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Abstract Each chapter should be preceded by an abstract (no more than 200 words)
that summarizes the content. The abstract will appear online at www.SpringerLink.com
and be available with unrestricted access. This allows unregistered users to read the
abstract as a teaser for the complete chapter. Please use the ’starred’ version of the
abstract command for typesetting the text of the online abstracts (cf. source file
of this chapter template abstract) and include them with the source files of your
manuscript. Use the plain abstract command if the abstract is also to appear in the
printed version of the book.

1 Introduction

Over the past decade, our businesses have undergone a profound transformation in
production methodologies, incorporating digital tools such as the cloud, AI, and AR
to boost productivity and sustain competitiveness [10].

Robotics, especially collaborative industrial robots (cobots), has emerged as a
key driver in this new industrial era [15]. These cobots, working collaboratively with
operators at workstations, excel in tasks like assembling complex systems, operating
in extreme conditions, and handling heavy objects that require processing or storage.
Apart from enhancing production rates, they also serve as a protective shield for
operators against musculoskeletal disorders (MSDs). However, the versatility of
these ”Swiss Army knives” comes with inherent risks. Substantial differences in
mass and rigidity mean that a collision between a cobot and a human could have
fatal consequences [2]. To ensure operator safety and optimize the benefit-risk ratio
of utilizing robotics in industry, innovative adaptive kinematics for robots must be
proposed. These kinematics should strike a balance between being sufficiently rigid
for precise operation in a confined workspace and flexible enough to move safely
within the area occupied by an operator [8].
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The commitment to crash safety necessitates that only controlled or ’safe’ col-
lisions occur among robots, humans, and obstacles. The primary goal is to limit
the power/force exerted on humans, requiring a more compliant control strategy.
Given the constraint of a very limited working area for both humans and robots,
the use of overhead cameras for supervision is deemed impractical and expensive.
Consequently, power and force-limiting techniques must be implemented, along with
reduced speed and secure monitoring of the robot’s speed and position.

Addressing this challenge, our focus lies on tensegrity mechanisms, a topic gain-
ing prominence in robotics. Inspired by the musculoskeletal system of animals,
tensegrity structures originated as a design trend in the 1960s [4, 13, 1]. These
lightweight mechanical structures result from balancing bars in compression and
cables in tension. The geometric configuration, rigidity, and stability of the system
can be finely tuned for its intended use by adjusting the tension intensity within
the structure through co-actuation of cables. Therefore, the field of tensegrity holds
promise in finding design solutions for creating robots that are both rigid for precise
operation and flexible to work seamlessly with operators.

2 Proposed Spatial Mechanism

This section aims to introduce the proposed mechanism and provide background
information that led to its design. Subsection 2.1 will present the research back-
ground, considering the concept of tensegrity and its applications, with a particular
focus on robotics. In addition, a general overview of the proposed spatial mechanism
resulting from this research will be given. Subsection 2.2 will present the detailed
characteristics of the proposed mechanism, providing insights into its application for
the analyses performed in the following chapters.

2.1 Background

Tensegrity systems have found widespread application in fields as diverse as
aerospace, architecture, civil engineering and biological systems modelling. Their
unique properties, including lightness, adaptability, flexibility, mass efficiency and
the ability to control structural configurations, make them versatile for diverse ap-
plications in nature, art, architecture, engineering and science [12].

In the field of robotics, tensegrity has become a preferred choice for robot design,
capitalising on its ability to provide high precision while maintaining flexibility for
example through bio-inspired designs. Liu et al. [7] assess the current landscape of
tensegrity-based robots, covering design, fabrication, modelling, analysis and motion
control. While challenges remain, notable progress has been made, motivating our
search for optimal robot design in a human-machine workspace.
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Burkhardt’s work [3] introduces the t-prism, a simple yet fundamental tensegrity
structure. This research investigates this structure, exploring its construction using
dowels, fishing lines and cylindrical coordinates. The optimisation problem focuses
on minimising the length of the side tendons while satisfying constraints on radius,
strut length and symmetry.

Mirats and Camps [9] present a tensegrity-based robot with a 3-bar symmetric
prismatic configuration anchored to the ground. Despite being underactuated, the
robot exhibits controlled motion within its workspace. The study highlights the
singularity of equilibrium matrices for stable configurations and anticipates future
work on control laws and hyper-actuated structures, demonstrating the potential of
tensegrity in deformable and adaptive robots.

Fasquelle et al. [5] present lightweight manipulators using anti-parallelogram
X-joints to form a tensegrity mechanism with one degree of freedom. This design,
inspired by the musculoskeletal structure of the bird’s neck, is validated through
simulation and experimentation on a test-bed prototype, offering intrinsic stability,
variable stiffness and lower inertia compared to conventional manipulators.

Based on tensegrity principles and biological musculoskeletal systems, John et
al. [6] develop planar ’X’ joints and quaternion joints for cable actuated wrist-
like joints. Their work presents a new variant of the quaternion joint, showing its
specific details, mobility analysis and advantages, contributing to the advancement
of tensegrity-based robotic manipulators in bio-inspired robotics.

Inspired by this body of research, our proposed spatial mechanism, shown in
Fig 1, introduces a unique design that allows for strategic cable modifications on
platforms. This design promises interesting insights into optimal human-machine
workspace configurations. The ultimate goal of this research is to integrate a stack
of these mechanisms, as shown in Fig 2, to construct a robotic system.

Fig. 1 CAD and prototype for
the proposed mechanism.
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Fig. 2 Robot design using a
stack of the proposed spatial
mechanism.

2.2 Description

Fig. 3 shows the CAD model of the 3-DOF spatial manipulator. The configuration
consists of two different platforms. Bottom or fixed platform: This platform remains
fixed and is characterised by six vertices: 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3. Its equidistant centre
is denoted by 𝑜0. The points 𝐴𝑖 are placed at a uniform distance 𝑏 from each other,
forming an angle 𝜓 between 𝐴𝑖 and 𝐵𝑖 . Upper or mobile platform: The upper
platform is mobile and also has six vertices: 𝐴4, 𝐵5, 𝐴5, 𝐵6, 𝐴6, 𝐵4. The equidistant
centre for this platform is denoted 𝑜3. Similar to the lower platform, the distance
between the points 𝐴𝑖 is 𝑏, but with an angle of −𝜓 between 𝐴𝑖 and 𝐵𝑖 .

These two platforms are connected by three bars of equal length 𝐿, which facilitate
the connection of the vertices of the upper platform to their counterparts on the lower
platform. Specifically, the connections are as follows 𝐴6 to 𝐴1, 𝐴5 to 𝐴3 and 𝐴4 to 𝐴2.
In addition to the beam connections, the structure includes three cables of lengths
𝑙1, 𝑙2 and 𝑙3. These cables connect the upper platform to the lower platform by
connecting the vertices 𝐵6 to 𝐵3, 𝐵5 to 𝐵2 and 𝐵4 to 𝐵1.

In addition, three reference frames are defined: F𝑔 = (𝑜𝑔, sg, ng, ag), F0 =

(𝑜0, s0, n0, a0), and F3 = (𝑜3, s3, n3, a3), as visualised in Fig. 3. Here F𝑔 repre-
sents the general reference plane, F0 is fixed to the lower platform and F3 is on the
upper platform.

Finally, the proposed mechanism, as a component of a stack of tensegrity mech-
anisms, exhibits rigid orientational motion parameterised by angular orientations
around 𝛼 (around the 𝑧 axis) and 𝛽 (around the 𝑦 axis).

Analysing the proposed spatial mechanism with this description in mind in the
following sections provides valuable insights into its stability and cable forces.
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Fig. 3: Proposed Spatial Mechanism

3 Kinematic Model

This section initiates an in-depth exploration of the kinematic model that governs the
proposed spatial mechanism, using the representation of its orientation workspace in
terms of tilt and torsion angles. Subsection 3.1 introduces the use of tilt and torsion,
providing their definitions in the context of the proposed mechanism. Subsection 3.2
introduces the inverse kinematic model. The inherent nonlinearity of parallel and
spatial mechanisms, compounded by intricate interactions between actuators and
variations in cables, poses a formidable challenge to the mathematical expression of
their direct kinematic behaviour [11]. Consequently, we formulate the inverse kine-
matic model by integrating trilateration techniques and cable length determination.
Furthermore, subsection 3.3 presents an exploration of the kinematic workspace,
including a detailed analysis of bar intersections and the identification of achievable
values for spatial angles. Finally, subsection 3.4 delves into stability considerations,
explaining the critical criteria for selecting cable lengths to ensure stability and the
strategic placement of cables on the platforms, highlighting their pivotal role in
maintaining overall stability.
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3.1 Tilt and Torsion

The orientation workspace of this spatial mechanism encompasses the array of viable
3D orientations for the mobile platform at 𝑜3 in Cartesian coordinates. Similar to
other parallel mechanisms, this spatial system faces the challenge of accurately
representing its orientation workspace due to the intricacies of interconnected and
non-Euclidean rotational motion, as well as the inherent singularity present in any
3D orientation parameterisation, such as the well-known set of Euler angles.

Nevertheless, Bonev’s investigation [1] convincingly highlights the advantages
of using tilt and torsion angles, as shown in Fig. 4, and confirms their suitability
for a wide range of spatial and parallel mechanism applications. The inclusion of
these innovative parameters results in a concise and highly intuitive representation
of the orientation workspace, especially when modelling the motion limits of the
mechanism studied in this research.
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Fig. 4: Tilt and torsion parametrization.

Following [1], the rotation matrix 0𝑅3 between F0 and F3is given by:

0𝑅3 = rot(𝑎0, 𝜙)rot(𝑛1, 𝜃)rot(𝑠2, 𝜎 − 𝜙), (1)

where:
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rot(𝑎0, 𝜙) =
©«
cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

ª®¬ ,
rot(𝑛1, 𝜃) = ©«

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

ª®¬ and

rot(𝑠2, 𝜎 − 𝜙) = ©«
cos(𝜎 − 𝜙) − sin(𝜎 − 𝜙) 0
sin(𝜎 − 𝜙) cos(𝜎 − 𝜙) 0

0 0 1

ª®¬ ,
(2)

and these three unit rotations around 𝑎0, 𝑛1, and 𝑠2 define the tilt for the first two
and the torsion for the last one.

3.2 Inverse Kinematic Model

The inverse kinematic model is obtained in two steps (Fig. 5). The first step, called
trilateration, involves computing the coordinates of the top platform (𝑋,𝑌, 𝑍)𝑇 in
the frame F3 = (𝑜3,B3), where B3 is the vector base (s3, n3, a3) (Fig. 3). The second
step is to determine the cable lengths 𝑙𝑖 based on the spatial angles (𝜙, 𝜃, 𝜎). This
subsection provides a detailed exploration of both steps.
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Fig. 5: Inverse kinematic model strategy.

The first step is to derive the position of the upper platform as a function of spatial
angles. It takes into account the three geometric constraints imposed by the legs on
the upper platform, namely 𝐿2 = | |𝐴1𝐴6 | |2, 𝐿2 = | |𝐴2𝐴4 | |2 and 𝐿2 = | |𝐴3𝐴5 | |2. In
terms of (𝑋,𝑌, 𝑍)𝑇 , these constraints can be expressed as:

©«
1 1 1
1 1 1
1 1 1

ª®¬ ©«
𝑋2

𝑌2

𝑍2

ª®¬ − 2 ©«
𝑥S1 𝑦S1 𝑧S1

𝑥S2 𝑦S2 𝑧S2

𝑥S3 𝑦S3 𝑧S3

ª®¬ ©«
𝑋

𝑌

𝑍

ª®¬ +
©«
𝑥2
S1

+ 𝑦2
S1

+ 𝑧2
S1

− 𝐿2

𝑥2
S2

+ 𝑦2
S2

+ 𝑧2
S2

− 𝐿2

𝑥2
S3

+ 𝑦2
S3

+ 𝑧2
S3

− 𝐿2

ª®®¬ = 0, (3)

where 𝑜𝑠1 = (𝑥S1 , 𝑦S1 , 𝑧S1 )𝑇 , 𝑜𝑠2 = (𝑥S2 , 𝑦S2 , 𝑧S2 )𝑇 and 𝑜𝑠3 = (𝑥S3 , 𝑦S3 , 𝑧S3 )𝑇
are the coordinates of the centres of the three spheres denoted S1, S2 and S3 (Fig.
6), each with a radius of 𝐿, intersecting at S3. Secondly, to solve (3), it will use the
trilateration method like the authors of [14] who used this mathematical procedure
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to model the kinematics of a delta robot. Considering, as in Fig.7, the three circles
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Fig. 6: Geometric constraints.

coming from the intersection of the spheres and the plane containing the upper
platform, from (3), the equation of the circle C𝑖 coming from S𝑖 is the following:

𝜌2
𝑖 = (𝑋 − 𝑥S𝑖

)2 + (𝑌 − 𝑦S𝑖
)2, (4)

where 𝜌2
𝑖
= 𝐿2 − 𝑍2 + 2𝑍𝑧0𝑖 − 𝑧2

0𝑖 is the radius of the circle S𝑖 . Subtracting the
equation of C3 from those of C1 and C2 gives the following linear system:(

𝐴11 𝐴12
𝐴21 𝐴22

) (
𝑋

𝑌

)
=

(
𝐵1
𝐵2

)
𝑍 +

(
𝐶1
𝐶2

)
, (5)

where 𝐴11 = 𝑥S1 − 𝑥S2 , 𝐴12 = 𝑦S1 − 𝑦S2 , 𝐴21 = 𝑥S1 − 𝑥S3 , 𝐴22 = 𝑦S1 − 𝑦S3 ,
𝐵1 = 2(𝑧S2 − 𝑧S1 ), 𝐵2 = 2(𝑧S3 − 𝑧S1 ), 𝐶1 = 𝑥2

S1
− 𝑥2

S2
+ 𝑦2

S1
− 𝑦2

S2
− 𝑧2

S2
+ 𝑧2

S1
, and

𝐶2 = 𝑥2
S1

− 𝑥2
S3

+ 𝑦2
S1

− 𝑦2
S3

− 𝑧2
S3

+ 𝑧2
S1

. As a function of 𝑍 the unique solvable pair
(𝑋,𝑌 ) of (5) is equal to:

𝑋 = 𝛼𝑋𝑍 + 𝛽𝑋, 𝑌 = 𝛼𝑌 𝑍 + 𝛽𝑌 , (6)

where 𝛼𝑋 = (𝐴22𝐵1 − 𝐴12𝐵2)/det(𝐴), 𝛽𝑋 = (𝐴12𝐶2 − 𝐴22𝐶1)/det(𝐴), 𝛼𝑌 =

(𝐴11𝐵2 − 𝐴21𝐵1)/det(𝐴), and 𝛽𝑌 = (𝐴11𝐶2 − 𝐴21𝐶1)/det(𝐴). Replacing, in the
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Fig. 7: Trilateration approach at 𝜙 = 𝜋/6, 𝜃 = 𝜋/4 and 𝜎 = −𝜋/6.

equation of C3, 𝑋 and 𝑌 by the solution pair (6), we obtain a second order equation
as a function of 𝑍 , i.e:

0 = (1 + 𝛼2
𝑋 + 𝛼2

𝑌 )𝑍2

+ 2(𝛼𝑋 (𝛽𝑋 − 𝑥S1 ) + 𝛼𝑦 (𝛽𝑦 − 𝑦S1 ) − 𝑧S1 )𝑍 (7)
+ ((𝛽𝑋 − 𝑥S1 )2 + (𝛽𝑌 − 𝑦S1 )2 + 𝑧2

S1
− 𝐿2),

which gives two or zero solutions as a function of (𝜙, 𝜃, 𝜎) and the mechanism
parameters 𝑏 and 𝐿. Once the values of 𝑍 are known, the solution pairs (𝑋,𝑌 ) can
be computed by (6). Fig. 8 shows an example of the result of this process. In this case
both solutions of the inverse kinematic model are shown for 𝜃 = 𝜋/4 rad, 𝜙 = 𝜋/6
rad and 𝜎 = −𝜋/6 rad. It is important that there is no symmetry between the two
solutions.

The second step is to determine the length of the cables as a function of 𝜃, 𝜙 and
𝜎. This is done using the cable length equation:

ℓ2 = ∥B4B1∥2 = ∥B5B2∥2 = ∥B6B3∥2. (8)

Having obtained the values of B𝑖 (derived from the previous step) for both solu-
tions, the lengths of the cables 𝑙1, 𝑙2 and 𝑙3 can be determined for each solution.
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Fig. 8: The two solutions of the inverse kinematic model for 𝜙 = 𝜋/6 rad, 𝜃 = 𝜋/4
rad and 𝜎 = −𝜋/6 rad.

Table 1: Parameters, symbols and values for the proposed mechanism

Parameter Symbol Value
Distance between points 𝐴𝑖 𝑏 15 cm
Angle between 𝐴𝑖 and 𝐵𝑖 𝜓 15° (𝜋/12 rad)
Length of the bars 𝐿 30 cm
Diameter of the bars 𝐷𝑏 5 mm
Weight of the platform 𝑚 50 g

3.3 Kinematic Workspace

This subsection is dedicated to analysing the kinematic workspace of the mechanism
by detecting the intersection of the bars using the inverse kinematic model.

For this reason, a specific geometry is defined for the proposed mechanism,
which will be used in the research from now on. Table 1 lists the parameters and
their corresponding values for the proposed mechanism.

In this context, determining the kinematic workspace involves calculating the
distances between the bars and comparing them with a predefined threshold. The
threshold is defined by the diameter of the bar 𝐷𝑏 as specified in Table 1. These
distances, expressed as functions of 𝜃, 𝜙, and 𝜎, allow the identification of values for
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which the distance exceeds the diameter, indicating the absence of intersection. These
values represent the angles at which the mechanism can move without encountering
an intersection between the bars.

The analysis of distances as functions of 𝜃, 𝜙 and 𝜎 begins with the identification
of unit vectors for each bar. The unit vectors v, u, w correspond to bar 1 (𝐴1𝐴6), bar
2 (𝐴2𝐴4) and bar 3 (𝐴3𝐴5) respectively, as shown in Fig. 9. Each of these vectors is
expressed as a function of 𝜃, 𝜙 and 𝜎 using the inverse kinematic model.

u =
A6 − A1
∥A6 − A1∥

, v =
A4 − A2
∥A4 − A2∥

and w =
A5 − A3
∥A5 − A3∥

. (9)
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Fig. 9: The two solutions of the inverse kinematic model for 𝜙 = 𝜋/6, 𝜃 = 𝜋/4 and
𝜎 = −𝜋/6.

Then the normal vectors are calculated for each pair of bars. The vector i represents
the normal vector between bar 1 and bar 2, j represents the normal vector between
bar 2 and bar 3, and finally k represents the normal vector between bar 3 and bar 1,
i.e:

i = u × v, j = v × w and k = w × u. (10)

Consider 𝑃1 and 𝑃6 as arbitrary points on bar 1, 𝑃2 and 𝑃3 as arbitrary points
on bar 2 and 𝑃4 and 𝑃5 as arbitrary points on bar 3. These points can be defined as
follows.
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P1 = A1 + 𝜁1 u, P2 = A2 + 𝜁2 v, P3 = A2 + 𝜁3 v,
P4 = A3 + 𝜁4 w, P5 = A3 + 𝜁5 w and P6 = A1 + 𝜁6 u.

(11)

In (11), 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5 and 𝜁6 represent scalar parameters indicating the relative
positions of points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 and 𝑃6 along the directions of the vectors u, v
and w respectively. Let 𝑑1 be defined as the minimum distance between the point 𝑃1
and the point 𝑃2, 𝑑2 as the distance between the point 𝑃3 and the point 𝑃4 and finally
𝑑3 as the distance between the point 𝑃5 and the point 𝑃6. Each of these distances is
calculated using the following formulas:

𝑑1 i = P2 − P1, 𝑑2 j = P4 − P3 and 𝑑3 k = P6 − P5. (12)

Substituting (11) into (12) gives:

𝑑1 i = A2 + 𝜁2 v − A1 − 𝜁1 u,
𝑑2 j = A3 + 𝜁4 w − A2 − 𝜁3 v and
𝑑3 k = A1 + 𝜁6 u − A3 − 𝜁5 w.

(13)

Using algebraic methods, it is possible to determine 𝑑1, 𝑑2, 𝑑3 and 𝜁𝑖 as a function
of 𝜃, 𝜙 and 𝜎.

As mentioned above, the analysis of the kinematic workspace focuses on distin-
guishing points in 𝜃, 𝜙 and 𝜎 where there is no intersection between bars. Thus,
a condition is established that includes two aspects: the distance between the bars
must be greater than the diameter of the bar 𝐷𝑏, and the scalar parameters 𝜁1, 𝜁2, 𝜁3,
𝜁4, 𝜁5 and 𝜁6 should be in the range of the length of the bar, i.e:

𝑑1, 𝑑2, 𝑑3 ≤ 𝐷𝑏 and 0 ≤ 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5, 𝜁6 ≤ 𝐿. (14)

The results of the analyses are shown in Fig. 10, 11 and 12. The grey area
represents reachable values of 𝜎, 𝜙 and 𝜃, and the white area represents unreachable
values.

Fig. 10 shows the relation 𝜃 vs 𝜎 for all possible values of 𝜙. In this figure, if we fix
𝜃 = 0, we can observe two zones for 𝜎. Zone 1 (𝜎 = [−𝜋/3, 2𝜋/3] rad) corresponds
to the clockwise movement of the mechanism, from the value of 𝜎 where the bars
cross (-𝜋/3 rad) to the value of 𝜎 where the bars become parallel (2𝜋/3 rad). On the
other hand, zone 2 (𝜎 = [2𝜋/3, 5𝜋/3] rad) is associated with the counterclockwise
movement of the mechanism, from the value of 𝜎, where the bars are parallel (2𝜋/3
rad), to the value of 𝜎, where the bars cross again (5𝜋/3 rad).

Fig. 11 shows a cross section on the 𝜎 and 𝜃 axes for two values of 𝜙 (𝜙 = 0 and
𝜙 = 𝜋/2 rad). The two graphs in this figure show the movement of the mechanism
in the two vertical and orthogonal planes of 3D space. In both planes there are two
distinct zones as explained for Fig. 10. In the vertical plane of zone 1 (Fig. 11a) the
range of 𝜃 is observed to extend from −𝜋 to 𝜋/2 rad when 𝜎 = 𝜋/3 rad. Moving
to zone 2, we see that for 𝜎 = 𝜋 the allowable range for 𝜃 is from −𝜋/2 to 𝜋 rad.
Shifting the focus to the orthogonal plane (Fig. 11b), zone 1 shows that for 𝜎 = 0 the
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Fig. 10 Relationship the 𝜎

vs. 𝜃 for all possible values of
𝜙.

allowable range for 𝜃 is from −𝜋 to 𝜋/2 rad. Similarly, in zone 2, when 𝜎 = 4𝜋/3,
the range for 𝜃 shows a similar pattern.
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(a) 𝜙 = 0
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2 /3
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(b) 𝜙 = 𝜋/2 rad

Fig. 11: Cross-section in the 𝜎 vs 𝜃 plane for different 𝜙 values.

The cross section of 𝜙 vs. 𝜃 for different values of 𝜎 in zone 1 is shown in Fig. 12.
As the value of 𝜎 increases, the range of 𝜃 gradually increases, but then decreases
until it reaches a minimum value. However, it is important to note that the maximum
range of 𝜃 in zone 1 is within the interval [−𝜋/2, 𝜋/2] rad.

After analysing the kinematic workspace, the following chapters will focus ex-
clusively on zone 1. Therefore, based on the comprehensive review in this sub-
section, the operating limits identified are defined as follows 𝜃 ∈ [−𝜋/2, 𝜋/2] rad,
𝜙 ∈ [−𝜋, 𝜋] rad and 𝜎 ∈ [−𝜋/3, 2𝜋/3] rad.
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(a) 𝜎 = −𝜋/6 rad
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(c) 𝜎 = 𝜋/2 rad

Fig. 12: Cross-section in the 𝜙 vs 𝜃 plane for different 𝜎 values.

3.4 Stability Conditions

According to Burkhardt [3], the choice of lengths for the three final tendons, each
corresponding to one side, plays a crucial role in ensuring the stability of the prism
mechanism proposed in his research. Burkhardt mentioned that as the prism ends
twist, some points come closer together and then move apart. The binding of the side
tendons at the closest point is crucial for stability. The structure can only change by
increasing the distance between these points, which is prevented by the short tendons,
and this basic concept underlies all tensegrity designs that have been explored. It is
therefore crucial to determine the minimum length of the cables for the mechanism
proposed in this research when the system is at rest and only rotates around the
vertical axis for torsional effects.

In this subsection, the system is considered to be at rest, so the following conditions
are satisfied 𝑥 = 0, 𝑦 = 0, 𝜃 = 0, 𝜙 = 0, 𝛼 = 0 and 𝛽 = 0. The length of the cables
and bars can be defined using the parameters shown in Fig. 3 and Table 1. Since the
cable length equation has been defined in subsection 3.2, the specific cable length
equation in this case, together with the kinematic constraint for the bar length, is
defined as follows:

ℓ2 = 𝑧2 + 2𝑏2

3
− 2𝑏2 cos(2𝜓 − 𝜎)

3
. (15)

𝐿2 = ∥A4A2∥2 = ∥A5A3∥2 = ∥A6A1∥2 = 𝑧2 + 2𝑏2

3
+ 𝑏2 cos(𝜎)

3
−
√

3𝑏2 sin(𝜎)
3

.

(16)
Find 𝑧2 in (16):

𝑧2 = 𝐿2 − 2𝑏2

3
− 𝑏2 cos(𝜎)

3
+
√

3𝑏2 sin(𝜎)
3

. (17)

Replacing (17) in (15) gives:

ℓ2 = 𝐿2 − 𝑏2 cos(𝜎)
3

+
√

3𝑏2 sin(𝜎)
3

− 2𝑏2 cos(2𝜓 − 𝜎)
3

. (18)
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For (18), find the minimum value of the cable length for the twist:

min
𝜎

[
𝑓 (𝜎) = 𝐿2 − 𝑏2 cos(𝜎)

3
+
√

3𝑏2 sin(𝜎)
3

− 2𝑏2 cos(2𝜓 − 𝜎)
3

]
, (19)

where
𝑑𝑓

𝑑𝜎
= −𝑏2

3

(
2 sin(2𝜓 − 𝜎) − 2 sin(𝜎 + 𝜋

3
)
)
= 0, (20)

implies
sin(2𝜓 − 𝜎) = sin(𝜎 + 𝜋

3
). (21)

Finally,
2𝜓 − 𝜎 = 𝜎 + 𝜋

3
⇒ 𝜎 = 𝜓 − 𝜋

6
. (22)

Burkhardt’s analysis, considering 𝜓 = 0, showed that the minimum cable lengths
occur when 𝜎 = −𝜋/6 rad. Changing 𝜓 induces a corresponding adjustment in 𝜎

with the same direction and magnitude, maintaining a consistent offset of 𝜋/6 rad.
This adjustment is essential for the stability of the system. Given that 𝜓 = 𝜋/12 rad
in the proposed mechanism, the optimal configuration for maintaining stability is
achieved when 𝜎 = −𝜋/12 rad. The feasibility of achieving this configuration using
actuators will be examined in the following section.

4 Static Equilibrium Conditions

This chapter concentrates on examining the geometry of the proposed spatial mech-
anism to ensure stability, particularly in the context of static equilibrium conditions.
The subsection 4.1 provides an analysis of the behaviour of the system at rest and
assesses the feasibility of managing the cable forces to maintain stability. On the
other hand, subsection 4.2 presents an alternative solution, as the original geometry
alone may not ensure stability under these conditions. This alternative involves in-
troducing the force of a fourth cable positioned at the centre of the two platforms of
the mechanism.

4.1 System at Rest

In this section, the behaviour of the system is investigated while it is at rest (𝑥 = 0,
𝑦 = 0, 𝜙 = 0, and 𝜃 = 0) and undergoing angular rigid orientation 𝛼 around the
𝑧 axis and 𝛽 around the 𝑦 axis, as shown in Fig. 3. Exploring the system under
these conditions provides valuable insights into its equilibrium and cable forces, and
offers a comprehensive review of its feasibility, particularly when considering the
involvement of actuators and their force limitations.
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In a system in static equilibrium, the vectorial sum of all the forces applied and
the sum of all the moments about a given point must be equal to zero. This state of
equilibrium is analysed in the upper platform.∑︁

F = 0 and
∑︁

M = 0. (23)

Considering the forces in the bars (F𝑏1, F𝑏2, F𝑏3) and in the cables (F𝑐1, F𝑐2, F𝑐3),
together with the gravitational force (F𝑔), give the sum of the forces in equilibrium:

F𝑏1 + F𝑏2 + F𝑏3 + F𝑐1 + F𝑐2 + F𝑐3 + F𝑔 = 0. (24)

Considering the moments generated by the forces in the bars (F𝑏1, F𝑏2, F𝑏3) and
in the cables (F𝑐1, F𝑐2, F𝑐3) at the point 𝑜3, the sum of the moments in equilibrium
is expressed:

A6o3 × F𝑏1 + A4o3 × F𝑏2 + A5o3 × F𝑏3

+ B4o3 × F𝑐1 + B5o3 × F𝑐2 + B6o3 × F𝑐3 = 0.
(25)

The forces acting in the bars can be defined as follows:

F𝑏1 = 𝑓𝑏1
A6 − A1

𝐿
, F𝑏2 = 𝑓𝑏2

A4 − A2
𝐿

and F𝑏3 = 𝑓𝑏3
A5 − A3

𝐿
, (26)

where 𝑓𝑏1 < 0, 𝑓𝑏2 < 0, and 𝑓𝑏3 < 0, this phenomenon can be attributed to a
technological aspect, specifically the magnetic nature of the spherical joints, which
can lead to disassembly if subjected to excessive tensile forces.

The forces acting in the cables can be defined as follows:

F𝑐1 = 𝑓𝑐1
B4 − B1

𝑙1
, F𝑐2 = 𝑓𝑐2

B5 − B2
𝑙2

and F𝑐3 = 𝑓𝑐3
B6 − B3

𝑙3
, (27)

where 𝑓𝑐1 > 0, 𝑓𝑐2 > 0, 𝑓𝑐3 > 0.

The gravitational force is defined as:

F𝑔 = 𝑚 g. (28)

Solving (26), (27), (28) in (24) and (25) will yield the expressions for 𝑓𝑐1, 𝑓𝑐2,
and 𝑓𝑐3, 𝑓𝑏1, 𝑓𝑏2, and 𝑓𝑏3 which are of interest for studying stability and feasibility
of the proposal mechanism. Therefore, factoring these equations, in order to find
the mathematical expression for the cable forces, allows us to derive the following
expression: [

A𝑐 A𝑏

B𝑐 B𝑏

] (
𝑓𝑐
𝑓𝑏

)
=

(
−𝑚 g

0

)
(29)

where 𝑓𝑐 = ( 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3)𝑇 and 𝑓𝑏 = ( 𝑓𝑏1, 𝑓𝑏2, 𝑓𝑏3)𝑇 .
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Considering the equation provided in (29), the cable forces can be defined as
follows:

𝑓𝑐 = −(A𝑐 − A𝑏 B−1
𝑏 B𝑐)−1𝑚 g . (30)

Due to the complexity of this expressions, the detailed equations will not be
included in this document. However, the underlying variables on which these ex-
pressions depend are listed below:

𝑓𝑐1 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐1 > 0,
𝑓𝑐2 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐2 > 0 and
𝑓𝑐3 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔), 𝑓𝑐3 > 0.

(31)

In subsection 3.4, it was deduced that, according to Burkhardt’s theorem [3],
for 𝜓 = 𝜋/12 rad, the system would exhibit stability when 𝜎 = −𝜋/12 rad. There-
fore, the subsequent analysis will examine the relationship between nominal cable
forces 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3 and 𝜎, aiming to confirm the feasibility of addressing the force
through actuators for 𝜎 = −𝜋/12 rad. For this analysis, the simplest context will be
considered, where 𝛼 = 0 and 𝛽 = 0. This context allows for the simplification of
equations for 𝑓𝑐1, 𝑓𝑐2, and 𝑓𝑐3, satisfying the following conditions: 𝑙 = 𝑙1 = 𝑙2 = 𝑙3,
𝑓𝑐 = 𝑓𝑐1 = 𝑓𝑐2 = 𝑓𝑐3 and 𝑓𝑏 = 𝑓𝑏1 = 𝑓𝑏2 = 𝑓𝑏3.

In this scenario, the complex set of equations provided in (24) and (25) are
simplified to the concise form of the sum of forces and moments represented by:

3 𝑓𝑏 𝑧

𝐿
+ 3 𝑓𝑐 𝑧

𝑙
− 𝑚 𝑔 = 0 and (32)

𝑓𝑏 𝑙

(
sin(𝜎) +

√
3 cos(𝜎)

)
+ 2 𝑓𝑐 𝐿 sin(2𝜓 − 𝜎) = 0. (33)

Solving the above equations gives the resulting expressions for 𝑓𝑏 and 𝑓𝑐:

𝑓𝑏 =
𝑚 𝑔 𝐿 sin(2𝜓 − 𝜎)

3 𝑧 (sin(2𝜓 − 𝜎) − sin(𝜎 + 𝜋/3)) and (34)

𝑓𝑐 =
𝑚 𝑔 𝑙 sin(𝜎 + 𝜋/3)

3 𝑧 (sin(2𝜓 − 𝜎) − sin(𝜎 + 𝜋/3)) . (35)

In these equations, the variables 𝑧 and 𝑙 can be defined according to the expressions
provided in (17) and (18). It is important to note that the bar force 𝑓𝑏 must be negative
and the cable force 𝑓𝑐 must be positive to satisfy the tensegrity condition.

Fig. 13 illustrates the force distribution in the cables for this configuration (𝑥 = 0,
𝑦 = 0, 𝜙 = 0, 𝜃 = 0, 𝛼 = 0, and 𝛽 = 0) and for 𝜎 ∈ [−𝜋/3, 2𝜋/3] rad. In this figure is
shown that the cable forces adhere to the tensegrity condition only for torsion values
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(𝜎) greater than −𝜋/3 rad and less than −𝜋/12 rad. Hence, a new range for torsion
is defined for the case depicted in Fig. 3 and Table 1.

Also in this figure, the cable forces exhibit an infinite increase when the torsion
value suggested by Burkhardt’s theorem [3] is considered (𝜎 = −𝜋/12 rad).

Fig. 13 𝑓𝑐 vs. 𝜎 for system
at rest (𝑥 = 0, 𝑦 = 0, 𝜙 = 0,
𝜃 = 0, 𝛼 = 0, and 𝛽 = 0).
𝑓𝑐 becomes infinite when
𝜎 = −𝜋/12 rad.
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This behavior indicates that the system reaches a singularity where the length of
the cables becomes minimal, as illustrated in Eq.(19) and Eq.(20). These equations
constitute a portion of the Jacobian matrix of the system. However, when their value
becomes zero, it leads to the system entering a singularity, rendering it uncontrol-
lable. Consequently, stabilizing the system under this specific torsion, which ensures
stability, is deemed unattainable as the actuation forces are limited.

Therefore, we will analyse the behaviour of the system by choosing another
torsion value within the new range where the cable forces are positive (𝜎 ∈
[−𝜋/3,−𝜋/12] rad) and also rotating it in 3D space. To achieve this, we will consider
the configuration where the system is at rest (𝑥 = 0, 𝑦 = 0, 𝜙 = 0 and 𝜃 = 0) and
undergoes an angularly rigid orientation 𝛼 around the 𝑧 axis and 𝛽 around the 𝑦

axis (Fig. 3). This involves using (31) to create expressions for 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3.
When searching for an alternative torsion value, it is essential to ensure that for this
particular torsion the system retains the ability to rotate over the whole range of
𝛼 ∈ [−𝜋, 𝜋] rad and 𝛽 ∈ [−𝜋, 𝜋] rad, while at the same time satisfying the condition
that the cable forces remain strictly greater than zero. Using the equations provided
in (31) and choosing a torsion value (𝜎 = −𝜋/6 rad), the analysis of the cable forces
𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 is performed and the results are shown in Fig. 14. Fig. 14a illustrates
that at some point during the orientation around 𝛼 considering 𝛽 = 0, the cable
forces become negative, violating the specified condition of tensegrity. Furthermore
in Fig. 14b, when examining the 𝛽 vs. 𝛼 range, with positive cable forces marked in
grey and negative cable forces marked in white, it becomes apparent that there are
instances of 𝛼 and 𝛽 where the cable forces are not positive.

In light of this consideration, the analysis is directed towards examining the
correlation between the angular rigid orientation range around (𝛼, 𝛽) and the torsion
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(a) 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3 vs. 𝛼 for 𝛽 = 0
(b) Feasible orientation range for 𝛼

and 𝛽 with { 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0

Fig. 14: System at rest (𝑥 = 0, 𝑦 = 0, 𝜙 = 0 and 𝜃 = 0) under angular rigid orientation
around 𝛼 and 𝛽 and a torsion of 𝜎 = −𝜋/6 rad.

value𝜎. The results, illustrated in Fig. 15a, show that as the torsion value𝜎 decreases,
the orientation range around𝛼 decreases proportionally. The overall goal is to achieve
an orientation range of 𝛼 equal to 𝜋; however, it becomes apparent that this goal is
unattainable. Fig.15b and Fig.15c give an insight into the feasible values of 𝛼 and
𝛽 for the points A and C shown in Fig. 15a, while point B was previously shown in
Fig. 14b. Unfortunately, none of these cases allows a complete orientation.

To mitigate this problem and prevent cable slack, two possible design solutions
are presented, as shown in Fig. 16. The first solution involves the introduction of a
new central cable of length 𝑙4, connected to 𝑜0 and 𝑜3, which maintains the torsional
angle of the mobile platform by applying a new force to it. The second solution is to
insert a leg between these two points. This leg is a driving form consisting of two
universal joints at its ends and a prismatic joint in the middle. The angular offset
between the connection points at the two tips makes it possible to fix the torsion
angle of the mechanism.

Each solution has its own advantages and disadvantages. The first solution offers
increased system flexibility by allowing torsional variation through the force applied
to this cable. However, the disadvantage is that the control of the force variation in
this fourth cable is very sensitive. On the other hand, the second solution offers the
advantage of increased system stiffness. However, it reduces the number of degrees
of freedom by sacrificing torsion, which remains fixed in its spatial rotation. In
addition, this adjustment introduces more inertia (due to the new mass) and increases
the likelihood of collisions between the bars.

The following subchapter analyses the behaviour of the system at rest, taking into
account the presence of a fourth cable; the study of the second option will be part of
future studies.
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(a) 𝜎 vs 𝛼

(b) Range of 𝛽 vs 𝛼 for Point A (𝜎 = −𝜋/9
rad)

(c) Range of 𝛽 vs 𝛼 for Point C (𝜎 = −𝜋/4
rad)

Fig. 15: System at rest (𝑥 = 0, 𝑦 = 0, 𝜙 = 0 and 𝜃 = 0) under angular rigid orientation
around 𝛼 and 𝛽 with different values of torsion.

4.2 System at Rest Adding a Fourth Cable

In this subchapter we will analyse the behaviour of the system under the conditions
of rest (𝑥 = 0, 𝑦 = 0, 𝜙 = 0 and 𝜃 = 0), taking into account the presence of the fourth
cable. For static analysis, the force in the fourth cable is added:

F𝑐4 = 𝑓𝑐4
o3 − o0

𝑙4
, (36)

and the sum of forces is presented:

F𝑏1 + F𝑏2 + F𝑏3 + F𝑐1 + F𝑐2 + F𝑐3 + F𝑐4 + F𝑔 = 0. (37)

The sum of the moments remains consistent with the expression in (25). By
including the force F𝑐4 in the sum of forces, a solvable system of equations is
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Fig. 16: Two potential design solutions for achieving a full orientation in 𝛼 and 𝛽

accomplishing the condition of tensegrity ({ 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0).

obtained. This leads to updated expressions for 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3. Therefore, factoring
these equations to find the mathematical expression for the cable forces allows us to
derive the following expression:[

A𝑐 A𝑐4 A𝑏

B𝑐 0 B𝑏

] ©«
𝑓𝑐
𝑓𝑐4
𝑓𝑏

ª®¬ =
(
−𝑚 g

0

)
(38)

where 𝑓𝑐 = ( 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3)𝑇 and 𝑓𝑏 = ( 𝑓𝑏1, 𝑓𝑏2, 𝑓𝑏3)𝑇 . By moving the terms as-
sociated with F𝑐4 from the equation (38) on the opposite side of the equality:[

A𝑐 A𝑏

B𝑐 B𝑏

] (
𝑓𝑐
𝑓𝑏

)
=

(
−𝑚 g − A𝑐4 𝑓𝑐4

0

)
. (39)

where 𝑓𝑐4 is defined as the tuning parameter for the tension of the fourth cable of
the mechanism. Taking into account the equation given in (39), the cable forces can
be defined as follows:

𝑓𝑐 = −(A𝑐 − A𝑏 B−1
𝑏 B𝑐)−1 (𝑚 g + A𝑐4 𝑓𝑐4). (40)
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Due to their complexity, the detailed equations are not explicitly presented in this
document. However, similar to the previous analysis, the underlying variables that
influence these expressions are listed below:

𝑓𝑐1 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐1 > 0,
𝑓𝑐2 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐2 > 0 and
𝑓𝑐3 = ℎ(𝜎, 𝛼, 𝛽, 𝜓, 𝑏, 𝐿, 𝑚, 𝑔, 𝑓𝑐4), 𝑓𝑐3 > 0.

(41)

The analysis will examine the behaviour of the forces 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 under
certain conditions. Continuing with the example presented in the previous chapter,
the design with 𝜎 = −𝜋/6 rad for the torsion of the system is selected and a force 𝑓𝑐4
is applied. Fig. 14b, presented in the previous subchapter, shows the 𝛽 vs. 𝛼 range,
revealing instances where the cable forces were not positive when the fourth cable
was not present. On the other hand, Fig. 17 illustrates the behaviour of the 𝛽 vs. 𝛼
region when the fourth cable is present and for different tension values. It can be
seen that as the tension 𝑓𝑐4 increases, the area of the 𝛽 vs. 𝛼 region also increases,
ensuring that 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 are positive. Therefore, with the appropriate tension
𝑓𝑐4, the tensegrity property can be satisfied for all cable forces.

As observed in Figs. 15 and 17, the range of orientation in 𝛼 and 𝛽 varies as
we change 𝜎 and 𝑓𝑐4 respectively. It is therefore crucial to examine the relationship
between the range of 𝛼 and 𝛽 and the nominal force of the fourth cable ( 𝑓𝑐4) and
the torsion (𝜎). The importance of this analysis is to identify the values of 𝑓𝑐4 and
𝜎 that allow a complete orientation around 𝛼 and 𝛽 while satisfying the tensegrity
conditions ({ 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3} > 0).

Fig. 18 shows the result of this analysis and illustrates the limiting relationship
between the nominal force 𝑓𝑐4 and 𝜎, ensuring a full range of 𝛼 and 𝛽 without
compromising the tensegrity condition (grey area). As can be seen, an increase in
the force allows a greater range of torsional rotation where the tensegrity condition
is satisfied. The figure also shows points D, E, F, G, which represent the values when
the nominal force 𝑓𝑐4 is equal to 1, 2, 3, 4 respectively, in the case where the torsion
considers a value of 𝜎 equal to −𝜋/6 rad. It can be seen that points D and E are
clearly outside the grey zone (area where a full range of orientation for 𝛼 and 𝛽 is
ensured without compromising tensegrity). In the case of point F, it is very close to
the boundary but still outside the zone, and only point G falls within the grey zone.
This observation is consistent with the results shown in Fig. 17.

Also, by analysing the behaviour of the nominal sum of forces ( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4) /(𝑚𝑔),
for this minimal relationship 𝑓𝑐4/(𝑚𝑔) vs. 𝜎, we want to determine the optimal value
of 𝜎 where the nominal sum of forces is minimised, as also shown in Fig. 18.

The optimal value of 𝜎, which corresponds to the minimum of the nominal
sum of forces ( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4) /(𝑚𝑔) = 5.0), while satisfying the tensegrity
conditions for any orientation in 𝛼 and 𝛽, and is found to be 𝜎 = −26.9◦.

It can therefore be concluded that the tensegrity condition can be solved by adding
a fourth cable between 𝑜0 and 𝑜3. Once this fourth cable is added, it is important to
fix its tension to ensure that all the cable forces 𝑓𝑐1, 𝑓𝑐2 and 𝑓𝑐3 are positive.
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(a) 𝑓𝑐4/𝑚𝑔 = 1 (b) 𝑓𝑐4/𝑚𝑔 = 2

(c) 𝑓𝑐4/𝑚𝑔 = 3 (d) 𝑓𝑐4/𝑚𝑔 = 4

Fig. 17: Feasible orientation range for 𝛼 and 𝛽 with the system at rest (𝑥 = 0, 𝑦 = 0,
𝜙 = 0 and 𝜃 = 0) and torsion 𝜎 = −𝜋/6 rad.

Fig. 18 Relationship between
𝑓𝑐4 and 𝜎 ensuring the
tensegrity condition for the
system at rest (𝑥 = 0, 𝑦 = 0,
𝜙 = 0 and 𝜃 = 0 consider-
ing the nominal force sum
( 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑓𝑐4 ) /(𝑚𝑔) .
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5 Conclusions and Future Work (not finished)

This paper introduces a spatial mechanism comprising two platforms, fixed and
mobile, interconnected by cables and bars. Its key advantage lies in its simplicity
and lightweight design, distinguishing it from previous research. This characteristic
makes the mechanism suitable for constructing collaborative robots (cobots) intended
for human-machine interaction without causing harm. The mechanical integration
constraint imposes a non-coincident arrangement of cable and bar endpoints, intro-
ducing an angle between them. This feature adds an interesting aspect for stability
analysis.

The analysis reveals that the system encounters a singularity at a torsion value
intended for achieving stability. To address this, the introduction of a fourth cable
is proposed. Precise tuning of the tension in this additional cable becomes crucial
to fix the torsion value, ensuring that all cables remain under tension, satisfying the
tensegrity condition.

Future work aims to delve into the system’s behavior as the torsion value (𝜎)
approaches the singularity at 𝜎 = −𝜋/12 rad. Additionally, exploring the integration
of springs in cables 𝑙1, 𝑙2, and 𝑙3 is suggested to enhance system stability, particularly
during complete rotation against gravity. However, the potential drawbacks of this
modification require thorough analysis. Finally, research is expected to investigate
the substitution of the fourth cable with a leg as a potential design modification.
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