a Banach Lie-
Poisson space with respect to uzes(?). A direct computation shows that u; o(#) is not a Banach
Lie bialgebra with respect to uyes(H).

6.4. Restricted unitary group U,.(#) and its “predual” U; (7). The restricted unitary
group is defined as

(6.9) Uses(H) := GLyes(H) N U(H).

It has a natural structure of Banach Lie group with Banach Lie algebra u,es(#). The Banach
Lie algebra uj o(#), predual to uyes(#), is the Banach Lie algebra of the following Banach Lie
group

(6.10) U172('H) = U(’H) N {Id +A A€ Ll,g(’H)}.

6.5. The restricted Grassmannian Gres(#). In the present paper, the restricted Grassman-
nian Gryes(#H) denotes the set of all closed subspaces W of H such that the orthogonal projection

p— : W — H_ is a Hilbert-Schmidt operator. The restricted Grassmannian is a homogeneous
space under the restricted unitary group (see [42]),

Grres(H) = Ures(H)/ (U(H4) x U(H-)),
and under the restricted general linear group GLyes(H),
Grres(H) = GLres(H)/ Pres(H),
where
(6.11) Pres(H) = {A € GLyes(H) : p-Ap, =0}

It follows that Gryes(#H) is a homogeneous Kéahler manifold (see [65], [8], [59], [60] for more
informations on the geometry of the restricted Grassmannian).
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6.6. Triangular Banach Lie subalgebras bfz(’H) and b (H). Let us define the following
triangular subalgebras of L o(H) and Lyes(H) :

b+ o(H) :=={a € Lia(H) : a(|n)) € span{|m),m > n} and (n|a|n) € R, for n € Z}.
b1 o(H) :=={a€Liz2(H) :a(|n)) € span{|m),m < n} and (n|a|n) € R,for n € Z},
b (H) == {a € Lies(H) : a(|n)) € span{|m),m > n} and (n|a|n) € R, for n € Z}.
bros(H) :={a € Lyes(H) : a(|n)) € span{|m),m < n} and (n|ajn) € R,for n € Z}.

6.7. Triangular Banach Lie groups BfQ(’H), and BZ_ (#). Consider
Bf,(H) := {a € GL(H) N (Id + bﬁ(%)) rat € 1d + b7, (H),V n € Z, (n|ajn) € RT}.

For any A € be(’H) with ||A]j12 < 1, and any « € BfQ(H), the operator a — oA belongs to
BfQ(H), since

(0 —ad) ™t =(Id— A)ta™t,
and (Id— A)~!1 =372 /A" is a convergent series in (Id + 6172(7-[)), whose limit admits strictly

positive diagonal coefficients. Hence sz(H) is an open subset of (Id + bfz (’H)), stable under

group multiplication and inversion. It follows that BfQ (H) is a Banach Lie group with Banach
Lie algebra be(H).

Similarly define the following Banach Lie groups of triangular operators :
BE (H) := {a € GLyes(H) NbES(H) a7t € GLyes(H) NbE(H) and ¥V n € Z, (n|a|n) € RT*}.

Remark 6.2. Remark that B (#) does not contain the shift operator S : H — H, |n) — |n+1)

since the diagonal coefficients of any element in B\ (H) are non-zero. However S belongs to the
Lie algebra bt (#), whereas S~1 belongs to b (H).

7. EXAMPLE OF BANACH LIE BIALGEBRAS AND BANACH POISSON—LIE GROUPS RELATED
TO THE RESTRICTED GRASSMANNIAN

7.1. Iwasawa Banach Lie bialgebras. Recall that (-,-)r,., 1, , denote the continuous bilinear
map given by the imaginary part of the restricted trace (see equation (6.3)) :

(' MaessLrz ¢ Lres(H) x L12(H) — R
(z,9) > STrpes (2Yy) -

Proposition 7.1. The continuous bilinear map (-, -)L,. L, Testricts to a weak duality pairing
between ues(H) and be(H) denoted by

() res(H) X b1,(H) — R
(x,y) — QTres (2y)

+
uresvaz

Similarly the continuous bilinear map (-,-)L,., L, Testricts to a weak duality pairing between
b (H) and w1 2(H) denoted by

<', .>b?ésyu1,2 : b;tes(’H) X u172(7-[) — R
(':I"?y) ’—> C\}Trres (':L'y) *

Proof. Let us show that the map (a,b) — STr,esab is non-degenerate for a € uyes(H) and
b e bl (H).

Suppose that a € u,es(H) is such that STresab = 0 for any b € bfz(’H) and let us show that a
necessary vanishes. Since {|n)},cz is an orthonormal basis of H and a is bounded, it is sufficient
to show that for any n,m € Z, (mlan) = 0. In fact, since a is skew-symmetric, it is enough to
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show that (m|an) = 0 for m < n. For n > m, the operator E,,, = |n)(m/| of rank one given by
x +— (m,x)|n) belongs to bIQ(H). Hence for n > m, one has

STr yes@FEnm = S Z(j\m><j]an> = J(mlan) = 0.
JEZ
In particular, for m = n, since (n|an) is purely imaginary, one has (nlan) = 0, Vn € Z. For
n > m, the operator iF,,, belongs also to bIQ(’H) and

STt resti B = S [ D i{jlm)(jlan) | = R(m|an) = 0.
JEZ
This allows to conclude that (m|an) = 0 for any n,m € Z, hence a = 0 € uyes(H).

On the other hand, consider an element b € bIQ(H) such that STrab = 0 for any a € uyes(H).
We will show that (n|bm) = 0 for any n,m € Z such that n > m. For n > m, the operator
Epn — Epnp belongs to upes(H), and for n > m, iEy,, + iEnm € tes(H). Therefore for n > m,
one has

ST ves (Emn — Enm) b = S ((n]bm) — (m|bn)) = S(n|bm) = 0,
and for n > m, one has

QTY ves (1Emn + 1 Epm) b = S (i(n]bm) 4+ i(m|bn)) = R(n|bm) = 0.

It follows that (n|bm) = 0 for all n,m € Z such that n > m. Moreover, since (n|bn) € R for any
n € Z, one also has (n|bn) = 0,Vn € Z. Consequently b = 0.
It follows that (-, '>ums,bf2 D pes(H) X 075 (H) = R, (2,y) = STr sy, is non-degenerate

and defines a duality pairing between ues(H) and bfz(’H). One shows in a similar way that

(3 )Lies L » Induces a duality pairing between uyes(H) and by o(H), between uy o(H) and byl (H),
and between 1y o(H) and by (H). O

Remark 7.2. Recall that by Proposition 2.1 in [§], the dual space u; o(#)* can be identified with
Ures(7), the duality pairing being given by (a,b) — Tres(ab). By previous Proposition, one has
a continuous injection from by (H) into uy 2(H)* by a — (b ITryes(ab)). The corresponding
injection from byl (H) into upes(H) =~ ug 2(H)* reads :

L b(H) = ues(H)
b > —i(b+b).

The range of ¢ is the subspace of ues(H) consisting of those = € u,es(#H) such that the triangular
truncation 7_(x) is bounded. Recall that T_ is unbounded on L. (H), as well as on Li(H)
(see [33], [28], [19]), and that there exists skew-symmetric bounded operators whose triangular
truncation is not bounded (see [12]). Therefore ¢ is not surjective.

Theorem 7.3. The Banach Lie algebra bf2 (H) is a Banach Lie bialgebra with respect to uyes(H).
Similarly the Banach Lie algebra uy o(H) is a Banach Lie bialgebra with respect to bt (H).

res

Proof. Let us show that the Lie algebra structure [+, -],,.. on ues(H) is such that

(1) bfz (H) acts continuously by coadjoint action on ies(H);
(2) the dual map [-,-]5  : ufe (%) — A%uf(H) to the Lie bracket [-,] D Upes(H) X

Upes(H) — Upes(H) restricts to a 1-cocycle 6 : bfz(’H) — A%u¥ (H) with respect to the
adjoint action ad®? of bf2(7-l) on A%u’ (H).

Ures

Ures
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e Let us first prove (1). Since by Proposition [.1] (-, )b% is a duality pairing between

2oUres
Ures(H) and bf2(7-l), the Banach space u,5(H) is a subspace of the continuous dual of
bfz (H). Recall that the coadjoint action of be(H) on its dual reads
—ad® 1 bT,(H) x bi,(H)* — b ,(H)*
(z, ) — —adia = —aoad,.
Let us show that us(#) is invariant under coadjoint action. This means that when « is

given by a(y) = STr esay for some a € upes(H), then, for any = € bfz(’H), the one form
B = —ad;a reads B(y) = QTr esay for some a € upes(H). One has

Bly) = —adza(y) = —a(adsy) = —a([z,y])
= —QTresafz, y] = —QTrpes(azy — ayz),

where a € ues(H), =,y € bfz(’H). Since ay and z belong to La(H), ayx and xay belong
to L1(H) and Tr es(ayx) = Tr (ayz) = Tr (zay). Since axy belongs also to Lq(H), one
has

Bly) = =STr (axy) + STr (ayz) = —STr (azy) + STr (zay) = —STr ([a, z]y).
Note that [a,x] belongs to La(#H). Recall that by Proposition [LI6, the triples of
Hilbert Lie algebras (Lo(H),u2(H), by (H)) and (La(H),uz(H), by (H)) are real Hilbert
Manin triples with respect to the pairing (-,-)r given by the imaginary part of the

trace. Using the decomposition La(H) = us(H) @ b3 (H), and the continuous projection
P Loy(H) — ua(H) with kernal b3 (#), one therefore has

Bly) = =STrp([a, 2])y,
since y € bfg(”H) C bE(H) and b (H) is isotropic. It follows that 8(y) = STray with
a= —pug[([a,x]) € uz(H) C wres(H).

In other words, the coadjoint action of x € be(H) maps a € ues(H) to —adja =
—puzi([a, x]) € tpes(H). The continuity of the map

—ad”® : bit’Q(,H) X ures(H) - uI"OS(H)
(@a) = —adia=—p(aal)
follows from the continuity of the product
b1, (H) X tres(H) —  Li(H)
(z,a) = ar,

from the continuity of the projection Pyt and from the continuity of the injections
Li(H) C La(H) and us(H) C upes(H).

e Let us now prove (2). The dual map of the bilinear map |-, -],,.. is given by

['7']“}25 : u;kes(H) — L(urCS(H)vurCS(H);K) = L(urOS(H);u;kes(H)) .
‘F() — ‘F ([7 ':Iurcs) = (OZ = I([OZ, ':Iurcs) = ada]:()) ’

and takes values in A%u_(H). Since by (1), wes(H) C bfz(’H)* is stable under the
coadjoint action of bf2(7-[) and the coadjoint action ad* : bfz(’H) X Upes(H) — Upes(H) is
continuous, one can consider the adjoint action of be(H) on A%u},(H) defined by (Z3)).
Denote by 6 the restriction of [-, -]} to the subspace be(H) C tpes(H)* -

0 ¢ bE(H) — Lltres(H), tres(H)i K)o L(ttres (H); thres(H)*)

— <a — (z, [a, ']ures>bi

X — <‘T7 [.7 ']ures>bi 1,2 Ures

1,2-Yres

- ad;;x(.)) .
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The condition (4.1]) expressing that 6 is a 1-cocycle reads :
(o B 18l e =+ a5 Bl (0 0 a2
—(z, [adya, ﬂDbfg,ums = (&, [a, adzﬂbbfg,ums‘
The first term in the RHS reads
Hy, ladea, Bl)et, .. = STrylpg(los2)), 8] = STr (B, ylp g (o, ).

Using the fact that [8,y] € La(H), and that ug(H) C La(H) and bF(H) C La(H) are
isotropic subspaces with respect to the pairing given by the imaginary part of the trace,
one has

sUres

+(y, [adga, )y
Similarly the second, third and last term in the RHS of equation (] read respectively

o, a8}, = STrpg [y, al)pz (16,2]),
—<3§‘, [adzav B]>bf27ures = _%’Trpbg: ([Bv $])pug: ([Oé, y])v

—(@, o ady By, = —STrpg ([, al)p,z (6, ]).

1,2 Ures

= Tr s ([, ), ([ 2)).

sUres

Using once more the fact that ug(H) C Lo(H) and by (H) C Ly(H) are isotropic sub-
spaces with respect to the pairing given by the imaginary part of the trace, it follows
that the first and last term in the RHS of equation (7.I]) sum up to give

+<y7 [a‘d::aa /8]>bit2,ures - <.’1‘, [aa adZ/BDbf%ures = —QTr [/87 y] [xa a]7

and the second and third term in equation (7.I]) simplify to
+<y7 [a7ad::5]>bi - <.’1‘, [adza75]>bi‘:27 = —QTr [/Bax] [aay]’

1,2 Ures

Developping the brackets and using that, for A and B bounded such that AB and BA
are trace class, one has Tr AB = Tr BA, the RHS of equation (1)) becomes

STr (B, yl[z,a] + STr [B, 7][a,y] = STr (—Byza — yBazx + Brya + xBay)
= QTr (zyaf — vyfo — yraf + yrfa)
= QTr [z, y][a, B]
= <[$7 y]7 [Oé, BDbi

1,2 sUres’

Ures

hence 6 satisfies the cocycle condition.
One can show in a similar way that the Lie algebra structure [+, -]+ on bE (H) is such
that
(1) uy2(H) acts continuously by coadjoint action on b (H);
(2) the dual map [, J¥s bE (H)* — A2bE_ (H)* to the Lie bracket [, Jox b (H) x
b (H) — bE (H) restricts to a I-cocycle 6 : uy2(H) — AZbE (H)* with respect to
the adjoint action ad®) of u; o(H) on A2bE (H)*.

O

7.2. Unbounded coadjoint actions. Recall that for 1 < p < oo and ¢ := p%l, u,(H) and
bqi(’H) are dual Banach Lie-Poisson spaces (see Example B.19]), and that the coadjoint actions
are given by

adjpr = py, + ([r,0]) and adja= Pt ([ev, x]) s

where x € uy(H) and a € bf(?—l). In this example, the continuity of the triangular truncation
Ty on L,(H) and Ly(#H) (see Section [I.4]) is crucial in order to define the orthogonal projections

Pu,,+ and P using equations (L14]) and (I.I5)).
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The situation is different for the Banach Lie algebras ujo(H) and b (H). We will show
that u;2(H) is not a Banach Lie-Poisson space with respect to bi (#) since the coadjoint
action of b (H) on uy o(#H) is unbounded. To prove this result, we will use the fact that the
triangular truncation is unbounded on the space of trace class operators. In a similar way,
the coadjoint action of () on bfg(”H) is unbounded (see also [58]) Using Theorem (9] we
conclude that there is no Banach Manin triple associated to the pair (u1(H), bE,(H)) nor to
the pair (b} ,(#),ures(#)) for the duality pairing given by the imaginary part of the restricted

trace (see Theorem [T.7] below).

Proposition 7.4. There exist a bounded sequence of elements x, € uj2(H) and an element
y € by (M) such that
‘|T+([$n7y]|7‘l+)”1 — +00.

Proof. Consider the Hilbert space H = H4 @ H_, with orthonormal basis {|n),n € Z} ordered
with respect to decreasing values of n, where H. = span{|n),n > 0} and H_ = span{|n),n <
0}. Furthermore decompose H4 into the Hilbert sum of HS" := span{|2n + 2),n € N} and
H = span{|2n + 1),n € N}. We will denote by u : H3d — HY® the unitary operator
defined by u|2n + 1) = |2n + 2).

Since the triangular truncation is not bounded on the Banach space of trace class operators,
there exists a sequence K, € Li(H%) such that ||K,|; < 1 and ||T4(K,)|li > n for all
n € N. It follows that either ||T4 (K, + K)/2]1 > n/2 or | T+ (K, — K}})/2||1 > n/2. Modulo
the extraction of a subsequence, we can suppose that K, is either Hermitian K, = K or
skew-Hermitian K, = —K,;. Moreover, since the triangular truncation is complex linear, the
existence of a sequence of skew-Hermitian operators such that ||K,|1 < 1 and ||T4(K,)|1 > n/2
implies that the sequence iK,, is a sequence of Hermitian operators such that ||iK,||; <1 and
| T4 (iK3,)||1 > n/2. Therefore without loss of generality we can suppose that K,, are Hermitian.

Consider the bounded operators z,, defined by 0 on H_, preserving H4 and whose expression
with respect to the decomposition H = H" ® ’H‘jrdd reads

B 0 ul<,
By construction, z,, is skew-Hermitian. The restriction of z) z, to H4 decomposes as follows
with respect to H; = H" @ Hﬂ’rdd,
X [ uK}Kpu® 0
therefore z,, belongs to u; o(#) since the singular values of x,, are the singular values of K,, but
with doubled multiplicities. Moreover ||z,|1 < 2.
Now let y : H — H be the bounded linear operator defined by 0 on HY", by 0 on H_,

and by y = u on ’H‘jrdd. Remark that y belongs to b (#). Since z,, and y vanish on H_ and
preserve H,, one has

) = (il )

where the operators [z,,y]|#, have the following expression with respect to the decomposition
Hy = HE" @ HYY,
uK u* 0
el = (5 )

n

It follows that

(7.3) | T4 ([2ns Yl )1 = 2| T4 (Kn)[[1 > n,
hence || T4 ([zn, y]l2)|[1 — +oo. O
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Lemma 7.5. Let x, € uya(H) and y € bl (H) be as in the proof of Proposition [T Then
|l <2 but ||adjzn |y, , — +oo. Consequently the coadjoint action of b (H) on uy2(H) is
unbounded.

Proof. Consider the linear forms a,, on bi(H) given by a,(4) = STra, A for x, € uy2(H)
defined by (Z.2). Then the linear forms 3, = —adya;, read

Bn(A) = —adyon(A) = —ay(adyA) = —an(ly, A]) = —STrzfy, A] = —STr (zyA — 2 Ay).
According to Proposition 2.1 in [20], one has TrzAy = Tryxz A, therefore
Bn(A) = =QTr [x,, y|A.
The unique skew-symmetric operator T, such that —3Tr 7T, A = —QTr [z, y|A for any A in the
subspace by (H) of b (H) is
Tn = py (2, y]) = T~ ([0, y]) = T-—([zn, y])* + 5 (D([zn, y]) — D([2n,y])")
Since K, are Hermitian, [z,,y]|3, are Hermitian and we get

T = [wn, y] = 274 ([zn, y]) + D([zn, y]).
In particular,
2T ([wn, y]) = Tn = [0, y] — D([zn, y))-
By equation (T3], 27 ([, y]) > 2n. Therefore
[ Tolluyz + 1zn, Yl e + 1D (@0, YDlurs = 1 Tn — (20, y] = D([2n, Y] [l = 21,
for all n € N, and
[Tl 2 = 20 =2 = [[D([Zn, y])lu, 2-

The operator D consisting in taking the diagonal is bounded in L;(H) with operator norm less
than 1 (see Theorem 1.19 in [57] or [19] page 134), therefore

HTnHul,z >2n —4.

It follows that || — adjanlly , = [|Thllu, — +o0.

Using the same kind of arguments (see also [58]), we have :
Lemma 7.6. The coadjoint action of uyes(H) on bfg(”H) is unbounded.
From the previous discussion, we obtain the following theorems.

Theorem 7.7. The Banach Lie algebra uy 2(H) is not a Banach Lie-Poisson space with respect
to bt (H). Consequently there is no Banach Manin triple structure on the triple of Banach Lie

algebras (bE,(H) @ ug o(H), bEg(H), u12(H)) for the duality pairing defined in Proposition [7.1]

Proof. The Banach space uj o(H) is not a Banach Lie-Poisson space with respect to b () as

a consequence of Lemma By Theorem [£9] there is no Banach Manin triple structure on
the Banach Lie algebras (u19(H) @ by (H),u1.2(H), b (H)) for the duality pairing given by the
imaginary part of the restricted trace. O

Along the same lines, we have the analoguous Theorem :

Theorem 7.8. The Banach Lie algebra be(’H) s not a Banach Lie—Poisson space with respect
to upes(H). Consequently there is no Banach Manin triple structure on the triple of Banach Lie

algebras (bﬁ(”ﬂ) D Upes(H), bfz(’H),ums(”H)> for the duality pairing defined in Proposition [7.1}
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7.3. The Banach Poisson-Lie groups BE (H) and Uy (). In this Section we will construct
a Banach Poisson-Lie group structure on the Banach Lie group Bt (H). A similar construction
can be of course carried out for the Banach Lie group B, (#) instead. Recall that the coajoint
action of B, (#) is unbounded on u; 2(H) (see Section .2}, in particular Lemma[T.5]). Therefore,

res
in order to construct a Poisson-Lie group structure on B (), we need a larger subspace of

the dual b (H)* which will play the role of g_ := F. (compare with Theorem [5.4]). Consider
the following map :
F o Ll,g('H) — bj_es(’H)*

a = (b QSTrab).

Proposition 7.9. The kernel of F equals bIQ(H), therefore Ll,g(H)/bIQ(H) injects into the
dual space b (H)*. Moreover Ly o(H) /0T o(H) is preserved by the coadjoint action of Biy(H)

res res
and strictly contains uy 2(H) as a dense subspace.

Proof. In order to show that the kernel of F' is bfz(’H), consider, for n > m, the operator
Enm = |n){m| € bl (H) given by x — (m|z)|n) and, for n > m, the operator iE,,, € bj(H).
As in the proof of Proposition [[I] an element a € Lj2(H) satisfying F(a)(Enm) = 0 and
F(a)(iEnm) = 0 is such that (m|an) = 0 for n > m and (n|an) € R for n € Z, i.e. belongs to
bfz(’H). Let us show that the range of F is preserved by the coadjoint action of B (). Let
g € Bl (H) and a € Ly 2(H). For any b € bt (H), one has :
Ad*(9)F(a)(b) = F(a)(Ad(g)(b)) = F(a)(gbg™")
= QTragbg™! = STrg tagh = F(g  ag)(b),

where, in the fourth equality, we have used Proposition 2.1 in [20] (since the product agb belongs
to L1 2(H) and b to Lyes(H)). In fact, B (#) acts continuously on the right on L; o(H) by

res
a-g= g_lag.
Then one has the equivariance property
Fla-g) = Ad*(9)F(a).
Moreover the subalgebra bfg(”H) is preserved by the right action of B (H) on Lia(H). It

follows that there is a well-defined right action of B/ (#) on the quotient space Ly 2(H)/b7 5(H)
defined by 7

[a] -9 =a-g],
where [a] denotes the class of a € L; () modulo bIQ(H).

Let us show that u; o(H) & bfg(”H) is dense in Lj o(H). To do this, we will show that any
continuous linear form on L 2(#H) which vanishes on uj2(H) & bfz(’H) is equal to the zero
form. Recall that the dual space of Lio(H) is Lyes(H), the duality pairing being given by
the restricted trace. Consider X € Lys(H) such that Tr Xa = 0 and Tr Xb = 0 for any
a € up2(H) and any b € bIQ(H). Letting b = Eyy, with n > m, we get (m|Xn) =0 for n > m.
Letting a = Enp — B € w1 2(H), we get (m|Xn) — (n|Xm) = 0 for n > m. It follows that
(m|Xn) = 0 for any m,n € Z, which implies that the bounded linear operator X vanishes,
hence u; 2(H) & bfz(’H) is dense in Ly o(H). It follows from Section [7.2] that u; o(H) & bfg(”H)
is strictly contained in Lj o(H).

Let us show that u; o(#) is dense in LLQ(H)/biz(H). Consider a class [a] € LLQ(H)/ETQ(H),
where a is any element in L o(H). Since 11172(3'-[)69[J;r’2 (H) is dense in Lj 2(H), there is a sequence
u; € u12(H) and a sequence b; € bIQ(H) such that u; + b; converge to a in Ly o(#H). It follows

that [u; + b;] = [u;] converge to [a] in Ll,g(’H)/bIQ(H). O

Now we are able to state the following Theorem. The proof uses Lemma (5.8
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Theorem 7.10. Consider the Banach Lie group B (H), and
(1) g— = L12(H)/b],(H) C b (H)*,
(2) B C T*B/ (M), By := R_19—,

(3) 1B B (1) — A2g* defined by

+ _ _
Hfrcs (b)([xl]bfz’ [x2]bf2) =GTr (b 1 pu; (xl) b) pb; (b 1pu; (xg) b)] ,

(4) e (b) = BT (0).
Then (B;ZS(IH),B,ﬁBrtS) is a Banach Poisson—Lie group.

Proof. e Let us show that Hfrts satisfies the cocycle condition.

2% (u) (Ad*(9)[lyy, Ad*(9) gy, ) = T8 () (g7 @1 gl [97 22 0l )

= QTr (u—lpu; (g7 z19)u) [pb; (u_lpu; (97 @y Q)U)]

1

Using the decomposition Pyt (g7'z19) = g '219 — P} (9 'z1g), the fact that by is

preserved by conjugation by elements in Bjf (#), and the fact that b3 is isotropic, one

has :
8% (u) (Ad*(9) o1y, Ad*(9) ]y, ) = ST (u™lg™ a1 ) [y (' pys (97222 9)u)
1 23 g)u)|

T9 gu) — STr (u_lg_ll’l gu) [pb; (u_lpb; (g_
1

Tr (u™'g~ w1 gu) | Dz (w9~

& @

1

Tr (u'g w1 gu) |pyy (™ g w2 gu)| — STrg~ a1 gpy (97 22 9)

Using the decompositions z1 = Pyt (1) + Doy (r1) and 9 = Pyt (x2) + Doy (z2), one gets
8 terms but 4 of them vanish since b; is isotropic. The remaining terms are:
+ 1
M2 (u) (Ad*(9) o]y, Ad(9) @l ) = STr (wlg™ o (1) g ) |pyg

(
FOTr (uhg pyg (21) ) |pyg (™9 oy (22) gu)
—STrg™'pyt (1) 9Pz (97 Pt (22) 9)
—STr g™ 'pyt (1) 9 Py (97 ' Py (22) 9)

gy (22) gu)|
|

The first term in the right hand side equals Hffts (gu)([z1] bF [z2] b1+2), the third term
equals —Hf;rts (9)([x1]b1+2= [xg]bb), whereas the second term equals +3Tr (pu; (a:l)pb; (2)),
and the last terms equals —STr (pu; (:El)pb2+ (22)).

o It remains to check that 75 satisfies the Jacobi identity 7). We will use Lemma[5.8]
Using the cocycle identity, one has for any X in b (H) and g € B

T, 55 (Lo X) ([a1], [22]) = TIIE (X)(Ad* (9) 1], Ad* (9) ),

in particular,
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It follows that
(7.4) TP (R X ) ([21], [2]) = STr g™" X glps (97 21 9), pys (97" 22 9)]-
In particular, for any z1 and 2 in Ly o(H), the 1-form on b given by
X v TTP (LX) (1), 2]

belongs to u; 2(#) and is given by

Ty (Lo () ([o1], [22) = g (97 1 9), s (97" 2.9)

Moreover for g € B (H), x5 € L1 2(H) and y € Ly 2(H), one has

5% (g) (23], [y]) = ST (97" pys (23) )Py (97 Pyr (4) 9)
=STrp, (9~ pu (ws)g)pb+(g pu +(y) 9)
= —Jﬂpw(g pu (w:s)g)pu (g P () 9)

—dTrgp[,+(g Puy (ws)g)g 2 (y)

——dTrgpw(g Pus (3)9) 9~ L(y)

In particular Z'[m]l'[ffts (9) = —9 Pyt (g_lpu; (z3) g) g~ belongs to b3 (H) C bt (H). Us-

res
ing ((C4), it follows that

(7.5)
Ty TP (Ryifa TIP () ([1], [w2]) = =STr pys (97" by (23) 9)lpys (97" @1 9), 1y (97" 2 9))
= -QTr Po} (g7t Puj (z3)9) [pu2+ (g7t Pyt (x1) g),pu; (971 Py (z2) 9)],
where we have used that g_lpb; (z;) g € by for any x; € L12(H) and any g € B (H).
Moreover
(7.6)

(@1, [ig) TIB= (9), iy TIE (9)]) = Tr$1[9pb+(9 Puy ( 3)9)9” ,gpb+(9 Puy ( 2)9) 9]
Trp,y (wl)[gpb+(9 P (73)9) g~ ,gpb+(g Pyt (22)9) g7']
=STrg™ pu( )g[pb;(g pu( 3)9), pb+(g pu( 2)9)]
= STrp,+ (g pu (xl)g)[p[,+(g pu +(z )9) p[,+(g pu +(z2) 9)]

——»vTrpu (97 Dy (wl)g)[pb+(9 Py (72) 9), pb+(g Pyt (23) 9)]

&l CQ

Consider o = R;,l[ajl] (T, BLo)* B = R;,l[ajg] (T, Bf)* and v = R;,l[ajg] €
(T, Bf)*, for z1, xo and x3 in Ly 2(H). Injecting (TH) and (7.6) into (5.5) and using
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the fact that the left hand side of (5.5]) defines a tensor, one gets :

(o d(7(8,7))) £ 7 (B, d(n(y, @) + 7 (7.d(m(e £)))

— STy Por (97 Dy (fvs)g)[p (9 Pyt (1) 9), Pyt (971 Pyt (22) 9)]
—STrpyg (g7 Puf (wl)g)[pb2 g™ Puf +(2) ). p[,+(g Puf +(3) 9)
—QTr pb+(g Py (@ )g)[pu;(g Pyt (#2) 9), 2, (97" Pyt (23) 9)]
—STrpyt (g~ Puf (wa)g)[pb (g~ Puf +(23)9). pb+(9 Puf (1) 9)]
—%‘Trpb;(g Pyt (xz)g)[pu;(g pu( 3)9): Dyt (97" Pyg (21) 9)]
—STrpyt (9™ pu( 3)9)[pes (9™ ( 1)9), pb+(g pu( 2) 9)]

= —STr pyt (97" Pyt (23) 9Py (97 1y (1) 9), Pt (g‘lpu;( 2)9)]
9lpys (9~ pu( )g),pb+(g p (22) 9)]

=STr pys (9 pu;(xs)g)[pw(g P (21) 9), s (07 1pu( 2)9)]
(23) 9) [Py (97 Puf (1) 9),p (9 pu( 2)9)]

9lpys (9~ pu( ))pb+(g pu( 2) 9)]

Py (w3 g)[pb+(g Put +(a1)9), pb+(9 Put +(22) g)]

= -3Tr g~ p +(333) )[9 pu (ajl)g,g_lpu;r(ﬂh)g]
= —QTrg™ pu (333[ ( 1),P (332)]9

)
= —QTrp,: (333)[17“;( 1P ( 2)]
=0,

hence 7 is a Poisson tensor.

Remark 7.11. In the proof of the previous Theorem, we have established that

+
T (V) (o], [22lr,) = STrYpyg (21), 0y (22)],

where 21, 22 € L1 2(H) and Y € b (H). It follows that TEHTB& is the dual map of

L1a(H)/b79(H) x Lia(H)/07o(H) — Lia(H)/07,(H)
(1], [22]et,) = oy (21), s (22)],

which is well defined on Ll,g(H)/bb(’H) since [pu; ($1),pu2+ (x2)] € Li(H) for any x1,29 €
Li2(#H). Note that this bracket is continuous and extends the natural bracket of uj o(H).

(7.7)

Along the same lines (see also [58]), we obtain the following Theorem :

Theorem 7.12. Consider the Banach Lie group Uyes(H), and

(1) 94 :=L12(H) /w1 2(H) Cujes(H),
(2) UC T Uses(H), Ug = R;,lg+,

(3) H}Jres : Ures(H) — A2gj_ deﬁned by

177 (9) ([£1)ur 25 [@2)ur o) = STr (97" pyg (1) 9) [puz (97" pys (22) 9)

(4) mVr=(g) = Ry I (g).
Then (Ures(’H),[U,ﬂUreS) is a Banach Poisson—Lie group.
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8. BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN

In this Section, we construct a generalized Banach Poisson structure on the restricted Grass-
mannian, and called it Bruhat-Poisson structure by reference to the finite-dimensional picture
developped in [32].

8.1. A Poisson—Lie subgroup of U, (?). The following definition is identical to the defini-
tion in the finite-dimensional case.

Definition 8.1. A Banach Lie subgroup H of a Banach Poisson—Lie group G is called a Banach
Poisson—Lie subgroup if it is a Banach Poisson submanifold of G, i.e. if it carries a Poisson
structure such that the inclusion map ¢ : H — G is a Poisson map.

Let us show the following Proposition.

Proposition 8.2. The Banach Lie group H := U(H4) x U(H_) is a Poisson—Lie subgroup of
Ures(H).

Proof. Denote by ¢ : H < Uyes(H) the inclusion map. It is clear that H is a Banach submanifold
of Uyes(H). Denote by b its Lie algebra. Recall that U is the subbundle of 7™ U,es(H) given
by Ug = R} _.1g+ where g, := L12(H)/ui2(H). Denote by (-, )y, the duality pairing between
g+ and te(H), and by h° the closed subspace of g, consisting of those covectors in g, which
vanish on the closed subspace b of u.s(H). For any covector a € (*g4 acting on b, and any
vector X € b, denote by [a]qo the class of a € i*g4 in i*g4 /h%. Then the formula

([adgo, X)p = (@, X)ues

defines a duality pairing between H, := i*g, /h" and b. It follows that H := *U/(TH)" is a
subbundle of T*H in duality with TH. Recall that the Poisson tensor on Ues(#H) is defined as
follows

Ures

1P (k) @, 8) = ST (0 Dy (2)h) [pg (0 'y (@2))

where o, 3 € g = L12(H)/u12 and x1, 22 € L12(H) are such that o = [x1]y, , and = [22]y, ,.
Note that an element x5 = (é IB)) € Ly 2(H) belongs to h° if and only if A € uy(H) and
D € uj(H). In that case, one has

= (475)+ (35,

with p ¢ (z2) = (&%) and Poy (72) = (9B4C"). Note also that for any h = <’61 f&) c

U(H4+) x U(H_), one has

_ -1 *
Py (o)l = (91 (BECR ) € b ().

It follows that IIVres(h)(-, 8) = 0 whenever 3 € h°. By skew-symmetry of IIVr one also has
Vs (h)(a,-) = 0 whenever o € h°. This allows to define the following map
e . H — APH?
by
I (h)([algo, [Blyo) = L= (h)(av, B)

for o, f € g4 = L12(H)/u1 2. Set Wf = R;*Hﬁ. The Jacobi identity for 7 follows from the

Ures

Jacobi identity for 7w-res. By construction, the injection ¢ : H < U,es(#H) is a Poisson map. O
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8.2. The restricted Grassmannian as a quotient Poisson homogeneous space.
Theorem 8.3. The restricted Grassmannian Gryes(H) = Ures(H)/ U(Hy) x U(H-) carries a
natural Poisson structure (Gryes(H), T* Gryes(H), 797re) such that :

(1) the canonical projection p : Uyes(H) — Gryes(H) is a Poisson map,
(2) the natural action Uyes(H) X Grres(H) — Grres(H) by left translations is a Poisson map.

Proof.

(1) The tangent space at eH € Gryes(H) = Upes(H)/ U(H4) x U(H_) can be identified
with the quotient Banach space uyes(H)/ (u(H4) @ u(H—)) which is isomorphic to the

Hilbert space

m = {(_% 4) € u(H)}.
The duality pairing between e(H) and g4 = Ly 2(#H)/u1,2(#H) induces a strong duality
pairing between the quotient space tyes(H)/ (W(Hy) Du(H_)) = m and h° C g,. For
a,fB e Tg*H Gryes(H), identify p*a € Ty Uyes(H) with an element L;,lxl in L;,lho, and
p* B with L;,lxg € L;,lf)o. Define

mo (@, B) =7 (p*a, pB),

We have to check that the right hand s1de is invariant by the natural right action of
H on Ue(H), which induces an action of H on forms in Ty Ures(H) by v — Rj_17v €
Tg*h Uses(H). In other words, we have to check that

Ums((p a)g, (p*B)g) = W;ﬁes( h— 1 (p* a)g, Ry 1 (p*B)g)

& myre (L awy, L ag) = wor (R o L ywy, Ry 1 L)
& TV (g)(Ad oy, Ad 1) = Ve (gh) (RS, Ry L yy, Ry, Ry L7 0)
Note that R}, v(X) = v(RgX) = v(Xgh) = Rjv(Xg) = RyR},7(X). Therefore R}, =
Ry R Tt follows that (8.1]) is equivalent to

1 (g)(Ad; 121, Ad yz2) = IV (gh)(Ad] 1, Ad) )
By the cocycle identity IIVres(gh) = Ad(g)**IIVres (h) 4 I1Vrs(g), one has

ITUres (9h)(Ady 121, Adj -1 22) = HE“S(h)(Ad;AdZ,lxl, AdgAdyx2)
I (g)(Ad) -y 1, Ad) -y 9)
Since TTVres(h) vanishes on h°, one has
I (h)(Adj 11, Ady 1) = 0,

therefore equation (81]) is satisfied. The Jacobi identity for 7¢7res follows from the Jacobi
identity for wUrs. Moreover p is a Poisson map by construction.
Consider the action
ay ¢ Upes(H) X Gres(H) —  Grpes(H)
(91,9H) = gigH
by left translations. Note that the tangent map to ay is given by

T(g1,gH)aU 2 Ty, Ures(H) @ Tyn Grres(H) — Ty gH Grres(H)

(XgquH) = Pal(Ry) Xgy] + (Lgy )« Xgn -
Therefore, for any o € T g1 gH Gryes(H),
ao Ty, gmav(Xg, Xgu) = ( [(Rg)«Xg, ) + a((Lgy )« Xgn)

= Ryp*a( 91) L o gH)
In other words
aoTig gmav = Rep'a + Ly
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where Rip*a € Ty, Ures(H) and Ly a € Typ Gryes(H). In order to show that ay is a
Poisson map, we have to show that
(a) for any o € T 1 Gryes(H), the covector Rip*a belongs to
Ug, = Riy)-1L12(H) /w1 2(H),
(b) the Poisson tensors 7wUres and 7&7res are related by
w0, B) = moee (R, Ry ) + nl (L, o0, L5, B).
For point (a), let us show that for a € Ty .n Grres(H), and g1,9 € Upes(H), one
has Ry Ryp*a € Lyo(H)/u12(H). Recall that p*a can by identified with an element
ﬁ’(glg),lxl where z; € h°. Therefore Ry Rip*a = Ad’(kglg),lazl. For X € T, Uyes(H), one
as
Ry Bgpto(X) = STras Ad(g, g (X) = STrai(g19)" Xg1g
= STrg1gz1(919) 7 X.
Since g1971(g19) ' € L12(H) for any g1,g € Uyes(H) and z1 € L1 o(H), it follows that
R;R;p*oz S LLQ('H)/uLg('H).
In order to prove (b), we will the cocycle identity. Note that for a, 5 € Tg*1 gH Grres(H),

one has
Moyt (0 0) = i (0" ) = T (g19) Ry, "t R ')

= Ad(g1) T (g)(Ry, 0 v, Ry, op*B) + 11 (1) (R, 0™ v, Ry, 0" B)

= I (g)(L}, Ryp*a, Ly Ryp*B) + 1L (g1) (R, Ryp™ o, Ry, Rip* )

= wgm (Ly,p*a, Ly p*B) + wg;cs (Ryp*a, R;p*B)

— Trg res (Ifk[/ZlC}f7 p*Lzlﬁ) _|_ ﬂ-glrcs (Rzp*a7 R;p*ﬂ)

= T (L, Ly B) + myres (Rip*a, Ryp* B).

Hence the left action of Ues(H) onGryes(H) is a Poisson map.

9. POISSON ACTION OF B (H) ON Gryes(H) AND SCHUBERT CELLS

9.1. Poisson action of B (#) on Cr.(H). The next Theorem shows that the action of
BE.(H) on Gryes(H) is a Poisson map, where BZ (#) is endowed with the Banach Poisson-Lie
group structure defined in Section [7] and where Gryes(#H) is endowed with the Bruhat-Poisson

structure defined in Section 8

Theorem 9.1. The following right action of BE (M) on Gryes(H) = GLyes(H)/ Pres(H) is a
Poisson map :
ap : Grres(H) x BE,(H) — Gryes(H)
(9 Pres(),b) = (b7'g) Pres(H).

Proof. The tangent map to the action ap reads

T(QH,b)aB : TQH GrreS(H) @Tb Bis(H) — belgPres Grres(H)
(Xgm, Xp) = (L))« Xgm — Pi(Rg)« (071 X507 1).

Therefore, for any o € Ti, p Grres(H),

ao Tiympan(Xgm, Xp) = a((Lg-1))«Xgm) — a(pe(Rg)b " Xpb™ 1)
= Li o Xym) — Rioy Liy Rip™al(Xy),
and
aoTyrpap = Ly1a— Ry Ly 1 Ryp*a,

where Ly o € T7py Grres(H) and Ry Ly Ryp*a € Ty B (H).
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(a) Let us show that for any a € T Ly Pres Gryes(H) and any b € BE (H), the form Ry Ly Ryp*a
belongs to By, = R} 1 L12(H)/b12(H). Recall that o can be identified with an element
L} 21 where 1 € h°. For X € T, BL (H), one has

(b=1g)~
L Rypra(X) a(p«Rg+(Ly-1)+« X) = STr a1 (Lyg-1p)eps Ry (Lp-1)+ X)
C\‘STTmp*(/’xd( NX) = STrpyt (21)g~' Xg
%Trgpb+(x1) -1X.
Recall that for z; = (A4 5) € p°,  Pot (z1) = (§BC"). Since for any g € GLyes(H) and
any z1 € hY, 9P} (z1)g~! € L1 2(H), the form Ry Ly Ryp*a belongs to By,.

+
Bres and 7Cmres are related by

(b) Let us show that the Poisson tensors 7

+
T, (o B) = wiie (Lyva, Ly 2 B) + m e (Ry 1 Ly Rip*or, Ry Lj 1 Ryp* ).

b=1tgPres
One has
T (Ry_y Ly Ryp*or, Ry, Ly, Ryp* ) = 17 (0)([gpoy (21)9™ o, 9P (22)9™ ey,
= ST (571 py (9py: (21)9710b) [pys (0 pys (9 (2)97)0)|
= STrp,s (9P (21)97 )b | Py (07 Pyt (9pgs (22)g71)b) | b7
= QT (b Lapet (£1)9710) [Pyt (071t (9pys (22)g71)b)
= QTr (0~ gpys (1)g7'0) [pyy (07 gpys (22)g™ b)]

ST (b gy (21)g710) [ph+<b 1py (9P (22)971)b)]
Therefore
9.1)
7P (R L Ripta, Ry i Rip™B) =
STr (b~ gpys (w1)g'D) [ph;(b‘lgpb; (xz)g‘lb)] — QTr (gpy (21)g™") [pb; (9Pe; (xz)g‘l)] :
On the other hand
o (Lyaa, Ly 1 B) = 11 (g) ([gpys (21)9 7], [9pys (w2)97')
= STr (97 'y (9P (21)971)9) [pu; (97" Pyt (9pez (xl)g‘l)g)]
Te s (21) [Pys (97 Py (9m4 (21)97)9)|
Tr py; (w1) (g™ pb+(gp[,+(w1)g g
Trgpb+(w1)g pb+(gpb+(w1)g 0

2

1l
QW W

which is the second term in the right hand side of equation (@.1]) with the opposite sign.
Moreover, since

Grres(H) = GLres(H)/ Pres(H) = Ures(H)/ (U(H4) x U(H-))

there exist g1 € Ues(H) and p; € Pres(H) such that b~'g = gip1. In fact, the pair
(g1,p1) is defined modulo the right action by H given by (g1,p1) - h = (g1h,h~'py). It
follows that the first term in the right hand side of equation (9.1 reads

STr (b gpy; (21)9710) [Py (07 gy (w2)97'0)]
= STr (g1p1py; (21)p7 91 ) [pb; (9191Py (x2)p7 97 1)}

Recall that for any x1 = (é g) € b°, one has

n=(875)+ (7).
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with pu;(xl) = (é ‘S*) and pb;(ml) = (981" ). Note that for any p; = (1(3)1 %) €
Pies(H), one has

- Pt —prtpppyt
pllz( B 1PB—§3 >€Pres(7'[)7
and
_ £y p—1
pipg; (z)py ' = (8 PUBFETP ) € by (H).
Therefore

STr (b gpy; (21)97'0) [y (07 gmy (2)9710)]
= STt (9191043 (21)p71 07 ) [p[,; (9191Pys (z2)P7 97 1)]

= IIres (91)([91p1pb2+ (z1)py 'or M, [91p1p[,2+ (z2)p7 91 ')

= 117 (g1) ([0~ gpys (21)g7 1], [0 gy (w2)g~'8])
= mgi (o, B) = M1, (o, ).

It follows that the right action of Bjf (H) on Gryes(H) is a Poisson map.
O

9.2. Schubert cells of the restricted Grassmannian. In this Section, H will be specified
to be the space L?(S',C) of complex square-integrable functions defined almost everywhere
on the unit circle S' = {z € C,|z| = 1} modulo the equivalence relation that identifies two
functions that are equal almost everywhere. In that case, the inner product of two elements f
and g in L*(S',C) reads (f,g) = Jq F(2)g(2)du(z), where dyu(z) denotes the Lebesgue mesure
on the circle. Let us recall some geometric facts about the restricted Grassmannian that were
established in [42], Chapter 7. Set H4+ = span{z",n > 0} and H_ = span{z",n < 0}.

The restricted Grassmannian admits a stratification {Xg, S € S} as well as a decomposition
into Schubert cells {Cg, S € S}, which are dual to each other in the following sense :

(i) the same set S indexes the cells {Cs} and the strata {Xg};
(ii) the dimension of Cg is the codimension of Xg;
(iii) Cs meets Xg transversally in a single point, and meets no other stratum of the same
codimension.

A element S of the set S is a subset of Z, which is bounded from below and contains all
sufficiently large integers. Given S € S, define the subspace Hg of the restricted Grassmannian
Gryes(H) by :

Hs = span{z%,s € S}.

Recall the following Proposition :

Proposition 9.2 (Proposition 7.1.6 in [42]). For any W € Gryes(H) there is a set S € S such
that the orthogonal projection W — Hg is an isomorphism. In other words the sets {Ug, S € S},
where

Us = {W € Gryes(H), the orthogonal projection W — Hg is an isomorphism},
form an open covering of Gryes(H).

Following [42], let us introduce the Banach Lie groups N (H) and Ny (H) :

res

Nt (H) = {A € GLyos(H), A(Z* M) = 2FH, and (A —1d)(2FH ) € 2T, VE € 7},
Nioo(H) = {A € GLyos(H), A(Z*H_) = 2*H_ and (A — 1d)(2"H_) c 21U _, VEk € Z}.

res

In other words, the group NZ_(#) is the subgroup of BZ (#) consisting of the triangular oper-

res
ators with respect to the basis {|n) := 2z, n € Z} which have only 1’s on the diagonal.
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Proposition 9.3. The Banach Lie group N (H) is a normal subgroup of Bi (M) and the

quotient group BE (H)/NZE (H) is isomorphic to the group of bounded linear positive definite

operators which are diagonal with respect to the orthonormal basis {|2*), k € Z}.

Proof. For a triangular operator g € BE (#), the diagonal coefficients of g and g~' are inverses

of each other : (n|g~'n) = (n|gn)~', Vn € Z. Therefore, for any element h € NZ (H), the

res

composed operator ghg~' has only 1’s on it’s diagonal and belong to N;ES(’H). This implies
that N () is a normal subgroup of BE (#). Recall that D denotes the linear transforma-

res res
tion consisting in taking the diagonal part of a linear operator (see equation (7). Since

|(n|D(A)m)| < ||A|| and D(A) is diagonal, the linear transformation D maps bounded operators
to bounded operators. By the definition of BE (H), the range of D : BE (H) — Loo(H) is

res
the group of bounded linear positive definite operators which are diagonal with respect to the

orthonormal basis {|2*) : k € Z}. Moreover, the kernel of D : BE (H) — Loo(H) is exactly

res

NZ (H). 0

Proposition 9.4. (i) The cell Cs is the orbit of Hg under B, (H).
(ii) The stratum Xg is the orbit of Hg under B (H).

Proof. Tt follows from Proposition 7.4.1 in [42], that the cell Cg is the orbit of Hg under Ni- (H).

res
Symmetrically, it follows from Proposition 7.3.3 in [42], that the stratum Xg is the orbit of Hg
under N (). Since the diagonal part of an operator in BX (#H) acts trivially, one gets the
same result replacing N _(H) by BE_(H). O

res res

1

Recall that the restricted Grassmannian is a Hilbert manifold endowed with the Poisson
structure constructed in Theorem B3l In this Hilbert context, the Poisson tensor 7¢7rs defines

a bundle map (7TG”°S)ti : T* Gryes(H) — T Gres(H). The range of this map is called the
characteristic distribution of the Poisson structure, and the maximal integral submanifolds
of this distribution are called symplectic leaves (see [37] Section 7 for a general discussion on
characteristic distributions and symplectic leaves in the Banach context).

Theorem 9.5. The Schubert cells {Cg, S € S} are the symplectic leaves of Gryes(H).

Proof. The integrability of the characteristic distribution follows from Theorem 6 in [40], since
Grres(H) is a Hilbert manifold. The fact that the symplectic leaves are the orbits of B (H)

res

follows from the construction as in the finite-dimensional case (see Theroem 4.6 (3) in [32]). It
follows from Proposition @4 that the orbits of Bt (#) coincide with the Schubert cells {Cg, S €

res

S}. O

Remark 9.6. Let I't be the group of real-analytic functions ¢ : S' — C*, which extend to
holomorphic functions g from the unit disc D = {z € C : |z| < 1} to C*, satisfying g(0) = 1. Any
such function g € I't can be written g = ef, where f is a holomorphic function on I such that
f£(0) = 0. The group I'" acts by multiplication operators on H and therefore also on Gryes(H). As
explained in [52] (see Proposition 5.13), the action of I'* on (some subgrassmannians of ) Gryes(H)
generates the KdV hierarchy. It is easy to see that '™ C B (#). Indeed, by Proposition 2.3
n [52], Tt C GLyes(H) := GL(H) N Lyes(H). Since g € Tt is holomorphic in D and satisfies
9(0) = 1, the Fourier decomposition of g reads g(z) = 1+ > ,.,grz". Therefore g(z) - 2" =
2"+ hs0 g2 T™. Tt follows that the multiplication operator by g is a upper triangular operator

M, € B (H), with diagonal elements equal to 1. Therefore I'" C B/ (H) and, by Theorem 0.1}

res res

the action of B () on the restricted Grassmannian is a Poisson action.
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