N
N

N

HAL

open science

G’MIC: An Open-Source Self-Extending Framework for
Image Processing

David Tschumperlé, Sébastien Fourey, Garry Osgood

» To cite this version:

David Tschumperlé, Sébastien Fourey, Garry Osgood. G’MIC: An Open-Source Self-Extending Frame-
work for Image Processing. 2023. hal-04405020

HAL Id: hal-04405020
https://hal.science/hal-04405020

Preprint submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-04405020
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

G'MIC: An Open-Source Self-Extending Framework for
Image Processing

David Tschumperlé ©'Y, Sébastien Fourey ©!, and Garry Osgood?

1 GREYC Lab (IMAGE Team), CNRS, Normandie Univ, UNICAEN, ENSICAEN, F-14000 Caen,
France 2 Independent contributor, New York City, US § Corresponding author

Abstract

We present G'MIC, an open-source self-extending framework that defines an original, concise,
scripting language for the writing of possibly complex image processing operators and pipelines.
G'MIC also provides several user interfaces allowing for the manipulation of digital images,
adapted to different levels of user expertise, either from the command line, or as a C/C++
library, or as a user-friendly graphical plug-in that extends the capabilities of popular digital
image retouching applications, such as GIMP, Krita, Photoshop, Affinity Photo and others.

Keywords

Image Analysis, Processing and Filtering, Computer Graphics, Scripting Language, User
Interfaces, Creative Coding.

1. Introduction

1.1. Context

Tools not only shape work but set limits as to how far such work can go. Tools with limited
capabilities or rigid behaviors not only circumscribe results but also constrain tool-users’

awareness of what is possibile — they suppose from such inflexible tools only notions of what
cannot be done.

Intrinsic to G'MIC's design are means to map pipelines to commands, advancing the tool as
a self-extending language and fortifying how users’ conduct their work. Primal command
pipelines may be further assembled into those having wider remits, these suitably named to
bespeak their extended purposes and available for succeeding command prototyping.

G'MIC itself is based upon primitives of the C++ library CImg (Tschumperlé, 2023) that
are broadly applicable to image processing work and which have been optimized for CPU
performance. Most commands in the standard G'MIC distribution extend these primitives, using
the aforementioned scheme. |t is one which remains available to users, extending the language
in line with their specific domains of expertise and making the language “their own".

G'MIC is distributed under the CeCILL free software licenses (GPL-compatible). The core
language projects several user interfaces to convert, process or visualize generic image datasets.
Allied with pipeline toolset, G'MIC embodies a highly flexible image model, ranging from 1D
scalar signals to 3D+t sequences of multi-spectral volumetric images, hence including 2D color

images. This makes it a versatile tool for image processing, with a wide range of applications
in research, industry and graphic design.

1.2. History and Motivation

The G'MIC project was started in mid-2008 by David Tschumperlé, a research scientist working
in the IMAGE team of the GREYC, a public research laboratory affiliated with the CNRS
institute in France. David's area of research is the study and elaboration of image processing
algorithms.

To that end, he first began developing CImg (Tschumperlé, 2023), beginning in 1999 and
continuing to the present. CImg is an open-source C++ library for generic image processing.
Here, generic implies a library that addresses structurally diverse imagery: photographs, multi-
spectral images (e.g. from satellites), medical images (MRI, X-ray, tomography, etc.) and
technical animations, among others. The CImg library has therefore been designed to handle a
wide variety of different image types, whether defined on 2D or 3D grids, or with any number
of channels. He still develops and maintains this library.

That said, CImg exhibits certain limitations for everyday research work:

1. When one simply wants to apply a predefined algorithm from CImg to an image, one
needs to write a small, C++ program. Perhaps it is only a few lines long, but still it must
be compiled and linked — and possibly debugged — before it can be executed. In the
context of research work, such mechanics are just so many distractions. The idea of
being able to run those algorithms directly from the command line is tempting.

2. Over time, a large number of these small, but purpose-specific, programs has accumulated.
They solve specific problems but rarely see follow-on use. They are not broadly useful for
integration into the CImg library and have become an unruly “collection” of specialized
algorithms. By design, they cannot be easily distributed and are difficult to maintain (as
opposed to a language having package managers, like Python).

These limitations motivated G'MIC's development, beginning in 2008. Two design objectives
came to the fore:

1. Enable pipelines of image processing algorithms that may be directly invoked from the
command line, without requiring compilation or linking steps.

2. Gather the implementation of specialized algorithms in a single location, facilitating their
evolution, maintenance and distribution.

These objectives, in combination with a desire to write new image processing pipelines and
algorithms in the most flexible and concise way possible, gave rise to the idea of self-extension.

It is well-known that research scientists are loathe to type; there are far more useful investments
of time. In that light, there emerged a scheme to equate concise, shorthand words for pipelines
— indeed, to define new commands with pipelines. It is straightforward to see the advancement
of this scheme, for such new commands can further define yet other commands. Such a
mechanism also aligns well with a write once, run everywhere doctrine. Improvements to a
pipeline underlying a command propagates out to wherever that command is employed.

All these objectives led initially to the development of a specialized scripting language: the
G'MIC language, and its associated interpreter, distributed as free software.

The first user interface created was gmic, the command line interface (CL/) tool that permits
the execution of image processing code written in the G'MIC language directly from a shell.
Other interfaces have followed since then, and will be detailed in Section 2.

1.4. Related Software

» Command-line Interfaces:

The command line interface gmic has been originally inspired by /mageMagick (ImageMagick
Studio LLC, 2023) and GraphicsMagick (GraphicsMagick Group, 2023), particularly the idea of

being able to manipulate digital images from a shell. What all these projects have in common
is that they define distinct command languages, enabling the creation of image processing
pipelines of varying complexity.

The main differences between G'MIC and ImageMagick/GraphicsMagick are as follows:

1. The type of images processed is more diverse in G'MIC. Although ImageMagick and
GraphicsMagick are capable to a certain extent of loading volumetric or hyperspectral
images, the possibilities for processing these generic images is limited to the use of
certain filters only (on the other hand, ImageMagick and GraphicsMagick offer far more
possibilities for converting image file formats, with format-specific encoding options).

2. The possibilities offered by the scripting languages associated with each project, for writing
image processing pipelines, are more extensive in G'MIC. In particular, G'MIC's scripting
language makes it possible to write conditions, loops and multi-threaded pipelines,
without having to resort to an external scripting language (such as sh or bash, which are
typically used in conjunction with ImageMagick/GraphicsMagick). The richness of the
G'MIC built-in scripting language (detailed in Section 3) ensures maximum portability of
the developed pipelines between different architectures (Linux/Windows/BSD).

= Image Filter Collections:

There are also related software packages offering predefined filter sets to be applied to images.
Popular examples are Mathmap (Probst, 2009), Filter Forge (B. Ashbrook, 2018) and Pixelitor
(Balazs-Csiki, 2023). While these software somehow allows the user to create its own pipeline
of image processing filters, their use case is restricted to the provided graphical user interfaces,
with quite limited scripting possibilities.

2. Framework Environment

2.1. Core Components

The current architecture of the G'MIC framework is depicted on Fig. 1. This corresponds to
the current state of the framework (version 3.3.2), at the time of writing.

G'MIC Online

GIMP - Krita - Paint NET - RIS LSS)

Photoshop - Paint Shop Pro -
Affinity Photo - Digikam - ...

ZArt

(Webcam GUI)

G'MIC-Qt
(Plug-in)

gmic-py
@ (Python Binding)

G'MIC interpreter
Llibgmic gmic
(C/C++ library) _ (CLI tool)

Figure 1: Overview of the G'MIC framework.

The organization of this framework revolves around a central component: the G'MIC scripting
language interpreter (in yellow). This interpreter uses the native functionalities of the CImg
library (which is implemented in C++, in blue), but relies also on a set of commands, written in
the G'MIC language themselves, constituting a standard library (stdlib) for the framework

(in green). The other components (in orange) stand for the different user interfaces provided
by the framework.

More than 1000 distinct commands are currently implemented in the stdlib, covering a large
portion of general image processing needs. These commands are gathered by categories, and
documented on the reference pages of the project. The table below lists these categories,
sorted by the respective number of commands they contain, and gives examples of typical
commands found in each category:

Category # of commands Examples of key commands

Colors 107 rgb2hsv, rgb2lab, retinex, sepia
Filtering 105 convolve, dilate, fft, sharpen
Convenience Functions 105 files, img2base64, strcapitalize
3D Meshes 95 isosurface3d, rotate3d, torus3d
Input / Output 89 camera, echo, input, output, display
Mathematical Operators 58 add, argmax, cos, mul, sqgrt
Geometry Manipulation b5 crop, resize, rotate, split

Neural Networks 6 nn_load, nn_conv2d, nn_maxpool2d
Value Manipulation b4 cut, equalize, normalize, map
Interactive Commands 47 demos, x_pacman, X_warp

Features Extraction 46 betti, histogram, label, skeleton
Image Drawing 41 ellipse, graph, line, polygon, text
Artistic 39 cartoon, cubism, polaroid, stenctil
Flow Control 31 do, error, for, if, return, while
Arrays, Tiles and Frames 28 array, frame_xy, frame_blur
Warpings 24 deform, fisheye, twirl, warp

Image Sequences and Videos 20 animate, morph, apply_video
Degradations 13 cracks, pixelize, vignette
Blending and Fading 12 blend, fade_linear, fade_radial
Matrix Computation 11 dijkstra, eigen, invert, svd

List Manipulation 10 move, name, remove, reverse

Other Commands 3 debug, help, version

The G'MIC interpreter lets the user write and run custom programs using this predefined set of
commands, for tasks as varied as writing new image filters, implementing generative algorithms
or creating user interfaces for image manipulation.

2.2. User Interfaces

On top of the G'MIC interpreter are the user interfaces. Several types of user interface are
implemented in the G'MIC framework, adapted to varying degrees of user’'s expertise. Those
interfaces are :

= gmic, a command-line tool used to control the G'MIC interpreter from a terminal. It is
actually one of the most powerful interface of the project, as it is able to manage all kind
of image types (1D, 2D, 3D, multi-spectral, etc.). It can also open display windows for
having basic user interaction when needed, typically for displaying images. Fig. 2 shows
an example of use of gmic from a console, where a color image is imported, resized,
blurred, converted to a 3D elevation mesh, and finally displayed in an interactive window.

-3 gmic sample colorful resize 128,128 +blur 5 normalize_local. , +elevation3d[-1] 6.1 [0] colorful, [1] colorfl_c1, [2] colorful_c2 (#3)

gmic]./ Start G'MIC interpreter (v.3.3.1).
gmic]./ Input sample image 'colorful' (1 image BBOxBBOx1x3).
(gmic]./ Resize image [0] to 128x128x100%x100% , with nearest-neighbor interpolation, dirid
(gmic]./ Blur 1mage |®] with standard deviation 5, neumann boundary conditions and gaussia
‘gmic]./ Normalize image [1] locally, with amplitude 3, radius 16, neighborhood smoothness
‘gmic]./elevation3d/ Generate 3D elevation of image [1], with z-factor 9.1,
gmic]./ Display images [0,1,2] = 'colorful, colorful_cl, colorful_c2'.
= "colorful':

size = (128,128,1,3) [192 Kio of float32].

data = (63,40,19,19,24,24,24,359,19,39,39,99,39,75,89,75,92,118,124,158,184,147,180,201,1,
84,197,204,197,204,215,215,209,204,222,217,217,198,204,204,221,224,224,204,224,224,229,233
55,13,14,17,18,18,14,14,20,14,16,103,1083,15,1082,66,14,14,13,15,15,54,15,13,14,14,14,17,18,

min = 2, max = 251, mean = BB.B673, std = 65.4331, coords_min = (70,117,0,0), coords_max

size = (1,194321,1,1) [759.1 Kio of float3z].

data = (67.5;73.5;109.5;103.5;51.5;100.5;16384;16129;0;0;9.71778;1;0;9.060084;2;0;8.40369
9559;9:0;7.18481;10;0;7.78276;11;0;8.5752;12;0;9.53855;13;0;10.6438:14;0;11.855;15;0;13.13]
BRI F A P USRS EH o EM S AR L E S C e Ep RS BB S LR B ER RS R R B (B R EG R RA D R B h b b B NS -5 -5 K5 F0 B3 B3 L5 85 |

min = 0, max = 16384, mean = 2758.95, std = 4688.95, coords_min = (0,8,08,08), coords _max

size = (128,128,1,3) [192 Kio of floatiz].

data = (87.2799,82.2518,77.2801,72.7195,68.918,66.1974,64.8302,65.0344,66.9756,70.7632,7¢
2,171.921,186.844,188.408,194.631,199.629,203.612,2606.845,209.574,212.004,214.249,216.311,1
361,220.428,220.777,221.427,222.352,223.492,224.775,226.135,227.517,228.887,2360.234,231. 564
3.056,232,111,231.413,231.004,230.925,231.281, ... ,225.672,223.217,226.006,215.959,210.96¢
6,189.178,96.109,83,7955,72.6147,62.8811,54.80598,48.5114,44.0027,41.2171,40.0037,40.1182.,4
29.4189,26.2279,23.3242,20.2485,17.6291,15.5932,14.1409,13.2318,12.7926,12.7254,12.9153,13
1,108.0953,9.0169,7.91718,6.80113,5.6647,4.50466,3.32862,2.15839,1.024%94,0).

min = @, max = 255, mean = 105.335, std = 61.2673, coords_min = (12,0,0,1), coords_max =

Figure 2: The command-line interface gmic in action.

» G'MIC-Qt is a Qt-based (Qt, 2020) graphical interface intended to be used as a plug-in
for digital image retouching software, such as GIMP, Krita, DigiKam, Photoshop, Affinity
Photo and others, or as a stand-alone program. This interface focuses on 2D color image
processing. It proposes a set of filters (over 590 to date) to be applied to the user's input
images. It features a fairly advanced system of dynamic user interface generation, based
on the syntactic analysis of comment lines defined in G'MIC command files (thus including
the image filters defined in the stdlib). All proposed filters are therefore written in
the G'MIC language, with their parameter setting interface dynamically generated by
the plug-in. It also features a filter update function, allowing to add/remove or correct
existing filters without having to re-install new binaries of the software. Fig. 3 shows the
G'MIC-Qt interface applying an effect to a color image, here run from GIMP. Users of
the plug-in are able to write their own G'MIC command files, in order to add new custom
filters (with the corresponding GUI) into the plug-in.

Kl G'MIC-Qt For GIMP 2.10- Linux 64 bits - 3.3.0

Search " Frame [Cube]

Available filters (592) =
About Depth

Arrays & Tiles X-Center

Artistic v-Center
Black & White

b
b
)
]
* Colors
[
;
]
»

Left Side Orientation Normal

Contours Right Side Orientation 'Normal

Deformations Upper Side Orientation 'Normal
Degradations Lower Side Orientation Normal
Details
s Author: David Tschumperlé, Angelo Lama. Latest Update: 2012/25/01.
Droste
Frame [Blur]
Frame [Cube]
Frame [Fuzzy]
Frame [Mirror]

Frame [Painting]

Frame [Pattern]
Frame [Regular]
Frame [Relief]
Frame [Round]
Frame [Smooth]
Old Photograph

Polaroid

Input / Output c

v Preview

Tunnel ~ Inputlayers Active (default) y e

o =: & Output mode |In place (default) - q Cchrs NN :E.Nsr[

v
& Internet GREYC CNRS UNICAEN ENSICAEN

. Settings... ® Fullscreen 2 Close & Apply oK

Figure 3: The G'MIC-Qt plug-in in action.

= G'MIC Online is a website where a user can upload a color image and apply one of
the G'MIC-Qt filters on it (Fig.4). It is a simple way to test the G'MIC filters and

effects without having to install anything locally on the user's computer. It is written in
CSS/Javascript and relies on the gmic CL/ tool on the server side to render the image

filters.

Inner radius
Outer radius
Periodicity
Strands

Zoom

Figure 4: The G'MIC Online website.

= libgmic and libgmic are respectively C++ and C libraries which allow the access to
the G'MIC features directly from a C/C++ source code. They basically provide a simple
C/C++ API to run a G'MIC pipeline on a set of input images passed to the library.

» ZArtis a Qt-based graphical interface used mainly for demonstration purposes (Fig. 5),
which applies G'MIC filters and effects on streamed webcam images in (almost) real-time.

;| LAt 3.0.0 (lecloo. avi) -4 X

Presety (254)

Prevew mode Full

R
i
-
. 4

Source Vitkeo faip

£ € €« € O €« ©

Cotor mode Lighter

Ohamnedis) YCBOr laminance]

i}

gy 22

Figure 5: View of the ZArt interface.

» gmic-py is a project for getting a Python binding for G'MIC (still work-in-progress). Its
aim is to provide Python programmers with the full range of filters and image processing
functions included in the G'MIC framework.

2.3. Visibility and Community

The G'MIC framework has been developed since 2008, mainly in the IMAGE team at the
GREYC laboratory, a French public research laboratory specialized in computer sciences. The
project web page is https://gmic.eu. This website brings together a range of resources, from
software download links to documentation and tutorial pages.

The core features of the G'MIC interpreter are developed by David Tschumperle, the G'MIC-
Rt plug-in by Sébastien Fourey, both being permanent researchers at GREYC. The other
contributors (for documentation, creation of new filters, or implementation of other user
interfaces) can be found on the software’s forum pages, hosted by Pixls.Us, an association
whose goal is to promote the use of open-source software dedicated to photography and image
creation. This forum is the place to go to get answers to questions about the software and
chat with developers and users.

The G'MIC source code is available on these various github repositories: gmic (interpreter),
gmic-qt (plug-in) and gmic-community (external contributions, documentation).

Last but not least, the project provides regular updates on new developments on social networks
such as Mastodon and Twitter.

3. The G'MIC Scripting Language

Here we provide some insights about the G'MIC scripting language and illustrate its use in the
creation of custom image processing algorithms and pipelines.

3.1. Overview and Main Features

The G'MIC language has been specifically designed for manipulating digital images, in the
broadest sense of the term. This means, making it easy to apply image processing algorithms
that have already been written (e.g. those from the stdlib), but also developing new algorithms,
either in the form of elaborated pipelines, or in the form of “low-level” operations applied
directly to the image pixels. This represents a wide variety of different use cases, so some key
features of the G'MIC language are as follows:

» The ability to handle generic image data type: up to sequences of 4D (3D + channels)
hyperspectral images with floating-point valued pixels/voxels.

= An already implemented large collection of various image processing operators.

= A powerful math evaluator which supports operations on scalars, complexes, vectors and
strings.

» Multi-threaded computations when possible, using OpenMP (Dagum & Menon, 1998).

= Drawing of primitives and 3D rendering capabilities.

= [he ability to manage display windows and handle user events, which leads to the
possible creation of simple graphical user interfaces.

= A network-based update mechanism for the filters and commands.

3.2. Language Rules

G'MIC is both a procedural and an interpreted language, and therefore shares common properties
with equivalent scripting languages such as bash, Python, LUA or Javascript, particularly with
regard to program structuring and the use of flow control instructions. It does, however, have
its own distinctive features, some of which we list below:

= Image storage: At any time, G'MIC manages one list of numbered (and optionally named)
pixel-based images, entirely stored in computer memory. The first image of the list has
index 0 and is denoted by [0]. The second image of the list is denoted by [1], the
third by [2] and so on. Negative indices are treated in a periodic way: [-1] refers to
the last image of the list, [-2] to the penultimate one, etc. A named image may be
also indicated by [name]. Then, G'MIC defines a set of various commands to manage
this list of images, in a very flexible way: You can insert or remove images in the list,
rearrange image order, process images (individually or grouped), merge image data
together, display and output image files, etc.

= Types of images: Each image is modeled as a 1D, 2D, 3D or 4D array of scalar values,
uniformly discretized on a rectangular/parallelepipedic domain. The four dimensions

of this array are respectively denoted by width (number of columns), height (number
of rows), depth (number of slices) and spectrum (number of channels). There are no
hard limitations on the size of the image along each dimension, within the limits of the
available memory. G'MIC makes it also possible to manage 3D meshes. A 3D mesh is
stored as 1xN image containing the vertex coordinates, primitive definition, as well as
their associated colors/textures, all these information being merged and unrolled as a

single data vector.

= Definition of a processing pipeline: In G'MIC, a processing pipeline is described as a
sequence of items (separated by the space character) which are interpreted and executed

from the left to the right. For instance, the expression:
filename.jpg blur 3,0 sharpen 10 resize 200%,200% output file_out.jpg

defines a valid pipeline composed of nine G'MIC items. Each G'MIC item is a string that is
either a command, a list of command arguments, a filename or a special input string.

= Command selections: A command may be applied only to a subset of the image list, by
appending [selection] to the command name. For instance,
— command[-2]: Apply command only on the penultimate image [-2] of the list.
— command[3-6]: Apply command only on images [3], [4], [5] and [6].
— command[0--1:2]: Apply command only on images of the list with even indices.
— command[namel,name2]: Apply command on named images namel and name2.
= Substituting expressions: In G'MIC, items containing braces {} or dollars $ may be
substituted before being evaluated. These substituting expressions are used for on-the-fly
evaluation of math expressions (e.g. {3+cos(0)} is substituted by 4), or to get interpreter
or environment variables (e.g. $HOME is substituted by /home/username).

3.3. Examples of Pipeline and Algorithm Implementations

The set of rules defining the language is fairly small, but provides a complete, high-performance
scripting language for image processing. Rather than go into the syntactical details of the
language, we illustrate it below with a few examples of pipeline constructions, for a variety of

image processing tasks.

3.3.1. Difference of Gaussians

Given a 2D multi-spectral image I : R* — R", the difference of Gaussians (DoG) of the image
I is the image FJM{,2 : R — R™ obtained by subtracting the image I convolved with the
Gaussian of standard deviation o, from the image [convolved with a Gaussian of standard
deviation oy, ie. I', . =1xG, —IxG, ,where G, : R* — R is a 2D Gaussian kernel
with standard deviation o:

|2 +]y]2

G, (z,y) = (021271) e 27

Using the G'MIC language, such a filter can be written as a new function dog (e.g. in a file
dog.gmic) as:

dog : _sigmal>=0,_sigma2>=0

Apply DoG filter on selected images.

Default values: 'sigmal=1' and 'sigma2=2"'.

dog : check "${1=1}>=0 && ${2=2}>=0" # Check validity of arguments

foreach { # Loop over each 1mage i1n the command selection

+blur[0] $2 # Get blurred version of the image
blur[0] $1 # Blur initial image in-place
sub # Subtract the two i1mages together

}

And then used afterwards, e.g. in a command line call, here on two input images:

$ gmic dog.gmic flower.jpg butterfly.jpg +dog 1,1.6

resulting in this list of images (Fig. 6):

S

0]: 'flower' (256x256x1x3) 1] ‘butterfly’' (256x256x1x3) 2]: 'flower cl' (256x256x1x3) 3]: 'butterfly cl' (256x256x1x3)

Figure 6: Application of the DoG filter on two input images (using command dog).

In the source code of the dog function, it's interesting to note that:
= Values of arguments are accessible using the $1, $2, .. syntax.

= [he foreach { ... } constructs ensures that the filter can be applied to several input
images at once (specified in the command selection), as it was done in our example.

= The use of the + prefix (e.g. in +blur and +dog) forces a command to return its result
as new images inserted at the end of the image list, rather than processing the image
in-place.

3.3.2. Artistic Effect

Here, we show how to mimic the Fractalius effect, a popular, closed-source, image filter,
developed by RedField. As stated in their webpage, it “creates unusual, eccentric artworks
in a single step. The effects are based on extraction of so-called hidden fractal texture of
an image. You can also simulate various types of exotic lightings and high realistic pencil
sketches” (S. Ashbrook, 2009). A similar effect (although not exactly the same) can be actually
done by several steps of linear image blurs along different orientations, that are sharpened and
merged together with a Lighten blending mode (i.e. pointwise maximum of pixel values). The
corresponding G'MIC script is implemented as follows:

Arguments: O<=_amplitude<=100, O<=thickness<=100, sharpness>=0, \
_nb_orientations>0,_offset,_color_mode={ O=darker | 1=brighter }.
fractalius : check "${1=10}>=0 && $1<=200 && ${2=10}>=0 && $2<=100 && "\
"${3=400}>=0 && ${4=7}>0 && isbool(${6=1})" skip ${5=0}
foreach {
1f !'$6 negate ft
+f1ll 0
repeat round($4) {
angle:=$5+$>*180/round($4)
+blur_linear[0] $1%,{$1*$2/100}%,%$angle,1
blur[-1] 0.7 sharpen[-1] $3
max[1,-1]
}
keep[1]
1f !'$6 negate fi
s

This filter has been already a part of the G'MIC framework since 2011, starting from an idea
of Rod, a user from the GimpChat forums (Fig. 7). This example shows that G'MIC is well

suited to prototype potentially complex image processing filters with a few lines of script only,
particularly thanks to its embedded mathematical evaluator and its very concise syntax.

Figure 7: Applying a Fractalius-like effect, with command fractalius_like. Left: input image. Right:
filtered image.

3.3.3. NL-Means

The Non-local means algorithm (NL-means, (Buades et al., 2005)) is a classical noise reduction
technique used in image processing. |t works by averaging the pixel values in an image, giving
more weight to pixels whose neighborhoods are similar to the neighborhood of the target pixel
in a non-local sense. In other words, it considers not only nearby pixels but also those from
different parts of the image that exhibit similar patterns. This approach helps preserving image
details while effectively reducing noise, making it a powerful tool for image denoising.

Basically, a NL-means filtered image J : R? — R" is computed from an input image
[:R? - R", as J(z,y) = ﬁ Zp 40 w(p, q)I(p,q) where I(p,q) is the unfiltered value

of the image at point (p,q). The normalization factor IV is given by: N = Zp 1< w(p, q).

| P(¢)2—=P(p)?||

The weights w(p, q) are Gaussian functions, defined as: w(p,q) = e o2 . where P(p)
and P(q) are the values of the patches (unrolled as vectors) centered respectively at points p
and q.

Non-local means can be implemented quite easily in G'MIC language, thanks to its embedded
math evaluator, along with command fill that computes a custom math expression per pixel:

#aclt1 nlmeans : _patch_si1ze>0, lookup_size>0,sigma>=0
#aclt : Apply NL-means filter on selected images.
#@clt : Default values: 'patch_size=5', 'lookup_size=3' and 'sigma=100".
nlmeans : check "isint(${1=5}) && $1>0 && i1sint(${2=8}) && $2>0 && ${3=100}>=0"
fill "
const patch_size = $1;
const patch_beg = int($1/2);
const lookup_size = $2;
const Llookup_beg = int($2/2);
const sigma = $3;

V_ref = crop(x - patch_beg,y - patch_beg,0,c,patch_size,patch_size,1,1);
sum_weilghts = new_value = 0;

repeat (lookup_stize,q,
Y =y - g + lookup_beg;

repeat (lookup_size,p,
X =x - p + lookup_beg;
V = crop(X - patch_beg,Y - patch_beg,0,c,patch_size,patch_size,1,1);
V-=V_ref;
welght = gauss(norm(V),sigma,0);
new_value+=weight*1(X,Y);
sum_weilghts+=weilght;
)
)5
new_value/=sum_weights"”

The command above is composed of a single fill command that is actually a large math
expression, evaluated for each pixel by the G'MIC math parser (and in this case, automatically
parallelized, as the expression is indeed independent for each pixel). As before, this command
can be called from the command line to denoise one or several images (Fig.8), with:

$ gmic nlmeans.gmic noilsy_face.jpg +nlmeans 5,15

|
.ﬁt

Figure 8: Example of NL-means filtering, with the nlmeans command. Left: input (noisy) image. Right:
filtered image.

3.3.4. Generation of Fractal Images

The following examples are similar: they use the G'MIC math evaluator to render fractal images.
It illustrates the capability of the math evaluator to work with complex values.

= Julia Set

The Julia Set is a mathematical set that represents the boundary between points that remain
bounded and points that diverge to infinity under repeated iterations of a specific mathematical
function. It is associated with the Mandelbrot set, a famous fractal studied by French-American
mathematician Benoit Mandelbrot (Julia, 1918).

To render the Julia set, we choose a complex number ¢ and repeatedly apply an iterative
function, typically the formula z = 2% + ¢, starting with an initial value of z that represents
the (z,y) coordinates of each pixel we want to render. For each point in the complex plane,
we iterate this function and track whether the values remain bounded or escape to infinity.
Then, we color or shade the points based on the number of iterations it takes for a point to
escape (Fig. 9, left).

In G'MIC, the classical colored Julia set rendering can be written as:

#aclt julia
#@clt : Insert a new fractal image at the end of the image list
+julia :
1024,1024,1,1,"
z = [lerp(-1.2,1.2,x/w), lerp(-1.2,1.2,y/h) 1;
for (i1ter = 0, cabs(z)<=2 & 1ter<256, ++1iter,
z =2z"2+ [0.4,0.2];
)5
tter<256?1ter: 0"
map balance

Here again, the mathematical evaluator of G'MIC makes this whole process automatically paral-
lelized (elapsed time: 0.325 s for a 1024x1024 image, on a 12-core Intel Xeon CPU®©2.60Ghz).

= Buddhabrot

The Buddhabrot is a different technique for visualizing Mandelbrot sets: Instead of just coloring
the pixels according to the number of iterations until they diverge, the rendering is generated
by tracking the paths of escaped points (those that eventually reach infinity) during iterations
of the Mandelbrot set's formula. The Buddhabrot accumulates the paths of these escaped
points, highlighting areas with higher escape density. This creates a ghostly image resembling
a Buddha-like figure (Green, 1993). To render it, we have to perform many iterations of the
Mandelbrot set's formula, keeping track of escaped points, and then display the accumulated
path data to create the final Buddhabrot image (Fig. 9, right, elapsed time: 57.074 s for a
1024x1024 image, on a 12-core Intel Xeon CPU®2.60Ghz).

This process can be written in the G'MIC scripting language as:

+buddhabrot :
repeat 3 { buddhabrot _mono[] {[100,1000,3000][$>]} } # Do i1t for each channel
normalize 0,500 cut 0,255 append ¢ denoise_cnn 0 adjust _colors 0,10,10,0,30
to_rgb

buddhabrot_mono :
1024, 1024
32,1,1,1,":
begin(
const itermax = $1;
zs = vector(#itermax*2);

I3

repeat (0.25*w#0*h#0,
c =[u(-2,1),u(-1.5,1.5) 1;
z =[0,0];
for (1ter = 0, cabs(z)<=2 && t1ter<titermax, ++iter,
Z = Z**Z + C;
copy(zs[2*iter],z);
) ;
tter>0 && 1ter<titermax ?
repeat(iter,Kk,
X = lerp(0,w#0 - 1,(zs[2*k] + 2)/3);
y = lerp(0,h#0 - 1,(zs[2*k + 1] + 1.5)/3);
++1(#0,X,VY);
)

)II
remove[-1] rotate[-1] 90

Figure 9: Rendering of the Julia and Buddhabrot fractals, with the julia and buddhabrot commands.

Note that these two fractal rendering commands do not modify existing images, but generate
new images from scratch. For this reason, they are defined directly under the names +julia
and +buddhabrot, giving them the special status of commands whose purpose is simply to
insert new images at the end of the image list managed in G'MIC.

3.3.5. Segmentation and Visualisation of 3D Volumetric Images.

Brain image segmentation is the process of partitioning a brain MRI scan (Magnetic Resonance
Imaging) into distinct anatomical regions or structures, such as white matter, gray matter,
cerebrospinal fluid, and specific brain regions. This can help in analyzing and quantifying
the brain's structures, aiding in medical diagnosis, research, and treatment planning. Below,
we show how G'MIC can be a helper for this kind of task, with a segmentation /visualization
pipeline (here, simplified on purpose) that is applied on an input volumetric MRI image of a
monkey's brain:

segment_mri
+flood 33,57,36,20,1,1,1000 # Segment gray matter using region growing
flood[-2] 0,0,0,20,0,1,1000 # Segment skull interface using region growing
blur 1
Lsosurface3d 500 # Convert segmentations to 3D meshes (marching cubes)
opacity3d[-2] 0.2
color3d[-1] 255,128,0
add3d

This script segments both the gray matter and the skull from the input volumetric image, then
converts those segmentations into 3D meshes, that are finally colored then merged together

(Fig.10).

Figure 10: Example of MRI volumetric image segmentation, using the segment_mri command. Left:
input volumetric image as displayed by the default G'MIC volume viewer. Right: 3D view of the segmented
structures.

4. Examples of Research Work Conducted With G'MIC

To illustrate the high degree of genericity of the G'MIC framework, we list a selection of a few
image processing research projects carried out in the IMAGE team at the GREYC laboratory
(UMR CNRS 6072), which have used G'MIC for algorithm development, prototyping, testing
and result generation. The resulting algorithms, presented below, have all been integrated into
the G'MIC framework, and can now be freely used by users (in particular, artists), e.g. via the
G'MIC-Qt plug-in. This demonstrates the potential of G'MIC not only in developing new image
processing algorithms, but also as a software platform for disseminating these new algorithms
to professionals and the general public.

4.1. Patch-Based Image Inpainting

Image inpainting is the name given to the process of replacing part of an image, defined in the
form of a user-drawn mask, with algorithmically synthesized content. This type of algorithms
can be used in a number of ways: for example, to remove a distracting element from a
photograph (wire, person, vehicle, etc.), or to correct defects in images (scratches, compression
noise, etc.). The problem of image inpainting has attracted growing interest in recent years,
and a number of different algorithmic techniques have been developed in an attempt to address
the issue. Some of these, namely “patch-based” techniques, have proved their effectiveness
for the reconstruction of complex patterns, such as textures, while maintaining a reasonable
algorithmic complexity that allows these algorithms to run on mid-range machines.

Between 2011 and 2015, this problem was studied by researchers Maxime Daisy, Pierre Buyssens,
David Tschumperlé, Olivier Le Meur and Olivier Lézoray, and this led to the development
of new, original image inpainting algorithms, described in detail in a publication in /EEE
Transaction on Image Processing (Buyssens et al., 2015).

In G'MIC-Qt, the Inpaint [Multi-Scale] and Inpaint [Patch-Based] filters implement different
patch-based image inpainting algorithms. T he user provides a mask drawn in a solid color
to the algorithm, which tries to “guess” the pixels that best reconstruct the content of the
masked regions. As illustrated in Fig. 11, the algorithms are able to reconstruct complex
portions of images, containing textures (in this case, trees and clouds), from the geometric
analysis of known portions of the input image.

Figure 11: Patch-based image inpainting with G'MIC. Left: input image. Middle: user-defined mask.
Right: inpainting result.

4.2. Color LUT Compression

3D CLUTs (Color Look Up Tables) are popular digital models used in artistic image and video
processing, for color grading, simulation of analog films, and more generally for the description
and application of generic non-parametric color transformations. The relatively large size of
these models leads to high data storage requirements when trying to distribute them on a
large scale (e.g. several hundred at the same time), typically as sets of .png HaldCLUTs or
Adobe’s . cube files.

In the context of G'MIC, it was important to be able to provide users with as many color
transformation filters as possible, without considerably increasing the size of the framework. To
that purpose, in 2018, researchers David Tschumperlé, Amal Mahboubi and Christine Porquet
have proposed a dedicated method for compressing CLUTs, which delivers good performance
(generally over 95% space saving). Their algorithm is based on the search for a set of color
key points such that, when interpolated anisotropically in the RGB cube, the resulting CLUT
is perceptually equivalent to the original CLUT one is trying to compress (Fig. 12).

Image 2x92

|
I
|
|
I
i
I
I
]
i
IH
.:
|
|
¥
o
I

(a) Color transformation, (b) Extraction of relevant (c) Keypoints storage
modeled as a3D CLUT color keypoints as a tiny color image (d) Original image (e) Image after transformation

Figure 12: Principle of the G'MIC color LUT compression algorithm. An input CLUT (a) is analyzed and
relevant color keypoints are deduced (b) and stored as a small image (c). A perceptual metric is used to
ensure that the application of the compressed CLUT on an image is visually similar to the application of

the original one.

The method has been described in the article (Tschumperlé et al., 2020) published in the
SIAM Journal of Imaging Science, in 2020.

The proposed compression/decompression technique has been extensively used in G'MIC to
provide color grading filters, such as Color Presets or Simulate Film (Fig. 13). There are
currently 1105 different CLUTs compressed this way in G'MIC, for a storage size of just
under 4 MiB (which would have taken up several hundred MiB with a conventional CLUT

representation).

ﬁ

Available Filters (592)
Auto Balance

Basic Adjustments

Boost Chromaticity
Boost-Fade

Brightness

Channel Processing
Channels to Layers

CLUT from After - Before |
CMYK Tone

Color Balance

Color Blindness

Color Grading

Color Presets

LUTs Pack PIXLS.US (31)

Preset Dark Blues in Sunlight

= —

T ——.

Strength (%)
Brightness (%)
Contrast (%)
Gamma (%)
Hue (%)
Saturation (%) =——8

Normalize Colors None

G'MIC-Qt For GIMP 2.10 - Linux 64 bits - 3.3.0

LN LB 1) i) L 1

Color Mask [Interactive]

Preview Type Forward Vertical

Color Presets
Color Temperature
Colorful Blobs
Colormap

Note: The color LUTs proposed in this category
come from:

Contrast

curves PIXLS.US Contributors
Customize CLUT
Dark Sky

Latest Update: 2023/06/01.

Decompose Channels
Detect Skin

Equalize HSI-HSL-HSV
Equalize HSV

HSL Adjustment

HSV Select

g = Output mode 'In place (default)

i b

Input / Output C
v Preview

Input layers | Active (default)

v
C Internet GREYC CNRS UNICAEN ENSICAEN

.Settings... ® Fullscreen = 2 Close & Apply L OK

Figure 13: Color Presets filter in G'MIC-Qt.

4.3. Semi-automatic Colorization of Line Arts

Colorizing line art drawings is a problem that illustrators are familiar with. The question is how
to colorize, with solid colors, an image originally made up of black or grayscale lines, on a white
or transparent background. The traditional tools available in image creation or retouching
software (such as the well-known Bucket Fill) are not always well suited because they do not
take into account the specificities of the task, such as the fact that the lines of the drawing
contain gaps which may be large, or that the filling of colors should ideally be done under the
ines (i.e. in a separate layer placed under the original grayscale anti-aliased drawing).

It was while discussing with David Revoy (Revoy, 2023a), an independent illustrator, author
of the webcomic Pepper & Carrot (Revoy, 2023b), that researchers Sébastien Fourey and
David Tschumperlé came up with the idea of an algorithm which would make it possible
to semi-automatically generate a layer of colorization from an input line art. The resulting
algorithm analyzes the geometry of the line art contours and automatically deduces a reasonable
flat-colored layer, filled with colors which are randomly chosen, but that can be easily modified
subsequently by the artist to give them the desired color (for example, using the Bucket Fill
tool on the colorization layer thus generated). This is the process illustrated in Fig. 14, where
the input line art (/eft) is automatically colorized with random colors (middle left), which are
modified by the artist (middle right), before going to the illumination task (right).

Figure 14: Principle of the semi-automatic line art colorization algorithm.

The proposed method has been described in a conference paper, published in the EURO-
GRAPHICS International Symposium on Vision, Modeling and Visualization, in 2018 (Fourey

et al., 2018).

Within the G'MIC framework, the corresponding algorithm is available in the form of the
Colorize Line Art [Smart Coloring] filter (Fig. 15).

Ed

Available filters (592)
» Artistic

~ Black & White
B&W Stencil
Black & White
Charcoal
Colorize [Interactive]
Colorize [Photographs]
Colorize [with Colormap]
Colorize Lineart [Auto-Fill]
Colorize Lineart [Propagation]
Colorize Lineart [Smart Colorin
Desaturate Norm
Dithering
Emboss
A IEVE
Freaky B&W
Ink Wash
Multi-Layer Etch
Pencil
Pencil Portrait
Stamp
Threshold Etch

» Colors

» Contours

G'MIC-Qt for GIMP 2.10 - Linux 64 bits-3.3.0

Colorize Lineart [Smart Coloring]

Colorize Mode Extrapolate Color Spots on Transparent Top Layer

Global geometry parameters:
Contour Detection (%) _——— — — — 95

Discard Contour Guides

Add strokes with a saturated color having value 255 (e.q. pure red) on your lineart allows to guide the
colorization algorithm with virtual contours.

Output Region Delimiters

For Random colors mode only:

Make Hue Depends on Region Size
Maximal Color Saturation —)

Minimal Color Intensity

For color spots mode only:

Color Shading (%)

Connection parameters:

End Point Rate (%)

End Point Connectivity

Spline Max Length (px) ——

Segment Max Length (px)
Spline Max Angle (deg)

Spline Roundness

» Deformations Input / Output
» Degradations v Preview

b Datalls + Inputlayers All
K = Output mode 'In place (default)

.‘.f
C Internet GREYC CNRS UNICAEN ENSICAEN

.Settings... ® Fullscreen £ Close 2 Apply 1 OK

Figure 15: Filter Colorize Line Art [Smart Coloring] in the G'MIC-Qt plug-in.

This filter offers three variants that can be used to colorize line arts. In addition to the mode of
generating a layer containing random colors, the filter offers a mode of intelligent extrapolation

of color spots placed on a transparent layer above the original drawing, as illustrated in Fig.
16.

Figure 16: Color spot extrapolation for automatic lineart colorization.

A third mode, named Auto-Clean, allows the artist to quickly scribble over a coloring layer,
without worrying about being very precise (especially with regard to not overflowing the
outlines). The filter then takes care of cleaning this layer automatically, to make the colors
stick to the different contours of the input line art (Fig. 17).

Figure 17: Auto-clean mode for the lineart colorization algorithm.

Note that the colorization algorithm resulting from this research work was the subject of
an external implementation in the GIMP software, to enrich the “"Bucket Fill” tool with a
specialized “Line Art" mode for the colorization of line drawings (Developers, 2018).

4.4. Automatic lllumination of Flat-colored Drawings

In 2021, researchers David Tschumperlé, Amal Mahboubi and Christine Porquet have been
interested in going one step further by designing an original algorithm that tries to illuminate
flat-colorized drawings, by automatically creating a light and shadow layer. This method has

been published and presented at the |IEEE International Conference on Image Processing, in
2022 (Tschumperlé et al., 2022).

The main idea behind the algorithm is the analysis of the different silhouettes composing the
drawing, such that plausible 3D elevation maps are built. A Phong lightling model that relies
on the corresponding normal maps is then applied to generate the illumination layer (Fig. 18).

Figure 18: Principle of the Shape lllumination Algorithm. Left: input image, middle-left: estimated 3D
normal map. Right: two examples of different illuminations obtained with the Phong lighting model
applied with different parameters.

In the G'MIC-Qt plug-in, this illumination algorithm can be applied via the filter llluminate
2D Shape (Fig. 19).

- G'MIC-Qt for GIMP 2.10 - Linux 64 bits - 3.3.0

llluminate 2D Shape | J

il

Available Filters (592 = M= = N
() Inputfﬂutput: %BefOrEHE.E[i] o N N .fl
Details oAl Temw aw e

Input Type Single Opaque Shapes Over Transp. BG

r
.

e .
il
L
CH N
=

Output Type Illumination

EEE-.EEEEE
HE N
|

E E B B E B

o
EE E R EE

Frequencies

) =
m
r Frames |
B
: |
) |

T
. H NN R M
- {
i
i)
B B

u N
=]

Layers Input Guide Color
* Lights & Shadows

Burn Keep Transparency in Qutput v

B2
i ﬂl!!.!ﬂ'.l=!!

| N m N N
]
i 0 E N N E N NN

1
g
e RN

=
]

Keep Base Layer as Input Background ¥

E E u =

B
b

Contrast Swiss Mask

B_

Shape:

Dodge and Burn
Drop Shadow

Drop Shadow 3D
Equalize Light
Equalize Shadow
Guided Light Rays
Illuminate 2D Shape
Light Glow

Light Leaks

Light Patch

-

- =2 ¥

C Vv Internet

Minimal Shape Area
Parameter Minimal shape areais only active in Multiple colored shapesinput mode,
Preview Detected Shapes

Erosion / Dilation
Smoothness

Bump Factor

Input / Output

Input layers Active (default)

Output mode In place (default)

e =
S R mm
& =

B
| J

w~

m oK

Che B R R
B =

m
&

Y

EEE R
A
E B

“H |
EE

|
|
&

“E W
Y

ImE RN

PN m E .

&2
[|
w

s
o

i

Fill H B
=s ” iﬂ
s E B N
Y R |

o N
i
]

(i []

E. L

HEE
] i]

HE B H N
i =
||

2

iLE N
F 4 m

|
L |

R

§ -
S

v Preview 650.51% +

q CIIS wGs= BaiE2858E

GREYC CNRS UNICAEN ENSICAEN

® Fullscreen & Close 2 Apply J OK

.Settings...

Figure 19: Filter llluminate 2D Shape in the G'MIC-Qt plug-in.

4.5. Patch-Based Image Style Transfer

Image stylization is a relatively recent processing application, having made its appearance in
2015 with the pioneering work of (Gatys et al., 2015). The problem consists in transforming
an input image (usually a photograph) to give it a pictorial style close to that of a second
image (styled image), also specified by the user. This style image is, for example, the image of
a famous painting, a drawing or another photograph.

Classically, style transfer techniques are based on convolutional neural networks, but some
lighter alternative methods exist. Researchers Benjamin Samuth, David Tschumperlé and

Julien Rabin have turned their attention to patch-based methods. They were able to develop
a multi-scale algorithm based solely on copying patches from the style image, to generate a
coherent style transfer, with low algorithmic cost.

This patch-based style transfer algorithm has been published and presented at the IEEE
International Conference on Image Processing, in 2022 (Samuth et al., 2022). It has been

implemented in G'MIC, as command stylize, and its associated G'MIC-Qt filter Stylize (Fig.
20).

Figure 20: Examples of application of the G'MIC style transfer method. An input image (top left) is
stylized according to a set of different style images (top row).

4.6. Debanding of Astronomical Images

Regarding the use of G'MIC in research activities outside the GREYC laboratory (in which
it is developed) : Let us mention that G'MIC is known to be used in the astronomy research
community, in particular for processing images from the JWST (James Webb Space Telescope),
which often exhibit frequency noise that materializes as transverse bands degrading the image
quality. One interesting algorithm for getting rid of band noise in G'MIC is implemented in the
filter Banding Denoise.

For instance, the use of G'MIC is mentionned in the article (Ray et al., 2023), where images
from protostar HH211 have been processed with it. One of those made the cover of Nature

magazine (October 5, 2023, Volume 622 Issue 7981) (Fig. 21).

ASTAR
1S BORN

JWST reveals

=
molecular natt L)
of jetexpelled by '
nascentstar
Language lessons I ngon il
L i promises The prosamd cons of Ancient structure i:
stabilicy In search for using Al to provide revises date for i
blockbuster drugs seiencepolicy advice horrinins s g woo '

Figure 21: Left: image of protostar HH211, partially processed with G'MIC (cover of Nature, courtesy of
Mark McCaughrean/ESA). Right: an example of the effect of the G'MIC Banding Denoise filter on an
image of the /C4553 galaxy (acquired by the JWST, courtesy of Judy Schmidt).

It is not possible to know the full range of uses for open-source software such as G'MIC, but it
is reasonable to assume it is used in other areas of research where image processing may be
required.

5. Conclusions and Perspectives

In this article, we presented G'MIC, an open-source framework for digital image processing,
developed since more than 15 years. G'MIC defines its own scripting language to ease the
design and application of image processing pipelines and to allow the definition of new image
processing filters and algorithms. This mature software package can be used by a wide range
of users : experts in image processing, regular users looking for a tool to quickly retouch or
generate images, or researchers working in fields where image processing can play a role to
improve acquired data. The wide range of available user interfaces makes G'MIC a versatile
tool for image processing.

With the advent of neural network-based image processing methods, G'MIC's next major
challenge will be to enable these new types of processing to be used consistently within its
scripting language. Efforts are already underway to move in this direction.

References

Ashbrook, B. (2018). Filter forge. PSA Journal, 84(2), 8-10.
Ashbrook, S. (2009). Fractalius. PSA Journal, 75(12), 16-17.

Balazs-Csiki, Laszlé. (2023). Pixelitor (Version 4.3.0). https://pixelitor.sourceforge.io/index.
html

Buades, A., Coll, B., & Morel, J.-M. (2005). A non-local algorithm for image denoising.
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'05), 2, 60—-65.

Buyssens, P., Daisy, M., Tschumperlé, D., & Lézoray, O. (2015). Exemplar-based inpainting:
Technical review and new heuristics for better geometric reconstructions. |[EEE Transactions
on Image Processing, 24(6), 1809-1824. https://doi.org/10.1109/tip.2015.2411437

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-memory
programming. I[EEE Computational Science and Engineering, 5(1), 46-55. https://doi.
org/10.1109/99.660313

Developers, G. (2018). Lineart Bucket Fill. https://developer.gimp.org/core/algorithm/
line-art-bucket-fill /

Fourey, S., Tschumperlé, D., & Revoy, D. (2018). A fast and efficient semi-guided algorithm
for tlat coloring line-arts. International Symposium on Vision, Modeling and Visualization.

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv
Preprint arXiv:1508.06576.

GraphicsMagick Group. (2023). GraphicsMagick (Version 1.3.40). http://www.
graphicsmagick.org/

Green, M. (1993). The Buddhabrot Technique. https://superliminal.com /fractals/bbrot/
ImageMagick Studio LLC. (2023). ImageMagick (Version 7.0.10). https://imagemagick.org

Julia, G. (1918). Mémoire sur l'itération des fonctions rationnelles. Journal de Mathématiques
Pures Et Appliquées, 1, 47-245.

Probst, Mark. (2009). The MathMap Image Processing Application (Version 1.3.5). https:
/ /www.complang.tuwien.ac.at/schani/mathmap/

Qt. (2020). A cross-platform software for creating graphical user interfaces (Version 5).
https://www.qt.io

Ray, T. P., McCaughrean, M. J., Caratti o Garatti, A., Kavanagh, P., Justtanont, K., Dishoeck,
E. F. van, Reitsma, M., Beuther, H., Francis, L., Gieser, C., & others. (2023). Outflows
from the youngest stars are mostly molecular. Nature, 622(7981), 48-52. https://doi.org/
10.1038/s41586-023-06551-1

Revoy, David. (2023a). David Revoy, comic book artist and art director. https://www.
davidrevoy.com/

Revoy, David. (2023b). Pepper & Carrot, a free(libre) and open-source webcomic. https:
/ /www.peppercarrot.com/

Samuth, B., Tschumperlé, D., & Rabin, J. (2022). A patch-based approach for artistic style
transfer via constrained multi-scale image matching. 2022 IEEE International Conference

on Image Processing (ICIP), 3490-3494. https://doi.org/10.1109/icip46576.2022.9897334

Tschumperlé, D. (2023). Clmg: C++ Template Image Processing Toolkit (Version 3.3.1).
http://cimg.eu

Tschumperlé, D., Porquet, C., & Mahboubi, A. (2022). Automatic illumination of flat-colored
drawings by 3D augmentation of 2D silhouettes. 2022 IEEE International Conference on

Image Processing (ICIP), 371-375. https://doi.org/10.1109/icip46576.2022.9897386

Tschumperlé, D., Porquet, C., & Mahboubi, A. (2020). Reconstruction of smooth 3D
color functions from keypoints: Application to lossy compression and exemplar-based
generation of color LUTs. SIAM Journal on Imaging Sciences, 13(3), 1511-1535. https:
//doi.org/10.1137/19m1306798

