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Abstract This report presents the kinematic, static and stability analysis of a new per-
spective of a three-degrees-of-freedom (3-DOF) spatial mechanism. The mechanism
uses a simple architecture of bars, cables, platforms and spherical joints, making it
lightweight and suitable for integration into a stack of a robot manipulator. Analysis
in three dimensional space with fixed internal DOF reveals instability. It is concluded
that the addition of a new cable between the centres of the platforms and the correct
adjustment of its tension is necessary to ensure stability, especially during rotation
against gravity, and also limit the number of DOF to 2.

1 Introduction

Over the past decade, our businesses have undergone a profound transformation in
production methodologies, incorporating digital tools such as the cloud, AI, and AR
to boost productivity and sustain competitiveness [1].

Robotics, especially collaborative industrial robots (cobots), has emerged as a
key driver in this new industrial era [2]. These cobots, working collaboratively with
operators at workstations, excel in tasks like assembling complex systems, operating
in extreme conditions, and handling heavy objects that require processing or storage.
Apart from enhancing production rates, they also serve as a protective shield for
operators against musculoskeletal disorders (MSDs). However, the versatility of
these ”Swiss Army knives” comes with inherent risks. Substantial differences in
mass and rigidity mean that a collision between a cobot and a human could have
fatal consequences [3]. To ensure operator safety and optimize the benefit-risk ratio
of utilizing robotics in industry, innovative adaptive kinematics for robots must be
proposed. These kinematics should strike a balance between being sufficiently rigid
for precise operation in a confined workspace and flexible enough to move safely
within the area occupied by an operator [4].
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The commitment to crash safety necessitates that only controlled or ’safe’ col-
lisions occur among robots, humans, and obstacles. The primary goal is to limit
the power/force exerted on humans, requiring a more compliant control strategy.
Given the constraint of a very limited working area for both humans and robots,
the use of overhead cameras for supervision is deemed impractical and expensive.
Consequently, power and force-limiting techniques must be implemented, along with
reduced speed and secure monitoring of the robot’s speed and position.

Addressing this challenge, our focus lies on tensegrity mechanisms, a topic gain-
ing prominence in robotics. Inspired by the musculoskeletal system of animals,
tensegrity structures originated as a design trend in the 1960s [5, 6, 7]. These
lightweight mechanical structures result from balancing bars in compression and
cables in tension. The geometric configuration, rigidity, and stability of the system
can be finely tuned for its intended use by adjusting the tension intensity within
the structure through co-actuation of cables. Therefore, the field of tensegrity holds
promise in finding design solutions for creating robots that are both rigid for precise
operation and flexible to work seamlessly with operators.

2 Proposed Spatial Mechanism

This section aims to provide background information that led to the proposed spatial
mechanism design and introduce its characteristics and parameters. Subsection 2.1
will present the research background, considering the concept of tensegrity and its
applications, with a particular focus on robotics. In addition, a general presenta-
tion of the proposed spatial mechanism resulting from this research will be given.
Subsection 2.2 will present the detailed characteristics of the proposed mechanism,
providing insights into its application for the analyses performed in the following
chapters.

2.1 Background

Tensegrity systems have found widespread application in fields as diverse as
aerospace, architecture, civil engineering and biological systems modelling. Their
unique properties, including lightness, adaptability, flexibility, mass efficiency and
the ability to control structural configurations, make them versatile for diverse ap-
plications in nature, art, architecture, engineering and science [8].

In the field of robotics, tensegrity has become a preferred choice for robot design,
capitalising on its ability to provide high precision while maintaining flexibility for
example through bio-inspired designs. Liu et al. [9] assessed the current landscape of
tensegrity-based robots, covering design, fabrication, modelling, analysis and motion
control. While challenges remain, notable progress has been made, motivating our
search for optimal robot design in a human-machine workspace.
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Burkhardt’s work [10] introduced the t-prism, a simple yet fundamental tensegrity
structure. This research investigates this structure, exploring its construction using
dowels, fishing lines and cylindrical coordinates. The optimisation problem focuses
on minimising the length of the side tendons while satisfying constraints on radius,
strut length and symmetry. Arsenault and Gosselin [11] proposed a 3-DOF positional
tensegrity mechanism with a modular design, reduced inertia, and a large workspace.
It is treated as an assembly of independent elements based on Snelson’s X-shaped
tensegrity system [6]. The limits of the actuator workspace reveal limitations for
mechanisms with three or more modules. Marshall [12] introduced a parallel plat-
form device based on tensegrity principles. It replaces elements with variable length
legs and combinations of springs and connectors. The analysis confirms the config-
urability of the upper platform by externally applied wrench coordinates. Furet [13]
and Fasquelle [14] used antiparallelogram tensegrity joints to model a bird neck.
Mirats and Camps [15] presented a tensegrity-based robot with a 3-bar symmetric
prismatic configuration anchored to the ground. Despite being underactuated, the
robot exhibits controlled motion within its workspace. The study highlights the sin-
gularity of equilibrium matrices for stable configurations and anticipates future work
on control laws and hyper-actuated structures, demonstrating the potential of tenseg-
rity in deformable and adaptive robots.Fasquelle et al. [16] presented lightweight
manipulators using anti-parallelogram X-joints to form a tensegrity mechanism with
one degree of freedom. This design, inspired by the musculoskeletal structure of
the bird’s neck, is validated through simulation and experimentation on a test-bed
prototype, offering intrinsic stability, variable stiffness and lower inertia compared to
conventional manipulators. Kim [17] proposed a compact 2-DOF cable-driven wrist
joint. John [18] noticed that this wrist joint has theoretical mobility of 0 and that
the practical mobility is only provided by link deformations and clearances. He then
proposed a new variant to overcome this issue. Their work presents a new variant of
the quaternion joint and contributes to the advancement of tensegrity-based robotic
manipulators in bio-inspired robotics.

Inspired by this body of research, our proposed 3-DOF spatial mechanism, shown
in Fig 1, promises interesting insights. The ultimate goal of this research is to integrate
a stack of these mechanisms, as shown in Fig 2, to construct a robotic manipulator.

Fig. 1 CAD and prototype for
the proposed mechanism.
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Fig. 2 Robot manipulator
using a stack of the proposed
spatial mechanism.

2.2 Description

Fig. 3 shows the CAD model of the 3-DOF spatial manipulator. The configuration
consists of two different platforms. Bottom or fixed platform: This platform remains
fixed and is characterised by six vertices: 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3. Its equidistant centre
is denoted by 𝑜0. The points 𝐴𝑖 are placed at a uniform distance 𝑏 from each other,
forming an angle 𝜓 between 𝐴𝑖 and 𝐵𝑖 . Upper or mobile platform: The upper
platform is mobile and also has six vertices: 𝐴4, 𝐵5, 𝐴5, 𝐵6, 𝐴6, 𝐵4. The equidistant
centre for this platform is denoted 𝑜3. Similar to the lower platform, the distance
between the points 𝐴𝑖 is 𝑏, but with an angle of −𝜓 between 𝐴𝑖 and 𝐵𝑖 .

These two platforms are connected by three bars of equal length 𝐿. Specifically,
the connections are as follows 𝐴1 to 𝐴6, 𝐴2 to 𝐴4 and 𝐴3 to 𝐴3. In addition, the
structure includes three cables of lengths 𝑙1, 𝑙2 and 𝑙3 connecting the vertices 𝐵1 to
𝐵4, 𝐵2 to 𝐵5 and 𝐵3 to 𝐵6 respectively.

Three reference frames are defined: F𝑔 = (𝑜𝑔, sg, ng, ag), F0 = (𝑜0, s0, n0, a0),
and F3 = (𝑜3, s3, n3, a3), as visualised in Fig. 3. Here F𝑔 represents the general
reference plane, F0 is fixed to the lower platform and F3 is on the upper platform.

Since the proposed mechanism is designed to be used as a joint in a series
arrangment of such mechanisms (see Fig 1, right), two angular parameters 𝛼 and 𝛽

are used to define its orientation in space.
Examining the proposed spatial mechanism in this context provides valuable

insights into its kinematic and static analyses, as well as its stability. In the following
sections, these aspects will be fully explored.
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Fig. 3: Proposed Spatial Mechanism

3 Kinematic Model

This section explores the kinematic model that governs the proposed spatial mech-
anism, using the representation of its orientation workspace in terms of tilt and
torsion angles. Subsection 3.1 introduces the use of tilt and torsion, providing their
definitions in the context of the proposed mechanism. Subsection 3.2 introduces the
inverse kinematic model. The inherent nonlinearity of parallel and spatial mech-
anisms, compounded by intricate interactions between actuators and variations in
cables, poses a formidable challenge to the mathematical expression of their direct
kinematic behaviour [19]. Consequently, we formulate the inverse kinematic model
by integrating trilateration techniques and cable length determination. Furthermore,
subsection 3.3 presents an exploration of the kinematic workspace, including an anal-
ysis of bar intersections and the identification of achievable values for spatial angles.
Finally, subsection 3.4 delves into stability considerations, explaining the critical
criteria for selecting cable lengths to ensure stability and the strategic placement of
cables on the platforms.
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3.1 Tilt and Torsion

The orientation workspace of this spatial mechanism encompasses the array of viable
3-D orientations for the mobile platform at 𝑜3 in Cartesian coordinates. Similar to
other parallel mechanisms, this spatial mechanism faces the challenge of accurately
representing its orientation workspace due to the intricacies of interconnected and
non-Euclidean rotational motion, as well as the inherent singularity present in any
3-D orientation parameterisation, such as the well-known set of Euler angles.

Nevertheless, Bonev’s investigation [7] convincingly highlights the advantages
of using tilt and torsion angles, as shown in Fig. 4, and confirms their suitability
for a wide range of spatial and parallel mechanism applications. The inclusion of
these innovative parameters results in a concise and highly intuitive representation
of the orientation workspace, especially when modelling the motion limits of the
mechanism studied in this research.
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Fig. 4: Tilt and torsion parametrization.

Following [7], the rotation matrix 0𝑅3 between F0 and F3is given by:

0𝑅3 = rot(𝑎0, 𝜙)rot(𝑛1, 𝜃)rot(𝑠2, 𝜎 − 𝜙), (1)

where:
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rot(𝑎0, 𝜙) =
©­«
cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

ª®¬ ,
rot(𝑛1, 𝜃) = ©­«

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

ª®¬ and

rot(𝑠2, 𝜎 − 𝜙) = ©­«
cos(𝜎 − 𝜙) − sin(𝜎 − 𝜙) 0
sin(𝜎 − 𝜙) cos(𝜎 − 𝜙) 0

0 0 1

ª®¬ ,
(2)

and these three unit rotations around 𝑎0, 𝑛1, and 𝑠2 define the tilt for the first two and
the torsion for the last one.

3.2 Inverse Kinematic Model

The inverse kinematic model is obtained in two steps (Fig. 5). The first step, called
trilateration, involves computing the coordinates of the top platform (𝑋,𝑌, 𝑍)𝑇 in
the frame F3 = (𝑜3,B3), where B3 is the vector base (s3, n3, a3) (Fig. 3). The second
step is to determine the cable lengths 𝑙𝑖 based on the spatial angles (𝜙, 𝜃, 𝜎). This
subsection provides a detailed exploration of both steps.

������������	 �
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Fig. 5: Inverse kinematic model strategy.

We begin by deriving the position of the upper platform as a function of spatial
angles. It takes into account the three geometric constraints imposed by the legs on
the upper platform, namely 𝐿2 = | |𝐴1𝐴6 | |2, 𝐿2 = | |𝐴2𝐴4 | |2 and 𝐿2 = | |𝐴3𝐴5 | |2. In
terms of (𝑋,𝑌, 𝑍)𝑇 , these constraints can be expressed as:

©­«
1 1 1
1 1 1
1 1 1

ª®¬ ©­«
𝑋2

𝑌2

𝑍2

ª®¬ − 2 ©­«
𝑥S1 𝑦S1 𝑧S1

𝑥S2 𝑦S2 𝑧S2

𝑥S3 𝑦S3 𝑧S3

ª®¬ ©­«
𝑋

𝑌

𝑍

ª®¬ +
©­­«
𝑥2
S1

+ 𝑦2
S1

+ 𝑧2
S1

− 𝐿2

𝑥2
S2

+ 𝑦2
S2

+ 𝑧2
S2

− 𝐿2

𝑥2
S3

+ 𝑦2
S3

+ 𝑧2
S3

− 𝐿2

ª®®¬ = 0, (3)

where 𝑜𝑠1 = (𝑥S1 , 𝑦S1 , 𝑧S1 )𝑇 , 𝑜𝑠2 = (𝑥S2 , 𝑦S2 , 𝑧S2 )𝑇 and 𝑜𝑠3 = (𝑥S3 , 𝑦S3 , 𝑧S3 )𝑇 are
the coordinates of the centres of the three spheres denoted S1, S2 and S3 (Fig. 6),
each with a radius of 𝐿, intersecting at S3. The trilateration method is then used to
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solve equation (3), similar to the approach used by the authors in [20]. They used
this mathematical method to model the kinematics of a delta robot.
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Fig. 6: Geometric constraints.

Considering, as in Fig.7, the three circles coming from the intersection of the
spheres and the plane containing the upper platform, from (3), the equation of the
circle C𝑖 coming from S𝑖 is the following:

𝜌2
𝑖 = (𝑋 − 𝑥S𝑖

)2 + (𝑌 − 𝑦S𝑖
)2, (4)

where 𝜌2
𝑖
= 𝐿2 − 𝑍2 + 2𝑍𝑧0𝑖 − 𝑧2

0𝑖 is the radius of the circle S𝑖 . Subtracting the
equation of C3 from those of C1 and C2 gives the following linear system:(

𝐴11 𝐴12
𝐴21 𝐴22

) (
𝑋

𝑌

)
=

(
𝐵1
𝐵2

)
𝑍 +

(
𝐶1
𝐶2

)
, (5)

where 𝐴11 = 𝑥S1 − 𝑥S2 , 𝐴12 = 𝑦S1 − 𝑦S2 , 𝐴21 = 𝑥S1 − 𝑥S3 , 𝐴22 = 𝑦S1 − 𝑦S3 ,
𝐵1 = 2(𝑧S2 − 𝑧S1 ), 𝐵2 = 2(𝑧S3 − 𝑧S1 ), 𝐶1 = 𝑥2

S1
− 𝑥2

S2
+ 𝑦2

S1
− 𝑦2

S2
− 𝑧2

S2
+ 𝑧2

S1
, and

𝐶2 = 𝑥2
S1

− 𝑥2
S3

+ 𝑦2
S1

− 𝑦2
S3

− 𝑧2
S3

+ 𝑧2
S1

. As a function of 𝑍 the unique solvable pair
(𝑋,𝑌 ) of (5) is equal to:

𝑋 = 𝛼𝑋𝑍 + 𝛽𝑋, 𝑌 = 𝛼𝑌 𝑍 + 𝛽𝑌 , (6)
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Fig. 7: Trilateration approach at 𝜙 = 𝜋/6, 𝜃 = 𝜋/4 and 𝜎 = −𝜋/6.

where 𝛼𝑋 = (𝐴22𝐵1 − 𝐴12𝐵2)/det(𝐴), 𝛽𝑋 = (𝐴12𝐶2 − 𝐴22𝐶1)/det(𝐴), 𝛼𝑌 =

(𝐴11𝐵2 − 𝐴21𝐵1)/det(𝐴), and 𝛽𝑌 = (𝐴11𝐶2 − 𝐴21𝐶1)/det(𝐴). Replacing, in the
equation of C3, 𝑋 and 𝑌 by the solution pair (6), we obtain a second order equation
as a function of 𝑍 , i.e:

0 = (1 + 𝛼2
𝑋 + 𝛼2

𝑌 )𝑍2

+ 2(𝛼𝑋 (𝛽𝑋 − 𝑥S1 ) + 𝛼𝑦 (𝛽𝑦 − 𝑦S1 ) − 𝑧S1 )𝑍 (7)
+ ((𝛽𝑋 − 𝑥S1 )2 + (𝛽𝑌 − 𝑦S1 )2 + 𝑧2

S1
− 𝐿2),

which gives two or zero solutions as a function of (𝜙, 𝜃, 𝜎) and the mechanism
parameters 𝑏 and 𝐿. Once the values of 𝑍 are known, the solution pairs (𝑋,𝑌 ) can
be computed by (6). Fig. 8 shows an example of the result of this process. In this case
both solutions of the inverse kinematic model are shown for 𝜃 = 𝜋/4 rad, 𝜙 = 𝜋/6
rad and 𝜎 = −𝜋/6 rad. It is important to note that there is no symmetry between the
two solutions.

The second step to obtain the inverse kinematic model is to determine the length
of the cables as a function of 𝜃, 𝜙 and 𝜎. This is done using the cable length equation:
𝑙2 = | |𝐵1𝐵4 | |2, 𝑙2 = | |𝐵2𝐵5 | |2 and 𝑙2 = | |𝐵3𝐵6 | |2. Having obtained the values of B𝑖

(derived from the previous step) for both solutions, the lengths of the cables 𝑙1, 𝑙2
and 𝑙3 can be determined for each solution.
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Fig. 8: Two solutions of the inverse kinematic model for 𝜙 = 𝜋/6 rad, 𝜃 = 𝜋/4 rad
and 𝜎 = −𝜋/6 rad.

3.3 Kinematic Workspace

This subsection analyses the kinematic workspace of the mechanism by detecting
the intersection of the bars using the inverse kinematic model. For this reason, a
specific geometry is defined for the proposed mechanism, which will be used in the
research from now on. Table 1 lists the parameters and their corresponding values
for the proposed mechanism.

Table 1: Parameters, symbols and values for the proposed mechanism

Parameter Symbol Value
Distance between points 𝐴𝑖 𝑏 15 cm
Angle between 𝐴𝑖 and 𝐵𝑖 𝜓 15° (𝜋/12 rad)
Length of the bars 𝐿 30 cm
Diameter of the bars 𝐷𝑏 5 mm

In this context, determining the kinematic workspace involves calculating the
distances between the bars and comparing them with a predefined threshold. The
threshold is defined by the diameter of the bar 𝐷𝑏 as specified in Table 1. These
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distances, expressed as functions of 𝜃, 𝜙 and 𝜎, make it possible to identify the
values for which the distance exceeds the diameter. This indicates the absence of
intersections, which represent the angles at which the mechanism can move.

The unit vectors v, u, w correspond to bar 1 (𝐴1𝐴6), bar 2 (𝐴2𝐴4) and bar 3
(𝐴3𝐴5) respectively, as shown in Fig. 9. Using the inverse kinematic model, each of
these vectors is expressed as a function of 𝜃, 𝜙 and 𝜎.

u =
A6 − A1
∥A6 − A1∥

, v =
A4 − A2
∥A4 − A2∥

and w =
A5 − A3
∥A5 − A3∥

. (8)
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Fig. 9: The two solutions of the inverse kinematic model for 𝜙 = 𝜋/6, 𝜃 = 𝜋/4 and
𝜎 = −𝜋/6.

Then the normal vectors are calculated for each pair of bars. The vector i represents
the normal vector between bar 1 and bar 2, j represents the normal vector between
bar 2 and bar 3, and finally k represents the normal vector between bar 3 and bar 1,
i.e:

i = u × v, j = v × w and k = w × u. (9)

Consider 𝑃1 and 𝑃6 as arbitrary points on bar 1, 𝑃2 and 𝑃3 as arbitrary points on
bar 2 and 𝑃4 and 𝑃5 as arbitrary points on bar 3 (Fig. 9). These points can be defined
as follows.



12 PhD Student: Karol Muñoz Salas Supervisors: Philippe Wenger and Mathieu Porez

P1 = A1 + 𝜁1 u, P2 = A2 + 𝜁2 v, P3 = A2 + 𝜁3 v,
P4 = A3 + 𝜁4 w, P5 = A3 + 𝜁5 w and P6 = A1 + 𝜁6 u.

(10)

In (10), 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5 and 𝜁6 represent scalar parameters indicating the relative
positions of points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 and 𝑃6 along the directions of the vectors u, v
and w respectively. Let 𝑑1 be defined as the minimum distance between the point 𝑃1
and the point 𝑃2, 𝑑2 as the distance between the point 𝑃3 and the point 𝑃4 and finally
𝑑3 as the distance between the point 𝑃5 and the point 𝑃6. Each of these distances is
calculated using the following formulas:

𝑑1 i = P2 − P1, 𝑑2 j = P4 − P3 and 𝑑3 k = P6 − P5. (11)

Substituting (10) into (11) gives:

𝑑1 i = A2 + 𝜁2 v − A1 − 𝜁1 u,
𝑑2 j = A3 + 𝜁4 w − A2 − 𝜁3 v and
𝑑3 k = A1 + 𝜁6 u − A3 − 𝜁5 w.

(12)

Using algebraic methods, it is possible to determine 𝑑1, 𝑑2, 𝑑3 and 𝜁𝑖 as a
function of 𝜃, 𝜙 and 𝜎. A condition, where there is no intersection between bars, is
established and includes two aspects: the distance between the bars must be greater
than the diameter of the bar 𝐷𝑏, and the scalar parameters 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5 and 𝜁6
should be in the range of the length of the bar, i.e:

𝑑1, 𝑑2, 𝑑3 ≥ 𝐷𝑏 and 0 ≤ 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5, 𝜁6 ≤ 𝐿. (13)

The results of the analyses are shown in Fig. 10, 11 and 12. The grey area
represents reachable values of 𝜎, 𝜙 and 𝜃, and the white area represents unreachable
values.

Fig. 10 shows the relation 𝜃 vs 𝜎 for all possible values of 𝜙. In this figure, if we fix
𝜃 = 0, we can observe two zones for 𝜎. Zone 1 (𝜎 ∈ [−𝜋/3, 2𝜋/3] rad) corresponds
to the clockwise movement of the mechanism, from the value of 𝜎 where the bars
cross (-𝜋/3 rad) to the value of 𝜎 where the bars become parallel (2𝜋/3 rad). On the
other hand, zone 2 (𝜎 ∈ [2𝜋/3, 5𝜋/3] rad) is associated with the counterclockwise
movement of the mechanism, from the value of 𝜎, where the bars are parallel (2𝜋/3
rad), to the value of 𝜎, where the bars cross again (5𝜋/3 rad).

Fig. 11 shows a cross section on the 𝜎 and 𝜃 axes for two values of 𝜙 (𝜙 = 0 and
𝜙 = 𝜋/2 rad). The two graphs in this figure show the movement of the mechanism
in the two vertical and orthogonal planes of 3-D space. In both planes there are two
distinct zones as explained for Fig. 10. In the vertical plane of zone 1 (Fig. 11a) the
range of 𝜃 is observed to extend from −𝜋 to 𝜋/2 rad when 𝜎 = 𝜋/3 rad. Moving
to zone 2, we see that for 𝜎 = 𝜋 the allowable range for 𝜃 is from −𝜋/2 to 𝜋 rad.
Shifting the focus to the orthogonal plane (Fig. 11b), zone 1 shows that for 𝜎 = 0 the
allowable range for 𝜃 is from −𝜋 to 𝜋/2 rad. Similarly, in zone 2, when 𝜎 = 4𝜋/3,
the range for 𝜃 shows a similar pattern.
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Fig. 10 Relationship the 𝜎

vs. 𝜃 for all possible values of
𝜙.
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(b) 𝜙 = 𝜋/2 rad

Fig. 11: Cross-section in the 𝜎 vs 𝜃 plane for different 𝜙 values.

The cross section of 𝜙 vs. 𝜃 for different values of 𝜎 in zone 1 is shown in Fig. 12.
As the value of 𝜎 increases, the range of 𝜃 gradually increases, but then decreases
until it reaches a minimum value. However, it is important to note that the maximum
range of 𝜃 in zone 1 is within the interval [−𝜋/2, 𝜋/2] rad.

After analysing the kinematic workspace, the following chapters will focus
exclusively on zone 1. Therefore, the operating limits are defined as follows
𝜃 ∈ [−𝜋/2, 𝜋/2] rad, 𝜙 ∈ [−𝜋, 𝜋] rad and 𝜎 ∈ [−𝜋/3, 2𝜋/3] rad.
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(a) 𝜎 = −𝜋/6 rad
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(b) 𝜎 = 𝜋/6 rad
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(c) 𝜎 = 𝜋/2 rad

Fig. 12: Cross-section in the 𝜙 vs 𝜃 plane for different 𝜎 values.

3.4 Stability Conditions

According to Burkhardt [10], the choice of lengths for the three final tendons, each
corresponding to one side, plays a crucial role in ensuring the stability of the prism
mechanism proposed in his research. Burkhardt mentioned that as the prism ends
twist, some points come closer together and then move apart. The binding of the side
tendons at the closest point is crucial for stability. The structure can only change by
increasing the distance between these points, which is prevented by the short tendons,
and this basic concept underlies all tensegrity designs that have been explored. It is
therefore important to determine the minimum length of the cables for the mechanism
proposed keeping its internal DOF fixed (𝜙 = 𝜃 = 0) and only rotates around the
vertical axis for torsional effects.

The length of the cables and bars can be defined using the parameters shown in
Fig. 3 and Table 1. Since the cable length equation has been defined in subsection 3.2,
the specific cable length equation in this case, together with the kinematic constraint
for the bar length, is defined as follows:

ℓ2 = 𝑧2 + 2𝑏2

3
− 2𝑏2 cos(2𝜓 − 𝜎)

3
and (14)

𝐿2 = 𝑧2 + 2𝑏2

3
+ 𝑏2 cos(𝜎)

3
−
√

3𝑏2 sin(𝜎)
3

. (15)

Finding 𝑧2 in (15):

𝑧2 = 𝐿2 − 2𝑏2

3
− 𝑏2 cos(𝜎)

3
+
√

3𝑏2 sin(𝜎)
3

. (16)

and replacing (16) in (14) gives:

ℓ2 = 𝐿2 − 𝑏2 cos(𝜎)
3

+
√

3𝑏2 sin(𝜎)
3

− 2𝑏2 cos(2𝜓 − 𝜎)
3

. (17)
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For (17), finding the minimum value of the cable length for the twist:

min
𝜎

[
𝑓 (𝜎) = 𝐿2 − 𝑏2 cos(𝜎)

3
+
√

3𝑏2 sin(𝜎)
3

− 2𝑏2 cos(2𝜓 − 𝜎)
3

]
, (18)

where
𝑑𝑓

𝑑𝜎
= −𝑏2

3

(
2 sin(2𝜓 − 𝜎) − 2 sin(𝜎 + 𝜋

3
)
)
= 0, (19)

implies
sin(2𝜓 − 𝜎) = sin(𝜎 + 𝜋

3
). (20)

Finally,
2𝜓 − 𝜎 = 𝜎 + 𝜋

3
⇒ 𝜎 = 𝜓 − 𝜋

6
. (21)

Changing 𝜓 induces a corresponding adjustment in 𝜎 with the same direction and
magnitude, maintaining a consistent offset of 𝜋/6 rad. This adjustment is essential
for the stability of the system. Given that 𝜓 = 𝜋/12 rad in the proposed mechanism,
the optimal configuration for maintaining stability is achieved when 𝜎 = −𝜋/12 rad.
The feasibility of achieving this configuration using actuators will be examined in
the following section.

4 Static Equilibrium Conditions

This chapter examines the geometry of the proposed spatial mechanism to ensure
stability, particularly in the context of static equilibrium conditions. The subsec-
tion 4.1 provides an analysis of the behaviour of the system keeping its internal
DOF fixed (𝜙 = 𝜃 = 0) and assesses the feasibility of managing the cable forces to
maintain stability. On the other hand, subsection 4.2 presents an alternative solution,
as the original geometry alone may not ensure stability under these conditions. This
alternative involves introducing the force of a fourth cable positioned at the centre
of the two platforms of the mechanism.

4.1 System at Rest

Considering that the mechanism will be integrated into a robot manipulator, we are
investigating the influence of rigid angular motions (𝛼, 𝛽) on the structural integrity
of the proposed mechanism, while keeping its internal DOF fixed (𝜙 = 𝜃 = 0).
Exploring the system under these conditions provides valuable insights into its
equilibrium and cable forces, and offers a comprehensive review of its feasibility
when considering the involvement of actuators and their force limitations.

The equilibrium is analysed using the Newton-Euler equations:
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F = 0 and

∑︁
M = 0. (22)

Considering the forces in the bars (F𝑏1, F𝑏2, F𝑏3) and in the cables (F𝑐1, F𝑐2,
F𝑐3), together with the gravitational force (F𝑔), the sum of the forces in equilibrium
is expressed:

F𝑏1 + F𝑏2 + F𝑏3 + F𝑐1 + F𝑐2 + F𝑐3 + F𝑔 = 0, (23)

and the sum of the moments at the point 𝑜3 is expressed:

A6o3 × F𝑏1 + A4o3 × F𝑏2 + A5o3 × F𝑏3

+ B4o3 × F𝑐1 + B5o3 × F𝑐2 + B6o3 × F𝑐3 = 0.
(24)

The forces acting in the bars can be defined as follows:

F𝑏1 = 𝑓𝑏1
A6 − A1

𝐿
, F𝑏2 = 𝑓𝑏2

A4 − A2
𝐿

and F𝑏3 = 𝑓𝑏3
A5 − A3

𝐿
, (25)

where 𝑓𝑏1 < 0, 𝑓𝑏2 < 0, and 𝑓𝑏3 < 0, this phenomenon can be attributed to a
technological aspect, specifically the magnetic nature of the spherical joints, which
can lead to disassembly if subjected to excessive tensile forces.

The forces acting in the cables can be defined as follows:

F𝑐1 = 𝑓𝑐1
B4 − B1

𝑙1
, F𝑐2 = 𝑓𝑐2

B5 − B2
𝑙2

and F𝑐3 = 𝑓𝑐3
B6 − B3

𝑙3
, (26)

where 𝑓𝑐1 > 0, 𝑓𝑐2 > 0, 𝑓𝑐3 > 0 to achieve the tensegrity property.
The gravitational force is defined as:

F𝑔 = 𝑚 g. (27)

Solving (25), (26), (27) in (23) and (24) will yield the expressions for 𝑓𝑐1, 𝑓𝑐2,
and 𝑓𝑐3, 𝑓𝑏1, 𝑓𝑏2, and 𝑓𝑏3 which are of interest for studying stability and feasibility
of the proposal mechanism. Therefore, factoring these equations, in order to find
the mathematical expression for the cable tensions, allows us to derive the following
expression: [

A𝑐 A𝑏

B𝑐 B𝑏

] (
𝑓𝑐
𝑓𝑏

)
=

(
−𝑚 g

0

)
(28)

where 𝑓𝑐 = ( 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3)𝑇 and 𝑓𝑏 = ( 𝑓𝑏1, 𝑓𝑏2, 𝑓𝑏3)𝑇 .

Considering the equation provided in (28), the cable tensions can be defined as
follows:

𝑓𝑐 = −(A𝑐 − A𝑏 B−1
𝑏 B𝑐)−1𝑚 g . (29)

Due to the complexity of this expressions, the detailed equations will not be
included in this document. However, the underlying variables on which these ex-
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pressions depend are listed below:

𝑓𝑐1 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐1 > 0,
𝑓𝑐2 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐2 > 0 and
𝑓𝑐3 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐3 > 0.

(30)

In subsection 3.4, it was deduced that for 𝜓 = 𝜋/12 rad, the system would be
stable when 𝜎 = −𝜋/12 rad. Therefore, the subsequent analysis will examine the
relationship between cable tensions 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3 and 𝜎, aiming to confirm the
condition for stability. For this analysis, the simplest context will be considered,
where 𝛼 = 0 and 𝛽 = 0. This context allows for the simplification of equations
for 𝑓𝑐1, 𝑓𝑐2, and 𝑓𝑐3, satisfying the following conditions: 𝑙 = 𝑙1 = 𝑙2 = 𝑙3 and
𝑓𝑐 = 𝑓𝑐1 = 𝑓𝑐2 = 𝑓𝑐3 and 𝑓𝑏 = 𝑓𝑏1 = 𝑓𝑏2 = 𝑓𝑏3.

In this scenario, the complex set of equations provided in (23) and (24) are simpli-
fied to the concise form of the sum of forces and moments represented respectively
by:

3 𝑓𝑏 𝑧

𝐿
+ 3 𝑓𝑐 𝑧

𝑙
− 𝑚 𝑔 = 0 and (31)

𝑓𝑏 𝑙

(
sin(𝜎) +

√
3 cos(𝜎)

)
+ 2 𝑓𝑐 𝐿 sin(2𝜓 − 𝜎) = 0. (32)

Solving the above equations gives the resulting expressions for 𝑓𝑏 and 𝑓𝑐:

𝑓𝑏 =
𝑚 𝑔 𝐿 sin(2𝜓 − 𝜎)

3 𝑧 (sin(2𝜓 − 𝜎) − sin(𝜎 + 𝜋/3)) and (33)

𝑓𝑐 =
𝑚 𝑔 𝑙 sin(𝜎 + 𝜋/3)

3 𝑧 (sin(2𝜓 − 𝜎) − sin(𝜎 + 𝜋/3)) . (34)

In these equations, the variables 𝑧 and 𝑙 can be defined according to the expressions
provided in (16) and (17). It is important to note that the cable tension 𝑓𝑐 must be
positive to satisfy the tensegrity condition.

Fig. 13 illustrates 𝑓𝑐 for 𝜎 ∈ [−𝜋/3, 2𝜋/3] rad. In this figure is shown that 𝑓𝑐
adhere to the tensegrity condition only for torsion values greater than −𝜋/3 rad and
less than −𝜋/12 rad. Hence, a new range for torsion is defined.

Also in this figure, 𝑓𝑐 exhibits an infinite increase when 𝜎 = −𝜋/12 rad. This
behavior indicates that the system reaches a singularity where the length of the cables
becomes minimal, as illustrated in Eq.(18) and Eq.(19). These equations constitute
a portion of the Jacobian matrix of the system. and when their value becomes zero,
it leads to the system entering a singularity, rendering it uncontrollable.

Therefore, we will analyse the behaviour of the system by choosing another
torsion value within the new range where the cable forces are positive (𝜎 ∈
[−𝜋/3,−𝜋/12] rad) and also rotating it in 3-D space (𝛼, 𝛽). This involves using
(30) to create expressions for 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3. When searching for an alternative
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Fig. 13 𝑓𝑐 vs. 𝜎 for system
keeping its internal DOF fixed
(𝜙 = 𝜃 = 0) and considering
𝛼 = 0 and 𝛽 = 0). 𝑓𝑐 becomes
infinite when 𝜎 = −𝜋/12 rad.

- /3 - /6 0 /6 /3 /2 2 /3
-60

-40

-20

0

20

40

60

/1
2

torsion value, it is essential to ensure that for this particular torsion the system retains
the ability to rotate over the whole range of 𝛼 ∈ [−𝜋, 𝜋] rad and 𝛽 ∈ [−𝜋, 𝜋] rad,
while at the same time satisfying the condition that the 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 remain strictly
greater than zero. Using the equations provided in (30) and choosing a torsion value
(𝜎 = −𝜋/6 rad), the analysis of 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 is performed and the results are
shown in Fig. 14. Fig. 14a illustrates that at some point during the orientation around
𝛼 considering 𝛽 = 0, the cable tensions become negative, violating the specified
condition of tensegrity. Furthermore, in Fig. 14b, a detailed analysis of the 𝛽 versus
𝛼 region reveals a distinct pattern. In this plot, positive cable tensions are highlighted
in grey, while negative cable tensions are highlighted in white. It is clear that there
are specific combinations of 𝛼 and 𝛽 where the cable forces deviate from being
strictly positive.

- - /2 0 /2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3 vs. 𝛼 for 𝛽 = 0
(b) Feasible orientation range for 𝛼

and 𝛽 with { 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0

Fig. 14: System keeping its internal DOF fixed (𝜙 = 𝜃 = 0) under angular rigid
orientation around 𝛼 and 𝛽 and a torsion of 𝜎 = −𝜋/6 rad.
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In light of this consideration, the analysis is directed towards examining the
correlation between the angular rigid orientation range around (𝛼, 𝛽) and the torsion
value𝜎. The results, illustrated in Fig. 15a, show that as the torsion value𝜎 decreases,
the orientation range around𝛼 decreases proportionally. The overall goal is to achieve
an orientation range of 𝛼 equal to 𝜋; however, it becomes apparent that this goal is
unattainable. Fig.15b and Fig.15c give an insight into the feasible values of 𝛼 and
𝛽 for the points A and C shown in Fig. 15a, while point B was previously shown in
Fig. 14b. Unfortunately, none of these cases allows a complete orientation.

- /3 - /4 - /6 - /12

0

/3

2 /3

(a) 𝜎 vs 𝛼

(b) Range of 𝛽 vs 𝛼 for Point A (𝜎 = −𝜋/9
rad)

(c) Range of 𝛽 vs 𝛼 for Point C (𝜎 = −𝜋/4
rad)

Fig. 15: System keeping its internal DOF fixed (𝜙 = 𝜃 = 0) under angular rigid
orientation around 𝛼 and 𝛽 with different values of torsion.

To mitigate this problem and prevent cable slack, two possible design solutions
are presented, as shown in Fig. 16. The first solution involves the introduction of a
new central cable of length 𝑙4, connected to 𝑜0 and 𝑜3, which maintains the torsional
angle of the mobile platform by applying a new tension to it. The second solution is
to insert a leg between these two points. This leg is a driving form consisting of two
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universal joints at its ends and a prismatic joint in the middle. The angular offset
between the connection points at the two tips makes it possible to fix the torsion
angle of the mechanism.

Each solution has its own advantages and disadvantages. The first solution offers
increased system flexibility by allowing torsional variation through the force applied
to this cable. However, the disadvantage is that the control of the force variation in
this fourth cable is very sensitive. On the other hand, the second solution offers the
advantage of increased system stiffness. However, it reduces the number of DOF
by sacrificing torsion, which remains fixed in its spatial rotation. In addition, this
adjustment introduces more inertia (due to the new mass) and increases the likelihood
of collisions between the bars.

The following subchapter analyses the behaviour of the system keeping its internal
DOF fixed (𝜙 = 𝜃 = 0) and taking into account the presence of a fourth cable; the
study of the second option will be part of future studies.

Fig. 16: Two potential design solutions for achieving a full orientation in 𝛼 and 𝛽

accomplishing the condition of tensegrity ({ 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0).

4.2 System at rest adding a fourth cable

For static analysis, the force in the fourth cable is added:

F𝑐4 = 𝑓𝑐4
o3 − o0

𝑙4
, (35)
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and the sum of forces is presented:

F𝑏1 + F𝑏2 + F𝑏3 + F𝑐1 + F𝑐2 + F𝑐3 + F𝑐4 + F𝑔 = 0. (36)

The sum of the moments remains consistent with the expression in (24). By
including the force F𝑐4 in the sum of forces, a solvable system of equations is
obtained. This leads to updated expressions for 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3. Therefore, factoring
these equations to find the mathematical expression for the cable tensions allows us
to derive the following expression:[

A𝑐 A𝑐4 A𝑏

B𝑐 0 B𝑏

] ©­«
𝑓𝑐
𝑓𝑐4
𝑓𝑏

ª®¬ =
(
−𝑚 g

0

)
(37)

where 𝑓𝑐 = ( 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3)𝑇 and 𝑓𝑏 = ( 𝑓𝑏1, 𝑓𝑏2, 𝑓𝑏3)𝑇 . By moving the terms associ-
ated with F𝑐4 from the equation (37) on the opposite side of the equality:[

A𝑐 A𝑏

B𝑐 B𝑏

] (
𝑓𝑐
𝑓𝑏

)
=

(
−𝑚 g − A𝑐4 𝑓𝑐4

0

)
. (38)

where 𝑓𝑐4 is defined as the tuning parameter for the tension of the fourth cable of the
mechanism. Taking into account the equation given in (38), the cable tensions can
be defined as follows:

𝑓𝑐 = −(A𝑐 − A𝑏 B−1
𝑏 B𝑐)−1 (𝑚 g + A𝑐4 𝑓𝑐4). (39)

Due to their complexity, the detailed equations are not explicitly presented in this
document. However, similar to the previous analysis, the underlying variables that
influence these expressions are listed below:

𝑓𝑐1 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐1 > 0,
𝑓𝑐2 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐2 > 0 and
𝑓𝑐3 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐3 > 0.

(40)

Continuing with the example presented in the previous chapter, the design with
𝜎 = −𝜋/6 rad for the torsion of the system is selected and a tension 𝑓𝑐4 is applied.
Fig. 14b, presented in the previous subchapter, shows the 𝛽 vs. 𝛼 range, revealing
instances where the cable tensions were not positive when the fourth cable was not
present. On the other hand, Fig. 17 illustrates the behaviour of the 𝛽 vs. 𝛼 region
when the fourth cable is present and for different tension values. It can be seen that
as the tension 𝑓𝑐4 increases, the area of the 𝛽 vs. 𝛼 region also increases, ensuring
that 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 are positive. Therefore, with the appropriate tension 𝑓𝑐4, the
tensegrity property can be satisfied.

As observed in Figs. 15 and 17, the range of orientation in 𝛼 and 𝛽 varies as
we change 𝜎 and 𝑓𝑐4 respectively. It is therefore crucial to examine the relationship
between the range of 𝛼 and 𝛽 and the tension of the fourth cable ( 𝑓𝑐4) and the torsion
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(a) 𝑓𝑐4/𝑚𝑔 = 1 (b) 𝑓𝑐4/𝑚𝑔 = 2

(c) 𝑓𝑐4/𝑚𝑔 = 3 (d) 𝑓𝑐4/𝑚𝑔 = 4

Fig. 17: Feasible orientation range for 𝛼 and 𝛽 with the system keeping its internal
DOF fixed (𝜙 = 𝜃 = 0) and torsion 𝜎 = −𝜋/6 rad.

(𝜎). The importance of this analysis is to identify the values of 𝑓𝑐4 and 𝜎 that allow
a complete orientation around 𝛼 and 𝛽 while satisfying the tensegrity conditions
({ 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0).

Fig. 18 shows the result of this analysis and illustrates the limiting relationship
between 𝑓𝑐4 and 𝜎, ensuring a full range of 𝛼 and 𝛽 without compromising the
tensegrity condition (grey area). As can be seen, an increase in the tension allows
a greater range of torsional rotation where the tensegrity condition is satisfied. The
figure also shows points D, E, F, G, which represent the values when 𝑓𝑐4 is equal to
1, 2, 3, 4 times 𝑚𝑔 respectively, in the case where the torsion considers a value of 𝜎
equal to −𝜋/6 rad. It can be seen that points D and E are clearly outside the grey zone
(area where a full range of orientation for 𝛼 and 𝛽 is ensured without compromising
tensegrity). In the case of point F, it is very close to the boundary but still outside
the zone, and only point G falls within the grey zone. This observation is consistent
with the results shown in Fig. 17.
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Also, by analysing the behaviour of ( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4) /(𝑚𝑔), for this mini-
mal relationship 𝑓𝑐4/(𝑚𝑔) vs. 𝜎, we want to determine the optimal value of 𝜎 where
the sum of tensions is minimised, as also shown in Fig. 18.

Fig. 18 Relationship between
𝑓𝑐4 and 𝜎 ensuring the
tensegrity condition for the
system keeping its internal
DOF fixed (𝜙 = 𝜃 = 0)
considering the sum
( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4 ) /(𝑚𝑔) .
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The optimal value of 𝜎, which corresponds to the minimum of the nominal
sum of forces ( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4) /(𝑚𝑔) = 1.93), while satisfying the tensegrity
conditions for any orientation in 𝛼 and 𝛽, and is found to be 𝜎 = −19.1◦.

It can therefore be concluded that the tensegrity condition can be solved by adding
a fourth cable between 𝑜0 and 𝑜3. Once this fourth cable is added, it is important to
fix its tension to ensure that 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 are positive.

5 Conclusions and future work

This paper introduces a spatial mechanism comprising two platforms, fixed and
mobile, interconnected by cables and bars. Its key advantage lies in its simplicity
and lightweight design, distinguishing it from previous research. This characteristic
makes the mechanism suitable for constructing collaborative robots (cobots) intended
for human-machine interaction without causing harm. The mechanical integration
constraint imposes a non-coincident arrangement of cable and bar endpoints, intro-
ducing an angle between them. This feature adds an interesting aspect for stability
analysis.

The analysis reveals that the system encounters a singularity at a torsion value
intended for achieving stability. To address this, the introduction of a fourth cable
is proposed. Precise tuning of the tension in this additional cable becomes crucial
to fix the torsion value, ensuring that all cables remain under tension, satisfying the
tensegrity condition.

Future work aims to delve into the system’s behavior as the torsion value (𝜎)
approaches the singularity at 𝜎 = −𝜋/12 rad. Additionally, exploring the integration
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of springs in cables 𝑙1, 𝑙2, and 𝑙3 is suggested to enhance system stability, particularly
during complete rotation against gravity. However, the potential drawbacks of this
modification require thorough analysis. Finally, research is expected to investigate
the substitution of the fourth cable with a leg as a potential design modification.
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