
HAL Id: hal-04404942
https://hal.science/hal-04404942

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overlap Removal by Stochastic Gradient Descent
with(out) Shape Awareness

Loann Giovannangeli, Frédéric Lalanne, Romain Giot, Romain Bourqui

To cite this version:
Loann Giovannangeli, Frédéric Lalanne, Romain Giot, Romain Bourqui. Overlap Removal by Stochas-
tic Gradient Descent with(out) Shape Awareness. IEEE Transactions on Visualization and Computer
Graphics, 2024, pp.1-17. �10.1109/TVCG.2024.3351479�. �hal-04404942�

https://hal.science/hal-04404942
https://hal.archives-ouvertes.fr

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Overlap Removal by Stochastic Gradient Descent
with(out) Shape Awareness

Loann Giovannangeli, Frederic Lalanne, Romain Giot and Romain Bourqui

Abstract—In many 2D visualizations, data points are projected without considering their surface area, although they are often
represented as shapes in visualization tools. These shapes support the display of information such as labels or encode data with size or
color. However, inappropriate shape and size selections can lead to overlaps that obscure information and hinder the visualization’s
exploration. Overlap Removal (OR) algorithms have been developed as a layout post-processing solution to ensure that the visible
graphical elements accurately represent the underlying data. As the original data layout contains vital information about its topology, it is
essential for OR algorithms to preserve it as much as possible.
This article presents an extension of the previously published FORBID algorithm by introducing a new approach that models OR as a joint
stress and scaling optimization problem, utilizing efficient stochastic gradient descent. The goal is to produce an overlap-free layout that
proposes a compromise between compactness (to ensure the encoded data is still readable) and preservation of the original layout (to
preserve the structures that convey information about the data). Additionally, this article proposes SORDID, a shape-aware adaptation of
FORBID that can handle the OR task on data points having any polygonal shape. Our approaches are compared against state-of-the-art
algorithms, and several quality metrics demonstrate their effectiveness in removing overlaps while retaining the compactness and
structures of the input layouts.

Index Terms—Layout adjustment, Overlap removal, Stress optimization, Stochastic gradient descent

✦

1 INTRODUCTION

In most 2D visualizations, data are projected from an initial high-
dimensional space and represented as shapes, either to encode
some of its properties or to fulfill some aesthetic criteria. However,
most layout algorithms (e.g., Multi Dimensional Scaling [49], [50],
Graph Layout [27], [35], [53]) process data points as elements
without shape or size. If not chosen carefully, these shapes and
sizes can create overlaps in the visualization, and severely hinder
its exploration by hiding information. Resolving these overlaps is
still an open problem referred to as the Overlap Removal (OR)
task [7], [8].

If not directly handled by the dimension reduction algorithm
(e.g., [28], [36]), it is then the responsibility of a post-processing
OR algorithm to solve the task. Such algorithms take a set of data
points with properties such as position, shape and size as input and
move them to remove all the existing overlaps. The produced layout
is called overlap-free; and is supposed to improve the readability
of the initial layout. As described by Chen et al. [7], [8] survey,
we identify two main criteria an OR algorithm should optimize to
achieve satisfactory overlap-free layout: (i) the preservation of the
compactness, Ccomp.; and (ii) the preservation of the initial layout
Clay., described in the following.

The Ccomp. criterion states that an overlap-free layout should
limit the increase in surface of the initial layout. Indeed, an
algorithm that uniformly upscales the coordinates of the initial
layout until there is no overlap solves the task (e.g., uniform
Scaling [8]) as long as there is no perfect overlap (i.e., data with
the exact same position). However, upscaling the initial layout

All authors are with the Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR
5800, F-33400 Talence, France.
E-mail: {firstname}.{lastname}@u-bordeaux.fr
This paper is an extended version of [24] appeared in GD’22.

implies to reduce the graphic element sizes when rendered in a
viewbox of fixed size (e.g., viewport on a monitor). Such upscaling
should remain limited, otherwise the data encoded within the shape
representations becomes too small and unreadable.

The other criterion, Clay., defines the necessity to preserve the
initial layout structures. As post-process OR algorithms are applied
on already designed layouts, they must expect that these layouts
were already generated by some algorithm, or even manually built
to encode some task-relevant information. Preserving the user
mental map [17] is mandatory to ensure they can relate the data
points in the adjusted layout to those in the initial one. Hence, input
layouts must be considered as ground truths from which the OR
algorithm should not deviate too much.

While overlap can exist in any 2D visualization, we consider
the OR task in a graph layout context in this article. The Graph
Drawing community has always been involved in research on the
OR task and we leverage its literature to extend the research (see
Section 2). Thus, the data points in this article are nodes positioned
by a graph layout algorithm. Overlaps between the nodes are
considered in the geometric space, such that two nodes overlap if
the intersection of their shape representation is not null.

This article proposes an extended version of FORBID [24]
(Fast Overlap Removal by Stochastic Gradient Descent) and also
presents SORDID, its shape-aware generalization. Both are Overlap
Removal algorithms that aim at optimizing the Clay. and Ccomp.
criteria explicitly. Their idea is to combine a search for an optimal
scale of the initial layout with some node movements to remove
the overlaps. The optimal scale is found by binary search. At
each step in the binary search, node movements are computed
to remove overlaps modeling a stress optimization problem. The
stress optimization is realized with a simulated Stochastic Gradient
Descent algorithm from the literature [53] with a fixed number of
iterations. Fixing the number of iterations comes down to give the

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(a) Slicing into super-pixels. (b) Alteration to create overlaps. (c) Bounding box approach. (d) Shape-aware approach.

Fig. 1: This figure illustrates our motivation for designing a shape-aware algorithm for Overlap Removal (OR). (a) The famous painting
“La Joconde” (1506) by Leonardo da Vinci sliced into non-convex super-pixels using SLIC [1]. (b) Altered version of (a) to create
overlaps by doubling the super-pixel size. (c) Result of FORBID’ on (b) with a bounding box approach. (d) Result of the shape-aware
OR adaptation, i.e., SORDID’ on (b).

algorithm a limited budget of node movements. Thus, it looks for
the minimum scale (i.e., optimizing Ccomp.) at which it can remove
overlaps by using at most budget movements (i.e., optimizing Clay.).
As far as we know, FORBID is the first OR algorithm to explicitly
include the initial layout upscaling as a property to optimize. Most
algorithms from the literature measure the upscaling as a side-effect
of the node movements but do not explicitly control it.

The first contribution of this article is an extensive presentation
of FORBID [24] algorithm. Being designed to remove overlaps in
layouts where all the nodes have a common shape (e.g., rectangle,
circle), it can’t handle nodes with any shape efficiently. The
common way to adapt standard OR algorithms to any shape
is by approximating the node shapes by their bounding box,
either circular or rectangular (see Figure 1c). However, such
approximation is not efficient as many empty spaces remain unused.
Hence, the second contribution of this article is the generalization
of FORBID to polygonal nodes. This shape-aware extension
is referred to as SORDID and can remove overlaps in layouts
where nodes have any polygonal shape by decomposing them into
triangles with a Delaunay triangulation [46]. The overlap removal
task is then considered between sets of triangles composing the
nodes, and it is able to produce overlap-free layouts with fine
adjustments (including imbrications) of the polygonal nodes, as
presented in Figure 1d. Finally, both approaches are evaluated and
compared with state-of-the-art algorithms on a set of quality metrics
specifically selected for this purpose. The evaluation includes
various node shapes and demonstrates our algorithms capabilities
to optimize the Ccomp. and Clay. criteria. FORBID1 and SORDID2

implementations are available online.
The remainder of this paper is organized as follows. Section 2

presents related works principally centered around the description
of OR algorithms and their evaluation as proposed in [7], [8].
Section 3 describes FORBID algorithm and SORDID, its shape-
aware adaptation. Section 4 reports their evaluation and comparison
with state-of-the-art algorithms, while Section 5 discusses visual

1FORBID: github.com/labribkb/FORBID
2SORDID: github.com/labribkb/sordid

examples of overlap-free layouts from several OR algorithms, and
our algorithms convergence. Finally, Section 6 concludes the article
and presents leads for future works.

Notations: Let G = (V,E) be an undirected graph with V =
{v1,v2, ...,vN} its set of N = |V | nodes and E ⊆ V ×V its set of
edges. A graph layout is defined as a tensor X ∈RN×2 where Xi is
the 2D projection of the node vi. An initial (i.e., input) layout is
denoted by X0 while a corresponding overlap-free layout is denoted
by X ′. For convenience, we define the set of overlapping pairs of
nodes in a graph by O ⊆V ×V . The Euclidean distance between
vi and v j is denoted ||Xi −X j||. The minimal rectangle in which all
node representations of a layout fit in is called the Bounding box
of the layout and is denoted BB.

2 RELATED WORKS

This section presents related works on the Overlap Removal
task, and describes some of its main algorithms. Moreover, some
methods tackling Overlap Removal with a different approach or in
different contexts (e.g., scatterplots) are discussed.

2.1 Motivation for Post-process Overlap Removal
The main goal of Overlap Removal (OR) algorithms is to produce
drawings where all the information can be visualized. Hence, some
works [28], [36] proposed graph layout algorithms that directly
handled nodes with a shape and area, and guaranteed that the graph
layout would not contain overlap. Harel and Koren [28] proposed
an adaptation of the seminal Kamada-Kawai [35] stress layout
algorithm to produce graph drawings with elliptical nodes where
there is neither node-node nor edge-node overlap. Handling the
node sizes while laying them out is theoretically the ideal approach.
However, in practice, many layout algorithms are designed without
considering the node shapes (and thus overlap) constraints, and
it is not possible to overload each and every layout technique to
handle overlaps. The overlaps appear during the graph layout
rendering, and the node shapes and sizes are design choices
either set arbitrarily (i.e., it is more aesthetically pleasing to
visualize shapes than dots) or to map some node properties on their

github.com/labribkb/FORBID
github.com/labribkb/sordid

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

representation. Hence, generic post-process OR algorithms were
designed to satisfy the overlap-free constraint of any layout. The
main difference between them is their input. Pre-process algorithms
being coupled with the layout process, they can leverage the graph
structure itself, while post-process algorithms usually assume they
only have access to some minimalist geometric data (i.e., the
node positions, shapes and sizes in 2D). In fact, most post-process
Overlap Removal algorithms do not use the input graph edges at
all. The main criterion for these algorithms is to minimize the
deformation of their input layout, since it already conveys some
semantics of the data and must be considered as ground-truth.

2.2 Post-Process Overlap Removal Algorithms

To remove all the node-node overlaps in a layout, the first step is to
identify them. The naive way to find all overlaps (or detect if there
is at least one) is to search exhaustively between all pairs of nodes,
leading to a complexity in O(N2). Dwyer et al. [15] proposed
scan-line to search for overlaps by sorting the nodes horizontally
and vertically at first. It enables to skip many comparisons and
significantly accelerates the search. It achieves a complexity of
O(N logN) to detect if a layout contains overlaps. The algorithm
remains quadratic on the number of nodes to identify all the
overlaps in a layout, but in practice the skipped comparisons
make it significantly faster than a full pairwise search. Many OR
algorithms (e.g., [29], [33], [43]), including the method presented
in the article, rely on this scan process to detect overlaps.

The state-of-the-art of OR algorithms is well described in
Chen et al. [7], [8] surveys, and these algorithms focus on the
main criteria Ccomp. and Clay. (see Section 1). PFS [43], PFS’ [29],
FTA [33], RWordle-L [48] and uniform scaling [7], [8] rely on
the scan line algorithm to identify overlaps and remove them
sequentially. PFS, PFS’ and FTA are made of two passes handling
horizontal and vertical movements separately, while RWordle-L
moves nodes on both axes simultaneously. All these algorithms
have a quadratic complexity as they process all pairs of nodes at
some point (e.g., when moving them).

Mariott et al. [40] proposed several approaches to remove
overlaps in a layout based on constrained optimization to maximize
the Clay. criterion. The main goal of these approaches is to preserve
the user mental map [17] of the graph so that he can understand how
the nodes/edges in the adjusted layout relate to those in the initial
layout. VPSC [15], [16] also models OR as a set of constraints to
relax but tends to highly deform the initial layout. Its complexity is
O(CN logC) where C is the number of constraints in O(N); leading
to a final complexity in O(N2 logN). Finally, Diamond [42] is
another constraint programming-based OR algorithm in O(N2)
that optimizes orthogonal order preservation. Its originality is to
temporarily rotate nodes by 45◦, representing them as diamonds to
ease the constraint relaxations.

Gansner and North [21] introduced the idea of a proximity
model to remove overlaps. Their algorithm computes a Voronoi dia-
gram using the center of polygonal nodes. Then, every overlapping
node is moved to the centroid of its Voronoi cell. If this step does
not resolve all the overlaps, the layout coordinates are upscaled
to expand the drawing, and the process is restarted. In addition to
node-node overlaps, they propose a method to remove node-edge
overlaps, allowing edge bends when necessary. While this algorithm
is claimed to handle nodes represented by any polygonal shape,
it only makes use of the node shapes to identify the overlaps. By
design, this approach is not prone to enable node shapes imbrication

to minimize node movements, since the nodes are always moved
from their position to the centroid of their Voronoi cell.

Finally, PRISM [19], [20] is, as far as we know, the first stress-
based OR algorithm. It models OR as a stress optimization problem
in a proximity graph defined as the Delaunay triangulation of the
initial layout. The proximity graph models the shortest distances in
the initial layout, and PRISM optimizes distances alongside its
edges assuming that these are where the overlaps are most likely
to occur. As this assumption is often not exact, they iteratively
augment the proximity graph’s edges and re-compute forces until
there is no overlap. In the end, PRISM is in O(t(mkN +N logN))
where m and k are optimization hyper-parameters, and t depends on
the number of overlaps (that can be greater than N). GTREE [44]
is another stress-based algorithm that leverages PRISM proximity
graph to remove overlaps, building a minimum spanning tree upon
it to reduce the number of forces to compute. Both GTREE and
PRISM results showed that stress-based approaches to OR could
be very efficient. These methods are the closest ones to FORBID
and SORDID, since they also model the node movements as a
stress optimization task.

Most of the OR algorithms presented in this section are
designed to solve the task on nodes with the same shape. In
practice, the node shapes could be different as long as it is possible
(i) to check if two nodes overlap, and (ii) to compute the distance
between two nodes such that they do not overlap. Nonetheless, their
design and implementation focus on the context where nodes have
a common shape and they are evaluated as such. The exception is
the work of Gansner and North [21] that is adaptable to layouts
with varying node shapes to a certain extent (e.g., as long as the
node shapes are not significantly larger than their Voronoi cell).
However, none of these algorithms are designed to leverage the
node shapes to improve the adjustments brought to the layout. In
SORDID, our goal is to make use of the node shapes to detect
overlaps and compute node displacements in order to produce finer
adjustments of the layout, making use of empty spaces that exist
within the bounding box of node representations.

2.3 Overlap Removal for other Criteria

Other techniques have been designed to achieve OR task, but with
different focuses. In the following, we present two works that are
worth mentioning, although they are not part of our benchmark as
they do not tackle the same problem. More specifically, they are
dedicated to scatterplots with a focus on scalability, while most
of the methods presented above focus on quality and do not scale
well due to their quadratic complexity.

DGRID was originally designed to produce compact visual-
izations [31], [39], where every datum corresponds to exactly
one pixel on screen, and they adapted it to OR in more generic
scatterplots [30]. The algorithm’s idea is to create a grid over the
initial layout, with dummy points representing locations where
actual nodes could be moved minimizing displacement. Then, the
nodes are assigned to grid cells using a KD-tree [4] as the spatial
partitioning strategy. DGRID is in O(N logN) and among the fastest
OR methods because it does not need to identify overlaps as the
position gridifications intrinsically make them impossible. However
it suffers from local distortions due to the grid boundaries that limit
the node displacements.

ScatterplotUnfold [38] is a recent overdraw removal technique.
As opposed to all the algorithms presented above, it focuses on the

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Visual Space (which is why they handle overdraw and not overlap).
The algorithm does not necessarily aim at removing overlaps, but
rather focuses on the preservation of the data representation on
screen. Their goal is to preserve the visualization of clusters and
the density distribution of the initial drawing. To achieve this, they
manipulate parameters relative to the layout rendering (e.g., node
color, transparency, radius on screen). FORBID and SORDID fit
in the category they call Node dispersion and from which they
aim at overcoming the intrinsic flaws (e.g., density distribution
preservation, computational efficiency).

GIST [25] is another Visual Space algorithm that uses stochastic
gradient descent to resolve overdraws, and aims at guaranteeing the
nodes visibility in the final image that represents the layout. The
originality of this algorithm is to mix the optimization of the node
movements in the Geometric Space, with constraints on the node
sizes in the Visual Space to make sure that they remain visible in
the desired image resolution. It also uses a bounded tolerance to
soften the overlap constraints and ease its optimization process.

Other approaches such as Data Abstraction [9], [41] or
Sampling [10], [11] have been designed to process 2D scatterplots
and ensure that they faithfully represent the original data. However,
these methods do explicitly focus on reducing the number of
represented elements to avoid overdraws. This strategy is not the
scope of this article which is why we do not discuss them further.

3 FORBID AND SORDID ALGORITHMS

This section presents FORBID, a post-process Overlap Removal
(OR) algorithm, and SORDID, its generalization to generic node
shapes. Both algorithms follow the same structure, and aim at
optimizing a stress function by simulating stochastic gradient
descent while looking for the optimal upscaling ratio of the initial
layout. Figure 2 presents a high-level abstraction view of the
building blocks the algorithms are made of.

3.1 FORBID
This section presents FORBID (for Fast Overlap Removal by
Stochastic Gradient Descent), and focuses on rectangular nodes.

3.1.1 Stress Model for Overlap Removal
Stress for graphs. Inherited from the MultiDimensional Scaling
(MDS) [37], the stress energy function has demonstrated great
performance as an objective function in the graph context, and
especially in graph layout algorithms [6], [35], [45], [53]. The
stress function can be expressed as:

σ(X) = ∑
vi,v j∈V

Wi j(||Xi −X j||−δi j)
2 (1)

where δi j represents the ideal distance between nodes vi and v j,
and Wi j is a weighting factor for the pair (vi,v j). Wi j is usually set
to δ

−2
i j such that the higher the ideal distance between two nodes is,

the less they produce energy. Optimizing stress then comes down to
fit a distribution of distances in a low-dimensional space (e.g., 2D)
to the distribution of ideal distances taken from a high-dimensional
space too complex to be represented.

The goal of graph layout algorithms is to map every node from
the theoretical space to a 2D position. Thus, stress was intuitively
adapted in this context by setting the ideal distance between pair
of nodes to their shortest path length in the theoretical object.

A similar reasoning was proposed by Gansner and Hu [19] to
adapt the stress to the Overlap Removal task in PRISM. The idea

Initial layout
with overlaps

Scaling
upper-bound

S_GD² stress
 optimization

Output
overlap-free

layout

Scaling binary
search step

FORBID

Scaled
layout

Modified
layout

Is Scaling search step
small enough ?

scan-line
check overlaps

``zoom in"

Is the layout
overlap-free?

``zoom out"

Fig. 2: Simplified workflow of FORBID algorithm representing
how the stress and upscaling criteria are organized together. Gears
represent the algorithms FORBID relies on (i.e., S GD2 [53] and
scan line [15]), and colored boxes represent layouts while white
boxes represent the search for the optimal scaling.

is to tailor the notion of ideal distance such that optimizing the
function will tend to remove overlaps while also preserving the
initial layout. This is done by defining a two folded ideal distance.
If a pair of nodes pi j = (vi,v j) does not overlap (i.e., pi j /∈ O),
the ideal distance is set to their distance in the initial layout
δi j = ||X0

i −X0
j ||. This states that if two nodes do not overlap,

the distance between them should be preserved. On the other
hand, if pi j ∈ O, the ideal distance is set to some value such
that the two nodes do not overlap anymore. That way, fitting the
ideal distances distribution will intrinsically remove overlaps. The
actual ideal distance value between two nodes is a design choice
that must be high enough so that they do not overlap anymore.
Nevertheless, it must also remain small enough since two nodes
that overlap in the initial layout should remain close in the overlap-
free layout. For example, PRISM [19] defined their ideal distance
as δi j = ri j||Xi −X j|| where ri j is the minimal expansion factor of
the vector

−−→
XiX j such that the two nodes are moved following the

direction between their centers until they do not overlap anymore.
This model of ideal distances comes down to create a space

in which the distances between all pairs of nodes in the initial
layout are preserved, and there is no longer any overlap. Such a
space cannot be in 2D as preserving the distances between all pairs
of nodes is not possible when we move some of them to remove
overlaps. This ideal space is necessarily of higher dimension. The
stress optimization then tries to fit the distribution of distances in
the 2D plan to this ideal high dimensional space.

FORBID stress implementation. In contrast to PRISM, the
ideal distance between two nodes in FORBID is set according
to their size. More formally, it is the distance between vi and v j
centers if they were tangent in their corner as shown in Figure 3:

δi j =

||X0

i −X0
j ||, if (vi,v j) /∈ O√(

wi+w j
2

)2
+
(

hi+h j
2

)2
, if (vi,v j) ∈ O

(2)

where X0 is the initial layout, while wk and hk are the width and
height of the node vk. Having too tight a definition of the ideal
distance such as PRISM’s one means that there is only one direction
alongside which the nodes can be moved to satisfy that distance.
On the other hand, our model of the ideal distances makes sure that
two nodes cannot overlap anymore no matter what their relative
position is. We expect that this constraint will be easier to relax

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 3: FORBID ideal distance for an overlapping pair of nodes as
defined in Equation 2. This is the smallest distance such that the
nodes cannot overlap, no matter what their relative position is.

overall and ease the algorithm’s convergence; though it might come
at the cost of some inversions in the nodes orthogonal order.

Finally, the weight factor Wi j is an adjustable power of δi j
based on whether two nodes vi and v j overlap:

Wi j =

δ α
i j , if (vi,v j) /∈ O

δ α∗K
i j , if (vi,v j) ∈ O

(3)

where α ∈ R is a factor related to the ideal distance between the
nodes (typically set to α = −2 such that the closer two nodes
are, the higher their weight is), and K ∈ R is a weight to tune the
importance given to overlapping pairs of nodes.

3.1.2 Stress Optimization
Among the existing approaches to optimize a stress function [2], [3],
[13], [52], FORBID leverages that of S GD2 [53]. The originality of
S GD2 is to propose a constraint relaxation framework that mimics
a stochastic gradient descent to optimize the objective function.
In standard stress optimization algorithms, every node movement
is computed by an aggregation of attraction and repulsion forces
with every other node in the graph. To overcome the cost of such
methods, S GD2 uses a constrained graph layout [5], [14] approach
to model the stress optimization as a set of constraints between
every pair of nodes that are relaxed individually [34]. Every pair is
moved in direction of the gradient of the stress between its nodes.
More precisely, two nodes vi and v j are moved in opposite direction
based on the divergence between the euclidean distance ||Xi −X j||
and the ideal distance δi j, following the direction between their
centers. The movement can be negative to move the nodes closer.
The algorithm optimizes the distances between all pairs of nodes
for a given number of iterations, using an annealing step size η to
reduce the movements amplitude and converge toward a solution
as the optimization progresses.

Stress optimization is meant to fit a distance distribution in a
low dimensional space to that of a higher dimensional one (i.e., δ).
However, with our stress model of the OR task, modifications in
the low dimensional space (i.e., node movements) can affect the
high dimensional space. More precisely, the distribution of ideal
distances depends on the overlaps in the layout (see Equation 2).
By moving the nodes during an iteration, some overlaps will be

removed but some new ones can be created. Thus, it becomes
necessary to re-evaluate the ideal distances such that the algorithm
will always optimize the node movements to fit a distribution of
distances that corresponds to the current layout with its overlaps.

3.1.3 Optimal Scaling
We define upscaling the layout as multiplying all its node coor-
dinates by a fixed factor. This comes down to uniformly expand
(or compress) the drawing without changing the relative distances
between the nodes. For any Overlap Removal (OR) algorithm, the
initial layout upscaling is a major concern. OR algorithms are
required when the information encoded within the nodes must
remain visible. When the graph representations are rendered in
a viewbox of fixed resolution, upscaling the layout results in
reduction of the node sizes on screen, which should therefore be
minimized. Yet, it is not always possible to remove all the overlaps
in a layout without upscaling, for example when the sum of the
node areas is higher than its bounding box. Moreover, this lower
bound may not be satisfactory either, especially if it requires severe
distortion of the initial layout.

The upscaling of the initial layout should then (i) remain limited
such that the node sizes do not get too small; and (ii) should be
sufficient such that there is enough space to draw an overlap-free
layout that preserves the initial layout structures. In most algorithms
in the literature, the initial layout upscaling is a side-effect induced
by the node movements, and is an evaluation criterion to compare
with other algorithms.

In FORBID, finding the optimal scaling ratio is part of the
algorithm. It is not optimized alongside the node movements with
S GD2 since it must be set to compute the ideal distances necessary
to the node movements optimization. It is found by binary search
between 1 (i.e., the scale of the initial layout) and an upper bound
smax. To ensure that FORBID converges toward an overlap-free
layout, smax is set to the scaling ratio of the Scaling [8] algorithm
which guarantees that there is no overlap anymore (if there is no
perfect overlap). The search is ended when the difference between
two consecutive scale factors is lower than a precision threshold sp.
The depth of the binary search is s ≤ log

(
smax−1

sp

)
.

3.1.4 FORBID Algorithm and FORBID’ Variant
As described in Figure 2, the first step in FORBID is to define a
scaling ratio using the binary search (see Section 3.1.3). The binary
search builds what we call passes in the algorithm. In every pass,
FORBID tries to remove all overlaps at the current scale by moving
the nodes with the stress optimization algorithm (see Section 3.1.2)
for a fixed number of iterations. We also introduced a minimum
movement condition that works as an early stopping for a pass if
the node movements are not significant anymore (e.g., less than
10−7). If there remain overlaps after a pass P, the next pass P+1
will be given a higher upscaling ratio (i.e., more space is needed
to produce an overlap-free layout). On the other hand, there are
two possibilities if there is no overlap after moving the nodes. If
the difference between the scaling ratio of the previous pass P−1
and that of the current pass P is higher than a threshold sp (for
scale precision), we consider that the search is not refined enough
and we start a new pass P+1 with a smaller scaling ratio (i.e., we
could find a more compact overlap-free layout). However, if the
difference of scaling ratio is lower than sp, we stop the optimization
and return the overlap-free layout.

To summarize, the binary search looks for the optimal scaling
ratio that enables the stress optimization algorithm to remove

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Initial layout
with overlaps

Scaling
upper-bound

S_GD² stress
 optimization

Output
overlap-free

layout

Scaling binary
search step

FORBID

Scaled
layout

Modified
layout

Is Scaling search step
small enough ?

scan-line
check overlaps

``zoom in"

Is the layout
overlap-free?

``zoom out"

S_GD² stress
 optimization

Scaling binary
search step

Scaled
layout

Modified
layout

(a) FORBID, every new pass P+1 starts from the state of the previous
pass Modified layout XP.

Initial layout
with overlaps

Scaling
upper-bound

S_GD² stress
 optimization

Output
overlap-free

layout

Scaling binary
search step

FORBID'

Scaled
layout

Modified
layout

Is Scaling search step
small enough ?

scan-line
check overlaps

``zoom in"

Is the layout
overlap-free?

``zoom out"

S_GD² stress
 optimization

Scaling binary
search step

Scaled
layout

Modified
layout

(b) FORBID’, a pass P starts from the state of the Initial layout X0.

Fig. 4: Differences between FORBID (a) and FORBID’ (b) variants.

overlaps without too much node movements. This enable to limit
both the upscaling effect and the distortion of the initial layout.

The number of passes is given by the depth of the binary search
s ≤ log

(
smax−1

sp

)
, the detection of overlaps with scan-line [15] is in

O(N log(N)) and S GD2 stress optimization algorithm is in O(N2)
such that FORBID complexity is O(sN2).

FORBID and FORBID’ variants. There remain one design
choice to make in order to have an exhaustive description of
FORBID. In fact, since every pass P takes a layout X as input and
produces a new layout XP, there are two choices to start the next
step P+ 1. The first possibility is to start P+ 1 from the output
layout of P (i.e., XP), as shown in Figure 4a. This means that the
algorithm will be allowed to move the nodes further and further
as P increases. We expect that allowing more movement in this
way will enable the model to converge faster, at the cost of a larger
deformation of the initial layout. On the other hand, the second
possibility is to start P+1 from the (scaled) initial layout X0 (see
Figure 4b). This will induce less deformation of the initial layout,
but will most likely slow the convergence down.

The first variant (starting P+1 from XP) is called FORBID
while the second (starting P + 1 from X0) is referred to as
FORBID’. The difference between both is highlighted by the
red arrows in their respective illustration in Figure 4.

3.2 SORDID
This section presents SORDID (for Shape-aware Overlap Removal
by Stochastic Gradient Descent), the shape-aware adaptation of
FORBID. While FORBID optimizes one distance for every pair of
nodes, SORDID decomposes every node’s polygon into triangles,
and optimizes the distances between the triangles of every pair
of nodes. As far as we know, SORDID is the first method to

handle OR with nodes of various shapes by decomposing them, as
opposed to most methods from the literature that handle arbitrary
node shapes by considering their minimum bounding circle or
rectangle.

Where FORBID complexity is O(sN2), SORDID one is higher
due to the decomposition of the nodes into smaller elements,
leading to a significant increase in the number of distances to
optimize. The decomposition being bounded by the number of
vertices of the polygons, the worst case complexity of SORDID
is O(sN2 t) where t is the maximum number of vertices of the
polygons in a layout.

3.2.1 Node Shape Representation
SORDID handles various shapes by decomposing them into
triangles with a Constrained Delaunay Triangulation [46]. It means
that in reality, any shape that is not a polygon must be approximated
with a polygon. Another limitation that we didn’t overcome is the
handling of hollow shapes, such as donuts. Instead, SORDID
triangulates polygons using their outer border only.

In the next sections, we consider that a node can either be
considered by its actual shape, or by the set of triangles that
compose its shape. In addition, the minimum bounding circle of
every node’s shape is computed and will be used later.

3.2.2 Overlap Detection Between Polygonal Nodes
The test for overlap between two nodes vi and v j follows a
hierarchical process. We first verify if the minimum bounding
circles of their shape are overlapping. If not, then the two nodes
cannot overlap. But if the bounding circles do overlap, it does not
mean that the node shapes overlap either. In this case, SORDID
will go a step deeper in the node representations by checking if
the minimum bounding circle of any triangle composing vi does
overlap with that of any triangle composing v j. If not, then there is
no overlap between vi and v j. But for each overlapping bounding
circle between pairs of triangles composing vi and v j, SORDID
finally checks whether the triangles actually overlap.

SORDID also leverages scan-line [15] (see Section 2) acceler-
ated detection of overlaps using the stored leftmost and rightmost
points of every node to detect skippable tests.

3.2.3 Ideal Distance and Movements
In SORDID, the ideal distances are also conditioned by the node
overlaps. For a pair of nodes pi j = (vi,v j) /∈ O (i.e., that does not
overlap), the ideal distance is set to the distance between the node
centers in the initial layout, as described in Equation 2. In this
case, only one movement will be computed between the two node
centers to optimize that distance.

δi j = ||X0
i −X0

j ||,∀(vi,v j) /∈ O (4)

On the other hand, when pi j ∈ O, there are as many ideal
distances as there are pairs of triangles between the triangulated
representation of the two nodes. For every pair of triangle, if they
do not overlap, then the ideal distance is the euclidean distance
between the center of their minimum bounding circles. If they do
overlap, the ideal distance is the sum of their minimum bounding
circle radiuses.

∆i j,kl =

||c(Tk)− c(Tl)||, if (Tk,Tl) /∈ Ωi j

r(Tk)+ r(Tl), if (Tk,Tl) ∈ Ωi j

,∀(vi,v j) ∈ O,∀(Tk,Tl) ∈ DTi ×DT j

(5)

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 5: SORDID ideal distance for an overlapping pair of nodes,
as defined in Equation 5. This figure only illustrates the distance
between the overlapping triangles, but the distance between all the
pairs of triangles composing vi and v j are computed.

where the set of triangles composing a node vi is defined as DTi

(standing for Delaunay Triangulation) and (Tk,Tl) ∈ DTi ×DT j are
the pairs of triangles between the triangulation of vi and v j. The
ideal distance for one pair of triangles (Tk,Tl) composing vi and
v j is defined by ∆i j,kl . The set of overlapping pairs of triangles in
DTi ×DT j is represented by Ωi j. Finally, c(T) and r(T) give the
center and radius of the minimum bounding circle of a triangle
T . An illustration of an ideal distance between two overlapping
triangles composing polygonal nodes is presented in Figure 5.

It is important to note that when a movement is computed
between two triangles, its direction follows the vector between
their minimum bounding circle centers, and the whole nodes (i.e.,
all the triangles composing the two nodes) are moved. In practice, it
means that there are much more distances to optimize in SORDID
than in FORBID, and we expect it to be slower. Nevertheless, this
fine-grained definition of ideal distances enables tight adjustments
(and even imbrications) of polygonal nodes.

The weight factor also adapts FORBID’s definition (see
Equation 3) using the triangles from Delaunay Triangulation of the
node shapes:

Wi j = ||X0
i −X0

j ||α ,∀(vi,v j) /∈ O (6)

ωi j,kl =

(||c(Tk)− c(Tl)||)α , if (Tk,Tl) /∈ Ωi j

(r(Tk)+ r(Tl))
α∗K , if (Tk,Tl) ∈ Ωi j

,∀(vi,v j) ∈ O,∀(Tk,Tl) ∈ DTi ×DT j

(7)

where α ∈ R is a factor related to the ideal distance between the
nodes, and K ∈ R is a weight to configure the importance given to
overlapping pairs of nodes/triangles.

Finally, the stress optimized by SORDID, considering the
triangulation of polygonal nodes, is expressed as:

σ(X) =

∑
(vi,v j)/∈O

Wi j(||Xi −X j||−δi j)
2

+ ∑
(vi,v j)∈O

∑
(Tk ,Tl)∈DTi×DT j

ωi j,kl(||c(Tk)− c(Tl)||−∆i j,kl)
2

(8)
where δi j and Wi j are defined in Equation 4 and Equation 6.

To sum up most of the framework design, we remind that
Figure 4 presents the arrangement of its building blocks. In addition,

two behaviors were omitted from the framework description. The
first is to conduct a pass of stress optimization without changing
the scale factor of the initial layout, if the area of the initial
layout’s bounding box is higher than the sum of the node areas.
Doing so prevents the algorithm from going through a complete
optimization when the task can be solved in the initial layout’s
scale. The second omitted behavior is responsible for guaranteeing
that FORBID generates an overlap-free layout. Hence, during the
whole optimization, we recall a best version of the layout we found
to return it in the end, should the last pass in the algorithm not be
an overlap-free layout. If no overlap-free layout is ever found, the
algorithm returns the initial layout upscaled by the scaling ratio that
guarantees that there is no overlap anymore (see Section 3.1.3).

4 EVALUATION

This section presents the results of FORBID and SORDID
evaluation as well as their comparison with state-of-the-art Overlap
Removal (OR) algorithms. The section is split in two evaluations: (i)
on rectangular nodes, and (ii) on polygonal nodes. Our algorithms
are compared with the state-of-the-art baseline algorithms (see
Section 4.1.1) on a selection of metrics described in Section 4.1.3.

Some results presented in this section differ from those in the
printed original study [24] as there was an error on the el rsdd
metric reports. This error was made to the disadvantage of FORBID
and FORBID’ and has been corrected in the latest online version.

4.1 Evaluation protocol
This section presents the design choices made to evaluate FORBID
and SORDID. We follow the protocol defined by Chen et al. [7], [8]
for reproducibility purposes. That includes quality metrics, datasets
and baseline algorithms to compare with.

4.1.1 Baseline Algorithms
Chen et al. [7], [8] presented a complete survey comparing many
Overlap Removal (OR) algorithms from the literature. Following
their results, the baseline algorithms we selected are PFS’ [29],
PRISM [19], and Diamond [42], each of them being state-of-the-art
in its approach to the OR task. They are respectively based on
scan-line, stress optimization and constraint relaxation. In addition,
since FORBID belongs to the stress optimization approach, we
also included GTree [44] as it is supposed to be an improvement
of PRISM and it will enable more comparison within the family.
Please refer to Section 2 for a more detailed description of these
algorithms.

4.1.2 Datasets
Following Chen et al. [7], [8] evaluation protocol, we use the
Generated and Graphviz datasets available online1.

Generated is a set of 840 synthetic graphs specifically created
for the benchmark of Chen et al. [7], [8]. It is made of 120
graphs of size 10,20,50,100,200,500,1000, laid out with the FM3

algorithm [27].
Graphviz is a set of 14 real-world graphs from the Graphviz

suite [22]. They have between 36 and 1463 nodes and are laid out
with SFDP algorithm [32].

These two datasets are made of nodes with a rectangular shape.
Since SORDID works on polygonal nodes, we created modified
versions of the two datasets to evaluate it on additional shapes.

1Generated and Graphviz graphs: https://github.com/agorajs/agora-dataset

https://github.com/agorajs/agora-dataset

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Rectangle Star Diamond Spade

Fig. 6: Polygonal shapes considered in the evaluation. Stars can
have from 3 to 6 arms.

TABLE 1: Number of graphs, nodes, and overlaps for each dataset
in the experiment. For the number of overlaps, the second row of
each dataset presents the average± standard deviation.

Generated Graphviz
Graphs 840 14
Nodes [10; 1000] [36; 1463]

#
O

ve
rl

ap
s

Rectangle [0; 36537]
3196 ± 8717

[4; 11582]
2119 ± 4080

Star [0; 30920]
2687 ± 7338

[4; 21921]
3746 ± 7106

Diamond [0; 18350]
1575 ± 4325

[0; 8111]
1239 ± 2506

Spade [0; 37615]
3277 ± 8935

[5; 25370]
4432 ± 8352

More precisely, we preserve the node positions (i.e., their center),
and their rectangle’s dimension in the original datasets is used as
basis for the polygons. The polygons will be defined in the next,
and Figure 6 presents an example for each of them. Assuming that
a node was defined with a center (x,y) and a rectangular shape
(w,h), all the following shapes are built to have the maximal size
that fit in a circle of center (x,y) with a radius r = max(w,h)/2.

Star. A star has a random number of arms between 3 and 6.
The arm lengths is based on the original rectangular node and is
defined as max(w,h)/2. The hollow parts of a star is max(w,h)/6
away from its center.

Diamond. A diamond is defined as the maximum regular
diamond that fits in the original rectangle of the node.

Spade. A spade is made by connecting two discretized “ears”
(i.e., circular arcs) with three points: one for the top and two
defining the “tail” of the shape.

These transformations are applied for all nodes in all graphs
of both Graphviz and Generated datasets. We did not consider
polygon rotations in this evaluation. Information on the initial
layout of every dataset are reported in Table 1.

4.1.3 Metrics
With Post-process Overlap Removal (OR) algorithms, we assume
that the provided initial layouts were computed to optimize some
criteria, producing a meaningful representation for the end-user.
Hence, a good OR algorithm should be able to remove all the
overlaps in the initial layout while also preserving its aspect.

As the OR algorithms that will be compared remove all overlaps
in the layouts, the evaluation of their results is based on their
preservation of the initial layout. Since initial layouts can be
deteriorated in different ways, we leverage five quality metrics from
Chen et al. [8] survey to capture various kinds of deterioration.
Other metrics can measure the compliance with Ccomp. and Clay.
criteria (e.g., [26], [38]). We chose to use the metrics defined by
Chen et al. [8] to leverage their results and extend the study. All
these metrics are oriented lower is better.

Nodes orthogonal order. oo nni counts the number of times
the orthogonal order of the nodes has been violated.

oo nni =

∑(vi,v j)∈V 2,i̸= j
1(x0

i > x0
j ∧ x′i < x′j),

+1(y0
i > y0

j ∧ y′i < y′j)
N(N −1)

(9)

where X0
i = (x0

i ,y
0
i) (resp. X ′

i = (x′i,y
′
i)) are the 2D coordinates of

vi in the initial layout X0 (resp. overlap-free layout X ′). The metric
is normalized to enable the comparison of layouts with different
number of nodes.

Convex hull area. sp ch a is the ratio of the overlap-free
layout’s convex hull’s area over that of the initial layout, the
optimal value being 1. This metric comes down to evaluate the
expansion of the layout and thus captures its upscaling. It is the
main metric to evaluate the criterion Ccomp..

sp ch a =
A(ConvexHull(X ′))

A(ConvexHull(X0))
(10)

where ConvexHull computes the smallest convex region containing
all the nodes of a layout. ConvexHull is computed taking into
consideration the node shapes and sizes, and not only their center.

Aspect ratio. gs bb iar measures the deviation of the overlap-
free layout’s aspect ratio compared to that of the initial layout.

gs bb iar = max
(

W ′ ∗H0

H ′ ∗W 0 ,
H ′ ∗W 0

W ′ ∗H0

)
(11)

where W 0 and H0 (resp. W ′ and H ′) are the initial layout X0 (resp.
overlap-free layout X ′) rectangular bounding box width and height.

Node movements. nm dm imse measures the average defor-
mation of the initial layout by quantifying node movements from
their position in the initial layout to their position in the overlap-
free layout. Since the layout upscaling is already captured by
another metric (i.e., Convex Hull Area), Node movements is made
unsensitive to the scale and range of the layouts. Doing so enables
this metric to capture the raw deformation of the initial layout and
is especially useful to evaluate the criterion Clay..

nm dm imse =
1
N ∑

vi∈V
||X ′

i − shift(scale(X0
i))||2 (12)

where shi f t and scale functions project the positions of the initial
layout in the value domain of the overlap-free layout. These
transformations are linear based on the layout bounding box sizes.

Edge length preservation. el rsdd captures the uniformity
of distance preservation. As opposed to Node Movements that
penalizes any relative node movement, Edge Length Preserv.
measures the average deviation of distances alongside the edges of
the Delaunay Triangulation of the initial layout. The intuition is
that if some quantity of movement is required to solve the task, all
the nodes should move a little (as opposed to a few nodes moving
a lot). Formally, the metric is defined as:

ρuv =
||X ′

u −X ′
v||

||X0
u −X0

v ||
,∀(u,v) ∈ EDT ,

ρ =
1

|EDT | ∑
(u,v)∈EDT

ρuv,

el rsdd =

√
1

|EDT | ∑(u,v)∈EDT (ρuv −ρ)2

ρ

(13)

where EDT is the set of edges of the Delaunay Triangulation of the
initial layout X0, and ρuv represents (u,v) edge length’s deviation
ratio in the overlap-free layout.

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

10 2

10 1

oo
_n

ni

(a) Nodes Ortogh. Order

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

1.0

1.2

1.4

1.6

1.8

gs
_b

b_
ia

r
(b) Aspect Ratio

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

100

101

102

sp
_c

h_
a

(c) Convex Hull Area

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

100

101

102

103

104

105

106

107

nm
_d

m
_i

m
se

(d) Node Movements

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

10 1

100

el
_r

sd
d

(e) Edge Length Preserv.

Fig. 7: SORDID, FORBID and some selected state-of-the-art OR algorithms performance according to the aesthetic metrics described in
Section 4.1.3 on the Generated dataset. All plots have a log scale on the Y-axis. All metrics are oriented lower is better. The complete
description of these representations is given in Section 4.1.4. As expected, our algorithms can produce inversions in the nodes orthogonal
order. Nevertheless, they demonstrate great capability on compactness (sp ch a) and distortion minimization (nm dm imse).

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

10 2

10 1

oo
_n

ni

(a) Nodes Ortogh. Order

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

1.0

1.2

1.4

1.6

1.8

2.0

2.2

gs
_b

b_
ia

r

(b) Aspect Ratio

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

100

101

102

sp
_c

h_
a

(c) Convex Hull Area

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

102

103

104

105

106

107

nm
_d

m
_i

m
se

(d) Node Movements

SORDID
SORDID'
FORBID
FORBID'

PFS'
PRISM
GTree

Diamond

SORDID
SORDID'

FORBID
FORBID' PFS'

PRISM GTree
Diamond

10 1

100

el
_r

sd
d

(e) Edge Length Preserv.

Fig. 8: SORDID, FORBID and some selected state-of-the-art OR algorithms performance according to the aesthetic metrics described in
Section 4.1.3 on the Graphviz dataset. All plots have a log scale on the Y-axis. All metrics are oriented lower is better. The complete
description of these representations is given in Section 4.1.4. Trends are close to that on the Generated dataset (see Figure 7).

4.1.4 Statistical Validation and Results Presentation

Statistical validation. In the following, we will compare the
performance of various algorithms on relatively large sets of data.
To improve the faithfulness of the evaluation, we support the
performance analysis with statistical tests following the protocol of
Purchase [47]. For every metric, an ANOVA test is first conducted
to assert whether the differences between the algorithms is due
to chance or not. To do so, we use the repeated measures non-
parametric test of Friedman [18] with a confidence threshold α =
0.05. If this test passes, post-hoc pairwise comparisons are tested
with Conover [12] at confidence α = 0.05.

Results report. The metric score distribution of the algorithms
are reported in box-plots (e.g., Figure 7a). All them have Y-axis
log scales. Below each plot is represented a matrix of pairwise
significance. If the Friedman test didn’t pass (e.g., Figure 8e) the
matrix is faded as pairwise comparisons should not be interpreted.
Otherwise, black circles in the matrix encode pairwise significance
between the corresponding line/column algorithms, while red
circles encode the non-significance. Since all the metrics can be
read as lower is better, an algorithm is better than another if its
distribution (i.e., box) is more dense on a smaller value domain,
and if the difference between them is statistically significant.

4.2 Evaluation on Rectangular Nodes

This section focuses on the evaluation and comparison of FORBID,
SORDID, their variant and state-of-the-art algorithms on rectan-
gular nodes. Figure 7 reports the performance of these algorithms
on the Generated dataset, while Figure 8 reports them on

the Graphviz dataset. Please refer to Section 4.1.4 for more
information on the results presentation.

4.2.1 Performance on Generated

Figure 7a shows that all the algorithms succeed in minimizing
Nodes Ortogh. Order according to the order of magnitude of their
performance (overall < 10−1). By design, PFS’ has a score of
0 on that metric since it cannot violate the nodes orthogonal
order. FORBID’ and SORDID’ have similar performance to
PRISM and are a slightly better than GTree. The difference is not
significant between neither FORBID and SORDID, nor FORBID’
and SORDID’. Finally, Diamond performance is significantly worse
than other algorithms on that metric as it consistently deteriorates
it more than them.

On Aspect Ratio (see Figure 7b), we can see that our four
methods are significantly better than all the others. We assume this
score is related to the explicit handling of the upscaling factor in
our algorithms. Indeed, the initial layout positions are uniformly
upscaled alongside the X and Y dimensions to create more empty
spaces. This uniform upscaling does not deteriorate the layout
bounding box’s aspect ratio. Only the node movements that come
afterward can modify that ratio, and we can see that the deviation
remains minimal.

Figure 7c presents Convex Hull Area performance, a measure-
ment of the overlap-free layout’s compactness. The distributions
show that our methods have better results than state-of-the-art
algorithms overall. As expected (see Section 3.1.4), the FORBID’
and SORDID’ variants of the algorithm produce less compact

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

layouts than their standard counterparts, although the difference
between FORBID and SORDID is not significant.

Node Movements is the main metric to measure the initial layout
preservation (i.e., Clay. criterion), for which Figure 7d presents all
algorithm results on the Generated dataset. We can see that our
algorithms have significantly less node movements than other
state-of-the-art-methods. The difference is not significant between
FORBID (resp. FORBID’) and SORDID (resp. SORDID’). We
can also note that the FORBID’ and SORDID’ variants have
consistently less node movements than their standard counterparts.
This confirms the assumption (see Section 3.1.4) that starting every
new pass from the initial layout, rather than from the output of the
previous pass, leads the model towards an overlap-free layout with
less relative movements.

The last metric to compare the selected algorithms on, Edge
Length Preserv., measures how uniform the deformation of the
closest nodes in the initial layout is. The performance on that
metric are reported in Figure 7e. We can see that PFS’ is the best
on that metric, followed by PRISM and GTREE, then SORDID’
and FORBID’. SORDID and FORBID have slightly worse results,
and Diamond have the worst among the selected algorithms. Again,
the prime variants have better metric values than the standard ones.
This result could be expected as they produce less node relative
movements, but it also means that the produced movements were
more uniformly distributed across the nodes.

4.2.2 Performance on Graphviz
Overall, the results on the Graphviz dataset (see Figure 8),
corroborate those observed on the Generated. There are less
significant pairwise differences on Graphviz than Generated, mainly
because of Graphviz’s size of 14 graphs. With such a small volume
of data, statistical tests cannot validate the significance of pairwise
differences if the results are not strongly correlated. On Nodes
Ortogh. Order, PFS’ is still the best while FORBID’ and SORDID’
compete with GTree and PRISM. On the other hand, FORBID,
SORDID are worse, and Diamond is the worst on that metric.
Aspect Ratio is still highly in favor of FORBID, SORDID and their
variants. On Convex Hull Area and Node Movements, we can also
observe that our algorithms are overall better than state-of-the-art
methods (except for PRISM that overperforms on Convex Hull
Area) with SORDID suffering from one problematic case on both
metrics (see the outlier in Figure 8c and 8d). Finally, the ANOVA
test did not pass on the Edge Length Preserv. metric. It means
that, according to the statistical test, the variation of performance
according to the algorithms used for each graph could be due
to chance. Pairwise comparison should not be interpreted in this
case. Eventually, the trends between the boxes are close to those
observed on the Generated dataset.

4.2.3 Synthesis on Rectangular Nodes
In this section, we have seen that FORBID and FORBID’ competed
well with state-of-the-art algorithms. On some metrics, they even
significantly outperform them (e.g., Aspect Ratio, Node Movements
and Convex Hull Area to a lesser extent).

As expected, we observed that the prime variant of FORBID
and SORDID consistently led to overlap-free layouts that better
preserve the initial layout (i.e., optimizing Clay.), at the cost of
some upscaling. On the other hand, the standard variant tends to
produce compact layouts optimizing Ccomp..

SORDID being a generalization of FORBID, we assumed that
the difference between them was not significant on rectangular

nodes as this shape is strictly equivalent to its rectangular bounding
box. The evaluation demonstrates that it is indeed the case as
the difference between them is never significant, except between
SORDID’ and FORBID’ on Convex Hull Area with Generated.

4.3 Evaluation on Polygonal Nodes

This section presents the results of SORDID, SORDID’, FORBID,
FORBID’ and PFS’ on the Generated dataset with polygonal node
representations as described in Section 4.1.2. We only compare
the Overlap Removal (OR) algorithms proposed in this article
with PFS’ as it is the best performing state-of-the-art algorithm
according to the evaluation on rectangular nodes (see Section 4.2).
In addition, we only compare the algorithms on the Generated
dataset as it is the largest considered in this evaluation, and thus the
one on which results are the most significant. The Graphviz dataset
will be later used for visual evaluation (see Section 5.2). To handle
polygonal nodes with standard OR algorithms such as FORBID
and PFS’, the common way is to provide them a bounding box of
the node shapes (here, the rectangular bounding box). One can note
that the rectangular bounding boxes of the Diamond shapes are
equal to to the rectangular nodes that were evaluated in the previous
Section 4.2. Hence, the metric scores of FORBID, FORBID’ and
PFS’ on the Diamond shape are the same as in the evaluation on
Rectangular nodes (up to some randomness in the optimization’s
initialization).

As the trends between the methods’ performance are similar
across various shapes on some metrics, the results are discussed
by metric (rather than by dataset of shape) in the following. The
main assumption we can make in this evaluation is that a method
that handles polygonal nodes directly (i.e., SORDID), should
lead to more compact overlap-free layouts. Indeed, as opposed
to a bounding box approach, the fine-grained awareness that the
algorithm has of the node shape representations should enable it
to make more use of the empty spaces in the layout. In general,
we expect a shape-aware algorithm to provide better results on
polygonal nodes than standard algorithms that must approximate
the node shapes. The results of these evaluations are presented in
Figures 9, 10 and 11 for the Spade, Diamond, and Star shapes
respectively.

On the Nodes Ortogh. Order metric, the methods performance
is the same across the three shapes. PFS’ has never produced any
inversion of the nodes orthogonal order, as its design does not
allow it. We can observe that SORDID and SORDID’ are slightly
better than their FORBID and FORBID’ counterparts on this
metric. We think this result is due to the shape-aware approach’s
capability to have finer adjustments between the nodes to relax the
overlap constraints. These fine adjustments can lead to significant
benefits, especially in denser regions of the layouts, where an
approach on bounding boxes would have no other choice but to
move some nodes out of the dense region to be able to relax the
overlap constraints, which is more prone to inversions in the nodes
orthogonal order.

FORBID and SORDID are still significantly better than PFS’ on
Aspect Ratio, as shown in Figure 9b, 10b and 11b. The difference
is significant between SORDID and FORBID (and their prime
counterparts), meaning that the shape-aware approach leads to
better preservation of the initial layout’s aspect ratio. Since the
aspect ratio can only be deteriorated by node movements in our
methods, this result was expected in view of our assumption that a
shape-aware algorithm should be able to use more empty spaces

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'
10 3

10 2

10 1

oo
_n

ni

(a) Nodes Ortogh. Order

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

1.00

1.05

1.10

1.15

1.20

1.25

1.30

gs
_b

b_
ia

r
(b) Aspect Ratio

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

100

101

102

sp
_c

h_
a

(c) Convex Hull Area

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

101

102

103

104

105

nm
_d

m
_i

m
se

(d) Node Movements

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'
10 1

100

el
_r

sd
d

(e) Edge Length Preserv.

Fig. 9: SORDID, FORBID and some selected state-of-the-art OR algorithms performance according to the aesthetic metrics described in
Section 4.1.3 on the Generated dataset with a Spade shape (see Section 4.1.2). All plots have a log scale on the Y-axis. All metrics are
oriented lower is better. The complete description of these representations is given in Section 4.1.4.

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 2

10 1

oo
_n

ni

(a) Nodes Ortogh. Order

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

1.0

1.1

1.2

1.3

1.4

1.5

1.6

gs
_b

b_
ia

r

(b) Aspect Ratio

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

100

101

102

sp
_c

h_
a

(c) Convex Hull Area

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 3

10 1

101

103

105

nm
_d

m
_i

m
se

(d) Node Movements

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 3

10 2

10 1

100

el
_r

sd
d

(e) Edge Length Preserv.

Fig. 10: SORDID, FORBID and some selected state-of-the-art OR algorithms performance according to the aesthetic metrics described
in Section 4.1.3 on the Generated dataset with a Diamond shape (see Section 4.1.2). All plots have a log scale on the Y-axis. All metrics
are oriented lower is better. The complete description of these representations is given in Section 4.1.4.

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 3

10 2

10 1

oo
_n

ni

(a) Nodes Ortogh. Order

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

gs
_b

b_
ia

r

(b) Aspect Ratio

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

100

101

102

sp
_c

h_
a

(c) Convex Hull Area

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 1

100

101

102

103

104

105

nm
_d

m
_i

m
se

(d) Node Movements

SORDID
SORDID'
FORBID
FORBID'

PFS'

SORDID SORDID' FORBID FORBID' PFS'

10 2

10 1

100

el
_r

sd
d

(e) Edge Length Preserv.

Fig. 11: SORDID, FORBID and some selected state-of-the-art OR algorithms performance according to the aesthetic metrics described
in Section 4.1.3 on the Generated dataset with a Star shape (see Section 4.1.2). All plots have a log scale on the Y-axis. All metrics are
oriented lower is better. The complete description of these representations is given in Section 4.1.4.

to resolve overlaps, making the task easier to solve with less
movement.

Convex Hull Area is the main metric to evaluate how compact
the overlap-free layout produced by an algorithm is, and we
expect SORDID shape-aware approach to achieve better results.
As presented in Figure 9c, 10c and 11c, it is the case with the
three shapes, but in different proportions. SORDID and SORDID’
provide the most benefits compared to FORBID and PFS’ (i.e.,
bounding box approaches) on the Diamond shape. We argue that
this is because this shape is the most prone to fine adjustments and
imbrications, especially compared to the Spade shape. On Stars, it
is noteworthy that the difference between SORDID and SORDID’
is not significant. We could expect better results for SORDID and
SORDID’ on the Star shape as we can easily imagine stars to be
imbricated alongside their arms. However, this is rarely possible

in practice as the star arms orientation is fixed and they cannot be
rotated. With our shapes generation, having neighboring stars with
arms sharing the same orientation on a common side is very rare,
especially since the arm orientation of a star depends on its number
of arms (which is random).

Figure 9d, 10d and 11d present the algorithm results on the
Node Movements metric. As we can see, SORDID and SORDID’
are consistently better on that metric. Although we assume that a
shape-aware approach should be able to remove overlaps using less
node movements by using more available empty spaces than an
approach with bounding boxes, it was not evident that this behavior
could be observed on this metric. Indeed, since Node Movements
measurement ignores the overlap-free layout’s upscaling, it can
favor a method that uniformly upscales the initial layout and does
not move any node, compared to another method that moves some

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

nodes to limit the upscaling.
Finally, the results on Edge Length Preserv. are presented in

Figure 9e, 10e and 11e. On Spade and Star shapes, PFS’ is better
than both SORDID and FORBID, while SORDID is better on the
Diamond shape. Overall, the shape-aware approach of SORDID
always shows better results than FORBID. As a reminder, this
metric captures the uniformity of short distances degradation.
Hence, we can conclude that the fine adjustments that SORDID
makes are significantly beneficial to the layouts it produce.

Overall, we observed that the shape-aware approach of SOR-
DID consistently led to better results than the adaptation of standard
algorithms that uses the bounding box of the node shapes. We also
found evidence supporting the assumption that a shape-aware
approach would lead to more compact overlap-free layout by
achieving more fine-grained adjustments between the node shapes.
The evaluation demonstrates the good capacity of this approach to
minimize the node movements and upscaling necessary to remove
all overlaps.

4.4 Execution Times

This section discusses the execution times of FORBID, SORDID
and the state-of-the-art Overlap Removal (OR) algorithms of
the evaluation. Diamond algorithm’s execution times are not
reported as they were dramatically higher than other methods (as
presented in Chen et al. [7], [8]). All the algorithm execution times
were measured on the same i9-12900KF CPU. It is important
to note that the decomposition of the node shapes with the
Delaunay Triangulation, and the computation of the pairwise
ideal distances that come with it, are parallelized in SORDID
to alleviate the additional cost induced by the decomposition. This
parallel execution makes it about twice as fast, and makes its
execution time acceptable despite the additional cost of the node
shape decompositions, and considering the increases in quality
observed in Section 4.3. In both FORBID and SORDID, we also
tried to parallelize the stochastic optimization of pairwise node
movements, but found that it led to results of lower quality. We
think that processing the node movements sequentially improves the
optimization as any node coordinate update takes into consideration
the movements that were already applied to the node during the
iteration.

We only report the results on Graphviz with Rectangular
nodes, since they were consistently similar with other shapes
and on Generated. Reporting on Graphviz enables comparison
of the algorithms’ execution times in regard of the input graph
properties. Thus, we identify three groups of difficulty, as presented
in Figure 12.

On easy graphs, FORBID, FORBID’ and PFS’ are instanta-
neous (i.e., less than 5ms). SORDID and SORDID’ are instanta-
neous as well on most cases, but take more time on b143 (14ms
and 51ms respectively). On the other hand, GTree and PRISM are
consistently slower on these graphs. Even though these examples
are easy (i.e., the number of nodes and overlaps is small), we can
already observe some difference between the algorithms.

On medium graphs, FORBID, FORBID’ are among the fastest,
followed by SORDID GTree and SORDID’, while PRISM is the
slowest by a significant margin.

FORBID and SORDID are overall the fastest on hard graphs,
SORDID results being surprising as its complexity is higher than
that of FORBID, but its execution time is lower. This improvement

Fig. 12: Execution time (in milliseconds) of the algorithms on
Graphviz with rectangular nodes. Rows are sorted by graph
complexity measured in number of nodes, edges and overlaps.

is mostly due to some difference in their optimization. SORDID’,
FORBID’ and GTree are overall slower and have relatively close
execution times. Finally, PRISM is still slower than the others.

On medium and hard graphs, PFS’ is still almost instantaneous;
making it the fastest of the considered algorithms in this evaluation.
It is also interesting to note that the graph on which the algorithms
were the slowest is not the one that has the most overlaps, as b100
has only half the number of overlaps of root or badvoro. All these
methods are more sensitive to increases in the number of nodes
than in overlaps, as expected in view of their complexities (i.e.,
quadratic on the number of nodes).

Overall, we can conclude that FORBID scales well according
to the task complexity. As expected, FORBID’ is slower than
FORBID, mostly because of its constraint to start each stress
optimization from the upscaled initial layout. We also observe that
SORDID and SORDID’ shape-aware approaches tend to be slower,
though SORDID can be faster thanks to its different model of
ideal distances. Since SORDID’ has the constraint of starting each
optimization from the scaled initial layout of a prime variant, and
the necessity to optimize more distances with the decomposition
of the node shapes into triangles, it is not surprising to see that it is
slower than the other variants.

5 DISCUSSION

This section discusses some behaviors of FORBID and SORDID
observed during the evaluation, and some of their limitations. It
also discusses their convergence and some visual examples.

5.1 Convergence Analysis

The convergence plots of FORBID, SORDID and their prime
variant are presented in Figure 13. Each plot reports the evolution
of the stress, number of overlaps and upscaling against the number
of iterations in the stress optimization algorithm. Vertical dashed
lines represent beginning of new passes (see Section 3.1.4).

In all these plots, we can see that the stress curves follow that
of the number of overlaps. This confirms that optimizing stress to
remove overlaps is efficient. The difference with prime variants is
also well represented. In FORBID and SORDID, most overlaps are
removed in the first few passes and the last ones are dedicated to the
search for the optimal upscaling ratio while preserving the overlap-
free layout. On the other hand, FORBID’ and SORDID’ have
to restart their optimization from the scaled initial layouts every
time a new pass begins, the problem being made easier or harder
with a different upscaling ratio. In the end, we can also observe
that the prime variants need more iterations to converge toward
an overlap-free layout that satisfies the search for a compromise

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

SORDID SORDID’ FORBID FORBID’
m

od
e,

N
=

21
3

ba
dv

or
o,

N
=

12
35

Total number of iterations

Fig. 13: Convergence plots of SORDID, FORBID and their prime variant on two Graphviz graphs with Diamond shape. They report the
evolution of stress, number of overlaps and scaling ratio against the total number of iterations. Vertical dashed lines represent beginning
of new passes. Stress and number of overlaps are normalized by their respective maximum value, while upscaling ratio is normalized by
its binary search maximum bound (see Section 3.1.3).

between Clay. and Ccomp.. This explains why prime variants are
consistently slower.

Comparing SORDID and FORBID, we can see that the stress,
number of overlaps and upscaling follow the same trend on the
mode graph. On the other hand, the results are different on badvoro,
which is a more complicated sample. These differences mostly
come from the two approaches difference when it comes to overlap
identification. For instance, we can see on badvoro that both
SORDID and SORDID’ began the first pass with a scaling ratio
of 1. It means that according to their more fine-grained definition
of the node shape representations, there was enough empty space
in the initial layout to try to solve the Overlap Removal task with
movements only. On the other hand, the bounding box approach of
FORBID and FORBID’ did not identify that. In the end, SORDID
requires slightly more iterations to converge than FORBID.

It is also interesting to observe that despite having a large
definition of the upper bound smax for the binary search for the
optimal scaling ratio, the algorithms are able to find a solution at a
lower scale. This upper bound is set to guarantee that the algorithms
converge toward an overlap-free layout, but is most of the time
unnecessarily high. Other upper bounds or optimization strategies
could be used to find the optimal scale, but are not investigated in
this article and are left for future works.

5.2 Visual Evaluation

This section discusses some visual examples of the overlap-free
layouts produced by most of the algorithms selected for the
evaluation. Visual examples of Graphviz graphs with rectangular
nodes are presented in Figure 14.

On very small graphs such as unix, no significant difference can
be observed between the algorithms. On b124, all the algorithms
also have similar results, with the exception of SORDID and
SORDID’. Indeed, we can see in their layouts that the “wide and
flat” node was pushed far from its initial position. This behavior
is probably induced by the design of ideal distances in SORDID
which leads to high repulsive forces in this case. Indeed, the wide
flat node is most likely decomposed into two triangles which
boundig circle radiuses are relatively high. Hence, the movements
involving that node have high amplitudes, and their result are
clearly visible on b124. Such an example shows that there is a
limit to which SORDID can preserve the initial layout when the
node shapes have a high aspect ratio. SORDID and SORDID’
drawings of b124 look similar in regard to that wide flat node
because the amplitude of that node’s movements are so high that it
is moved to its final position in very few iterations. Hence, even
though SORDID’ begins every new pass from the initial layout
node coordinates, its first few iterations consistently move the node
to this location. Then, it does not find a way to put it back closer to
its initial position because of the high amplitudes of the movements
it involves.

On mode, FORBID, SORDID and PRISM damaged the initial
layout to produce more compact embeddings. The other algorithms
preserved the initial layout structure. PFS’ and GTree layouts
are made of some orthogonally unpleasing parts as opposed to
FORBID’ and SORDID’ layouts that very well preserved the
initial layout structure. The same behavior can be observed on
xx, where FORBID, SORDID and PRISM produced compact
layouts, and GTree created some unnecessarily long edges. Finally,
on badvoro, we can clearly see the downside of producing very

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

unix
N = 41

b124
N = 79

mode
N = 213

xx
N = 302

badvoro
N = 1245

In
iti

al
PF

S’
G

Tr
ee

PR
IS

M
FO

R
B

ID
FO

R
B

ID
’

SO
R

D
ID

SO
R

D
ID

’

Fig. 14: Graph visualization of examples from the Graphviz dataset with rectangular node shapes. The images present the overlap-free
layouts of SORDID, FORBID and their prime variant, as well as PFS’, GTREE and PRISM. Nodes are colored in transparent red if they
overlap each other, and opaque blue otherwise.

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

unix b124 mode xx badvoro

D
ia

m
on

d
Sp

ad
e

M
ix

ed

Fig. 15: SORDID’ overlap-free layout examples from the Graphviz dataset with Diamond, Spade and Mixed shapes. In Mixed shapes
visualizations, the shapes used are Heart and Clover in addition to those presented in Figure 6.

compact layouts. PRISM overlap-free layout is so compact that it
becomes impossible to recognize the initial layout structures and
visualize the edges. GTree overlap-free layout has also severely
deteriorated the initial layout. The remaining algorithms produced
satisfactory results where the initial layout structures are preserved,
while maintaining some compactness.

In addition to graph visualization with nodes having a rect-
angular shape, Figure 15 presents some layouts of SORDID’
with Diamond, Spade and Mixed node shapes. In Mixed shape
visualizations, the shapes used are those presented in Figure 6 and
two others: Heart and Clover. These new shapes are built in the
same way as Spade, by connecting some points with discretized
circular arcs. These representations demonstrate the great capacity
of the shape-aware approach to leverage empty spaces that would
not be used by bounding-box approaches. We can even observe the
imbrications of nodes representations, especially on b124.

5.3 Limitations
Throughout the evaluation, we measured how the algorithms
presented in this article performed. However, some of their
behaviors could not be captured and are discussed in this section.

The first limitation concerns FORBID and SORDID algorithms.
In these variants, the algorithm begins every stress optimization
from the output of the previous pass. It means that the ideal
distances of a pass P are based on the node positions at the end
of the pass P− 1. This design allows the algorithm to move the
nodes more, and helps it to converge faster. On the other hand, it
means that the longer the algorithm takes to converge, the more it
will forget about the initial layout. At some point, the structures of
the initial layout could theoretically be completely lost. In addition,
even if a pass P in the stress optimization does not lead to an
overlap-free layout, the next pass P+1 will take the node positions
of that pass XP as the reference to compute the ideal distances. This
behavior could be prevented to improve the algorithm capability to
preserve the initial layout, but this is left for future works.

Another limitation concerning both FORBID and SORDID
comes from the stress optimization algorithm used [53]. What
makes this algorithm efficient is its principle of applying forces
independently between every pair of nodes. However, this principle
can create problematic behaviors. We believe that it is the source
of the bad placement of the “wide flat” node of SORDID and
SORDID’ observed on b124 in Figure 14, alongside their model
of ideal distances. This behavior is quite common with stress
optimization algorithms: an element is pushed far away from its
initial position because of a high repulsing force with a neighbor,
and it will never come back to its original position because of
other nodes’ repulsive forces. This pitfall is most likely accentuated
by handling pairs of nodes individually. To try another efficient
optimization algorithm is left for future works.

The last limitation we discuss concerns the heuristic encoded
within FORBID to obtain a compromise between Ccomp. and Clay.,
and that can be expressed as follows. Every pass in the stress
optimization algorithm has a budget of node movements: it can
move all pairs of nodes n iter times. If all overlaps are not removed
after this budget is consumed, we assume that too much movement
would be necessary to remove all overlaps and it would not comply
with Clay. criterion. Hence, a new pass is started in the algorithm,
changing the scale of the input layout. The issue is that this heuristic
is very dependant on some hyper-parameters such as the number
of iterations n iter, the weight factors of the distances to optimizes
(i.e., α and K, see Section 3), and even the upper bound and
the optimization strategy to find the optimal scale (here, binary
search). That is to say, the optimal compromise between Ccomp.
and Clay. criteria is only possible if the hyper-parameters provided
permit them; the algorithm itself hardly provides this guarantee.
Nevertheless, the parameters were fixed for all the samples in the
evaluations we conducted, and the algorithms demonstrated good
capabilities to produce satisfying overlap-free layouts for a large
variety of graphs.

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

6 CONCLUSION

This paper has presented FORBID, an Overlap Removal (OR)
algorithm that leverages upscaling and stress optimization by
simulated stochastic gradient descent to minimize deformations of
the initial layout. In addition, the article proposed SORDID, an
adaptation of FORBID to handle any polygonal node representation.
Both are based on the preservation of the scale and the node
pairwise distances to produce an overlap-free layout where the
the initial graph layout structures are preserved and the surface
used limited. The adaptation to polygonal nodes is achieved by
decomposing every polygon into triangles and processing nodes as
sets of triangles.

They were compared to a selection of state-of-the-art OR
algorithms. The evaluation demonstrates that FORBID is among
the best techniques to forbid overlaps while preserving the initial
layout and limiting the upscaling effect.

Despite their quadratic complexity, FORBID and SORDID
compete with the fastests methods of the literature, handling graphs
with up to a thousand nodes and/or ten thousands of overlaps in
less than 10 seconds. Nevertheless the PFS’ algorithm remains the
fastest by a significant margin compared to any other technique.

The main lead for future works is to improve the algorithm’s
complexity to better handle large graphs (e.g., up to tens of
thousands of nodes). The first idea to achieve this is to sub-
sample the pairs of nodes that must be processed to remove
overlaps. A multi-scale approach could enable to optimize the
preservation of the initial layout structures while sampling the
distances to preserve (i.e., preserve distances between-clusters and
within-cluster; ignore between nodes of different clusters). Finally,
with the recent advances in Deep Learning for graph drawing [23],
[51], training a Deep Learning model to solve the OR task could
be an interesting lead to investigate. By design, these models can
scale to large graphs as they are capable of solving the task they
have learned in almost constant time.

Another lead for future work is to optimize the optimal scaling
ratio alongside the node positions by stochastic gradient descent. In
our algorithms, the scaling ratio is set before the optimization of the
node movements because we build the ideal distances distribution
on the upscaled layout. Yet, it would be interesting to see if
we can reach better compromises between compactness and the
preservation of the initial layout by optimizing both the node
movements and the scaling ratio at the same time.

ACKNOWLEDGMENTS

This research was founded by the french ANR project InvolvD
OPE 2020-0425.

REFERENCES

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk.
SLIC superpixels compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence, 34(11):2274–
2282, 2012.

[2] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li. Multicriteria
Scalable Graph Drawing via Stochastic Gradient Descent, (SGD)2. IEEE
Transactions on Visualization and Computer Graphics, 28(6):2388–2399,
2022.

[3] R. Ahmed, F. D. Luca, S. Devkota, S. Kobourov, and M. Li. Graph
Drawing via Gradient Descent, (GD)2. In International Symposium on
Graph Drawing and Network Visualization, pp. 3–17. Springer, 2020.

[4] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309,
2011.

[6] U. Brandes and C. Pich. An experimental study on distance-based graph
drawing. In International Symposium on Graph Drawing, pp. 218–229.
Springer, 2008.

[7] F. Chen, L. Piccinini, P. Poncelet, and A. Sallaberry. Node overlap removal
algorithms: A comparative study. In International Symposium on Graph
Drawing and Network Visualization, pp. 179–192. Springer, 2019.

[8] F. Chen, L. Piccinini, P. Poncelet, and A. Sallaberry. Node Overlap
Removal Algorithms: an Extended Comparative Study. Journal of Graph
Algorithms and Applications, 24(4):683–706, 2020. doi: 10.7155/jgaa.
00532

[9] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014. doi: 10.1109/TVCG.2014.2346594

[10] X. Chen, T. Ge, J. Zhang, B. Chen, C.-W. Fu, O. Deussen, and Y. Wang.
A recursive subdivision technique for sampling multi-class scatterplots.
IEEE transactions on visualization and computer graphics, 26(1):729–738,
2019.

[11] X. Chen, J. Zhang, C.-W. Fu, J.-D. Fekete, and Y. Wang. Pyramid-based
Scatterplots Sampling for Progressive and Streaming Data Visualization.
IEEE Transactions on Visualization and Computer Graphics, 28(1):593–
603, 2022. doi: 10.1109/TVCG.2021.3114880

[12] W. J. Conover. Practical nonparametric statistics, vol. 350. john wiley &
sons, 1999.

[13] S. Devkota, R. Ahmed, F. De Luca, K. E. Isaacs, and S. Kobourov. Stress-
Plus-X (SPX) Graph Layout. In International Symposium on Graph
Drawing and Network Visualization, pp. 291–304. Springer, 2019. doi: 10
.1007/978-3-030-35802-0 23

[14] T. Dwyer. Scalable, versatile and simple constrained graph layout. In
Computer graphics forum, vol. 28, pp. 991–998. Wiley Online Library,
2009.

[15] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal.
In International Symposium on Graph Drawing, pp. 153–164. Springer,
2005.

[16] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap re-
moval—correction. In International Symposium on Graph Drawing,
pp. 446–447. Springer, 2006.

[17] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental
map of a diagram. Technical report, Technical Report IIAS-RR-91-16E,
Fujitsu Laboratories, 1991.

[18] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the american statistical
association, 32(200):675–701, 1937.

[19] E. Gansner and Y. Hu. Efficient, proximity-preserving node overlap
removal. Journal of Graph Algorithms and Applications, 14(1):53–74,
2010.

[20] E. R. Gansner and Y. Hu. Efficient node overlap removal using a proximity
stress model. In International Symposium on Graph Drawing, pp. 206–
217. Springer, 2008.

[21] E. R. Gansner and S. C. North. Improved Force-Directed Layouts. In
International Symposium on Graph Drawing, pp. 364–373. Springer, 1998.
doi: 10.1007/3-540-37623-2 28

[22] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software: practice and experience,
30(11):1203–1233, 2000.

[23] L. Giovannangeli, F. Lalanne, D. Auber, R. Giot, and R. Bourqui. Toward
Efficient Deep Learning for Graph Drawing (DL4GD). IEEE Transactions
on Visualization and Computer Graphics, 2022.

[24] L. Giovannangeli, F. Lalanne, R. Giot, and R. Bourqui. FORBID: Fast
Overlap Removal By stochastic gradIent Descent for Graph Drawing. In
International Symposium on Graph Drawing and Network Visualization,
pp. 61–76. Springer, 2022.

[25] L. Giovannangeli, F. Lalanne, R. Giot, and R. Bourqui. Guaranteed Visi-
bility in Scatterplots with Tolerance. IEEE Transactions on Visualization
and Computer Graphics, 30(1):792–802, 2024. doi: 10.1109/TVCG.2023.
3326596

[26] K. Gray, M. Li, R. Ahmed, M. K. Rahman, A. Azad, S. Kobourov,
and K. Börner. A Scalable Method for Readable Tree Layouts. IEEE
Transactions on Visualization and Computer Graphics, 2023. doi: 10.
1109/TVCG.2023.3274572

[27] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In International Symposium on Graph
Drawing, pp. 285–295. Springer, 2004.

https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.7155/jgaa.00532
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/978-3-030-35802-0_23
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1007/3-540-37623-2_28
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3326596
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572
https://doi.org/10.1109/TVCG.2023.3274572

FINAL ACCEPTED VERSION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

[28] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices. In
Proceedings of the Working Conference on Advanced Visual Interfaces,
pp. 157–166, 2002.

[29] K. Hayashi, M. Inoue, T. Masuzawa, and H. Fujiwara. A layout
adjustment problem for disjoint rectangles preserving orthogonal order.
In International Symposium on Graph Drawing, pp. 183–197. Springer,
1998.

[30] G. M. Hilasaca, W. E. Marcı́lio-Jr, D. M. Eler, R. M. Martins, and F. V.
Paulovich. Overlap Removal of Dimensionality Reduction Scatterplot
Layouts. arXiv preprint arXiv:1903.06262, 2019.

[31] G. M. Hilasaca and F. V. Paulovich. A visual approach for user-guided
feature fusion. In Anais Estendidos da XXXII Conference on Graphics,
Patterns and Images, pp. 133–139. SBC, 2019.

[32] Y. Hu. Efficient, high-quality force-directed graph drawing. Mathematica
journal, 10(1):37–71, 2005.

[33] X. Huang, W. Lai, A. Sajeev, and J. Gao. A new algorithm for
removing node overlapping in graph visualization. Information Sciences,
177(14):2821–2844, 2007.

[34] T. Jakobsen. Advanced character physics. In Game developers conference,
vol. 3, pp. 383–401. IO Interactive, Copenhagen Denmark, 2001.

[35] T. Kamada, S. Kawai, et al. An algorithm for drawing general undirected
graphs. Information processing letters, 31(1):7–15, 1989.

[36] T. Kamps, J. Kleinz, and J. Read. Constraint-based spring-model algorithm
for graph layout. In International Symposium on Graph Drawing, pp.
349–360. Springer, 1995.

[37] J. B. Kruskal and M. Wish. Multidimensional scaling, vol. 11. Sage,
1978.

[38] Z. Li, R. Shi, Y. Liu, S. Long, Z. Guo, S. Jia, and J. Zhang. Dual Space
Coupling Model Guided Overlap-Free Scatterplot. IEEE Transactions on
Visualization and Computer Graphics, 29(1):657–667, 2022.

[39] G. M. H. Mamani. A visual approach for user-guided feature fusion. PhD
thesis, Universidade de São Paulo.

[40] K. Marriott, P. Stuckey, V. Tam, and W. He. Removing Node Overlapping
in Graph Layout Using Constrained Optimization. Constraints, 8:143–171,
2003. doi: 10.1023/A:1022371615202

[41] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE transactions on visualization and computer graphics,
19(9):1526–1538, 2013.

[42] W. Meulemans. Efficient optimal overlap removal: Algorithms and
experiments. In Computer Graphics Forum, vol. 38, pp. 713–723. Wiley
Online Library, 2019.

[43] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages & Computing, 6(2):183–210,
1995.

[44] L. Nachmanson, A. Nocaj, S. Bereg, L. Zhang, and A. Holroyd. Node
overlap removal by growing a tree. In International Symposium on Graph
Drawing and Network Visualization, pp. 33–43. Springer, 2016.

[45] M. Ortmann, M. Klimenta, and U. Brandes. A sparse stress model. In
International Symposium on Graph Drawing and Network Visualization,
pp. 18–32. Springer, 2016.

[46] L. Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1):97–
108, 1989.

[47] H. C. Purchase. Experimental human-computer interaction: a practical
guide with visual examples. Cambridge University Press, 2012.

[48] H. Strobelt, M. Spicker, A. Stoffel, D. Keim, and O. Deussen. Rolled-
out Wordles: A Heuristic Method for Overlap Removal of 2D Data

Representatives. Computer Graphics Forum, 31(3):1135–1144, 2012. doi:
10.1111/j.1467-8659.2012.03106.x

[49] M. E. Tipping and C. M. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611–622, 1999.

[50] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of machine learning research, 9(11), 2008.

[51] X. Wang, K. Yen, Y. Hu, and H.-W. Shen. DeepGD: A Deep Learning
Framework for Graph Drawing Using GNN. IEEE Computer Graphics
and Applications, 41(5):32–44, 2021.

[52] Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a unified
framework for interactive constrained graph visualization. IEEE transac-
tions on visualization and computer graphics, 24(1):489–499, 2017.

[53] J. X. Zheng, S. Pawar, and D. F. Goodman. Graph drawing by stochastic
gradient descent. IEEE transactions on visualization and computer
graphics, 25(9):2738–2748, 2018.

Loann Giovannangeli is a PhD. student at
the LaBRI, University of Bordeaux, France. He
worked one year as a research engineer in the
LaBRI. He obtained his Master of Science degree
in 2019 from the University of Bordeaux. His re-
search interest include Information Visualization,
Machine Learning and especially the applications
of Artificial Intelligence for visualizations genera-
tion and evaluation.

Frederic Lalanne was graduated from Enseirb-
Matmeca in 2013 and joined the LaBRI, Univer-
sity of Bordeaux in 2014 where he has been work-
ing mostly on large data analysis, visualization
and LaBRI’s large data platform.

Romain Giot received his Ph.D. degree in bio-
metric authentication at the University of Caen
in 2012 and is an associate professor at the
University of Bordeaux in a big-data visualization
team since 2013. His researches are dedicated to
visualization, machine learning and their junction
in eXplainable AI (XAI). He co-authored dozens
of peer-reviewed papers and is involved in several
Program Committees.

Romain Bourqui received his Master and PhD
degrees in Computer Science from the University
Bordeaux I in 2005 and 2008. He has been an
associate professor at the University of Bordeaux
since 2009. His research interests include Infor-
mation Visualization, Large Data Visualization,
Explainable Machine Learning.

https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1023/A:1022371615202
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1111/j.1467-8659.2012.03106.x

	Introduction
	Related Works
	Motivation for Post-process Overlap Removal
	Post-Process Overlap Removal Algorithms
	Overlap Removal for other Criteria

	FORBID and SORDID Algorithms
	FORBID
	Stress Model for Overlap Removal
	Stress Optimization
	Optimal Scaling
	FORBID Algorithm and FORBID' Variant

	SORDID
	Node Shape Representation
	Overlap Detection Between Polygonal Nodes
	Ideal Distance and Movements

	Evaluation
	Evaluation protocol
	Baseline Algorithms
	Datasets
	Metrics
	Statistical Validation and Results Presentation

	Evaluation on Rectangular Nodes
	Performance on Generated
	Performance on Graphviz
	Synthesis on Rectangular Nodes

	Evaluation on Polygonal Nodes
	Execution Times

	Discussion
	Convergence Analysis
	Visual Evaluation
	Limitations

	Conclusion
	References
	Biographies
	Loann Giovannangeli
	Frederic Lalanne
	Romain Giot
	Romain Bourqui

