Francesco Fassò 
email: fasso@math.unipd.it
  
Sara Galasso 
email: galasso@math.unipd.it
  
Spectral analysis of a system of pendula hanging from a viscoelastic string and of their synchronization patterns

We propose and study a model for the mechanical system constituted by a chain of n ≥ 1 identical pendula hanging from a viscoelastic string with fixed extrema. The pendula are assumed to be equally spaced and constrained to move on a (vertical) plane. The novelty of our approach is that we describe the string as a continuous system. Specifically, we adopt for the string a standard model formed by the one-dimensional elastic string complemented by the addition of a viscous damping of Kelvin-Voigt type. The resulting system is a "hybrid" system of coupled PDEs and ODEs, and depends on three parameters, which are related to the ratio between the masses of the pendula and of the string, and to the viscosity and tension of the string. Our ultimate purpose is that of understanding the ("synchronization") patterns emerging in the long term dynamics of the system. Given that dissipation ultimately drives the system to rest, with pendula and string pointing downwards, we linearize the system around that equilibrium. We identify the "synchronization" patterns as produced by the (slowly decaying) superpositions of the damped normal modes with the smallest decay rates, which persist longer than all others. In order to identify these normal modes, and how they depend on the parameters, we study the spectrum of the linearization, which decouples into a "vertical" and a "horizontal" subsystem, both non-self-adjoint. The former is a dissipative version of Rayleigh's loaded string, while the latter appears to be new (also in absence of damping). We derive explicit expressions for the eigenvalue equation and the eigenfunctions, in terms of Chebyshev polynomials of the second kind. The study of the spectrum, as a function of the three parameters, is performed with a combined used of analytical and numerical techniques. For the damped horizontal spectrum, which has a very complicated and rich structure, we adopt a deformation (or "perturbation") approach from the case of pendula of zero masses, showing that it is a global deformation of the spectrum of the Kelvin-Voigt viscoelastic string and of the (linearized) n pendula. Finally, mostly in the case n = 2, we identify the damped normal modes with the smallest decay rates, which therefore produce the long term "synchronized" dynamics, and (assuming but not proving the completeness of the eigenfunctions) discuss their (nontrivial) dependence on the parameters. We also indicate (but not pursue) a possible way of extending these results from the linear to the nonlinear.

This article is devoted to a study of the long-term dynamics of mechanical systems formed by a number n ≥ 1 of identical pendula hanging from a viscoelastic string (a cable or a rope). Several movies of similar apparatuses, often with n = 2, are popular on Youtube. An experimental analysis of certain features of the dynamics has been recently reported in [START_REF] Greselin | Thermalisation of a coupled pendulum chain[END_REF][START_REF] Greselin | Thermalisation of a coupled pendulum chain[END_REF] in a case with n = 24 (and with purposes completely different from ours).

Watching the dynamics of the pendula is fascinating: the dynamics is affected by dissipation and, after an initial transient in which-if the initial oscillation amplitudes of the pendula are large-the system likely undergoes chaotic dynamics and quickly looses energy, a much longer, quite regular, "asymptotic regime" is settled in which the dynamics consists of slowly decaying medium-to-small amplitude oscillations that appear approximately quasi-periodic and involve in a variety of ways either all the pendula or certain groups of them; on time, these oscillations loose energy and the system tends to rest, given that the equilibrium with the string and pendula pointing downwards is globally attractive. Particularly if n is small, the motions of the pendula in such long "asymptotic" regime may be perceived as "synchronized"; for instance, when n = 2, the two pendula might oscillate either in phase, or in anti-phase, or undergo beats. More complex "synchronization patterns" are possible for larger n.

It is rather natural to ask whether these asymptotic regimes can be understood, described and predicted. We could not find any mathematical (and actually even no physical) real explanation of them in the literature, except for some very simple (and somewhat poor) models in which the string is replaced by a system of masses and springs. Our purpose is thus to make a first step towards a rigorous, and comprehensive, description of the long-term dynamics of this type of systems.

1.2 Our approach. The idea at the basis of our approach is that, intuitively, as the amplitude of the pendula oscillations becomes small, a linear regime, consisting of damped small-oscillations around the asymptotically stable equilibrium, is settled.

If the dissipation acts differently on the (infinitely many, due to the presence of the continuous string) damped normal modes of the system, as time goes by the most dissipating normal modes decay quicker while the less dissipating ones persist longer. As a result, after some transient, the motion is approximately a superposition of a finite-and likely small-number of weaklydamped periodic oscillations (hence, quasi-periodic with that number of frequencies). Eventually, an asymptotic regime is reached to which only the less dissipating normal mode-or the few less dissipating ones, if more than one-contribute. Due to the smallness of the dissipation, this regime can be observable for a long time, before the oscillations become so small that no clear patterns might be visible anymore.

Arguments of this type are obviously not new. For instance, Korteweg's explanation [START_REF] Korteweg | Les horloges sympathiques de Huygens[END_REF] of the famous Huygens' clocks synchronization phenomenon [19] used exactly an argument of this type, even though for a model system with 3 degrees of freedom. However, its implementation for a system of pendula hanging from a continuous string appears to be new. It requires:

1. A model for the coupled string-pendula system, and its dissipation.

2. The determination of the spectrum of the linearized system at the stable equilibria (string and all pendula at rest, pointing downwards). The present paper addresses these two points.

We stress that this linearized analysis has a dynamical content and is a possible prerequisite for the study of the long-term dynamics of the exact, nonlinear system. The reason is that, under certain conditions, the linear subspace spanned by the eigenvectors relative to a (possibly small) number of eigenvalues closest to the imaginary axis provides an approximation of an exponentially attractive invariant manifold for the nonlinear dynamics. Such invariant sets, which are simple generalizations of the stable and center manifolds of a hyperbolic equilibrium (see particularly [START_REF] Chicone | Ordinary Differential Equations with Applications[END_REF], Section 4.1), are instances of what are sometimes called "slow" [START_REF] Haller | Exact model reduction by a slowfast decomposition of nonlinear mechanical systems[END_REF] or, particularly in the PDE literature, "inertial" manifolds [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF][START_REF] Sell | Inertial manifolds: the non-self-adjoint case[END_REF]. We will not study this topic in this work, but we will shortly come back on it in the Conclusions.

Remark 1. The meaning we are attaching here to the word "synchronization" is different from those used in the literature. Synchronization phenomena appear in a variety of contexts and may have very different characteristics and causes; there is an enormous literature on them (a standard reference is [START_REF] Pikovsky | Synchronization: A Universal Concept in Nonlinear Sciences[END_REF]). In most cases, dynamically, synchronization consists in the existence of a nontrivial invariant attractive set, e.g. a limit cycle, in which the synchronized motions take place. Examples of mechanical systems where synchronization appears to have such an origin include periodically forced, dissipative systems such as Huygens' pendula (see e.g. [START_REF] Czolczynski | Huygens' odd sympathy experiment revisited[END_REF][START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] for recent studies), systems of metronomes on a damped rigid beam [START_REF] Pantaleone | Synchronization of metronomes[END_REF], and chains of vertically excited damped pendula coupled by linear springs [START_REF] Marcheggiani | On the synchronization of chains of nonlinear pendula connected by linear springs[END_REF]. Synchronization in dissipative mechanical systems is possible also in the absence of periodic forcing if there is an attractive subset of the phase space in which the dissipation vanishes; an example is a system of pendula on a damped supporting rigid bar [START_REF] Yu | Controlled synchronization of pendula[END_REF][START_REF] Talamucci | Synchronization of two coupled pendula in absence of escapement[END_REF]. In our case, instead, the attractive set is an equilibrium, and the synchronization is in the (very long) transient towards it.

The model.

As mentioned, there are some studies of systems of the type we consider here in which the continuous string is replaced either by a solid bar (e.g. [START_REF] Yu | Controlled synchronization of pendula[END_REF]) or by springs and masses (e.g. [START_REF] Moloney | String-coupled pendulum oscillators: Theory and experiment[END_REF], where however the dissipation is not even considered). In either case, the system becomes finite dimensional and looses an essential ingredient.

Our idea is that the string should instead be modeled as a continuous system. In this first study, we will adopt the simplest possible model of a material string, the one that leads to the standard d'Alembert equation u tt -c 2 u xx = 0 (infinitesimally thin, homogeneous, perfectly flexible and elastic, small transverse vibrations), to which we add dissipation. The full system is thus formed by an infinite-dimensional continuous component coupled to n (one-degree-of-freedom, see below) discrete components; mechanical systems of this type are sometimes called hybrid. The resulting system is described by a coupled set of PDEs and ODEs whose consideration appears to be completely new.

The closest to this system that we could find in the literature is the well known (and linear) system formed by an elastic string which carries n ≥ 1 equally spaced point masses, first studied by Rayleigh [START_REF] Rayleigh | The Theory of Sound[END_REF]. This "Rayleigh's loaded string" and its dissipative version (which may be viewed as the limit case of pendula of zero-length of our system) will actually appear in the study of our problem, where it describes the linearized vertical motions and will be called the "vertical" subsystem. Accordingly, our study will complete and extend existing results on the Rayleigh's loaded string (providing a detailed treatment of the spectrum for any n and considering the dissipative case).

A key choice in the modelling of the system concerns the source, and the type, of dissipation. It is our impression that in this type of systems the most important source of dissipation is often internal to the string, rather than from the air. We will thus adopt a standard linear viscoelastic model of the string, the so called "Kelvin-Voigt" model, which introduces a term proportional to u txx in d'Alembert equation (see e.g. [START_REF] Lancaster | Damped vibrations of beam and related spectral problems[END_REF][START_REF] Guenther | Partial Differential Equations of Mathematical Physics and Integral Equations[END_REF][START_REF] Salsa | Partial Differential Equations in Action: From Modelling to Theory[END_REF]). A peculiarity of this type of viscoelasticity is that it produces a frequency-dependent dissipation rate. Other models of dissipation could be made, though (see e.g. [START_REF] Akay | Damping Mechanisms[END_REF][START_REF] Bochicchio | On the viscoelastic coupled suspension bridge[END_REF][START_REF] Borcherdt | Viscoelastic Waves and Rays in Layered Media[END_REF]).

We will assume that the string has finite length and fixed extremities, and that the pendula are constrained to oscillate in vertical planes orthogonal to the (undeformed) string. The latter is a strong hypothesis, of course, but observing the dynamics of systems of this type it appears that it is not that unreasonable because, if the velocities of the pendula are initially in the vertical plane, then they tend to stay so; considering spherical pendula would significantly complicate the problem, and in this first study of an already nontrivial problem we prefer avoiding further complications.

Finally, the coupling between string and pendula is introduced by the fact that each pendulum is suspended to a (material) point of the string.

In this model, the continuous component of the system-the string-is intrinsically linear. However, the nonlinearity of the pendula makes the full infinite-dimensional system nonlinear. The full system is formed by a coupled set of PDEs and ODEs. As we shall see, it turns out to depend on three parameters, which are related to the ratio between the masses of the pendula and of the string, and to the viscosity and tension of the string.

Remarks 2. (i) Our model is of course over-simplified, but even so, its analysis will be quite complex and its phenomenology rich. The assumptions of one-dimensional string prevents the possibility of considering its torsion and the dissipation associated to it, which, depending on the material and structure of the string and on the actual coupling with the pendula, might be important. Moreover, depending on its material and structure, the string might not be well described by the Kelvin-Voigt model; the assumption of small oscillations might not be justified; nonlinearities in the string might be important; vibrations and dissipation in the frame supporting the string, and in the strings supporting the individual bobs constituting the pendula, are here not just taken into consideration; etc. It would be interesting to know if, nevertheless, this model is "robust" enough to be capable of correctly reproducing at least some of the essential features of the long-term dynamics of (at least certain) real string-pendula apparatuses, in particular their "synchronization patterns". Ultimately, an answer would require a comparison with experiments, which of course exceeds the purposes of this (purely mathematical) paper and is left for future work.

(ii) Related to this is the fact that the limit of small and large masses of the pendula, which are mathematically interesting and will play a key role in our analysis, are very likely unrealistic as far as actual apparatuses are concerned: in the former case it is likely unjustified neglecting the friction of the air, and in latter case the deformations of the string are so large that the hypotheses behind the linearity of the string are likely not valid.

1. [START_REF] Borcherdt | Viscoelastic Waves and Rays in Layered Media[END_REF] The spectrum. A complete study of this system of coupled PDEs-ODEs would require an appropriate weak formulation on a function space, with existence and uniqueness theorems, that we do not attempt here. Instead, we linearize the system around the (asymptotically) stable equilibrium with the string at rest and all the pendula pointing downwards and study the spectrum of the resulting infinite-dimensional linear system.

As it turns out, this linearized system decouples into two subsystems: the already mentioned "vertical" subsystem, which describes the planar movement, in a vertical plane, of a Kelvin-Voigt string with equally spaced point masses (hence a dissipative version of Rayleigh loaded string) and a "horizontal" subsystem which describes the planar motion, in a horizontal plane, of a Kelvin-Voigt string with harmonic oscillators (the linearized pendula performing small oscillations) attached to it.

Next, we need to study both spectra and determine their eigenfunctions. On this regard, we point out that these problems are not self-adjoint and therefore it is not granted that the eigenfunctions form a basis (see e.g. [START_REF] Davies | Linear operators and their spectra[END_REF] for non-self-adjoint spectral problems). Answering this question requires techniques from spectral analysis and, preliminarily, a proper weak formulation of the problem, and exceeds the purposes of this paper; we limit ourselves to notice that this is true for the Kelvin-Voigt string [START_REF] Lu | Effect of Kelvin-Voigt damping on spectrum analysis of a wave equation[END_REF]. As a consequence of this deficiency, it will not be granted that any motion of the linearized system is a superposition of eigenvalues; this limitation will (possibly) affect only our study of the "synchronization" regimes.

Even though our interest is for the dissipative case, for completeness (and comparison) we consider also the undamped cases without dissipation (the non-dissipative vertical system is nothing else but Rayleigh's loaded string, for which some of the results we will find are already known).

In the dissipative case, these are not self-adjoint spectral problems. We will obtain closed forms for both the vertical and horizontal eigenvalue equations for any number n ≥ 1 of pendula. These eigenvalue equations involve Chebyshev polynomials of the second type and are nonlinear in the eigenvalues. (The spectral theory for nonlinear eigenvalues is a not yet completely developed field; see [START_REF] Davies | Linear operators and their spectra[END_REF] for some results on the polynomial case and references to the literature). This formula generalizes a known one for the Rayleigh's loaded string [START_REF] Griffiths | Waves in locally periodic media[END_REF][START_REF] Óttarsson | Vibration and wave localization in a nearly periodic beaded string[END_REF] and is obtained employing a standard technique for periodic linear systems (the "transfer matrix" method). Studying the solutions of such equations we will provide a rigorous and complete-though qualitative-description of the vertical spectrum, both in the damped and undamped cases, and of the undamped horizontal spectrum. Instead, for the damped horizontal spectrum we will have to resort to a numerical investigation coupled with analytic arguments which will provide a rather complete description of it. We anticipate that the structure of the damped horizontal spectrum is extremely rich and far from trivial.

Specifically, we adopt a deformation or continuation (the term used in spectral theory is "perturbation", see [START_REF] Kato | Perturbation theory for linear operators[END_REF]) approach and study the spectra as deformations of the spectra of the limit cases of pendula of zero masses. The reason is that in this limit case the system reduces to either the Kelvin-Voigt string (in the damped case) or the vibrating string (in the undamped case), whose spectra are well understood. We will see that the eigenvalues of the Kelvin-Voigt string and (in the horizontal system) of the small oscillations of the n pendula have continuous (and often smooth) global "continuations" to the vertical and horizontal spectra. In the case of the damped horizontal spectrum the structure of these continuations is very complicated, and exhibits (even complex) eigenvalues "collisions", or "bifurcations", that we will partially identify and describe, and "bands" of eigenvalues which go to 0 and to infinity as the mass of the pendula goes to infinity. 1.5 "Synchronization". Finally, we will apply these results to a (preliminary) study of the "synchronization" patterns of the system, identifying (as a function of the parameters) the eigenvalues which, being closest to the real axis, dissipate less. We will do this study mostly for the case of n = 2 pendula, for which we will provide a rather complete comprehension of the possible "synchronization regimes", at least in the limits of small and large masses of the pendula.

Of course, a limitation intrinsic to this approach is that, since we have not established whether the eigenfunctions form a basis for the space of all functions, it might in principle happen that the linearized system has motions which are not superpositions of eigenfunctions, and that therefore we do not detect. An investigation of this question of spectral theory might have some interest.

1.6 Organization of the paper. The system we consider is detailed and described in Section 2, where we derive the equations of motion and their linearization. In Section 3 we first make precise the class of functions in which we consider the linearized system and the definition of damped normal forms, and derive the eigenvalue equations for the vertical and horizontal systems. Then, we recall some known facts on the spectrum of the Kelvin-Voigt viscoelastic string and introduce a notation that will facilitate the subsequent description of the band structures of the vertical and horizontal spectra. In Section 4 we compute the eigenfunctions of the vertical and horizontal linear systems and describe some of their properties. Section 5 is devoted to the vertical and horizontal spectra for the system without damping. Section 6 to the damped vertical system. Section 7 to the damped horizontal system. Section 8 is devoted to the pendula synchronization patterns, with a special focus on the case of two pendula. A Conclusion follows.

A preliminary version of some of the results of this paper has been given in [START_REF] Galasso | Asymptotic dynamics and synchronization of dissipative systems of coupled pendula[END_REF].

The system

In this Section we build our model for the system considered in this paper, which is formed by a viscoelastic string, with extremities fixed at the same height, and n ≥ 1 identical pendula hanging from n equally spaced points of it, under the action of weight (see Figure 1). We start from the classical model of elastic string that performs small transverse vibrations, described by d'Alembert equation (see e.g. [START_REF] Salsa | Partial Differential Equations in Action: From Modelling to Theory[END_REF], Section 5.2). We then add the viscosity, the coupling between the string and the pendula, and the weight.

2.1 Configurations. Fix a coordinate system {O; X, Y, Z} such that the extrema of the string are attached at its origin O and at the point (Λ, 0, 0), Λ > 0. We call the Z-axis the vertical. The configuration of the string at each time t ∈ R is described by an embedding of the form

[0, Λ] ∋ x → x, h(x, t), v(x, t) ∈ R 3
where the "horizontal displacement" h and the "vertical displacement" v are two functions from [0, Λ] × R to R which satisfy the homogeneous Dirichlet boundary conditions h(0, t

) = h(Λ, t) = v(0, t) = v(Λ, t) = 0 ∀t ∈ R.
We assume that n ≥ 1 identical pendula of length l are suspended at the points of the string with material coordinate x given by xj := jΛ n+1 , j = 1, . . . , n, and are constrained to move in vertical planes parallel to the YZ-plane. The position in space of the j-th pendulum at time

t is thus xj , h xj , t + l sin(ϕ j (t)) , v xj , t -l cos(ϕ j (t))
where ϕ j is the angle formed by the j-th pendulum with the downward vertical (j = 1, . . . , n). 

2.2

The Kelvin-Voigt model of viscoelastic string.

We assume that the forces that act on the system are the weight of the string and the pendula, directed as the descending vertical, and the tension and viscosity of the string. For the latter we adopt the Kelvin-Voigt model. This is a standard model of viscoelastic damping which introduces a term proportional to the txx-derivative of the string displacement in the equation of motion of the elastic string (see e.g. [START_REF] Lancaster | Damped vibrations of beam and related spectral problems[END_REF][START_REF] Guenther | Partial Differential Equations of Mathematical Physics and Integral Equations[END_REF][START_REF] Salsa | Partial Differential Equations in Action: From Modelling to Theory[END_REF]).

The spectrum of the Kelvin-Voigt viscoelastic string of finite length and with fixed extremities is known to consist of a sequence of negative real eigenvalues and-unless the dissipation is very large-of a finite number of pairs of complex conjugate eigenvalues that lie on a circle in the complex half-plane with negative real part [START_REF] Lancaster | Damped vibrations of beam and related spectral problems[END_REF][START_REF] Russell | On Mathematical models for the elastic beam with frequency-proportional damping[END_REF] (the discreteness of the spectrum is due to the fact that the equation has constant coefficients [START_REF] Guo | Spectral analysis of a wave equation with Kelvin-Voigt damping[END_REF]. This indicates an important feature of the Kelvin-Voigt model: the non-real eigenvalues have a frequency-dependent damping. We will describe in detail this "Kelvin-Voigt spectrum" in Section 3.4 because it plays a key role for the comprehension of the spectrum of the string with pendula-and of which it is a limit case.

Equations of motion.

We derive the equations of motion of the undamped, coupled string-pendula system from a Lagrangian formulation, to which we then add a Kelvin-Voigt dissipation term.

Proceeding for now formally, we consider the configuration space

M := T n × E × E ∋ (ϕ, h, v) = ((ϕ 1 . . . , ϕ n ), h, v)
where E is a space of embeddings [0, Λ] → R which vanish at the extrema, that we shall specify later.

We choose as Lagrangian for the undamped system the scalar functional on the (formal) tangent bundle T M given by the difference between the kinetic energy T and the potential energy V of the entire system formed by the elastic string and the pendula, namely

L(ϕ, h, v, φ, h t , v t ) = T (ϕ, h, v, φ, h t , v t ) -V (ϕ, h, v) with T = Λ 0 ρ 2 h 2 t + v 2 t dx + m 2 n j=1 l 2 φ2 j + h 2 t + v 2 t + 2l φj h t cos ϕ j + v t sin ϕ j x=xj , V = Λ 0 τ 2 h 2 x + v 2 x + ρgv dx + n j=1 mg v| x=xj -l cos ϕ j ,
where ρ > 0 is the linear density and τ > 0 the tension of the string. The Lagrangian can be written as

L(ϕ, h, v, φ, h t , v t ) = Λ 0 L(ϕ, h, v, φ, h t , v t , h x , v x )dx with Lagrangian density L = ρ 2 h 2 t + v 2 t - τ 2 h 2 x + v 2 x -ρgv + n j=1 m 2 l 2 φ2 j + h 2 t + v 2 t + 2l φj (h t cos ϕ j + v t sin ϕ j ) -mg (v -l cos ϕ j ) δ xj
where δ xj (x) := δ(x -xj ) with δ the Dirac delta. We take as equations of motion of the system the Euler-Lagrange equations for the Lagrangian density L with the inclusion of Kelvin-Voigt viscoelastic terms -νh txx and -νv txx in the equations for the horizontal and vertical displacements h and v, respectively. Here ν is the damping coefficient, that we assume to be equal for the two equations; even though we are manly interested to the damped case in which ν > 0 we will also consider the undamped case ν = 0, which appears to have never been studied. The resulting equations are complemented by homogeneous Dirichlet boundary conditions, giving the system

d dt ∂L ∂ φj - ∂L ∂ϕ j = 0 (j = 1, . . . , n) d dt ∂L ∂h t - ∂L ∂h + d dx ∂L ∂h x -νh txx = 0 d dt ∂L ∂v t - ∂L ∂v + d dx ∂L ∂v x -νv txx = 0 h(0, t) = h(Λ, t) = v(0, t) = v(Λ, t) = 0 (1) in [0, Λ] × R.
We will use the rescaled, adimensional space and time coordinates x := (n + 1) x Λ , t := (n + 1) π Λ τ ρ t and the rescaled string displacements h := h l and ṽ := v l , which we will keep denoting x, t, h, v. In the rescaled coordinate the string has length n + 1 and, since π Λ τ ρ is the fundamental frequency of the elastic string of length Λ, the (rescaled) elastic oscillation frequencies of the string are m n+1 , m ∈ Z + (the role of the factor n + 1 in the rescaling is explained in Remark 4.iii). Moreover, we will use the dimensionless parameters

α := 1 n + 1 Λ π ρ τ g l , γ := n + 1 2 πν Λ √ ρτ , µ := n + 1 2 m ρΛ , x j := j (j = 0, . . . , n + 1).
Except for the factors n + 1 due to the rescalings, α is the ratio between the frequency g l of the small oscillations of the pendula and the fundamental frequency π Λ τ ρ of the elastic string and µ is (one half of) the ratio between the mass of each pendulum and the mass of the string. The parameter γ measures the strength of the internal dissipation of the string, but depends also on ρ and τ . We will assume α > 0, γ ≥ 0, µ > 0. Written in the new variables, system (1) is the system φj + (h tt cos ϕ j + v tt sin ϕ j ) | x=xj + α 2 sin ϕ j = 0 (j = 1, . . . , n) ,

π 2 h tt + 2µπ 2 n j=1 h tt + φj cos ϕ j -φ2 j sin ϕ j δ xj -h xx -2γh txx = 0 , π 2 v tt + 2µπ 2 n j=1 v tt + φj sin ϕ j + φ2 j cos ϕ j + α 2 δ xj -v xx -2γv txx + π 2 α 2 = 0 , h(0, t) = h(n + 1, t) = v(0, t) = v(n + 1, t) = 0 (2) in [0, n + 1] × R ∋ (x, t), where δ xj (x) = δ(x -x j ).
2.4 Linearized equations of motion. The equations of motion (2) have the equilibrium solution t → (ϕ eq (x), h eq (x), v eq (x)) with

ϕ eq (x) = (0, . . . , 0) h eq (x) = 0 v eq (x) = π 2 α 2 x 2 2 - x 2 (n + 1 + 2µn) + 2µ n j=1 (x -x j )Θ(x -x j ) (3) 
where Θ denotes the Heaviside step function. In this equilibrium all pendula are in their lower, stable vertical position while the string lies in the vertical plane and, in each interval x j ≤ x ≤ x j+1 , j = 0, . . . , n, has the profile of an arc of parabola. (The parabolic shape is due to the hypotheses of elasticity and small displacements of the string; the profile is a catenary for an inextensible string [START_REF] Irvine | The suspended elastic cable under the action of concentrated vertical loads[END_REF]). Linearizing system (2) at the equilibrium configuration (3) gives the two systems in [0, n+1]×R

φj + h tt | x=xj + α 2 ϕ j = 0 (j = 1, . . . , n) , π 2 h tt -h xx -2γh txx + 2µπ 2 n j=1 h tt + φj δ xj = 0 , h(0, t) = h(n + 1, t) = 0 (4) 
and

π 2 v tt -v xx -2γ v txx + 2µπ 2 n j=1 v tt δ xj = 0 , v(0, t) = v(n + 1, t) = 0 (5) 
where ϕ, h, v stand now for the displacements ϕ -ϕ eq , h -h eq , v -v eq from the equilibrium. Thus, at the linear level, the oscillation of the pendula is coupled only to the horizontal displacement of the string, while the vertical displacement of the string is decoupled from the other degrees of freedom. The reason of the decoupling is clear: in the regime of small oscillations the horizontal displacement of the pendula is an infinitesimal of order 1 while the vertical displacement is of order 2.

We call system (4) the horizontal (linearized) system, system (5) the vertical (linearized) system and the union of the two the full (linearized) system. Note that the horizontal system depends on the three parameters α, γ, µ while the vertical one depends only on γ, µ. Their study is the goal of this paper.

Since we are mostly interested in the dynamics of the pendula, we might even focus only on the horizontal system. However, the consideration of the vertical system is interesting as well. One reason is that, since the vertical and horizontal motions are not decoupled in the nonlinear system, the properties of both linearizations might play a role in its study. Another reason is that, as already said in the Introduction, the vertical system describes a planar viscoelastic string with fixed ends loaded with n identical and equidistant point masses. The conservative limit of such system, with γ = 0, is the well known Rayleigh's loaded string (see [START_REF] Rayleigh | The Theory of Sound[END_REF] for n = 1 and e.g. [START_REF] Griffiths | Waves in locally periodic media[END_REF][START_REF] Óttarsson | Vibration and wave localization in a nearly periodic beaded string[END_REF] for n > 1), but the dissipative version of it does not seem to have been studied so far.

3 The eigenvalue equations 3.1 Solutions and damped normal modes of the linearized system.

We specify now the function spaces in which we will work in the study of the linear systems (4) and ( 5), beginning with the so far unspecified space E:

i. E is the space of continuous functions u : [0, n+1] → R which are C 2 in (0, n+1)\{x 1 , . . . , x n }, have bounded left and right first derivatives at x 1 , . . . , x n , and satisfy u(0) = u(n + 1) = 0. ii. S is the space of functions v : [0, n + 1] × R → R, (x, t) → v(x, t), which are C 2 in t and such that v(•, t) ∈ E for every t. iii. P is the space of functions of class C 2 from R to T n . iv. Σ H := P × S,

Σ V := S, Σ := Σ H × Σ V . v. E C , Σ H C , Σ V
C , Σ C are the spaces of complex functions whose real and imaginary parts belong to E, Σ H , Σ V , Σ, respectively.

If u ∈ E, we write u ′ (x ± j ) for lim x→x ± j u ′ (x) (j = 1, . . . , n). If (ϕ, h) ∈ Σ H then h x (x ± j , t) and h tx (x ± j , t) have a similar meaning, and similarly for v ∈ Σ V . Next, following an established tradition (see e.g. [START_REF] Tikhonov | Equations of Mathematical Physics[END_REF], Appendix III to Ch. II), we define as (real) solution of the horizontal system (4) any function (ϕ, h) ∈ Σ H which satisfies φj (t) + h tt (x j , t) + α 2 ϕ j (t) = 0

π 2 h tt (x, t) -h xx (x, t) -2γh txx (x, t) = 0 ∀x ∈ (0, n + 1) \ {x 1 , . . . , x n } 2µπ 2 h tt (x j , t) + φj (t) -h x + 2γh tx (x + j , t) + h x + 2γh tx (x - j , t) = 0 (6) 
for all t ∈ R and j = 1, . . . , n. (The jump of the x derivative at each point x j has been computed integrating the function in the second line of (4) in the interval (x j -ǫ, x j + ǫ) and taking the limit ǫ → 0). Similarly, we define as (real) solution of the vertical system (5) any function v ∈ Σ V which satisfies

π 2 v tt (x, t) -v xx (x, t) -2γ v txx (x, t) = 0 ∀x ∈ (0, n + 1) \ {x 1 , . . . , x n } 2µπ 2 v tt (x j , t) -v x + 2γv tx (x + j , t) + v x + 2γv tx (x - j , t) = 0 (7) 
for all t ∈ R and j = 1, . . . , n. And finally, by complex solutions of these systems we mean complex functions whose real and imaginary parts are real solutions.

Definition 1. i. A horizontal damped normal mode with eigenvalue λ ∈ C and eigenfunction (A, f ) ∈ C n × E C is the family of nonzero complex solutions (ϕ, h) of (4) of the form

(ϕ(t), h(x, t)) = cAe λt , cf (x)e λt , c ∈ C \ {0} .
ii. A vertical damped normal mode with eigenvalue λ ∈ C and eigenfunction f ∈ E C is the family of nonzero complex solutions v of (5) of the form

v(x, t) = cf (x)e λt , c ∈ C \ {0} .
We call decay rate and, respectively, (oscillation) frequency of a damped normal mode the absolute value of the real part and, respectively, of the imaginary part of its eigenvalue. By multiplicity of a damped normal mode we mean the number of damped normal modes with that eigenvalue and linearly independent eigenfunctions.

The sets of all the eigenvalues of the horizontal (vertical) damped normal modes, each one repeated as many times as its multiplicity, will be called the horizontal (vertical) spectrum and, in order to stress its dependence on the parameters, denoted Sp H α,γ,µ (Sp V γ,µ ). Preliminarily to the study of the normal modes of the system, we make a remark which is physically rather evident.

Proposition 1. If λ ∈ Sp H α,γ,µ or Sp V γ,µ , then Re(λ) = 0 if γ = 0 and Re(λ) < 0 if γ > 0.
Proof. We consider the horizontal spectrum; the argument for the vertical spectrum is similar. Define the total energy at time t of a solution (ϕ, h) of the horizontal linear system as

E t (ϕ, h) := 1 2 n j=0 xj+1 xj |h t (x, t)| 2 + 1 π 2 |h x (x, t)| 2 dx + µ n j=1 | φj (t) + h t (x j , t)| 2 + α 2 | φ2 j (t)| 2 .
Using equations [START_REF] Czolczynski | Huygens' odd sympathy experiment revisited[END_REF], the fact that h t vanishes at x = 0, n + 1 and integrating by parts the terms containing h x h tx , h x h txx and their complex conjugates gives

d dt E t (ϕ, h) = - 2γ π 2 n j=0 xj+1 xj |h tx (x, t)| 2 dx .
For a horizontal damped normal mode (ϕ, h) = (Ae λt , f (x)e λt ),

∆ := n j=0 xj+1 xj |h tx (x, t)| 2 dx = |λe λt | 2 n j=0 xj+1 xj |f ′ (x)| 2 dx > 0
because λ = 0 and f is not constant (if it was, then the derivatives of h would vanish and the first and last equations ( 6) would give ϕ j = 0 for all j, hence A = 0 as well). On the other hand, E t (ϕ, h) = e 2tRe(λ) E 0 (ϕ, h) and thus d dt E t (ϕ, h) = 2Re(λ)E t (ϕ, h). We conclude that 2Re(λ)E t (ϕ, h) = -2γ∆ π 2 < 0. This proves the statement because E t (ϕ, h) > 0 if (ϕ, h) is nonzero.

3.2 Chebyshev polynomials. We will use a few basic facts about the Chebyshev polynomials of the second kind, which are the complex polynomials U m , m ∈ N, defined by the recurrence

U 0 (x) := 1, U 1 (x) := 2 x, U m (x) := 2 x U m-1 (x) -U m-2 (x) (m ≥ 2, x ∈ C) (8) 
(see e.g. [START_REF] Mason | Chebyshev Polynomials[END_REF]). Clearly, U m has degree m and is real on real arguments, even if m is even and odd if m is odd. Moreover

sin(θ) U m (cos θ) = sin (m + 1)θ ∀m ∈ N, θ ∈ C . (9) 
This implies that, for each m ∈ N, U m : C → C has the m simple zeroes

c m,p := cos pπ m + 1 , p = 1, . . . , m , (10) 
which are all real and belong to the interval (-1, 1).

3.3

The vertical and horizontal eigenvalue equations. We derive now equations for the eigenvalues of the horizontal and vertical damped normal modes. For any α > 0, γ ≥ 0 and µ > 0 we define the functions

P α : C \ {±iα} → C , P α (λ) = α 2 α 2 + λ 2 , ξ 0 : C → C , ξ 0 (λ) = πλ , ξ γ : C \ {-1 2γ } → C , ξ γ (λ) = πλ (1 + 2γλ) 1/2 (if γ > 0) ,
where ( ) 1/2 denotes the complex square root with nonnegative imaginary part, which is analytic in C \ {z ≥ 0} (by Proposition 1, 1 + 2γλ is never a positive real number if λ is an eigenvalue). In the sequel we make the tacit convention that, if γ = 0, then {-1 2γ } is the empty set and can be ignored, so as to be able to use the symbol ξ γ for both γ = 0 and γ > 0.

Proposition 2. Consider n ≥ 1, α > 0, γ ≥ 0, µ > 0 and a complex number λ. i. λ ∈ Sp V γ,µ if and only if λ = 0, λ = -1 2γ (if γ > 0) and sinh ξ γ (λ) U n µ ξ γ (λ) sinh ξ γ (λ) + cosh ξ γ (λ) = 0. ( 11 
)
ii. λ ∈ Sp H α,γ,µ if and only if λ = 0, λ = -1 2γ (if γ > 0) and satisfies any one of the following two conditions:

sinh ξ γ (λ) = 0 , (12a) 
U n µP α (λ)ξ γ (λ) sinh ξ γ (λ) + cosh ξ γ (λ) = 0 , λ = ±iα . (12b) 
Proof. (ii.) We consider first the horizontal spectrum. Assume that c Ae λt , f (x)e λt ) , c = 0, is a horizontal damped normal mode. Write A = (A 1 , . . . , A n ). The function f belongs to E C . Hence, if we define

f j := f | [xj-1,xj ] , j = 1, . . . , n + 1 ,
then each f j : [x j-1 , x j ] → C has real and imaginary parts of class C 2 in (x j-1 , x j ) and of class C 1 in [x j-1 , x j ] (with the derivatives at the extrema interpreted as left and right derivatives) and satisfies

f 1 (x 0 ) = 0 , f n+1 (x n+1 ) = 0 (13) 
(recall that x 0 = 0, x n+1 = n + 1) and

f j+1 (x j ) = f j (x j ) ∀j = 1, . . . , n . (14) 
The function (ϕ λ , h λ ) := Ae λt , f (x)e λt ) satisfies [START_REF] Czolczynski | Huygens' odd sympathy experiment revisited[END_REF] if and only if

(α 2 + λ 2 )A j + λ 2 f j+1 (x j ) = 0 , j = 1, . . . , n , (15a) 
π 2 λ 2 f j (x) -(1 + 2γλ)f ′′ j (x) = 0 , x ∈ (x j-1 , x j ), j = 1, . . . , n + 1 , (15b) 
2µπ 2 λ 2 f j+1 (x j ) + A j -(1 + 2γλ) f ′ j+1 (x + j ) -f ′ j (x - j ) = 0 , j = 1, . . . n . (15c) 
It is simple to check that for λ = 0 and, if γ > 0, λ = -1 2γ the only solution of equations ( 15) is A j = 0 for all j = 1, . . . , n and f j = 0 for all j = 1, . . . , n. Thus 0 and, if γ > 0, -1 2γ do not belong to Sp H α,γ,µ and in the remaining of the proof we exclude these values of λ. Equations (15b) are equivalent to

f j (x) = a j cosh ξ(x -x j-1 ) + b j sinh ξ(x -x j-1 ) ∀x ∈ [x j-1 , x j ], j = 1, . . . , n + 1 , (16) 
with ξ := ξ γ (λ), a j := f j (x j-1 ) and b j := 1 ξ f ′ j (x + j-1 ). Note that f j (x j ) = ca j + sb j and f ′ j (x - j ) = ξ(sa j + cb j ) with c := cosh ξ γ (λ) , s := sinh ξ γ (λ) .

We now impose the conditions on λ and on the A j 's, a j 's and b j 's that come from the fact that A, f satisfy the remaining conditions, namely (13), ( 14), (15a) and (15c), that is

a 1 = 0 , ca n+1 + sb n+1 = 0 , (17a) 
a j+1 = ca j + sb j , j = 1, . . . , n , (17b) 
(α 2 + λ 2 )A j + λ 2 a j+1 = 0 , j = 1, . . . , n , (17c) 2µξ 
(a j+1 + A j ) -(b j+1 -sa j -cb j = 0 , j = 1, . . . , n . (17d) 
We distinguish two cases. Case 1. If λ = iα, then (17c) are equivalent to

A j = - λ 2 α 2 + λ 2 (ca j + sb j ) , j = 1, . . . , n . (18) 
Therefore, (17b) and (17d) can be written

a j+1 b j+1 = M a j b j , j = 1, . . . , n, (19) 
with the 2 × 2 ("transfer") matrix

M := c s s + Qc c + Qs , Q := 2µξP α (λ) (20) 
This gives

a j+1 b j+1 = M j a 1 b 1 , j = 1, . . . , n , (21) 
It remains to impose the two conditions in (17a). The first is a 1 = 0; but then, since λ is an eigenvalue, b 1 = 1 ξ f ′ (0 + ) = 0 (otherwise all a j , b j = 0 and (ϕ λ , h λ ) is zero). Given that the eigenfunction is defined up to a factor we may assume b 1 = 1. Thus, the vanishing of

ca n+1 + sb n+1 gives c(M n ) 12 + s(M n ) 22 = 0.
Since M is a 2 × 2 matrix with determinant one, its powers are given by

M j = U j-1 (y)M -U j-2 (y)I , j ∈ N , (22) 
where y = 1 2 Tr(M ), I is the 2 × 2 unit matrix, U -1 = 0 and, for j ≥ 0, the U j 's are the Chebyshev polynomials of the second type. (This follows from the Cayley-Hamilton theorem and the recursion [START_REF] Dieci | Lyapunov-type numbers and torus breakdown: numerical aspects and a case study[END_REF], see [START_REF] Bendickson | Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures[END_REF][START_REF] Griffiths | Waves in locally periodic media[END_REF]). Thus,

c(M n ) 12 + s(M n ) 22 = (cM 12 + sM 22 )U n-1 (y) -sU n-2 (y). In our case y = c + 1 2 Qs and c(M n ) 12 + s(M n ) 22 = (2cs + s 2 Q) U n-1 (y) -s U n-2 (y) = s 2yU n-1 (y) -U n-2 (y) = s U n (y)
, where the last equality follows from [START_REF] Dieci | Lyapunov-type numbers and torus breakdown: numerical aspects and a case study[END_REF]. This proves that every eigenvalue λ = iα is either a zero of s or a zero of U n (y), as claimed.

Conversely, it is easy to prove that any λ ∈ C which is = 0, = iα and, if γ > 0, = -1 2γ and which satisfies s U n (y) = 0 belongs to Sp H α,γ,µ . Case 2. If λ = iα, then (15a) is f j+1 (x j ) = 0 for all j = 1, . . . , n. Together with the first equality [START_REF] Greselin | Thermalisation of a coupled pendulum chain[END_REF] this gives a j = 0 for all j = 1, . . . , n + 1. (15c) are satisfied by A j = bj+1-cbj 2µξγ (λ) . The second equality [START_REF] Greselin | Thermalisation of a coupled pendulum chain[END_REF] and the equalities [START_REF] Greselin | Thermalisation of a coupled pendulum chain[END_REF] reduce to s b j = 0 for j = 1, . . . , n + 1, which have a nontrivial solution if and only if λ is such that s = 0. (The trivial solution would lead to zero A j 's and hence to a zero solution).

(i.) We consider now the vertical system. Assume that cg(x)e λt is a vertical damped normal mode. Proceeding as in i., define g j := g| [xj-1,xj] , j = 1, . . . , n + 1. The g j 's satisfy conditions similar to the f j 's, specifically (with the f j 's replaced by the g j 's) ( 13), ( 14), (15b) and, this is the difference, (15c) with all A j = 0. Thus, as above, λ = 0, λ = -1 2γ if γ > 0,

g j (x) = a j cosh ξ(x -x j-1 ) + b j sinh ξ(x -x j-1 ) ∀x ∈ [x j-1 , x j ], j = 1, . . . , n + 1
and instead of [START_REF] Guo | Spectral analysis of a wave equation with Kelvin-Voigt damping[END_REF] we have now

a 1 = 0 , ca n+1 + sb n+1 = 0 , a j+1 = ca j + sb j , j = 1, . . . , n , 2µξa j+1 -(b j+1 -sa j -cb j ) = 0 , j = 1, . . . , n .
This gives the recurrence ( 19)-( 20) with Q = 2µξ and, by comparison with [START_REF] Guo | Spectral analysis of a wave equation with Kelvin-Voigt damping[END_REF], leads to [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF].

We will refer to equation [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF] as to the vertical eigenvalue equations and to equations ( 12) as to the horizontal eigenvalue equations.

3.4

The Kelvin-Voigt spectrum. Even though we are interested to the string with pendula, for which µ > 0, the properties of the (limit) case µ = 0 of the spectrum will play a basic role in our study. For µ = 0 and γ ≥ 0, (11) and ( 12) both reduce to the equation

sinh ξ γ (λ) U n cosh ξ γ (λ) = 0 (23) 
(complemented, in the horizontal case, by the condition that λ = ±iα may only be a zero of the first factor, see also Lemma 1 below). Since, by [START_REF] Fenichel | Asymptotic stability with rate conditions[END_REF], sinh((n + 1)x) = -i sin i(n + 1)x equals -i sin(ix) U n cos(ix) = sinh(x) U n cosh(x) for all x ∈ C, equation ( 23) is equivalent to

sinh (n + 1)ξ γ (λ) = 0 . (24) 
For γ = 0, equation ( 24) is clearly the eigenvalue equation for the equation π 2 u tt -u xx = 0, u(0) = u(n + 1) = 0, namely, an elastic string of length n + 1 with fixed extremities (written in rescaled variables). Its solutions are ±iω S m with

ω S m := m n + 1 , m ∈ Z +
and form the elastic string spectrum Sp S := {±iω S m : m ∈ Z + }. For γ > 0, instead, ( 24) is the eigenvalue equation for the equation

π 2 u tt -u xx -2γ u txx = 0 , u(0) = u(n + 1) = 0 , (25) 
which describes a Kelvin-Voigt (viscoelastic) string with fixed extremities. Its solutions are those [START_REF] Russell | On Mathematical models for the elastic beam with frequency-proportional damping[END_REF]. Thus, [START_REF] Lepri | Nonreciprocal wave scattering on nonlinear string-coupled oscillators[END_REF] has the solutions

λ ∈ C such that ξ γ (λ) ∈ iπ n+1 Z, namely πλ (1+2γλ) 1/2 ∈ iπ n+1 Z (see
λ KV m,± (γ) := -γω S m ± γ 2 (ω S m ) 2 -1 ω S m , m ∈ Z + . (26) 
Those with m < n+1 γ form a (possibly zero) finite number of pairs of non-real complex conjugate numbers which belong to the subset

C * γ := C γ \ -1 γ of the circle C γ of center -1 2γ
and radius 1 2γ . Those with m ≥ n+1 γ form a sequence of countably many real numbers which belong to the interval (-∞, -1 2γ ) and accumulate to its boundaries (for

m → +∞, λ KV m,+ (γ) → -1 2γ and λ KV m,-(γ) → -∞). The λ KV m,± (γ) are all pairwise distinct except, if n+1 γ ∈ Z + , λ KV n+1 γ ,± (γ) = -1 γ .
Thus, the Kelvin-Voigt spectrum

Sp KV γ := {λ KV m,± (γ) : m ∈ Z + } , γ > 0 ,
consists of countably many real eigenvalues and of a finite number of eigenvalues in the circle C γ , see Figure 2. Its less damped normal modes are the λ KV m,± (γ) with small m (unless γ is large and they are absent). For small γ, those with m ≪ n+1 γ have a decay rate |Re(λ KV m,± (γ))| = γ(ω S m ) 2 which grows in an approximately quadratic way with their frequency Im(λ KV m,± (γ

)) = ω S m 1 -(γω S m ) 2 ≈ ω S m .
It is easy to check that, for any γ > 0, the eigenfunction of the Kelvin-Voigt equation [START_REF] Lu | Effect of Kelvin-Voigt damping on spectrum analysis of a wave equation[END_REF] relative to an eigenvalue λ ∈ C is the function

f KV γ,λ (x) = sinh ξ γ (λ)x , x ∈ [0, n + 1] (27) 
(see e.g. [START_REF] Salsa | Partial Differential Equations in Action: From Modelling to Theory[END_REF]). Note that, for γ = 0, λ = ±iω with ω ∈ Sp S and this is the eigenfunction sin(πωx) of the elastic string.

Remarks 3. (i)

The Kelvin-Voigt eigenvalues [START_REF] Marcheggiani | On the synchronization of chains of nonlinear pendula connected by linear springs[END_REF] are well defined also when γ = 0, and in that case coincide with those of the elastic string, λ KV m,± (0) = ±iω S m . Thus, we define

Sp KV 0 := Sp S .
Similarly, since for µ = 0 equation ( 11) is well defined and coincides with (23), we define

Sp V γ,0 := Sp KV γ ∀ γ ≥ 0 .
In this way, any statement relative to the Kelvin-Voigt spectrum for γ = 0 (resp., to the vertical spectrum for µ = 0) applies to the spectra of the elastic (resp., the Kelvin-Voigt) string. Note also that, for γ = 0 and λ = iω ∈ Sp S , the eigenfunction ( 27) is the eigenfunction sin(πωx) of the elastic string.

(ii) Expression ( 26) implies that the Kelvin-Voigt eigenvalues (26) depend continuously (in fact smoothly, except, when n+1 γ ∈ Z, λ KV n+1 γ ,± (γ) = -1 γ ) on γ ≥ 0. The continuity of Sp KV γ at γ = 0 is not graphically evident if the spectra are plotted in the complex plane, but becomes so if the two spectra are plotted on the Riemann sphere, see Figure 2. 

3.5

The "pure-string" and "string-pendula" eigenvalues. The fact that the vertical and horizontal eigenvalue equations ( 11), ( 12) for the string with pendula share the factor sinh ξ γ (λ) with the eigenvalue equation ( 23) for the Kelvin-Voigt string is due to the fact that the pendula are assumed to be equally spaced, and has a simple, intuitive explanation: those eigenfunctions of the Kelvin-Voigt string (hence of the elastic string as well) which have nodes at the suspension points of the string are also eigenfunctions of the vertical and horizontal systems (more precisely, in the case of the horizontal system they are the string components of eigenfunctions). In these damped normal modes of the vertical system the "zero-length pendula" at the suspension points stay at rest (a phenomenon already noticed by Rayleigh for its loaded string [START_REF] Rayleigh | The Theory of Sound[END_REF]), while in the horizontal system the pendula stay still. In both cases, the string vibrates as if it was alone. This will be confirmed by the analysis of the eigenfunctions in Section 4.

We will thus call pure-string eigenvalues of Sp S , Sp KV γ , Sp V γ,µ , Sp H α,γ,µ the zeroes of the factor sinh ξ γ (λ) [START_REF] Moloney | String-coupled pendulum oscillators: Theory and experiment[END_REF] and we will call string-pendula eigenvalues of these spectra the zeroes of the Chebyshev polynomials in [START_REF] Lancaster | Damped vibrations of beam and related spectral problems[END_REF] for µ = 0 and in ( 11), (12b) for µ > 0. Of course, the distinction between these two types of eigenvalues has no dynamical meaning in the absence of pendula, namely for Sp S and Sp KV γ , but it will be convenient when regarding the other spectra as deformations of these two.

It is possible to specialize the vertical and horizontal eigenvalue equations for the pure-string and string-pendula eigenvalues in a more explicit form, which is related to the fact that, by [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF], the zeroes of the Chebyshev polynomials U n come in families of n (see [START_REF] Fenichel | Asymptotic stability with rate conditions[END_REF]).

Corollary 1. For any n ≥ 1, α > 0, γ ≥ 0 and µ > 0 the sets of pure-string and string-pendula eigenvalues of each spectrum Sp S , Sp KV γ , Sp V γ,µ and Sp H α,γ,µ are disjoint. Moreover: i. The pure-string eigenvalues are the nonzero solutions of the countably many equations

ξ γ (λ) = imπ , m ∈ Z . ( 29 
)
ii. The string-pendula eigenvalues in Sp V γ,µ (and

Sp KV γ if µ = 0) are the solutions different from 0 and -1 2γ of the n equations µ ξ γ (λ) sinh ξ γ (λ) + cosh ξ γ (λ) = c n,p , p = 1, . . . , n . (30) 
iii. The string-pendula eigenvalues in Sp H α,γ,µ are the solutions different from 0, -1 2γ and ±iα of the n equations

µP α (λ) ξ γ (λ) sinh ξ γ (λ) + cosh ξ γ (λ) = c n,p , p = 1, . . . , n . (31) 
Proof. (i.) follows from the fact that the pure-string eigenvalues are the zeroes of sinh ξ γ (λ) . (ii.) and (iii.) follow from the fact that the string-pendula eigenvalues are the zeroes of the Chebyshev polynomials in ( 11)- [START_REF] Galasso | Asymptotic dynamics and synchronization of dissipative systems of coupled pendula[END_REF], from [START_REF] Fenichel | Asymptotic stability with rate conditions[END_REF] and from -1 2γ / ∈ Sp KV γ . It remains to prove that, in the vertical and horizontal spectra, no pure-string eigenvalue is a string-pendula eigenvalue. If λ is a pure-string eigenvalue, then ξ γ (λ) = iπm for some m ∈ Z and equations [START_REF] Pantaleone | Synchronization of metronomes[END_REF] and [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] reduce to the n equations cos(mπ) = cos( pπ n+1 ), p = 1, . . . , n, none of which has solutions.

The use of ( 30) and [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] as eigenvalue equations for the vertical and horizontal string-pendula eigenvalues has some distinct advantages. Of course, it simplifies the search of such eigenvalues. But moreover, the fact that the eigenvalue equations split into sets of n equations translates, as we will see, into a band structure of the spectra. And finally, the eigenfunctions relative to stringpendula eigenvalues which are solutions of either [START_REF] Pantaleone | Synchronization of metronomes[END_REF] or [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] for the same p have some common properties (see Section 4), a fact which will be important in the study of the synchronization patterns of the system in Section 8. (ii.) If we define 29), [START_REF] Pantaleone | Synchronization of metronomes[END_REF], [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] are modified by dividing everywhere ξ γ (λ) by a factor n + 1; these more complicated equations are the eigenvalue equations we would have obtained had we not introduced the factors n+1 in the initial rescaling of coordinates and displacements in Section 2.3.

λ ⋆ = (n + 1)λ, α ⋆ = (n + 1)α, µ ⋆ = µ n+1 , γ ⋆ = γ n+1 , then ξ γ (λ) = ξγ ⋆ (λ⋆) n+1 , µξ γ (λ) = µ ⋆ ξ γ⋆ (λ ⋆ ), P α (λ) = P α⋆ (λ ⋆ ) and equations (

3.6

Notation for the bands. As we will see, the pure-string eigenvalues play an organizing role in the vertical and in the (particularly undamped) horizontal spectra of the string with pendula, dividing them into "bands", whose consideration will facilitate the description of these spectra. In view of this, it is useful to rename the eigenvalues of the elastic string and Kelvin-Voigt spectra so as to group them in bands as well (even though, of course, these bands have no dynamical meaning at all for the string without pendula).

In the undamped case we define ω S 0,0 := 0 and rename the frequencies ω S m = m n+1 , m ∈ Z + , of the elastic string as ω S ℓ,q := ω S (n+1)ℓ+q , ℓ ∈ N , q = 0, . . . , n (note that ω S 0,0 , as well as λ KV 0,0,± , λ V 0,0,± etc. that we will introduce in the sequel, are not eigenvalues). The pure-string frequencies of the undamped system are then the ω S ℓ,0 = ℓ, ℓ ∈ Z + . Correspondingly, for each ℓ ∈ N we define the (ℓ + 1)-th elastic string band as

B S ℓ := ± iω S ℓ,0 , ±iω S ℓ,1 , . . . , ±iω S ℓ,n
(without ±iω S 0,0 for ℓ = 0). This band structure is visible in Figure 4.b. Similarly, in the (damped) Kelvin-Voigt case we define λ KV 0,0,± (γ) := 0 and

λ KV ℓ,q,± (γ) := λ KV (n+1)ℓ+q,± (γ) , ℓ ∈ N , q = 0, . . . , n .
The pure-string eigenvalues are thus the λ KV ℓ,0,± (γ)'s, ℓ ∈ Z + . For each ℓ ≥ 0, we define the (ℓ+1)-th Kelvin-Voigt band as

B KV ℓ (γ) := λ KV ℓ,0,± (γ), λ KV ℓ,1,± (γ), . . . , λ KV ℓ,n,± (γ) 
(without λ KV 0,0,± for ℓ = 0). This band structure is illustrated in Figure 7.a.

Remarks 5. (i.) The label "q" of the string-pendula frequencies ω S ℓ,q comes from their ordering as real numbers, and propagates to the λ KV ℓ,q,± . Such a labeling is also related to the label "p" of the equation [START_REF] Pantaleone | Synchronization of metronomes[END_REF] of which the eigenvalue is a solution, but there is a mismatch between the two labelings: ±iω S ℓ,q and λ KV ℓ,q,± are solutions of equation ( 30) (with γ = 0 and γ > 0, respectively) with p = q if ℓ is even and with p = n + 1 -q if ℓ is odd. This mismatch will propagate to the eigenvalues of the vertical and horizontal spectra and has to be taken into consideration when determining the eigenfunctions with the formulas of Proposition 3.

(ii.) λ KV ℓ,q,± (γ) belongs to C * γ if ℓ + q n+1 < 1 γ and to R otherwise. Thus, the bands

B KV ℓ (γ) with ℓ ≤ ⌊ 1 γ ⌋ -1 are entirely contained in C * γ and those with ℓ > ⌈ 1 γ ⌉ are entirely contained in R. If 1 γ ∈ Z + , then λ KV 1 γ ,0,± (γ) = -1
γ is a pure-string eigenvalue and there are no other bands. If

1 γ / ∈ Z + , instead, the band B KV ⌊ 1
γ ⌋ (γ) may have some eigenvalues in C * γ and some other in R (how many, exactly, depends on the value of γ). Refer to Figure 7.a.

Resonances between the pendula and the string.

In our rescaled variables, α is the ratio of the frequency of the small oscillations of the pendula to the fundamental frequency of the elastic string. Therefore, a value of α equal to one of the ω S ℓ,q , that is α ∈ 1 n+1 Z + , denotes a resonance between the frequency of the pendula and a frequency of the string. As we will see, these resonances affect certain properties of the spectrum of the horizontal system (both in the undamped and in the damped case), but have different effects depending on whether the resonance involves a pure-string frequency (namely α = ω S ℓ,0 = ℓ ∈ Z + ) or a string-pendula frequency (namely α = ω S ℓ,q for q = 1, . . . , n, or α ∈ 1 n+1 Z + \ Z + ). We will say that there is an integer resonance in the former case and a non-integer resonance in the latter. On this regard, we make the following remark:

Lemma 1. ±iα belong to Sp H α,γ,µ with µ > 0 if and only if γ = 0 and α ∈ Z + (an integer resonance, so that ±iα are pure-string eigenvalues).

Proof. Being purely imaginary, ±iα may belong to the horizontal spectrum only if γ = 0, and in that case if and only if they solve equation (12a) which, since ξ 0 (λ) = πλ, is sin(πα) = 0.

3.8 Continuations from the case µ = 0.

We will understand and describe the spectra focussing on their dependence on µ. In so doing, we will use the following terminology.

By a continuous (smooth) µ-continuation to Sp H α,γ,µ (resp. to Sp V γ,µ ) of a complex number λ 0 we mean a continuous (smooth) curve µ → λ(µ) which is defined in an interval I = [0, μ) with μ ∈ R ∪ {+∞} and satisfies λ(0) = λ 0 and λ(µ) ∈ Sp H α,γ,µ (resp. ∈ Sp V γ,µ ) for all µ ∈ I. One such µ-continuation is said to be global if μ = +∞.

Two µ-continuations λ1 and λ2 are said to have a crossing at µ = µ * if λ1 (µ * ) = λ2 (µ * ). Note that, if two µ-continuations have a crossing, then necessarily they are solutions of the eigenvalue equation ( 30) or [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] with the same p (this follows from the continuity on λ of the left hand sides of these equations and the fact that their right hand sides take discrete values). Two µ-continuations are distinct if they have no crossings.

In the next sections we will show that the vertical spectrum Sp V γ,µ is formed entirely by µcontinuations of the eigenvalues of the elastic string if γ = 0 and of the Kelvin-Voigt eigenvalues if γ > 0. In turn, the horizontal spectrum Sp H α,γ,µ is formed entirely by µ-continuations of the Kelvin-Voigt (elastic, if γ = 0) eigenvalues and of the eigenvalues ±iα of the n pendula. We will prove this result for the two undamped spectra and for the vertical damped spectrum on the basis of an analysis of the eigenvalue equations of Corollary 1, while for the damped horizontal spectrum we will resort to the implicit function theorem (for small µ) and a numerical analysis (for large µ).

The eigenfunctions

We give now the expressions of the eigenfunctions of the vertical and horizontal spectra as function of the eigenvalues. Recall that the eigenfunction of the Kelvin-Voigt string relative to an eigenvalue λ ∈ C is the function f KV γ,λ as in [START_REF] Mason | Chebyshev Polynomials[END_REF]. As above, we write x j := j, c n,p = cos pπ n+1 , and we make the convention that U -1 = 0. Recall from Lemma 1 that ±iα belong to the horizontal spectrum only if γ = 0 and α ∈ Z + (an integer resonance), in which case they are pure-string eigenvalues.

Proposition 3. Assume n ≥ 1, α > 0, µ > 0, γ ≥ 0.
i. All eigenvalues in Sp V γ,µ and Sp H α,γ,µ have multiplicity 1 except, when α ∈ Z + , ±iα ∈ Sp H α,0,µ which have multiplicity n + 1. ii. Assume λ is either a vertical or a horizontal pure-string eigenvalue. Then, the vertical eigenfunction relative to λ is f KV γ,λ and, unless λ = ±iα with α ∈ Z + , the horizontal eigenfunction relative to λ is 0,

f KV γ,λ . iii. If α ∈ Z + , then each of the two pure-string eigenvalues ±iα ∈ Sp H α,0,µ has the n+1 independent eigenfunctions (A h 1 , . . . , A h n ), f h , h = 1, . . . , n + 1, with A h j = 1 2παµ δ h,j+1 + (-1) α+1 δ h,j , j = 1, . . . , n , f h | [xj-1,xj ] (x) = (-1) jα δ h,j sin(παx) , j = 1, . . . , n + 1 . (32) 
iv. Consider any p = 1, . . . , n. Any string-pendula eigenvalue λ ∈ Sp V γ,µ which is solution of the p-th equation ( 30) has the vertical eigenfunction f such that

f | [xj-1,xj ] (x) = U j-1 (c n,p ) sinh ξ γ (λ)(x -x j-1 ) -U j-2 (c n,p ) sinh ξ γ (λ)(x -x j ) ( 33 
)
for all j = 1, . . . , n + 1. Any string-pendula eigenvalue λ ∈ Sp H α,γ,µ which is solution of the p-th equation ( 31) has the horizontal eigenfunction (A 1 , . . . , A n ), f with f as in [START_REF] Yu | Controlled synchronization of pendula[END_REF] and

A j = - λ 2 α 2 + λ 2 U j-1 (c n,p ) sinh ξ γ (λ) , j = 1, . . . , n . (34) 
Proof. We detail the computations only for the horizontal eigenfunctions; those for the vertical eigenfunctions are similar.

We use the same notation as in the proof of Proposition 2 (in particular c = cosh ξ γ (λ) and s = sinh ξ γ (λ) ) and we write ξ for ξ γ (λ). Recall from that proof that (Ae λt , f (x)e λt ) is a horizontal damped normal modes if and only if, writing

f j := f | [xj-1,xj] for j = 1, . . . , n + 1 as f j (x) = a j cosh ξ(x -x j-1 ) + b j sinh ξ(x -x j-1 ) , x ∈ [x j-1 , x j ] ,
the complex numbers A 1 , . . . , A n , a 1 , . . . , a n+1 and b 1 , . . . , b n+1 satisfy (17a)-(17d). (ii.) In this case s = 0 because λ is a pure-string eigenvalue. Hence c 2 = 1 and a trivial induction gives sinh(ξx j ) = 0, cosh(ξx j ) = c j for all j = 1, . . . , n + 1. Conditions (17a)-(17b) give all a j = 0. In turn, since λ 2 + α 2 = 0, (17c) give all A j = 0 and (17d

) give b j = c j-1 b 1 . The choice b 1 = 1 leads to f 1 (x) = sinh(ξ(x -x 0 )) = sinh(ξx) ∀x ∈ [0, n + 1] and, for each j = 1, . . . , n + 1, f j (x) = b j sinh(ξx) cosh(ξx j-1 ) -cosh(ξx) sinh(ξx j-1 ) = c 2(j-1) sinh(ξx) = sinh(ξx) for all x ∈ [x j-1 , x j ]. Thus, f = f KV γ,λ . (iii.) Consider λ = iα. Since γ = 0, ξ = iπα and sinh(ξx) = i sin(παx). Since α ∈ Z + , s = i sin(πα) = 0, c = cos(πα) = (-1)
α and, as in the proof of iv., sinh(ξx j ) = 0 and cosh(ξx j ) = (-1) jα for all j = 1, . . . , n + 1. Thus f j (x) = -i(-1) (j-1)α b j sin(παx). Moreover, (17a)-(17c) give all a j = 0, the b j 's are arbitrary and, for each choice of the b j 's, (17d) gives

A j = i 2παµ (-1) α b j -b j+1 , j = 1, . . . , n .
Thus, there are n+1 linearly independent eigenfunctions, determined by n+1 linearly independent vectors b 1 , . . . , b n+1 ∈ C n+1 . The choice of the b h 's as having components b h j = iδ hj , h, j = 1, . . . , n + 1, gives the f h 's and the A h 's as in the statement. Being real, they are eigenfunctions relative to λ = -iα as well.

(iv.) Let λ ∈ Sp H α,γ,µ be a string-pendula eigenvalue solution of the p-th equation [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF]. We freely use the notation and the results from point 1. in the proof of Proposition 2. Equations (17a)-(17c) are equivalent to [START_REF] Haller | Exact model reduction by a slowfast decomposition of nonlinear mechanical systems[END_REF] and (19). Note that 1 2 Tr(M ) = c + 1 2 Qs = c + µP α (λ)ξs = cos pπ n+1 = c n,p . Thus, using [START_REF] Korteweg | Les horloges sympathiques de Huygens[END_REF] and a 1 = 0 (from (17a)), [START_REF] Kato | Perturbation theory for linear operators[END_REF] gives

a j+1 b j+1 = cU j-1 (c n,p ) -U j-2 (c n,p ) sU j-1 (c n,p ) (s + Qc)U j-1 (c n,p ) (c + Qs)U j-1 (c n,p ) -U j-2 (c n,p ) 0 b 1 .
This implies that there is a one-parameter choice of the a j 's and b j 's, parametrized by b 1 , and thus a unique eigenfunction relative to λ. Choosing b 1 = 1 and observing that, since c 8)), we conclude that

+ Qs = 2c n,p -c, (c + Qs)U j-1 (c n,p ) -U j-2 (c n,p ) = 2c n,p U j-1 (c n,p ) -U j-2 (c n,p ) -cU j-1 (c n,p ) = U j (c n,p ) - cU j-1 (c n,p ) (see (
a j+1 = sU j-1 (c n,p ) , b j+1 = U j (c n,p ) -cU j-1 (c n,p ) , j = 0, . . . , n .
Therefore, from ( 16), f 1 (x) = sinh(ξx) and, for j = 1, . . . , n,

f j+1 (x) = sU j-1 (c n,p ) cosh(ξx -ξx j ) + U j (c n,p ) -cU j-1 (c n,p ) sinh(ξx -ξx j ) = U j-1 (c n,p ) s cosh(ξx -ξx j ) -c sinh(ξx -ξx j ) + U j (c n,p ) sinh(ξx -ξx j ) = -U j-1 (c n,p ) sinh(ξx -ξx j+1 ) + U j (c n,p ) sinh ξx -ξx j )
where the last equality follows from the fact that s = sinh(ξx 1 ) and c = cosh(ξx 1 ). Lastly, from [START_REF] Haller | Exact model reduction by a slowfast decomposition of nonlinear mechanical systems[END_REF],

A j = -λ 2 α 2 +λ 2 a j+1 = -λ 2 α 2 +λ 2 sU j-1 (c n,p
). (i.) This follows from the previous items.

h=1, α=1 h=1, α=2 h=1, α=3 h=1, α=4 2≤h≤n, α=1 2≤h≤n, α=2 2≤h≤n, α=3 2≤h≤n, α=4
Figure 3: The non-zero part of the n + 1 eigenfunctions (A h , f h ) of the undamped horizontal system relative to the first few resonant pure-string eigenvalues ±iα, α ∈ Z + . In each panel, the solid line is the profile of the h-th piece of the string and the black dot represents the amplitude of the pendulum or pendula at its free extrema (given, respectively, by if h and A h j in ( 33) and ( 34)). The (n + 1)-th piece of the eigenfunction is obtained from that for h = 1 using the (easily verified) identities

A n+1 n = (-1) α A 1 1 and f n+1 (xn + x) = f 1 (x) for all x ∈ [0, 1]. (The value used are n = 3, µ = 0.0375).
We now quickly analyze some properties of the eigenfunctions relative to the pure-string eigenvalues and to the string-pendula eigenvalues.

Pure-string eigenfunctions. Since the pure-string eigenvalues are known, items ii. and iii. of Proposition 3 provide a complete description of their eigenfunctions. This description confirms that, with the exception of ±iα in the integer resonant undamped case, the horizontal and vertical pure-string eigenfunctions correspond, as anticipated, to the configurations in which the string vibrates as if it was alone, and the pendula stay still.

However, when γ = 0 and α ∈ Z + , there exist n + 1 (conjugate pairs of) independent eigenfunctions relative to the eigenvalues ±iα ∈ Sp H α,0,µ . In the h-th of them, h = 1, . . . , n + 1, only the h-th piece [x h-1 , x h ] of the string and the pendulum or the pendula attached to its free extrema oscillate, while everything else stays at rest. The profile

f h | [x h-1 ,x h ]
of the oscillating piece of the string is that of the elastic string with fixed extremities, with α + 1 nodes, and is independent of h. The amplitude of oscillation of the pendula at its extremities is independent of h as well and, compared to that of the string, decreases with n, α and µ. The two pendula at the extremities of each non-extremal piece oscillate in phase if α is odd and in opposition of phase if α is even. A sample of these eigenfunctions are illustrated in Figure 3. Their superpositions produce a variety of oscillatory patterns, in which the amplitudes of oscillation of each piece x j < x < x j+1 of the string and of each pendulum are independent of each other. We stress that these eigenfunctions are present only in the undamped horizontal system, and when α ∈ Z + .

String-pendula eigenfunctions. The actual determination of the string-pendula eigenfunctions requires the knowledge of the vertical and horizontal spectra. However, these eigenfunctions have all some common properties. Proposition 4. Consider any n ≥ 1, α > 0, γ ≥ 0, µ > 0 and p = 1, . . . , n.

If λ is a string-pendula eigenvalue in Sp H α,γ,µ which is solution of the p-th equation ( 31), then its eigenfunctions ((A 1 , . . . , A n ), f ) satisfy: i. The reflectional symmetry

f (x n+1-j -y) = (-1) p+1 f (x j + y) ∀ y ∈ [0, 1) , j = 0, . . . , ⌊ n 2 ⌋ A n+1-j = (-1) p+1 A j ∀j = 1, . . . , ⌊ n 2 ⌋
ii. f 1 (x 1 ) = 0, A 1 = 0 and, for all j = 1, . . . , n:

f (x j ) f (x 1 ) = A j A 1 = f (x j ) + A j f (x 1 ) + A 1 = U j-1 (c n,p ) . ( 35 
)
If λ is a string-pendula eigenvalue in Sp V γ,µ which is solution of the p-th equation ( 30), then its eigenfunction f satisfies the identities in i. and ii. (without the A j ).

Proof. (i.) This follows from ( 33) and (34) using the identity U n-h (c n,p ) = (-1) p+1 U h-1 (c n,p ) which is valid for all h = 0, . . . , n (and can be verified using ( 9)). (ii.) Since U 0 = 1, ( 33) and [START_REF] Rayleigh | The Theory of Sound[END_REF] give f (x 1 ) = sinh(ξ γ (λ)) and A 1 = -λ 2 α 2 +λ 2 sinh(ξ γ (λ)), which are = 0 for the string-pendula eigenvalues. Then, (35) follow using f (x j ) = U j-1 (c n,p ) sinh(ξ γ (λ)) and [START_REF] Rayleigh | The Theory of Sound[END_REF].

While the details of the eigenfunction-and particularly of the string profile-depend on the eigenvalues, the relations [START_REF] Russell | On Mathematical models for the elastic beam with frequency-proportional damping[END_REF] indicate that, during the oscillations, the relative vertical and horizontal displacements, from the equilibrium configuration, of the suspension points of the pendula (determined by the real parts of f (x 1 ), . . . , f (x n )) and the relative horizontal displacements of the bobs of the pendula (determined by the real parts of f (x 1 ) + A 1 , . . . , f (x n ) + A n ) are the same in all the vertical and horizontal eigenfunctions relative to the string-pendula eigenvalues which are solutions of each of the n equations ( 30), [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF]. This is interesting, because the concordance or discordance in sign of these amplitudes (e.g., all bobs on one side, etc.) is the first manifestation of a "synchronization pattern". Hence, for any n, there are only n possible such patterns, and they are independent of all the parameters, including the damping. 
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Table 1: Relative displacements of the suspension points and of the bobs of the pendula form the equilibrium configuration ("+": one side; "-": the other side; "•": no displacement) in any eigenfunction relative to a stringpendula eigenvalue solution of the p-th equation ( 30) or [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF].

Remark 6. In the horizontal spectrum, the amplitude f (x j ) of the oscillations of the suspension points of the pendula and A j + f (x j ) of the bobs of the pendula satisfy A j = -λ 2 α 2 +λ 2 f (x j ) and thus their ratio is

A j + f (x j ) f (x j ) = α 2 α 2 + λ 2 , j = 1, . . . , n , (36) 
namely, P α (λ). Later we will encounter the limits for λ → ±iα and λ → ∞ of these relations.

The undamped vertical and horizontal systems

Even though our main interest is for the damped case, we consider first the undamped vertical and horizontal systems. One reason is that in the literature their description is either incomplete (Sp V 0,µ ) or absent (Sp H α,0,µ ). Another reason is that for the vertical system there is a close relation between the damped and undamped spectra, and the knowledge of the former will be the key to the study of the latter. For the horizontal system the link is weaker, but the comprehension of some aspects of the damped case will be facilitated by their preliminary comprehension in the easier undamped case.

When γ = 0, by Proposition 1 all eigenvalues are purely imaginary, λ = ±iω with ω > 0, and instead of describing the eigenvalues we will describe the frequencies. We will thus speak of frequency spectrum, µ-continuations of the frequencies etc. with an obvious meaning.

The undamped vertical spectrum.

As already mentioned, the undamped vertical system coincides with Rayleigh's loaded string. The only result valid for any n that we could find on this system is, in [START_REF] Griffiths | Waves in locally periodic media[END_REF][START_REF] Óttarsson | Vibration and wave localization in a nearly periodic beaded string[END_REF], an analogue of equation [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF]. However, we did not find any study of the structure of the spectrum, and we supply it here.

Proposition 5. For any n ≥ 1 and µ > 0, the frequency spectrum of Sp V 0,µ consists of: i. The pure-string frequencies ω S ℓ,0 , ℓ ∈ Z + . ii. For each ℓ ∈ N, n frequencies ω V ℓ,q (µ) ∈ (ω S ℓ,0 , ω S ℓ+1,0 ), q = 1, . . . , n, one for each equation (30) (for the exact labeling, see Remark 7). For each µ, all these frequencies are pairwise distinct. Each ω V ℓ,q is a smooth decreasing function of µ ≥ 0 which tends to ω S ℓ,q for µ → 0 and to ω S ℓ,0 for µ → +∞. The frequencies ω V ℓ,p (µ) are the abscissas of the intersection points between the graphs of the function at the l.h.s. of equation ( 37) (solid curve) and of the n = 3 functions at its r.h.s. (dashed curves; p = 1 red, p = 2 blue, p = 3 green); the black points denote the pure-string frequencies. (b) The frequencies ω V ℓ,p (µ) as functions of µ; the thin (thick) black points on the axis µ = 0 denote the string-pendula (pure-string) frequencies ω S ℓ,q of the elastic string; the black lines are the string-pendula frequencies and the coloring of the other lines is as in (a). (In (a) µ = 0.1, in (b) µ ∈ (0, 3)).

Proof. We already know that the pure-string eigenvalues of the elastic string persist to Sp V 0,µ for all µ > 0.

Fix µ > 0. The string-pendula eigenvalues of Sp V 0,µ are the solutions ±iω with non-integer positive ω of the n equations [START_REF] Pantaleone | Synchronization of metronomes[END_REF]. Since ξ 0 (±iω) = ±iπω, these equations can be written as the

n equations F (ω) sin(πω) = cos(πω) -c n,p , p = 1, . . . , n , (37) 
in R + \ Z + ∋ ω, with F (ω) := πµω. In turn, they can be equivalently rewritten as the n equations

F (ω) = f p (ω) , p = 1, . . . , n , (38) 
in R + \ Z + , with

f p (ω) = cos(πω) -c n,p sin(πω) . ( 39 
) Since |c n,p | < 1, f ′ p (ω) = π cn,p cos(πω)-1 sin(πω) 2
< 0 and f p is decreasing in each interval (ℓ, ℓ + 1), ℓ ∈ N. In fact, it maps each such interval diffeomorphically onto R. Together with the fact that F is strictly increasing and onto R + , this ensures that each equation [START_REF] Talamucci | Synchronization of two coupled pendula in absence of escapement[END_REF], and hence [START_REF] Sell | Inertial manifolds: the non-self-adjoint case[END_REF], has exactly one positive solution ωℓ,p (µ) in each such interval. Solutions with different p are (at the same µ) obviously different. A look at Figure 4.a, which plots the two functions at the left and right hand sides of [START_REF] Sell | Inertial manifolds: the non-self-adjoint case[END_REF], shows that at fixed µ, the ωℓ,p (µ) increase (decrease) with p if ℓ is even (odd). To order them as the string-pendula frequencies ω S ℓ,s of the elastic string (see Remark 5) we thus relabel them as

ω V ℓ,q := ωℓ,q if ℓ is even , ω V ℓ,q := ωℓ,n-q+1 if ℓ is odd . ( 40 
)
Consider now the µ-dependence of the ω V ℓ,q . An inspection of Figure 4.a shows that they are decreasing functions of µ and that each of them tends to ω S ℓ,0 as µ → +∞ and (after the relabeling) to ω S ℓ,q for µ → 0 (the solid curve becomes steeper if µ increases and flatter if µ decreases). Their smoothness follows from the implicit function theorem, given that d dω πµω -f p (ω) = πµ-f ′ p (ω) > 0 for all µ ≥ 0 and ω / ∈ Z + .

Thus, the undamped vertical spectrum Sp V 0,µ is a smooth µ-deformation of the spectrum Sp S of the elastic string and lim

µ→0 Sp V 0,µ = Sp S .
As µ increases, the pure-string frequencies ω S ℓ,0 remain fixed while the string-pendula frequencies ω V ℓ,q (µ), which are µ-continuations of the ω S ℓ,q , move to their left towards the immediately lower pure-string frequency ω S ℓ,0 (or towards zero, if ℓ = 0). In this way, well defined bands B V ℓ (µ) = {±iω V ℓ,0 , . . . , ±iω V ℓ,n }, ℓ ∈ N, are formed which, for fixed µ, become narrower with ℓ. See Figure 4.b.

Remark 7. The relabeling [START_REF] Tikhonov | Equations of Mathematical Physics[END_REF] of the vertical undamped frequencies has the consequence that each ω V ℓ,q is a solution of equation ( 30) with p = q if ℓ is even and with p = n + 1 -q if ℓ is odd.

The undamped horizontal spectrum.

We now consider the undamped horizontal spectrum. Recall that values of α ∈ 1 n+1 Z + reflect resonances, and that if α

∈ Z + then α = ω S α,0
is a pure-string frequency.

Proposition 6. For any n ≥ 1, α > 0 and µ > 0, the frequency spectrum of Sp H α,0,µ consists of: i. The pure-string frequencies ω S ℓ,0 , ℓ ∈ Z + . ii. For each ℓ ∈ Z + , n frequencies ω H ℓ,q (α, µ) ∈ (ω S ℓ,0 , ω S ℓ+1,0 ), q = 1, . . . , n, one for each equation [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF].

iii. If α / ∈ Z + , other n frequencies ω P p (α, µ) ∈ (⌊α⌋, ⌈α⌉), p = 1, . . . , n, each of which is solution of the p-th equation [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF]. In this case, n among the frequencies ω H ⌊α⌋,q , ω P p belong to the interval (⌊α⌋, α) and the other n to the interval (α, ⌈α⌉).

All these frequencies depend continuously (smoothly, if µ > 0) on α and µ and are pairwise distinct for fixed α, µ. All those < α (resp. > α) are decreasing (resp. increasing) functions of µ and, for µ → +∞, tend to the closest pure-string eigenvalue to their left (resp. right). For µ → 0, ω H ℓ,q (α, µ) → ω S ℓ,q and ω P p (α, µ) → α for all α, ℓ, q, p. Proof. Fix α, µ > 0. We may consider only the horizontal string-pendula frequencies, which are the solutions ω / ∈ {α} ∪ Z + of the n equations (37), namely

S ω 0 μ a α ∉ 1 n 1  b α ϵ 1 n 1  ∖  c α ϵ 
F α,µ (ω) sin(πω) = cos(πω) -c n,p , p = 1, . . . , n , (41) 
where

F α,µ : R + \ {α} → R , F α,µ (ω) := πα 2 µ ω α 2 -ω 2 .
These equations can be rewritten as the n equations

F α,µ (ω) = f p (ω) , p = 1, . . . , n , (42) 
in R + \ ({α} ∪ Z + ), with f p as in [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]. The function F α,µ is increasing in each interval (0, α) and (α, +∞) and maps the first onto R + and the second onto R -. Thus, an argument similar to that used in the proof of Proposition 5 shows that, if α ∈ Z + , then each equation (42) has exactly one solution in each interval (ℓ, ℓ + 1), ℓ ∈ N, while if α ∈ Z + then it has exactly one solution in each such interval with ℓ = ⌊α⌋ and one solution in each of the two intervals (⌊α⌋, α) and (α, ⌈α⌉).

The properties of these solutions as functions of µ can be inferred from Figure 5 (top row), which shows the graphs of the functions F α,µ (ω) sin(πω) (solid curve) and f p (ω) (dashed curves) for nonresonant and resonant values of α. From it, it follows that the n solutions in each interval (ℓ, ℓ + 1) which does not contain α tend bijectively, as µ → 0, to ω S ℓ,1 , . . . , ω S ℓ,n , and we label each of them as ω H ℓ,q with the index q of its limit. If α ∈ Z + , then the interval (⌊α⌋, ⌈α⌉) contains, for each p = 1, . . . , n, two solutions of the p-th equation (42). For µ → 0 one of them tends to α, and we label it ω P p , and the other tends to one of the ω S α,q , and we label it ω H ℓ,q . (If, as in Figure 5.b, α equals one of the ω S ℓ,q , q = 1, . . . , n, then there is a pair of µ-continuations that tend to α from different sides and we label ω P p (resp. ω H ℓ,q ) the one on the side of the other ω P p 's (resp. ω H ℓ,q 's)). Finally, smoothness of all solutions of (42) as functions of α > 0 and µ > 0 follows by observing

that d dω (F α,ω (ω) -f p (ω)) = πα 2 µ(α 2 +ω 2 ) (α 2 -ω 2 ) 2
+ p n+1 sin( πω n+1 > 0 for all ω = α (and, by Lemma 1, α is never a string-pendula frequency). Proposition 6 can be rephrased by saying that the undamped horizontal spectrum Sp H α,0,µ consists, besides of the pure-string frequencies, of a (global) µ-continuation ω H ℓ,q of each frequency ω S ℓ,q of the elastic string and of n µ-continuations ω P q of the pendula frequency α (which coincide in the case of an integer resonant α). Hence, it is a (continuous) deformation of the spectrum of the system formed by the (uncoupled) elastic string and by the n-pendula, and

lim µ→0 Sp H α,0,µ = Sp S ∪ {±iα} ∀ α > 0 .
This structure is illustrated in Figures 5 (bottom row) and 6.

The main difference, compared to the vertical system, is the presence of the µ-continuations ω P 1 , . . . , ω P n of α. The existence of eigenvalues which, for µ → 0, tend to the eigenvalues ±iα of the free pendula is explained observing that, for small µ, the pendula are very light compared to the string and the system can oscillate with the string staying almost at rest and the pendula oscillating almost freely. In fact, it follows from (36) that, for λ close to ±iα, the amplitude of oscillation of the pendula is considerably larger than that of their suspension points, and the ratio between each pair of such amplitudes diverges as λ → ±iα.

Another difference is that, in the undamped horizontal spectrum, as µ grows, the µcontinuations smaller than α decrease, and those larger than α increase. Remarks 8. (i) As in the undamped vertical spectrum, for each ℓ, ω H ℓ,1 , . . . , ω H ℓ,n form an increasing sequence if ℓ is even and a decreasing sequence if ℓ is odd. Instead, the ordering of the ω P p depends on the position of α relatively to the ω S ⌊α⌋,q and undergoes reorganizations when α passes through a resonant value. We quickly describe them because they will appear, in some form, also in the damped horizontal spectrum. (The missing details can be proved with reference to Figure 5.a).

Fix µ. If α * is a non-integer resonant value, namely a string-pendula frequency of the elastic string, that is α * = ω S ℓ * ,q * for some q * = 1, . . . , n, then ω P 1 (α * , µ), . . . , ω P n (α * , µ), ω H ℓ * ,q * (α * , µ) are all distinct and α * has n + 1 distinct µ-continuations. However, at the passage of α through such a resonance, an exchange takes place between one of the ω P q (α, µ)'s and ω H ℓ * ,q * (α, µ), which produces a permutation of the former, see Figure 6.a.

Instead, when α approaches an integer resonance, namely a pure-string frequency ω S ℓ * ,0 = ℓ * , then all the ω P q (α, µ) tend to ω S ℓ * ,0 , and as α passes through such a value they reverse their order (see Figure 6.b). Of course, the fact that all the ω P q coincide at an integer resonance is related to the fact that, as noticed in Proposition 3, such frequencies have multiplicity n + 1.

(ii) Figure 6.a suggests that, at the passage of α through a non-integer resonance, the smoothness at µ = 0 of the pair of µ-continuations that undergo the exchange is lost (the argument for smoothness used in the proof of Proposition 6 does not apply because ω → α if µ → 0).

The damped vertical system

We study now the damped vertical spectrum. According to Proposition 1 its eigenvalues are not purely imaginary. However:

Proposition 7. For any n ≥ 1, γ > 0, µ > 0: i. λ ∈ Sp V γ,µ if and only if λ = -1 2γ and ξγ (λ) π ∈ Sp V 0,µ . ii. Sp V γ,µ ⊆ (-∞, -1 2γ ) ∪ C * γ .
Proof. (i.) By item i. of Proposition 2, λ ∈ Sp V γ,µ if and only if λ = 0, λ = -1 2γ and sinh(π ξ) U n µπ ξ sinh(π ξ) + cosh(π ξ) = 0 (43)

with ξ := ξγ (λ) π = λ (1+2γλ) 1/2 . If λ = -1 2γ , then ξ = -1 2γ (because ξ = -1 2γ for λ = 1± √ 5 4γ
). Since ξ = 0 if and only if λ = 0, and ξ 0 (λ) = πλ, the two conditions λ = 0 and (43) are equivalent to ξ ∈ Sp V 0,µ . (ii.) Item i. implies that, if λ ∈ Sp V γ,µ , then

ξγ (λ) π = λ (1+2γλ) 1/2 is purely imaginary. Therefore λ 2
1+2γλ ∈ R -. This implies (λ -λ)(λ + λ + 2γλ λ) = 0. The vanishing of the first factor means that λ ∈ R, that of the second factor that λ

∈ C γ . If λ ∈ R, then λ 2 1+2γλ < 0 implies λ > -1 2γ .
On the basis of this fact, and of the previous knowledge of the undamped case (Proposition 5), it is easy to give a detailed description of the damped vertical spectrum.

First, solving the equation ξ γ (λ) = πω with ω ∈ Sp V 0,µ gives

Sp V γ,µ = {λ KV ℓ,0,± (γ) : ℓ ∈ Z + } ∪ {λ V ℓ,q,± (γ, µ) : ℓ ∈ N, q = 1, . . . , n}
with the pure-string eigenvalues λ KV ℓ,0,± and the string-pendula eigenvalues

λ V ℓ,q,± (γ, µ) := -γω V ℓ,q (µ) ± γ 2 ω V ℓ,q (µ) 2 -1 ω V ℓ,q (µ) . ( 44 
)
The behaviour of the λ V ℓ,q,± (γ, µ) as functions of γ and µ follows from here and the dependence of the ω V ℓ,q (µ) on µ, described in Proposition 5. First, since the ω V ℓ,q are smooth functions of µ ≥ 0, the λ V ℓ,q,± are continuous functions of µ ≥ 0 and of γ ≥ 0. In fact, the dependence is smooth except if ω V ℓ * ,q * (γ * , µ * ) = 1 γ * for some ℓ * , q * , γ * and µ * , which happens when a pair of eigenvalues λ V ℓ * ,q * ,± cross at the point λ V ℓ * ,q * ,± (γ * , µ * ) = -1 γ *

(see item iii. in Proposition 8 below).

Together with the fact that the ω V ℓ,q (µ) → ω S ℓ,q for µ → 0, this implies that λ V ℓ,q,± (γ, µ) → λ KV ℓ,q,± (γ) for all ℓ, q, γ an thus is a (continuous) global µ-continuation of the Kelvin-Voigt eigenvalue λ KV ℓ,q,± (γ). Moreover, for γ → 0, λ V ℓ,q,± (γ, µ) → ±iω V ℓ,q (µ). Thus,

lim µ→0 Sp V γ,µ = Sp KV γ ∀γ > 0 , lim γ→0 Sp V γ,µ = Sp V 0,µ ∀µ > 0 .
Recall now that, for given γ and µ, a (possibly zero) finite number of Kelvin-Voigt bands is contained in C * γ while the remaining bands are contained in R except, if

1 γ / ∈ Z, the band B KV ⌊ 1 γ ⌋
which may have eigenvalues both in R and in C * γ (see Remark 5).

Proposition 8. For any n ≥ 1 and γ > 0, as µ grows: i. All the λ V ℓ,q (γ, µ) which are µ-continuations of the string-pendula eigenvalues of a Kelvin-Voigt band B KV ℓ (γ) ⊂ C * γ move to their right in the complex plane, remaining in C * γ , and for µ → +∞ tend to the Kelvin-Voigt pure-string eigenvalues λ KV ℓ,0,± of that band (to 0, if ℓ = 0). ii. If B KV ℓ (γ) ⊂ R, then each µ-continuations λ V ℓ,q,-(q = 1, . . . , n) is real, moves to its right and, for µ → +∞, tends to the pure-string eigenvalue λ KV ℓ,0,-. Instead, λ V ℓ,q,+ moves in R to its left and tends to λ KV ℓ,0,+ . iii. If 1 γ / ∈ Z, then the µ-continuations of the non-real Kelvin-Voigt string-pendula eigenvalues of the band B KV ⌊ 1 γ ⌋ (γ) move as in i. and those of the real ones move as in ii. until the two eigenvalues λ V ℓ,q,± of each real pair cross at -1 γ and, one after the other, enter C * γ (forming a complex conjugate pair, of course). For µ → +∞ they all tend to the pure-string eigenvalues λ KV 1 γ ,0,± ∈ C * γ . For given γ and µ all the eigenvalues are distinct except for the single crossing mentioned in iii.

Proof. The behaviour of the λ V ℓ,q (γ, µ) as µ grows follows from (44) and the properties of the µ → ω V ℓ,q (µ) described in Proposition 5. The fact that, for given γ and µ, all eigenvalues = -1 γ are pairwise distinct follows from the fact that so are the ω V ℓ,q (µ) and the real parts of each complex conjugate pair in C * γ equals -γω V ℓ,q (µ) 2 while, for x > 1 γ , the two functions x → x(γx± γ 2 x 2 -1) are monotone.

The resulting structure of Sp V γ,µ , which is organized in bands separated by the Kelvin-Voigt pure-string eigenvalues, is shown in Figure 7.

Interestingly, the vertical string-pendula eigenfunctions are independent of the damping coefficient:

-1 2 -1
Re( ) Proposition 9. For each n ≥ 1, γ > 0, µ > 0, ℓ ∈ Z + and p = 1, . . . , n, the eigenfunction relative to the eigenvalue λ V ℓ,p,± (γ, µ) equals that relative to ±iω V ℓ,p (µ). Proof. This follows from [START_REF] Yu | Controlled synchronization of pendula[END_REF] and the fact that (as is readily verified but follows in fact from Proposition 7) the vertical eigenvalues satisfy ξ γ (λ V ℓ,p,± (γ, µ)) = ±iπω V ℓ,p (µ) for all ℓ, p, ±, µ, γ. We add that, using the fact that the vertical eigenvalues tend to those of the Kelvin-Voigt (resp. elastic) string for µ → 0 (resp. γ, µ → 0), it is not difficult to verify that so do (pointwisely) the eigenfunctions as well. Thus, for small µ (resp. small γ, µ) the vertical eigenfunctions are small deformations of those of the Kelvin-Voigt (resp. elastic) string, but with discontinuities in the first derivative of the string's profile function at the points of suspension of the pendula. Figure 8 depicts a sample of these eigenfunctions, computed with the formulas of Proposition 3.

Remarks 9. (i.) As in the Kelvin-Voigt viscoelastic string, for γ > 0 not too large the least damped normal mode of the vertical spectrum is that with eigenvalue λ V 0,1,± (γ, µ), followed by that with eigenvalue λ V 0,2,± (γ, µ) (or λ V 1,0,± (γ, µ) if n = 1), etc. (ii.) The reordering [START_REF] Tikhonov | Equations of Mathematical Physics[END_REF] of the ω V ℓ,k propagates to the λ V ℓ,q defined by (44) as well. Thus, λ V ℓ,q is solution of (30) with p = q if ℓ is even and with p = n + 1 -q if ℓ is odd. (iii.) As noticed in the proof of Proposition 9, ξ γ (λ V ℓ,p,+ ) = ξ γ (λ V ℓ,p,-) for all ℓ and p. Hence, also when real, the two eigenvalues of a pair λ V ℓ,p,± have the same eigenfunction.

7 The damped horizontal system 7.1 Continuations from the case µ = 0. The damped horizontal spectrum Sp H α,γ,µ , γ > 0, µ > 0, has a rich and surprisingly complex structure. Its analytical study appears to us very difficult (if not even prohibitive) and we adopt an approach based on a mixture of numerical and, where possible, analytical investigations.

First, we prove that, at least for small µ, all the Kelvin-Voigt eigenvalues and ±iα have µcontinuations to the horizontal spectrum. Of course, since the pure-string eigenvalues persist to Sp H α,γ,µ , we consider only the string-pendula eigenvalues.

n=1, ω 0,1 V n=1, ω 1,1 V n=1, ω 2,1 V n=2, ω 0,1 V n=2, ω 0,2 V n=3, ω 0,1 V n=3, ω 0,2 V n=3, ω 0,3 V n=4, ω 0,3 V n=4, ω 2,4
V Figure 8: A few eigenfunctions of the undamped vertical system. The string profile is graph of the function -if , with f as in [START_REF] Yu | Controlled synchronization of pendula[END_REF] and normalized to 1. The gray dots represent the pendula (which in the vertical system are point masses). Note the discontinuities in the first derivative of the string profile. In all pictures, µ = 0.15.

Proposition 10. For any n ≥ 1, α > 0 and γ > 0:

i. Each string-pendula eigenvalue λ KV ℓ,q,± (γ) ∈ Sp KV γ \ {-1 γ } (ℓ ∈ N, q = 1, . . . , n), has a unique smooth µ-continuation µ → λ H ℓ,q,± (α, γ, µ) to Sp H α,γ,µ . Each such µ-continuation is, at least for small µ, non-real if λ KV ℓ,q,± (γ) ∈ C * γ and real if λ KV ℓ,q,± (γ) ∈ R. ii. If λ KV
ℓ,q,± (γ) = -1 γ for some ℓ and q, then it has a pair of complex conjugate smooth µcontinuations µ → λ H ℓ,q,± (α, γ, µ) to Sp H α,γ,µ . At µ = 0, they are tangent to C γ . iii. Each one of ±iα has exactly n distinct smooth µ-continuations µ → λ P p,± (α, γ, µ), p = 1, . . . , n, to Sp H α,γ,µ .

Proof. Fix α > 0 and γ > 0. (i.) By Corollary 1, the string-pendula eigenvalues of Sp H α,γ,µ are the zeroes λ = 0, -1 2γ , ±iα of the n functions

F p (µ, λ) := µP α (λ)ξ γ (λ) sinh ξ γ (λ) + cosh ξ γ (λ) -c n,p , p = 1, . . . , n .
For each such p,

∂F p ∂λ (0, λ) = ∂ ∂λ cosh ξ γ (λ) -c n,p = π 1 + γλ (1 + 2γλ) 3/2 sinh ξ γ (λ) .
By the same Corollary, the string-pendula eigenvalues in Sp KV γ are the zeroes λ of the n functions F p (0, λ), and sinh(ξ γ (λ)) does not vanish at any of them. Thus, by the implicit function theorem, each one of them which is = -1 γ has a µ-continuation to Sp H α,γ,µ , and such a continuation is the unique zero of F p (µ, λ) in a neighborhood of λ KV ℓ,p,± (γ). By continuity, the µ-continuation of nonreal eigenvalues are certainly non-real for µ sufficiently small. That, for small µ, those of the real eigenvalues are real follows from the uniqueness of the µ-continuation and the fact that non-real eigenvalues come in complex conjugate pairs. For each q = 1, . . . , n, we label λ H ℓ,q,± (α, γ, µ) the µ-continuation of λ KV ℓ,q,± (γ). (ii.)

-1 γ ∈ Sp KV γ if and only if n+1 γ ∈ Z + . Since ξ γ (-1 γ ) = i π γ , F p (0, -1 γ ) = cos π γ -c n,p vanishes if and only if 1 γ = 2k ± p n+1
for some k ∈ N and p = 1, . . . , n. For such γ and p, ∂Fp ∂λ (0, -1 γ ) = 0 and the implicit function theorem cannot be used. However,

∂ 2 F p ∂λ∂λ 0, - 1 γ = -πγ sin pπ n + 1 = 0
and by the Weierstrass Preparation Theorem there exist functions g 0 (µ), g 1 (µ) and h(µ, λ) which are analytic in a neighborhood of (0, -1 γ ) and are such that g 0 (0) = g 1 (0) = 0, h(0,

-1 γ ) = 1 2 ∂ 2 Fp ∂λ∂λ (0, -1 γ ) = 0 and F p (µ, λ) = λ + 1 γ 2 + λ + 1 γ g 1 (µ) + g 0 (µ) h(µ, λ) .
Therefore, in a neighborhood of (0, -1 γ ) the zeroes of F p are those of the factor (λ

+ 1 γ ) 2 + (λ + 1 γ )g 1 (µ) + g 0 (µ) and belong to two curves µ → λ± (µ) := - 1 γ + 1 2 -g 1 (µ) ± g 1 (µ) 2 -4g 0 (µ) . Since g ′ 0 (0) = h(0, -1 γ ) -1 ∂Fp ∂µ (0, -1 γ ) = (1+α 2 γ 2 ) -1 2α 2 = 0 and g ′ 1 (0) = h(0, -1 γ ) -1 ∂ 2 Fp ∂λ∂µ (0, -1 γ ) = (1 + α 2 γ 2 ) -2 4α 2 γ = 0, for small µ g 0 (µ) = µg ′ 0 (0) + O(µ 2 ), g 1 (µ) = µg ′ 1 (0) + O(µ 2 ) and λ± (µ) - 1 γ ± i 4µg ′ 0 (0) + O(µ) .
Since g ′ 0 (0) > 0, this proves the existence of two µ-continuations of - = 0. This implies that, for µ > 0 small enough, λ P p,+ (µ) = iα and

λ p,+ (µ) is a zero of 1 α 2 +λ 2 G p (µ, λ) = F p (µ, λ)
as well, and hence belongs to Sp H α,γ,µ . It only remains to prove that the n continuations λ P 1,+ , . . . , λ P n,+ are, for small µ, pairwise distinct. This follows from the fact that the n derivatives ∂Gp ∂µ (0, iα) are all equal and nonzero while the n derivatives ∂Gp ∂λ (0, iα) are pairwise distinct because c n,p = c n,h if p = h; therefore the n derivatives ∂λ P p,+ ∂µ (0) are nonzero and pairwise distinct. The argument for -iα is the same.

The µ-continuations of ±iα play an important role in the dynamics of the damped system with light pendula because, for µ small, they are close to the imaginary axis and their decay rate is small; hence, their normal modes are likely those, or among those, that dissipate less. We will come back on this later. We anticipate that our numerical analysis will show that all the µ-continuations of Proposition 10 are in fact global, that they are distinct except at certain isolated crossings, and that they form the entire horizontal spectrum.

Remarks 10. (i) At variance from the µ-continuations of the Kelvin-Voigt eigenvalues, for the µ-continuations λ P p,± of ±iα the label p indicates of which equation (31) λ P p,± is solution, and hence the associated eigenfunction.

(ii) Even though it is not necessary (because their-actually, global-existence and properties have already been proved in Proposition 6), the implicit function theorem could be applied also to the µ-continuations to the undamped horizontal spectrum Sp H α,0,µ from Sp S and from ±iα. The difference from the proof of Proposition 10 is that, if γ = 0 and α has a non-integer resonant value, then one of the (iii) The argument used in the proof of Proposition 10 implies the smoothness of the µcontinuations of ±iα and of the Kelvin-Voigt eigenvalues (except -1 γ at µ = 0) as functions of all the parameters α > 0, γ > 0 and µ ≥ 0. The smoothness extends to γ = 0 for all the µ-continuations except of course for those of -1 γ and, when α has a non-integer resonant value, for a pair of those of ±iα (see the previous remark).

The damped horizontal spectrum: overview.

We describe here the indications we drew from our combined numerical-analytical study. Collectively, they provide a reasonably clear picture of the damped horizontal spectrum, which appears to consist entirely of µ-continuations of the eigenvalues of Sp KV γ and of ±iα. Specifically, for any n ≥ 1 and α, γ, µ > 0:

(SPH1) Sp H α,γ,µ consists, besides of the pure-string eigenvalues, of: • An eigenvalue on each µ-continuation µ → λ H ℓ,q,± (α, γ, µ) of the Kelvin-Voigt string-pendula eigenvalue λ KV ℓ,q,± (γ), ℓ ∈ N, q = 1, . . . , n. • An eigenvalue on each one of n µ-continuations µ → λ P q,± (α, γ, µ), q = 1, . . . , n, of ±iα. These µ-continuations are global and are pairwise distinct except for some crossings, which take place at isolated values of α, γ, µ. Moreover, they appear to be continuous (and in fact smooth except at the crossings), and

lim µ→0 Sp H α,γ,µ = Sp KV γ ∪ {±iα} ∀α, γ > 0
An interesting aspect of the spectrum is related to the asymptotic behaviour of the µcontinuations as µ → +∞: (SPH2) For µ → +∞:

• n non-real complex conjugate pairs of µ-continuations tend to 0.

• n non-real complex conjugate pairs of µ-continuations tend to infinity.

• All other µ-continuations tend, in groups of n, to a pure-string eigenvalue. In each group there is exactly one solution of each equation (42), p = 1, . . . , n. Which of the µ-continuations have each asymptotic behaviour depends on α and γ: as they vary, crossings take place that produce reorganizations of both the local and global structure of the spectrum. However, the n pairs of µ-continuations that tend to 0 all come from the Kelvin-Voigt band B KV 0 and ±iα.

We will refer to the first two sets of µ-continuations as to the "bands" which go to 0 and to infinity.

(SPH3) The structure of the µ-continuations of the real Kelvin-Voigt eigenvalues is qualitatively the same as in the damped vertical system, but with a difference:

• The µ-continuations of the string-pendula eigenvalues of the Kelvin-Voigt bands B KV ℓ (γ) entirely contained in R (ℓ ≥ ⌊ 1 γ ⌋-1) move, without crossings, towards the pure-string eigenvalue of their band.

• When 1 γ / ∈ Z, the µ-continuations of the real string-pendula eigenvalues of B KV

⌊ 1 γ ⌋ (γ) different from -1
γ move, as µ grows, on the real axis towards each other until, at a finite value of µ, they meet at a point < -1 γ and leave the real axis, forming a complex conjugate pair which never intersects C γ .

• If 1 γ / ∈ Z but n+1 γ
∈ Z, then the two µ-continuations of -1 γ leave the real axis, forming a complex conjugate pair which does not belong to C γ .

(SPH4)

• All µ-continuations assume their non-real values outside C γ .

• With a few exceptions, the µ-continuations of non-real Kelvin-Voigt eigenvalues, and those of the real ones after they have left the real axis, do not intersect, as µ grows, the real axis. • The exception are, when γ is very large, the µ-continuations of the first non-real eigenvalues of the Kelvin-Voigt band B KV 0 (γ) which may reach (in a complicated way) the real axis and tend to the real pure-string eigenvalues of B KV 0 .

An illustration of the global structure of the non-real component of the damped horizontal spectrum as µ-deformation of the Kelvin-Voigt spectrum and of the two points ±iα is given in Figure 9 which, for a given choice of α and γ, shows the µ-continuations as images of curves µ → λ(µ) ∈ C for µ ∈ [0, µ max ] with increasing values of µ max . The figure refers to the case in which the dissipation is not too large and there is at least one entire Kelvin-Voigt band in C γ (γ ≤ 1 is sufficient; cases with larger γ will be considered later). Several of the features mentioned above are visible in the figure, with the notable exception, for a reason of scale, of the eigenvalues which tend to 0.

In the next subsection we give more details on these µ-continuations. We focus on three features in particular. One is the µ-continuations of ±iα, of the first Kelvin-Voigt band and of the band which goes to 0; their interest is related to the fact that-the first two for small µ and the third one for large µ-are close to the imaginary axis and thus provide the normal modes that dissipate less. The second is the band which goes to infinity, whose existence (and structure: see below) was quite surprising to us. The third is the global structure of the spectrum and the role and properties of the crossings. We will also say a few words on the (numerically delicate) fact that there are not other eigenvalues besides the mentioned µ-continuations and on the eigenfunctions.

7.3

The damped horizontal spectrum: details.

A. The real component of the spectrum.

It is easy to prove that, for all γ, µ > 0, all real string-pendula eigenvalues are < -1 2γ . In fact, the string-pendula eigenvalues are the solutions of equations [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF], and the real ones are negative. If -1 2γ < λ < 0 then ξ γ (λ) = πλ √ 1+2γλ < 0, the sum at the left hand side of ( 31) is > 1 (the first summand is > 0, the second is > 1) and, since |c n,p | < 1, λ is not a solution of [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF].

Proving the other statements on the real horizontal eigenvalues listed in SPH3, and particularly that there are no other eigenvalues besides the µ-continuations of the real Kelvin-Voigt eigenvalues, is more laborious and we skip it. We note only that, for λ < - , and increasing values of µ. The thinner dots denote the string-pendula eigenvalues λ KV ℓ,q,± of the bands of the Kelvin-Voigt string which have some eigenvalue in the circle Cγ . The thicker dots mark the pure-string eigenvalues of such bands (except one of the two of the last band, on the real axis, in the top row). Each figure shows the curve described by the µ-continuation of each λ KV ℓ,q,± for µ between 0 and a maximum value which is specified in the legend, with the same colorings as in Figure 5 (p = 1 red, p = 2 blue, p = 3 green). The way this-and the following-pictures were produced is explained in item B. in section 7. with y γ : ( 1 2γ , ∞) → R, y γ (x) =

x √ 2γx-1 . The function at the left hand side of (45) vanishes, for each µ > 0, at those λ such that y γ (|λ|) ∈ Z + , namely, the real pure-string eigenvalues; since the function at the right hand side of (45) is non-zero at such points, this implies that, for each p, there is at least one solution in each interval bounded by any two consecutive of them. However, an argument similar to that of the proofs of Propositions 5 and 6 does not work here for all α, because the monotonicity properties of the function λ → πµα 2 α 2 +|λ| 2 y γ (|λ|) change with α. We thus limit ourselves to mention that a glance at the graphs of the two functions at the left and right hand sides of (45) suggests that such a solution is actually unique, that it depends continuously on µ and that it has the stated asymptotic behaviours.

B. The numerical procedure and the figures. The numerical procedure used to produce Figure 9 and the other figures of this section, which plot the eigenvalues for a range of values of µ, takes advantage of the linearity in µ of the horizontal eigenvalue equation and is the following. Given α, γ, µ > 0, the string-pendula eigenvalues are the solutions λ ∈ C of the n equations a(λ)µ-b p (λ) = 0 (p = 1, . . . , n) which satisfy a(λ) = 0, with

a(λ) := α 2 α 2 + λ 2 ξ γ (λ) sinh ξ γ (λ) , b p (λ) := -cosh ξ γ (λ) + c n,p . (46) 
Each such complex equation can be written bp(λ) a(λ) = µ and, given that µ is real, is equivalent to the system of two equations ρ p (λ) = µ, ι p (λ) = 0 with

ρ p (λ) := Re(b p (λ))Re(a(λ)) + Im(b p (λ))Im(a(λ)) |a(λ)| 2 ι p (λ) := Re(b p (λ))Im(a(λ)) -Im(b p (λ))Re(a(λ)) .
Thus, given α, γ, µ max > 0 we used the standard plotting capabilities of Mathematica to plot, for each p = 1, 2, the zero set of ι p (λ) = 0 in the region where 0 ≤ ρ p (λ) ≤ µ max . In all figures, the red curves refer to p = 1, the blue ones to p = 2 and, when n = 3, the green ones to p = 3.

At variance from Figure 9, Figures 10111213show the µ-continuations for all values of µ ∈ [0, +∞). The orientation of the µ-continuations is not shown in the pictures, but, as µ grows, they all move away from either ±iα or a string-pendula eigenvalue, and move towards either 0, a pure-string eigenvalue, or infinity. These figures show intersections between the curves traced by different µ-continuations; however, except in the two middle panels of Figure 10, these intersections are not crossings, because the two µ-continuations reach the intersection point at different values of µ.

The crossings shown in the two middle panels in Figure 10 take place between a pair of µcontinuations, is transversal, and produces an exchange of the limit point for µ → +∞. Most of the crossings we numerically detected are of this type, but we also found some (special) crossings that involved three µ-continuations, see Figure 11, and we cannot exclude that, particularly when n increases, there are simultaneous crossings of even more µ-continuations. In the middle panels of each row, the intersection between the two µ-continuation is a crossing.

λ 0,1,+ KV λ 0,2,- KV λ 0,2,+ KV 0 -0.6 -1.2 -1 0 1 -iα iα α = 0.32 λ 0,1,+ KV λ 0,2,- KV λ 0,2,+ KV 0 -0.6 -1.2 -1 0 1 -iα iα α = 0.35 λ 0,1,+ KV λ 0,2,- KV λ 0,2,+ KV 0 -0.6 -1.2 -1 0 1 -iα iα α = 0.71 λ 0,1,+ KV λ 0,2,- KV λ 0,2,+ KV 0 -0.6 -1.2 -1 0 1 -iα iα α = 0.75
Figure 11: The µ-continuations which tend to 0 as µ → +∞, for various values of α, when n = 2 and with a fixed γ such that only one pair of string-pendula eigenvalues λ KV 0,q,± of B KV 0 (γ) belong to the circle Cγ (γ = 1.75 in the figures). A first crossing (not shown, in between the first two pictures) takes place between λ H 0,1,± and λ P 1,± , followed by a crossing (in between the last two pictures) between λ P 1,± and the µ-continuations of λ H 0,2,+ and λ H 0,2,after they have left the real axis.

C. The µ-continuations which go to 0. For small α, up to a certain threshold (which for small γ is close the first non-integer resonance 1 n+1 ) the n pairs of µ-continuations which for µ → ∞ tend to 0 are the µ-continuations λ P q,± of ±iα. As α grows, the λ P q,± are replaced, one after the other, through a cascade of crossings (which take place at thresholds which for small γ are close to the non-integer resonances 2 n+1 , . . . , n n+1 ), by the µ-continuations λ H 0,q,± of the string-pendula eigenvalues of the first Kelvin-Voigt band B KV 0 . As we will discuss in Section 8.2 (in the case n = 2, but the argument extends to all n ≥ 1), in the limit of γ → 0 the thresholds are exactly the non-integer resonances 1 n+1 , . . . , n n+1 . For α larger than the threshold at which takes place the last crossing (which in our investigation is always between n n+1 and the first integer resonance 1), it is the n pairs of µ-continuations λ H 0,q,± 's of B KV 0 which tend to 0. The details of the process are different depending on whether B KV 0 is entirely contained in C * γ or not. In the former case all crossings involve one λ H ℓ,q,± and one λ P q,± , which exchange their asymptotic behaviour (Figure 10). In the latter case the process depends on the number k of non-real string-pendula eigenvalues in B KV 0 and may be complicated. Figure 11 illustrates, for n = 2, the case k = 1. We do not plot other cases, but we mention that, already with n = 2, the case k = 0 is significantly complicated: depending on α, it may involve either three or two different crossings, in the latter case with the simultaneous crossing of three µ-continuations; moreover, as µ grows, one or both pairs of µ-continuations λ P q,± enter the real axis and tend to the real pure-string eigenvalues of B KV 0 . In all cases, the µ-continuations that tend to 0 do so approaching the circle C γ from the outside. Moreover, for each p = 1, . . . , n, there is exactly one of them which is solution of the p-th equation [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF]. This last feature is made possible by the fact that, for given γ > 0, the vertical order in the complex plane of the µ-continuations of ±iα is constant for α in each interval between two consecutive integer resonances, and is reversed at the passage of α through each such resonance, a phenomenon visible in Figure 10. (For some comments on this fact, and on the effect of the non-integer resonances on the µ-continuations, see Remark 12 at the end of the next section).

More on the band which goes to zero-specifically, the ordering of the eigenvalues in it-will be said in Section 8.4.

D.

The band which goes to infinity. The presence of a band formed by n pairs of eigenvalues which go to infinity as µ → +∞ was quite unexpected to us. Dynamically, for large µ, namely for very massive pendula, these normal modes describe high-frequency oscillations of the pendula which are damped very quickly (as we note below, both the frequency and the decay rate grow with µ as ∼ µ 2/3 , with a coefficient ∼ γ -1/3 ). Interestingly, the numerics indicates that, for µ → +∞, these µ-continuations are asymptotic to a straight line (see Figure 9) which, moreover, appears to be independent of all the parameters. Only the "speed" ∂λ ∂µ with which the eigenvalues move along the µ-continuations appears to depend on γ. As we now show, assuming that an asymptotic line exists, a simple asymptotic analysis accounts for almost all these facts.

Assume that there exists a smooth curve

R + ∋ µ → λ H ∞ (µ) ∈ Sp H α,γ,µ
which solves one of the n equations ( 31) and goes to ∞ for µ → +∞. For large µ,

µP α (λ H ∞ (µ)) ∼ µλ H ∞ (µ) -2 , ξ γ (λ H ∞ (µ)) ∼ π √ 2γ λ H ∞ (µ) 1/2 , sinh ξ γ (λ H ∞ (µ)) ∼ cosh ξ γ (λ H ∞ (µ)) ∼ 1 2 exp π √ 2γ λ H ∞ (µ) 1/2
and equation ( 31) can only be satisfied if

π µλ H ∞ (µ) -3/2 √ 2γ + 1 exp π λ H ∞ (µ) 1/2 √ 2γ ∼ µ 0
which requires the asymptotic vanishing of the first factor. Assume now that, moreover, λ H ∞ (µ) is asymptotic to a straight line Re iθ + a with some θ ∈ [0, 2π) and a ∈ C. Then, for large µ, λ H ∞ (µ) ∼ z(µ)e iθ with a function z : R → R such that lim µ→+∞ z(µ) = +∞ and

π √ 2γ µλ H ∞ (µ) -3/2 + 1 ∼ π √ 2γ µz(µ) -3/2 e -i 3 2 θ + 1 vanishes only if z(µ) ∼ π √ 2γ µ 2/3 , θ = 2π 3 . Hence, λ H ∞ (µ) ∼ a + πµ √ 2γ 2 3 e i 2π 3 (47) 
and the asymptotic line forms an angle of -π 6 with the imaginary axis, independent of all parameters. The numerics confirms the asymptotic (47), with a = 0, that is, the asymptotic line passes through 0.

In the eigenfunctions relative to these eigenvalues, for large µ, the pendula's bobs remain nearly on the vertical plane y = 0. Indeed, it follows from [START_REF] Salsa | Partial Differential Equations in Action: From Modelling to Theory[END_REF] that the ratio between the y-deviations from the equilibrium position of the bob and of the suspension point goes to zero as λ → ∞. Thus, for a very short transient, the string performs high-frequency, high-dissipating horizontal oscillations while the pendula's bobs stay nearly fixed in space.

Finally, we note that the numerics indicates also that, if 0 < γ < 1 2 , the eigenvalues which go to infinity are µ-continuations of: eigenvalues of the Kelvin-Voigt band near the top of the circle C γ if α is smaller than a threshold which is ∼ 1 2γ ; ±iα if α is larger than such a threshold; a mix of the two when α is near the threshold. These three possibilities are illustrated, respectively, in plates (a,b), (d) and (c) in Figure 12. If γ > 1 2 and some of the eigenvalues of the first Kelvin-Voigt band are real, then the band which goes to infinity may contain the µ-continuations of some (plates e,f,g) or even all (plate h) these real eigenvalues. E. Global structure and bifurcations. Next, we say a few words about the global structure of the spectrum. We focus on cases with γ < 1 2 and, given that the relevant eigenvalues are not real, we consider only the eigenvalues in the upper half plane Im(λ) > 0.

First we note that, for α not too large, up to ∼ 1 2γ , the two bands formed by the µ-continuations of ±iα and by those which go to infinity coming out of the Kelvin-Voigt eigenvalues near the top of C γ are well identified and divide the spectrum in three parts with different asymptotic behaviours for µ → +∞ and different dependence on µ of their frequency and damping. Specifically, as µ increases, the µ-continuations of the λ KV ℓ,q,± external to these two bands move to the right-hence towards smaller damping-and, as µ → +∞, tend to the less damped pure-string eigenvalue λ KV ℓ,q,± The top row illustrates also the different behaviours, when γ < 1 2 , of the µ-continuations external and internal to the two bands formed by the µ-continuations of ±iα and which go to infinity (see point E.).

to their right (or to 0, if ℓ = 0). Instead, the µ-continuations in between these two bands move in a more complex way (with damping which first decreases and then increases) and eventually tend to the more damped pure-string eigenvalue λ KV ℓ+1,q,± to their left. For α in a range near ∼ 1 2γ the two bands coalesce and reorganize. When α exceeds 1 2γ and the band which tends to infinity is entirely formed by the µ-continuations of ±iα, all the µ-continuations of the pure-string eigenvalues tend, as µ increases, to less damped pure-string eigenvalues. These behaviours are recognizable in Figure 9 and in the first row of Figure 12.

Second, there are several other crossings of the µ-continuations, besides those already mentioned, and they lead to reorganizations of the local structure of the spectrum. Without any attempt to fully study these features-also because we do not have an interpretative theory-we limit ourselves to report here some examples so as to stress the complexity of these spectra. We assume γ sufficiently small, so that 1 γ ≫ 1 and there are several Kelvin-Voigt bands in C * γ . As seen in point C. above, for α small, the µ-continuations λ P p,± of ±iα tend to 0 and, when α reaches a threshold close to 1, to the pure-string eigenvalue λ KV 1,0,± ∈ C * γ . For larger α, the λ P p,± keep jumping to higher pure-string eigenvalues λ KV ℓ,0,± ∈ C * γ , until they eventually meet the band which goes to infinity. Each jump involves a crossing and takes place at a threshold in α close to ℓ. However, this process takes place in two different ways, depending on whether α is below or above a certain threshold (∼ 1 4γ ). Below the threshold, as α grows, the λ P p,± first all tend to one and the same pure-string eigenvalue, then one after the other they jump to the next pure-string eigenvalue until they all tend to it, see Figure 10. Above the threshold, instead, the λ P p,± never tend to the same pure-string eigenvalues, but always to two consecutive pure-string eigenvalues. Moreover, the jump of the last µ-continuation is between two non-consecutive pure-string eigenvalues, like in the leap-frog, and involves a crossing between the µ-continuations of two string-pendula eigenvalues of different Kelvin-Voigt eigenvalues. See Figure 13.

F. Are there other non-real eigenvalues? Finding numerically all the zeroes of a function is always delicate-and in this case particularly so because, due the factor ξ γ (λ), the n functions a(λ)µb p (λ), see (46), whose zeroes are the non-pure-string eigenvalues, have an essential singularity at Figure 13: Different bifurcation patterns in the µ-continuations of iα for small γ (for n = 2). As α increases, the limit point for µ → +∞ of the µ-continuations jump from a pure-string eigenvalue to the next. However, for α below a threshold (top two panels), when α is in an interval close to an integer value ℓ * , all the µ-continuations tend to the same λ KV ℓ * ,0,+ , while this does not happen for α above that threshold (bottom two panels). In the Figures γ = 0.005 and the threshold on α is around 27. Crossings take place between panels 2 and 3 of row 1, panels 1 and 2 of row 2 and panels 2 and 3 of row 3. In the first two cases they involve a µ-continuation of iα and a µ-continuation of a Kelvin-Voigt string-pendula eigenvalue; in the third case, the µ-continuations of two string-pendula eigenvalues of two different Kelvin-Voigt bands.

-1 2γ . We have therefore investigated carefully this question. A possible approach is to plot the zeroes of the real and imaginary parts of the functions a(λ)µ -b p (λ) and look for their intersections outside the real axis. This can be done for fixed α, γ, µ, and the reason why we did not report these pictures here is because we choose to plot the µ-continuations instead. Anyway, such an analysis shows in a way that looked convincing to us that the zeroes of the real and imaginary parts are easily detectable, and that they have no other intersections besides the eigenvalues listed in SPH2. In particular, near the point -1 2γ , the real and (outside the real axis) the imaginary parts of these functions vanish on spiral-like curves which both converge to -1 2γ and (even when zooming in a very narrow region around such a point: we arrived to a size of about 10 -5 for various values of the parameters) show no intersections.

It is worth commenting on this fact in the light of Picard's theorem, according to which an analytic function assumes, in any neighborhood of an essential singularity, all complex values except at most one. In the present case, the value 0 is assumed at the infinitely many real eigenvalues that accumulate on -1 2γ . G. The horizontal eigenfunctions. At variance from the vertical eigenfunctions, the horizontal eigenfunctions ( 33)-( 34) depend on γ. The eigenvalues denoted with "+" and those with "-", when reals, have the same associated eigenfunction. The feature of these eigenfunctions which in our opinion is most relevant to synchronization, namely the relative displacements of the bobs of the pendula, has already been considered in Section 4, particularly in Table 1.

A look at pendula synchronization

As an application of this study, we investigate now the possible "synchronization types" for a system of two pendula, in presence of dissipation. Cases with n ≥ 3 pendula could be studied similarly (and in fact, part of our results-those for large µ-will be valid for any n), but since this work is already rather long we prefer restricting to the simplest case of n = 2. We focus on the horizontal spectrum, which gives the most interesting information on the motion of the pendula.

Recall that, as pointed out in Section 1.4 of the Introduction, our conclusions on this topic are not completely rigorous because we have not proved that there are no motions of the linearized systems which are not superpositions of eigenfunctions.

8.1 Synchronization types. First, consider the case with any n ≥ 2. As explained in the introduction, our approach is based on the fact that the asymptotic dynamics (as t → +∞) of the nonlinear system is dominated by the damped normal modes with the smallest decay rates |Re(λ)|; we thus call "synchronization type", or "synchronization pattern", the (periodic or quasi-periodic) dynamics produced by such damped normal modes.

We assume that γ is not too large, so that the dominating normal modes have non-real eigenvalues and, for shortness, refer only to the eigenvalues in the upper half plane Im(λ) ≥ 0 instead of the pairs of complex-conjugate eigenvalues. The previous analysis, see in particular Figures 91011, shows that the eigenvalues in the upper half-plane with the smallest real part are one, or more than one, among the 2n µ-continuations of iα and of the eigenvalues of the first band B H 0 (α, γ, µ). We use the following terminology for the synchronization types: • We say that there is damped k-frequency synchronization if the asymptotic dynamics is dominated by k ≥ 1 damped normal modes with comparable decay rates. Note that k ≤ 2n.

Neglecting the dissipation, these oscillations are either periodic (possibly, however, with very long period) or quasi-periodic (with any number ≤ k of independent frequencies) depending on the commensurability properties of the k frequencies. • When k = 1, recalling the properties of the horizontal eigenfunctions from Section 4, and particularly Table 1, we speak of damped in-phase synchronization if the eigenfunction is of type "+ + • • • +" (the eigenvalue is a solution of (31) with p = 1) and of damped anti-phase synchronization if the eigenfunction is of type "+ -• • + -" (the eigenvalue is a solution of (31) with p = n). • Damped beating synchronization is the particular case of 2-frequency synchronization with eigenfunctions which have comparable frequencies (specifically, whose difference is much smaller than their average). In this situation periodic transfers of energy between the two damped normal modes take place. When n = 2, if the two eigenfunctions are respectively of types "++" and "+-" then the standards "beats" phenomenon take place. This characterization of the synchronization patterns has some limitations. First, depending on the initial data, some of the normal modes that contribute to a k-frequency synchronization regime might be not excited, and a simpler pattern (effectively, h-synchronization with some h < k) is observed. However, if the initial energies are large enough, it can be expected a (random-like) excitation of all these normal modes.

Second, if other h ≥ 1 eigenvalues, besides the k contributing to the synchronization pattern, have small (but not as small as the k dominating ones) real parts, then there may be an intermediate but long time-scale on which they contribute to the dynamics as well; on this time-scale, effectively, a temporary (k + h)-frequency synchronization is observed; over time, the additional normal modes decay and the expected asymptotic synchronization with k-frequency is eventually observed (even though the oscillations might at that point be small). This may actually happen, particularly if the dissipation is weak and there is a group of several normal modes close to the imaginary axis; if these normal modes have slightly different decay rates, then the intermediate dynamics may be characterized by a cascade of time scales on which the linearized dynamics is approximately quasi-periodic, with a decreasing number of frequencies. In these situations, we focus only on the last, asymptotic regime.

In this section we investigate, mostly in the case n = 2, the dependence of the synchronization type on the parameters α, γ, µ. If n = 2, then the possible synchronization types have between one and four frequencies. We adopt, as in the previous study of the damped horizontal spectrum, a combined numerical-analytic approach: an approximate asymptotic approach will provide a complete, quantitative picture of the dependence of the synchronization types on the two parameters α and γ for small and large µ; the transition between these two regimes will be investigated only numerically.

Remark 11. The Figures of the horizontal damped spectrum given in the previous section cannot be used to compare the real parts of the eigenvalues because do not provide the positions of the eigenvalues on the images of the µ-continuations. Thus, in this section we plot arcs of the µcontinuations in suitable intervals (µ 1 , µ 2 ). Their orientation, which is necessary to compare the eigenvalues at the final value µ 2 , is as described in the previous section and will not be shown.

8.2 Synchronization in the small-µ regime (n = 2). For sufficiently small µ, the real parts of the two µ-continuations of iα, coming out of the imaginary axis at µ = 0, are as small as one wants, thus (even much) smaller than the real parts of all other eigenvalues in Sp H α,γ,µ . However, if γ is small, then also the eigenvalues in the first band B H 0 are close to the imaginary axis, so that in order to be in this regime µ might have to be very small. Thus, for small µ, the asymptotic dynamics is dominated either by the damped normal mode having eigenvalue λ P 1,+ (α, γ, µ), or by that having eigenvalue λ P 2,+ (α, γ, µ), or by both, depending on whether the ratio Re(λ P 1,+ (α,γ,µ)) Re(λ P 2,+ (α,γ,µ)) is (significantly) larger than one, (significantly) smaller than one, or nearly one.

In order to study this ratio for small µ, as a function of α > 0 and γ > 0, recall that each λ P p,+ (α, γ, µ) depends smoothly on the parameters α > 0, γ ≥ 0 and µ ≥ 0 except at the points with γ = 0 and α ∈ 2Z ± p 3 , where cos(iπα) -c 2,p vanishes (see Proposition 10 and Remark 10.iii). Excluding these points, we may thus write where G p (α, γ, µ, λ) is the function denoted G p (µ, λ) in the proof of Proposition 10, that is,

w p (α, γ) = - iπα 2 sin πα (1+2iαγ) 1/2 2(1 + 2iαγ) 1/2 cos πα (1+2iαγ) 1/2 -c 2,p . (48) 
Consequently, for small µ the ratio Re(λ P 1,+ (α,γ,µ)) Re(λ P 2,+ (α,γ,µ)) = Re(w1(α,γ))

Re(w2(α,γ)) + O(µ) is approximated by the ratio

r 12 (α, γ) := Re(w 1 (α, γ)) Re(w 2 (α, γ)) (49) 
and r 12 (α, γ) < 1 denotes in-phase synchronization, r 12 (α, γ) > 1 anti-phase synchronization and r 12 (α, γ) ∼ 1 two-frequency synchronization, actually with beats. The presence of beats, in the last case, follows from the fact that, since λ P 1,+ and λ P 2,+ come out of iα at µ = 0, |Im(λ P 1,+ ) -Im(λ P 2,+ )| ≪ 1 2 |Im(λ P 1,+ ) + Im(λ P 2,+ )| ∼ α for small µ. The resulting synchronization regions in the parameter plane α, γ, determined computing numerically the ratio (49), are shown in Figure 14.

Figure 14 (and similar figures in larger regions of the parameter space, that we do not show) suggests that, at small µ, each synchronization region consists of infinitely many connected components. Specifically, it indicates that the entire parameter space α > 0, γ > 0 is decomposed into connected regions Z 1 , Z 2 , . . . (ordered left to right) such that r 12 < 1 (anti-phase synchronization) in each Z m with m odd and r 12 > 1 (in-phase synchronization) in each Z m with m even. Each Z m is bounded to its right by a smooth curve γ → α m (γ) along which r 12 = 1 and, near it, there is beating synchronization. The analysis of the mechanical significance of this structure of the synchronization regions is postponed to the next Section. Here, we investigate in some detail some features of this structure. The existence of infinitely many regions of different synchronization type can be confirmed, and partially explained, by analyzing the structure of these regions for small γ. In this analysis we tacitly understand that, when γ = 0, we consider all points α > 0 except those in 2Z + ± p 3 . First note that, for γ = 0,

w p (α, 0) = -i πα 2 2 sin(πα) cos(πα) -c 2,p =: iI p (α)
is purely imaginary (and diverges for α → 2Z + ± p 3 ) while

∂w p ∂γ (α, 0) = - πα 3 2 β p (α) (cos(πα) -c 2,p ) 2 =: -R p (α) ,
where β p (α) := πα 1 -c 2,p cos(πα) + sin(πα) cos(πα) -c 2,p , is real and (obviously, given that γ > 0) positive. Thus, for small γ and µ,

λ P p,+ (α, γ, µ) = i α + µI p (α) -γµR p (α) + O(γ 2 + µ 2 ) ( 50 
)
and the frequency and decay rate of the damped normal mode with eigenvalue λ P p,+ are approximately α + µI p (α) and, respectively, γµR p (α).

Since R p (α) diverges for α → 2Z + ± p 3 , by continuity this implies that, in the parameter space α > 0, γ > 0 the ratio r(α, γ) goes to infinity near the points (2ℓ ± 1 3 , 0) and to zero near the points (2ℓ ± 2 3 , 0), ℓ ∈ N, producing infinitely many regions of different synchronization types. For γ and µ small, and α near any such resonance, one of the two µ-continuations of iα has a decay rate which is extremely larger than the other, see Figure 15.

Moreover, the points at which the boundaries γ → α m (γ) of the regions Z m touch the line γ = 0 can also be computed. In fact, R 1 (α) = R 2 (α) if and only if πα 4 cos(πα) -cos(3πα) + sin(3πα) = 0 Figure 15: Some features of the µ-continuations λ P 1,+ (red) and λ P 2,+ (blue) of iα for n = 2 and small values of µ and γ. First row: at a non-integer resonance, the decay rate of one of the two µ-continuations diverges for µ → 0, and such µ-continuation is very elongated already for very small µ; the other one grows only as µ increases. Second row: passage of (α, γ) from the first anti-phase (d) to the first in-phase synchronization (f) region, passing through beating synchronization (e). Third row: At the passage of α through a non-integer (g-h) resonance the vertical and an integer (i-j) resonance. Fourth row: Different "speeds" of the µ-continuations of iα at small (l,m) and large (n,o) α.

and this equation has infinitely many zeroes α 1 (0) ≈ 0.47, α 2 (0) ≈ 1.49, α 3 (0) ≈ 2.494, . . . , α m (0), . . . which are close to the half-integers and tend to them for m → ∞. The change of the relative magnitudes of the real parts of λ P 1,+ and λ P 2,+ at the passage of (α, γ) from one region to the other is shown in Figure 15.

Remark 12. The rate (or "speed") at which the µ-continuations λ P p,+ move horizontally away from iα depends on α, γ and µ. For small γ and µ, it is approximately given by γR p (α), see (50). Since β p (α) = O(α) for both small and large α, in these two limits R p (α) ∼ α 4 (except at the non-integer resonances, where it is not defined). This implies that this speed is very small for small α and very large for large α (see Figure 15). Thus, given a small µ, the smallest decay rate is much smaller for a tight string than for a loose string.

Remark 13. Resonances have an effect not only on the decay rate of the µ-continuations of iα but also on their frequencies and vertical ordering in the complex plane. It is easy to describe these effects for small γ and µ.

(i) For small γ and µ the difference between the imaginary parts of λ P 1,+ (α, γ, µ) and λ

P 2,+ (α, γ, µ) is approximately µ I 1 (α) -I 2 (α) = µπα 2 2 (c 2,2 -c 2,1 ) sin(πα) (cos(πα) -c 2,2 )(cos(πα) -c 2,1 )
and changes sign at each resonance (integer, because of the factor sin(πα), non-integer because of the product at the denominator). Note that this is consistent with the switchings of the µcontinuations in the case γ = 0 (see Figure 6.b).

(ii) The vertical ordering of the images of the µ-continuations near iα (namely, for small µ) is determined by their slope at the point iα, namely Im ∂µ (α, γ, 0) . For small γ, this ratio is approximately

- I p (α) γR p (α) = sin(πα) c 2,p -cos(πα) β p (α) =: s p (α)
and changes sign at each α ∈ 2Z ± p 3 . However, the difference

s 1 (α) -s 2 (α) = π sin(πα) 3 β 1 (α)β 2 (α)
between the slopes of the two µ-continuations changes sign only at each α ∈ Z + . This argument shows also that the difference s 1 (α) -s 2 (α) is ≈ α -2 for large α and ≈ α for small α. Thus, for small γ and large α, all the λ P p,+ have nearly the same slope at iα; in the latter case, this phenomenon is clearly visible (even for moderate α) in Figures 12.c-d and13.

8.3 Synchronization in the small-µ regime, as a function of τ and ν (n = 2). The previous analysis of the small µ regime refers to the two adimensional parameters α and γ. In practice, however, one might be interested in the dependence of the synchronization type on the physical parameters on which the system depends, particularly on the tension τ and the damping coefficient ν of the string, with ρ, m and Λ fixed. Since √ τ =: σ and ν instead of (τ, ν). This is done in Figure 16, for a realistic choice of the parameters Λ, g, l and m, but the result is qualitatively largely independent of it.

α = c 1 √ τ , γ = c 2 ν √ τ = c 2 c 1 αν (a) (b) (c) ( )
The decomposition of the parameter plane ( 1 √ τ , ν) into zones of in-phase, anti-phase and beating synchronization is similar to that of the parameter plane (α, γ), but with some relevant differences. The zone Z 1 of anti-phase synchronization (the outmost left blue region in the Figure) is very large, followed by the zone Z 2 of in-phase synchronization (the red region on the right of Z 1 ), while all others are increasingly smaller, appear at increasingly larger values of 1 √ τ and have increasingly smaller values of ν. The borders of the zones Z m are now curves

1 √ τ → ν m ( 1 √ τ ) which, as 1 √ τ
grows, quickly become (approximately) constant, thus horizontal in the parameter plane. From this, some general conclusions can be drawn: 1. If τ is sufficiently large, then for any ν > 0 the synchronization is in anti-phase (the left blue vertical region adjoining the axis σ = 1 √ τ = 0 in Figure 16.a). 2. For each not-too-large τ , namely, ( 1√ τ , ν) on the right of the above vertical strip in Figure 16.a, the synchronization type depends on the dissipation ν. In particular: 2.1 For all ν sufficiently large, that is, all ν > ν 1 ( 1 √ τ ), there is anti-phase synchronization (the upper blue region in Figure 16.a); for ν around ν 1 (τ ) there is a rather large region of beating synchronization (the upper azure strip in Figure 16.b). 2.2 For ν below ν 1 (τ ), but not too small, namely ν 2 (τ ) < ν < ν 1 (τ ), there is a rather large region of in-phase synchronization (the upper red region in Figures 16.a, b, and c.); at its upper and lower borders there is of course beating synchronization (the two upper orange regions in Figure 16,b).

3. The situation is much less defined in the other cases, that is, for small ν and τ . For ( 1 √ τ , ν) in the complement of Z 1 ∪Z 2 , for τ fixed, as ν grows the system passes through a sequence of zones of alternating in-phase and anti-phase synchronization, and this number grows unbounded as τ → 0 (see Figure 16.d). Given that it may in practice be difficult to control the dissipation of the string, this suggests that it might be practically impossible to predict the synchronization type in the regime of small τ and ν.

Synchronization in the large µ regime (any n).

It is possible to determine the synchronization type for large µ with an analytic argument, which in fact is valid for any number n of pendula. For sufficiently large µ, the eigenvalue of the less dissipating damped normal modes certainly belongs to one, or more than one, of the µ-continuations that tend to 0. Recall that these µ-continuations approach the circle C γ and are solutions of equations [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] for different p (Section 7.3, point C). In order to determine which among them dissipates less we do a simple asymptotic analysis, similar to that of point D. of Section 7.3.

First, it is readily verified that, for small |λ|, [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] for all µ and tends to 0 as µ → +∞, then it satisfies

µP α ξ γ (λ) sinh(ξ γ (λ)) + cosh(ξ γ (λ)) = 1 + (µ - 1 2 )π 2 λ 2 + o(|λ| 2 ). Therefore, if µ → λ(µ) is a curve that satisfies
1 + π 2 µ λ(µ) 2 ∼ c n,p as µ → +∞ . (51) 
Let r and s be the real and imaginary part of λ. If, moreover, λ(µ) approaches C γ for large µ, then in such a limit r(µ) + 1 

This implies that, for large µ, among the µ-continuations that tend to 0, the one with the smallest decay rate solves [START_REF] Ramirez | The sympathy of two pendulum clocks: beyond Huygens' observations[END_REF] for p = 1. Hence, for any n ≥ 2, for large µ, the damped normal mode that dissipates less is always of the "in-phase" type "+ + . . . +". However, for large n, the difference between the smallest decay rate and the other decay rates is very small, O(n -2 ).

In particular, for n = 2, c 1,2 = 1 2 , c 2,2 = 3 2 , and the second less-dissipating damped normal mode has a decay rate three times larger than the in-phase one. These features are visible in Figures 18 and17 below.

We have checked numerically the asymptotics (52) for a wide range of values of α, γ, µ and found that, for large µ, it is extremely accurate (including its dependence on γ and µ and its independence of α).

8.5

The transition from the small-µ to the large-µ regimes (n = 2). We report now the results of our numerical investigation of how the synchronization type changes, as µ grows, from the regime of small µ to that of large µ described above. For shortness, we have investigated only the case of not-too-large γ, in which all the eigenvalues of the first Kelvin-Voigt band B KV 0 lie in C γ (this happens if γ < 1.5).

We describe these changes by specifying, for given α and γ, the sequence of synchronization types the system goes through as µ grows, with the following conventions. We write "I" for an interval of values of µ with in-phase synchronization and "A" for an interval of values of µ with anti-phase synchronization. For two-frequency synchronization we use strings such as "IA", "II" etc., where I denotes the presence of an eigenvalue whose eigenfunction is of type "++" and A that of an eigenvalue whose eigenfunction is of type "+-"; moreover, within each such string, we order the symbols according to the frequencies of their eigenvalues (first the one with smallest frequency); if the two frequencies are close, and thus produce beats, we write "A∼I" etc. For quasi-periodic synchronization with three frequencies we write "IAI" etc., with similar conventions. It turns out that, at least if (α, γ) is not too close to the boundary (γ, α m (γ)) of the zones Z m , m ≥ 1, the qualitative changes of the synchronization type as µ varies from 0 to +∞ follow a common-and simple-pattern, changing as in:

A → IA → I if m is odd I → II → I if m is even
The mechanism that leads to these behaviours is illustrated in Figure 17: as µ grows, the µcontinuation of iα with the smallest real part moves to the left while another µ-continuation (which has a lower frequency) moves to the right, and in so doing they switch their horizontal positions. The µ-continuation which moves to the right is the other µ-continuation of iα at small γ and λ H 0,1,+ at larger α. Figure 17 describes this mechanism in the zone Z 1 , and is representative of all the zones Z m with m odd. In those with m even the mechanism is the same, except that the two µ-continuations of iα are vertically switched.

This mechanism is, qualitatively, largely independent of α and γ. However, the speed with which λ P 1,+ and λ P 2,+ move away from the imaginary axis grows with α and γ (as we know from Remark 12, for small γ and µ it is of order γα 4 ). Specifically, as α and γ grow, the switch from the A (resp. I) to the IA (resp. II) synchronization types is reached at increasingly smaller µ and the interval of µ with two-frequency synchronization is increasingly shorter: for large γ and (particularly) large α, as soon as µ is not any more very small, the in-phase synchronization sets in.

If (α, γ) is (very) close to the boundary γ → α m (γ) between two zones Z m and Z m+1 , then there are some differences, whose fine details seem to depend on (α, γ). First, and obviously, for small µ there is beating synchronization, A∼I if m is odd and I∼A if m is even. We have investigated the behaviour for larger µ only at the boundary Z 1 -Z 2 . (The boundary between Z 2 and Z 3 is already at large α, and the transition between the synchronization types takes place at very small µ). We limit ourselves to note that, at small γ and (α, γ) in Z 1 close to ∂Z 1 there is a transition A∼I → A → IA → I and that just after the entrance in Z 2 there is a transition I → I → IAI → I (see Figure 17). However, at larger γ we found slightly different sequences (e.g., at γ = 1 and with (1, α) moving to the left from Z 1 to Z 2 , A → IA → I at α = 0.5, A → IAI → I at α = 0.52, A → IA → I → II → I at α = 0.54, A∼I → I → II → I at α = 0.55, A∼I → II → I at α = 0.57).

Also the absolute values reached by the real part of the less dissipating damped normal mode(s) grow with α and γ (the µ-continuations are trapped between the imaginary axis, C γ and a horizontal line at a height close to α).

Conclusions and perspectives

This work was an attempt to identify and study a model for coupled string-pendula systems that takes into consideration the continuous structure and the viscoelasticy of the string. Our model for the string was as simple as possible, and our approach limited to a linear analysis. Even so, the resulting spectral problem turned out to be nontrivial, though amenable to a combined analytical-numerical study. The dependence on the parameters of the spectrum and of the identified synchronization regimes turned out to be rather rich, and yet understandable. Many issues remain open and are worth future investigation.

1. Mathematical issues in the considered model. There are several questions concerning our model that we did not fully study in this paper and whose consideration might have some interest. Among them, there are various properties of the spectrum (e.g., the discreteness of the damped horizontal spectrum) that we did not analytically prove and others (e.g., the bifurcation scenarios, the synchronization types for n > 2 pendula, the possibility of "cascades" of temporary synchronization types, etc.) that we examined only marginally. Moreover, there are some mathematical issues that we have not attached at all, including a proper weak formulation of the problem and the completeness of the eigenfunctions.

We think that these are all interesting questions in the theory of hybrid ODEs-PDEs systems and in the spectral theory for non-self-adjoint operators, and that they might be worth considering from those points of view.

2. From the linear to the nonlinear. As we have already mentioned, a possible approach in this direction could be based on using invariant manifolds techniques to prove the existence of exponentially attracting invariant manifolds (e.g., the inertial manifolds of [START_REF] Foias | Inertial manifolds for nonlinear evolutionary equations[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF][START_REF] Sell | Inertial manifolds: the non-self-adjoint case[END_REF]; also Fenichel's theory of the Lyapunov-type numbers, which provides sufficient conditions for the existence of manifolds of such a type, might be useful, see [START_REF] Fenichel | Asymptotic stability with rate conditions[END_REF][START_REF] Fenichel | Asymptotic stability with rate conditions[END_REF][START_REF] Dieci | Lyapunov-type numbers and torus breakdown: numerical aspects and a case study[END_REF]).

In short, assume that the linearization at an equilibrium of the vector field generating a smooth flow on a Banach space B has eigenvalues λ j = ρ j + iω j , j ∈ Z + , ordered with decreasing real parts (ρ j+1 < ρ j for all j). As this is the case of interest here, assume all ρ j < 0. Assume now that there is a "spectral gap", that is, there are m ∈ Z + and s -, s + < 0 such that ρ m+1 < s -< s + < ρ m . Correspondingly, there is a splitting B = E -⊕ E + with subspaces E -, E + which are generated by the (generalized) eigenvectors relative to the eigenvalues with j > m and j ≤ m, respectively, and are invariant under the linearized dynamics. Since all linearized motions in E -tend to 0 (faster than) exp(ts -) as t → +∞, all linearized motions outside E + approach it exponentially fast with such a speed.

Consider now the nonlinear system. Under certain hypotheses (including hypotheses on the size of the gap |s + -s -|) it turns out that, in a neighborhood of 0, there is an invariant smooth manifold E + tangent to E + at 0 on which all motions tend exponentially to 0 as t → +∞, but slower than exp(ts + ). Moreover, as t → +∞ all other motions near 0 tend exponentially to E + , faster than exp(ts -), and in so doing approach motions in it (which, near 0, are approximated by the damped normal modes).

Applying this scenario with s + smaller than the real parts of the eigenvalues of the less dissipating damped normal modes (so that E + is the subspace of "synchronized" damped normal modes) would produce an invariant submanifold E + which can be viewed as a nonlinear version of the subspace of the "synchronized" damped normal modes, and explain that motions of the nonlinear system tend to them.

Realizing this program for the string-pendula system considered here involves however a good amount of technical work, beginning with a weak formulation that proves the existence and smoothness of the (semi) flow and a proof of the discreteness of the spectrum. The spectral gap condition should not be problematic, at least if γ is not too small, because the eigenvalues accumulate only at -1 γ and the eigenvalues closest to the imaginary axis, which are those of interest for the synchronization, likely satisfy it. Note, however, that the invariant manifolds should be built for the entire system, and hence both the horizontal and vertical spectra should be taken into consideration. This implies that, at variance from the linearized system, in the nonlinear system the horizontal and vertical components of the synchronized motions are coupled.

3. Validation of the model and analysis of the synchronization types. The fact that some sort of experimental verification of the conclusions obtained with our model has already been pointed out (see Remark 2). A minimal way of doing it is to check if the dependence of the synchronization types on the parameters discussed in Section 8 is correct (and this is the main reason why studied it here). This analysis could be extended to systems with more than two pendula, after a thorough comprehension of the synchronization types has been obtained.

Ultimately, however, it is quite possible that our model is inadequate, perhaps only for certain materials and structures of the experimental apparatuses. In that case, in our opinion, it would be of interest to know which are the important ingredients that our model missed (torsion of the cable, air friction, single point connection between string and pendula, ...). Moreover, it is conceivable that our study of this particular model could be used as a basis for the study of other models.

4. The significance of the vertical and horizontal subsystems. Finally, we would like to mention that the vertical and horizontal linearized subsystems have an interest-and an origin-which goes beyond the particular system considered in this work. As already mentioned, the vertical subsystem can be seen as the planar system formed by the string with the pendula replaced by point masses. In turn, the horizontal system can be seen as the planar system formed by the string with the pendula replaced by harmonic oscillators. Systems of this type are of interest in physics (see e.g. [START_REF] Lepri | Nonreciprocal wave scattering on nonlinear string-coupled oscillators[END_REF] for a study, with purposes different from ours, of an infinite string with two oscillators attached).
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 1 Figure 1: The system with n = 2 pendula.
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 2 Figure 2: Top: The Kelvin-Voigt spectrum in the complex plane. Bottom: The Kelvin-Voigt (red) and elastic string (blue) spectra in the complex plane and on the Riemann sphere. On the Riemann sphere, the red, black and blue circles are the preimages, under the stereographic projection P , of the circle Cγ and of the real and imaginary axes, respectively. (In both figures, n = 3, γ = 0.24).

Remarks 4 .

 4 (i.) Because of the rescaling of the time coordinate, if λ is an eigenvalue provided by Corollary 1, then (n + 1) π Λ τ ρ λ is an eigenvalue of the linearization of the original, unscaled system (1).

Figure 4 :

 4 Figure 4: The undamped vertical frequency spectrum (for n = 3). (a) The frequencies ω Vℓ,p (µ) are the abscissas of the intersection points between the graphs of the function at the l.h.s. of equation (37) (solid curve) and of the n = 3 functions at its r.h.s. (dashed curves; p = 1 red, p = 2 blue, p = 3 green); the black points denote the pure-string frequencies. (b) The frequencies ω V ℓ,p (µ) as functions of µ; the thin (thick) black points on the axis µ = 0 denote the string-pendula (pure-string) frequencies ω S ℓ,q of the elastic string; the black lines are the string-pendula frequencies and the coloring of the other lines is as in (a). (In (a) µ = 0.1, in (b) µ ∈ (0, 3)).

Figure 5 :

 5 Figure 5: The frequency spectrum of the undamped horizontal system for nonresonant (a) and resonant (b,c) values of α, for n = 3. The top figures show the determination of the frequencies as abscissas of the intersection points between the graphs of the function F (ω) sin(πω) (solid curve) and of the n = 3 functions cos(πω)cn,p (dashed curves) entering equations (41). The bottom figures plot the frequencies as functions of µ. Points and colors have the same meaning as in Figure 4 (with reference to equation (31) instead of (30), obviously). (Numerical values: α = 2.4 in (a), α = 2.5 in (b), α = 3 in (c); µ = 0.1 in the top row, µ ∈ (0, .8) in the bottom row).
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Figure 6 :

 6 Figure 6: The reorganization of the frequencies in Sp H α,0,µ at the passage of α through a non-integer (a) and an integer (b) resonance. (In all figures n = 3, µ ∈ (0, 1) and colors and points have the same meanings as in Figure 5; α = 2.4, 2.5, 2.6 in (a) and α = 1.9, 2, 2.1 in (b)).

Figure 7 :

 7 Figure 7: The damped vertical spectrum (b) compared to the spectrum of the Kelvin-Voigt viscoelastic string (a), for n = 3. The black, larger points are the pure-string eigenvalues and the smaller points are the string-pendula eigenvalues which are solutions of (30), with the same colorings as in Figure 5: p = 1 red, p = 2 blue, p = 3 green. (Numerical values: γ = 0.22 and, in (b), µ = 0.05; thus 1 γ = ⌊ 1 γ ⌋ = 4, the first four bands B KV 0 , . . . , B KV 3 are
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 1 which are tangent to the circle C γ at that point.(iii.) Consider the functionsG p (µ, λ) := (α 2 + λ 2 )F p (µ, λ) , p = . . . , n , namely, G p (µ, λ) = µα 2 ξ γ (λ) sinh ξ γ (λ) + α 2 + λ 2 cosh ξ γ (λ) -c n,p . Since G p (0, iα) = 0 and ∂G p ∂λ (0, iα) = 2iα cosh ξ γ (iα) -c n,p = 0 (in fact, (1 + 2iαγ) 1/2 / ∈ R if γ > 0), the implicit function theorem grants the existence of a unique smooth curve µ → λ P p,+ (µ) through iα such that G p (µ, λ P p,+ (µ)) = 0 for all µ. Similarly, ∂G p ∂µ (0, iα) = α 2 ξ γ (iα) sinh ξ γ (iα)

  ∂Gp ∂λ vanishes at (0, ±iα). Specifically, if either α = 2ℓ * + p * n+1 or α = 2ℓ * -p * n+1with some ℓ * ∈ N and p * = 1, . . . , n (namely, as we will write, α ∈ 2Z + ± p * n+1 ), then ∂Gp ∂λ (0, iα) = 0 for p = p * but ∂Gp * ∂λ (0, iα) = 0. This is consistent with the fact that, in a non-integer resonance, there are only n -1 smooth continuations of ±iα 8). The vanishing of ∂Gp * ∂λ in such situations will play a role in the study of the synchronization in Section 8.2.
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 9 Figure 9: A numerically computed illustration of the global structure of the horizontal spectrum Sp Hα,γ,µ , for n = 3, fixed α > 0 and 0 < γ <1 2 , and increasing values of µ. The thinner dots denote the string-pendula eigenvalues λ KV ℓ,q,± of the bands of the Kelvin-Voigt string which have some eigenvalue in the circle Cγ . The thicker dots mark the pure-string eigenvalues of such bands (except one of the two of the last band, on the real axis, in the top row). Each figure shows the curve described by the µ-continuation of each λ KV ℓ,q,± for µ between 0 and a maximum value which is specified in the legend, with the same colorings as in Figure5(p = 1 red, p = 2 blue, p = 3 green). The way this-and the following-pictures were produced is explained in item B. in section 7.3). (Numerical values: α = 1.75, γ = 0.22).

  Figure 9: A numerically computed illustration of the global structure of the horizontal spectrum Sp Hα,γ,µ , for n = 3, fixed α > 0 and 0 < γ <1 2 , and increasing values of µ. The thinner dots denote the string-pendula eigenvalues λ KV ℓ,q,± of the bands of the Kelvin-Voigt string which have some eigenvalue in the circle Cγ . The thicker dots mark the pure-string eigenvalues of such bands (except one of the two of the last band, on the real axis, in the top row). Each figure shows the curve described by the µ-continuation of each λ KV ℓ,q,± for µ between 0 and a maximum value which is specified in the legend, with the same colorings as in Figure5(p = 1 red, p = 2 blue, p = 3 green). The way this-and the following-pictures were produced is explained in item B. in section 7.3). (Numerical values: α = 1.75, γ = 0.22).
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 22222210 Figure 10: The µ-continuations in the upper half-plane which tend to 0 as µ → +∞ in the case in which the string-pendula eigenvalues λ KV 0,1,± , . . . , λ KV 0,n,± of the first Kelvin-Voigt band all belong to the circle Cγ (for n = 2, γ = 0.2 and increasing values of α). The circle Cγ is not shown (but it passes through the Kelvin-Voigt eigenvalues).In the middle panels of each row, the intersection between the two µ-continuation is a crossing.

Figure 12 :

 12 Figure12: The different possible "origins" (as µ-continuations) of the eigenvalues which go to infinity (for n = 3). The top row illustrates also the different behaviours, when γ <1 2 , of the µ-continuations external and internal to the two bands formed by the µ-continuations of ±iα and which go to infinity (see point E.).

  λ P p,+ (α, γ, µ) = iα + µw p (α, γ) + O(µ 2 ) with w p (α, γ) = ∂λ P p,+ ∂µ (α, γ, 0) = -∂Gp ∂µ (α,γ,0,iα) ∂Gp ∂λ (α,γ,0,iα)

Figure 14 :

 14 Figure14: (a) The regions of in-phase (red, r 12 < 1) and anti-phase (blue, r 12 > 1) synchronization for two pendula in the parameter space (α, γ) for small µ, computed with the 1st-order approximation (49). Near the border of the two regions there are regions of beating synchronization, whose extension can be appreciated from panel (b), which details the values of the ratio (49).
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 1611 Figure 16: The regions of different synchronization types for two pendula and small µ, as a function of the "physical" parameters (τ, ν). The color coding is as in Figure 14. The Figures refer to the following "realistic" values of the other (dimensional) parameters: Λ = 1m, g = 10 m s 2 , λ = 0.3m, ρ = 1 kg m

2γ 2 + s(µ) 2 ∼ 1 2γ 2

 212 and so s(µ) 2 ∼ -1 γ r(µ) -r(µ) 2 ∼ 1 γ |r(µ)|. Thus |r(µ)| ∼ γs(µ) 2 ∼ -γ λ(µ) 2 and, using (51), Re λ(µ)) ∼ γ π 2 µ (1 -c n,p ) .
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 17 Figure 17: The change of synchronization types as µ grows for (α, γ) at the boundary between Z 1 and Z 2 (top) and just after its entrance in Z 2 (bottom).
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 18 Figure 18: The change of synchronization types as µ grows for (α, γ) ∈ Z 1 and not too close to the boundary with Z 2 . In each row, left to right: A in the first panel, IA in the second, I in the third and fourth.
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