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Introduction and main results

Bulk-edge correspondence is a notion that arises in the study of certain condensed matter physics systems possessing non-trivial topology. It establishes a connection between the bulk properties of a material (its interior or bulk region) and its edge or boundary properties. This correspondence may be given through an equation that links a Chern number, that depends only on the bulk operator, and an expression involving the edge-states localized close to the boundary; eventually yielding the so-called topological quantization of edge currents [START_REF] Kellendonk | Quantization of edge currents for continuous magnetic operators[END_REF]. Due to the integer (or topological) nature of the Chern number these relations are very stable under smooth changes of the material parameters and therefore its importance for potential applications. In this context, Dirac Hamiltonians are prominent examples that exhibit interesting phenomena. They are used to model various materials, among them, graphene and topological insulators [START_REF] Mong | Edge states and the bulk-boundary correspondence in Dirac Hamiltonians[END_REF].

In this article we investigate the bulk-edge correspondence for a two-dimensional Dirac Hamiltonian with a constant magnetic field defined on a half-plane. This model was recently considered in [START_REF] Cornean | Bulk-edge correspondence for unbounded Dirac-Landau operators[END_REF], where bulk-edge correspondence was shown to hold, provided infinite-mass boundary conditions along the edge are imposed. Our motivation is to investigate the validity of these results when any fixed admissible local boundary condition is allowed. To this end we define a family of Dirac Hamiltonians D γ , where γ P R Y t`8u characterizes the boundary conditions, in particular, γ " ˘1 corresponds to infinite mass.

Our main result Theorem 1.2 indicates that bulk-edge correspondence for this model still holds, provided the boundary conditions are not zigzag (i.e. γ R t0, `8u). Moreover, Theorem 1.2 shows that this correspondence is violated for certain energies when zigzag boundary conditions are imposed. In order to show Theorem 1.2 certain knowledge on the energy dispersion curves associated to D γ is helpful. In this work we present a fairly detailed analysis of them extending the results of [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF] to any local boundary condition. We complement our analysis with numerical illustrations of the energy dispersion curves for different values of the boundary parameter and the magnetic field.

Let us now turn to define our model. We consider a magnetic Dirac system on the half-plane denoted by R 2

`" tpx 1 , x 2 q P R 2 : x 2 ą 0u in the presence of an orthogonal magnetic field whose component in the x 3 direction is given by b P Rzt0u. The corresponding Hamiltonian acts on functions in L 2 pR 2 `, C 2 q as σ ¨p´i∇ ´Aq "

ˆ0 ´iB 1 ´B2 `bx 2 ´iB 1 `B2 `bx 2 0 ˙. (1.1) 
Here A refers to a vector potential associated with the magnetic field i.e. rotA " be 3 . We choose A " p´bx 2 , 0q .

We recall that

σ 1 " ˆ0 1 1 0 ˙, σ 2 " ˆ0 ´i i 0 ˙, σ 3 " ˆ1 0 0 ´1˙.
The study of the magnetic Dirac operator on the half-plane with infinite mass boundary conditions was recently carried forward in [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]. Here we consider general local conditions at the edge interpolating between zigzag and infinite mass. More precisely: Let γ P R Y t`8u, then we consider the self-adjoint realization D γ " D γ pbq acting as (1.1) on a subset of functions ψ " pψ 1 , ψ 2 q P L 2 pR 2 `, C 2 q satisfying, for all

x 1 P R, # ψ 2 px 1 , 0q " γψ 1 px 1 , 0q if γ P R , ψ 1 px 1 , 0q " 0 if γ " `8 . (1.
2)

The two cases γ P t0, `8u are called zigzag, while γ " ˘1 corresponds to infinite mass boundary conditions (see Remark 1.3 bellow).

Remark 1.1. The domains of self-adjointness of the operators D γ are already known: See [3, Section 1C] for the zigzag cases and [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]Theorem 1.15] for the infinite mass; the latter result can be easily adapted for the non-zigzag cases. For the essential self-adjointness of D γ on the class of Schwartz functions with infinite mass boundary conditions see [START_REF] Cornean | Bulk-edge correspondence for unbounded Dirac-Landau operators[END_REF]Proposition 1.1], and for the general case see [START_REF] Barbaroux | Bulk-edge correspondence[END_REF].

We denote by X 1 the operator of multiplication with x 1 , and by J 1 the current density operator, we have

J 1 " ´irD γ , X 1 s " ´σ1 .
Recall that the Landau Hamiltonian D bulk pbq acts on the whole plane as in (1.1) and its spectrum consists of the Landau levels given by t˘a2n|b|, n P N 0 u.

We say that F : R Ñ R is equal to a P R near x 0 P R if there exists an open interval I around x 0 where F pxq " a, x P I, holds.

Our main result is the following.

Theorem 1.2. Let b ą 0 and let χ " 1 p0,1q be the indicator function of the interval p0, 1q. Let γ P R Y t`8u. Let F P C 2 0 pRq be such that it equals 1 near n ě 1 Landau levels, and 0 near the others. Then, the operator χpX 1 qJ 1 F 1 pD γ q is trace class and the edge Hall conductance is given by

2πTr `χpX 1 qJ 1 F 1 pD γ q ˘" $ ' & ' %
n ´1 if γ " 0 and F equals 1 near 0 , n `1 if γ " `8 and F equals 1 near 0 , n otherwise .

(1.3)

Comments:

(1) The fact that the left hand side of this formula can be interpreted as an edge conductance is explained for instance in [START_REF] Elbau | Equality of bulk and edge Hall conductance revisited[END_REF]. (2) Let us make the connection with the bulk-edge correspondence. Let F and n be as in Theorem 1.2 and define the orthogonal projection P n " F pD bulk pbqq.

In our case, P n contains exactly n bulk Landau levels and one can show that its Chern number equals n, which encapsulates the non-trivial topology of the bulk projection (see e.g. [START_REF] Cornean | Bulk-edge correspondence for unbounded Dirac-Landau operators[END_REF]). On the other hand, since F 1 equals 0 near the Landau levels, F 1 pD γ q only selects edge-states. (3) If b ă 0, the Chern number of P n becomes ´n, and the right hand side of formula (1.3) must be multiplied by ´1. (4) Our third alternative in (1.3) indicates that the bulk-edge correspondence should hold for all non-zigzag conditions, a result which in our case is confirmed by brute force, i.e. by direct computation and comparison with the bulk Chern number. The general proof of this fact, under more general conditions than purely constant magnetic field, will be considered in [START_REF] Barbaroux | Bulk-edge correspondence[END_REF]. At least for γ " 1, this has been shown to be the case [START_REF] Cornean | Bulk-edge correspondence for unbounded Dirac-Landau operators[END_REF]; for Schrödinger-like operators see [START_REF] Cornean | General bulk-edge correspondence at positive temperature[END_REF]. (5) If we work with zigzag boundary conditions, and if the zero-energy bulk Landau level belongs to the projection P n , then one of the first two alternatives in (1.3) occurs. Thus the bulk-edge correspondence does not hold in this case. Such an anomaly has been previously observed in other continuous models such as shallow-water waves [START_REF] Graf | Topology in shallow-water waves: a violation of bulk-edge correspondence[END_REF][START_REF] Tauber | Anomalous bulk-edge correspondence in continuous media[END_REF], and for "regularized" non-magnetic Dirac-like operators [START_REF] Tauber | Anomalous bulk-edge correspondence in continuous media[END_REF]. The latter are in fact second order differential operators, with boundary conditions that are incompatible with first-order self-adjoint differential operators. where η P " ´π 2 , 3π 2 ˘(see e.g. [START_REF] Berry | Neutrino billiards: time-reversal symmetry-breaking without magnetic fields[END_REF] and [START_REF] Benguria | Self-Adjointness of Two-Dimensional Dirac Operators on Domains[END_REF][START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]). In the present situation, we have n " ´e2 and thus pσ 1 cos η `σ3 sin ηqψ " ψ , on BR 2 `.

We obtain (1.2) by setting γ " cos η 1`sin η " tan `π 4 ´η 2 ˘with the convention γ " `8 in the case η " ´π{2 i.e. ψ 1 " 0 on BR 2 `.

1.1. The energy dispersion curves. Our proof of Theorem 1.2 requires certain knowledge on the energy dispersion curves and their corresponding eigenfunctions. In what follows we present a description of these curves for different values of the boundary parameter γ. The main technical issue here is the lack of semi-boundedness of D γ . This can however be treated using appropriate variational methods [START_REF] Griesemer | A minimax principle for the eigenvalues in spectral gaps[END_REF][START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF][START_REF] Schimmer | Friedrichs extension and min-max principle for operators with a gap[END_REF]; we follow the approach proposed in [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]. Before presenting our main results in this context we establish the basic framework.

1.1.1. Setting. In view of the translation invariance in the x 1 -direction, we may use the partial Fourier transform to represent D γ pbq as a family of fiber operators D γ,ξ pbq " D γ,ξ , with ξ P R. Indeed, we have (see e.g. [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF])

D γ " ż ' R D γ,ξ dξ ,
where the 1d magnetic Dirac operator D γ,ξ acts as

ˆ0 d ξ pbq d : ξ pbq 0 ˙" ˆ0 d ξ d : ξ 0 ˙,
with d ξ " ξ ´B2 `bx 2 and d : ξ " ξ `B2 `bx 2 . Its domain is given for γ R t0, `8u as DompD γ,ξ q " tψ P H 1 pR `, C 2 q : x 2 ψ P L 2 pR `q and ψ 2 p0q " γψ 1 p0qu .

(1.4)

As for the zigzag cases, by denoting

B 1 pR `q " tψ P H 1 pR `, C 2 q : x 2 ψ P L 2 pR `qu
we have DompD 0,ξ q " tu P L 2 pR `q : d : ξ u P L 2 pR `qu ˆH1 0 pR `q X B 1 pR `q , DompD 8,ξ q " H 1 0 pR `q X B 1 pR `q ˆtu P L 2 pR `q : d ξ u P L 2 pR `qu . We have that (cf. [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]), for any γ P R Y t`8u and ξ P R, the operator D γ,ξ is self-adjoint and has compact resolvent (for γ " t0, `8u it follows directly from the compact embedding of H 1 in L 2 ). We write the spectrum of D γ,ξ as the set t´ϑ j pγ, ξq : j P Nu Y tϑ j pγ, ξq : j P Nu such that . . . ď ´ϑ2 pγ, ξq ď ´ϑ1 pγ, ξq ă 0 ď ϑ 1 pγ, ξq ď ϑ 2 pγ, ξq ď . . .

(1.5)

For a given boundary condition γ P R Y t`8u the map R Q ξ Þ Ñ ϑ n pγ, ξq defines the energy dispersion relation.

The following two propositions are shown in Section 3.1.

Proposition 1.4. Let γ P R Y t`8u , ξ P R, b " 0. We have (i) For all n ě 1, the eigenvalues ϑ n pγ, ξq are simple.

(ii) For all n ě 1, ξ Þ Ñ ϑ n pγ, ξq and γ Þ Ñ ϑ n pγ, ξq are real-analytic.

(iii) 0 belongs to the spectrum of D γ,ξ iff γ " 0, in case b ą 0, or γ " `8, in case b ă 0 .

In order to study the zigzag case we introduce further the 1d fibers of a magnetic Dirichlet Pauli operator H ξ pbq for b ą 0. It acts as ´B2

2 `pξ `bx 2 q 2 `b , with DompH ξ pbqq " tψ P H 2 pR `; Cq : x 2 2 ψ P L 2 pR `q , ψp0q " 0u . It is well-known [START_REF] De Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF] that H ξ pbq is self-adjoint with compact resolvent and that its spectrum consists on simple eigenvalues pν Dir n pb, ξqq nPN with 2b ă ν Dir 1 pb, ξq ă ν Dir 2 pb, ξq ă . . . . The following statements are well-known (see [START_REF] Schmidt | A remark on boundary value problems for the Dirac operator[END_REF] and [START_REF] Barbaroux | On the semiclassical spectrum of the Dirichlet-Pauli operator[END_REF][START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]). We specialize in the case b ą 0 since otherwise one can use the charge conjugation symmetry described in Remark 1.9 below. Proposition 1.5. Consider the case γ P t0, `8u. Then, for all ξ P R and b " 0, the spectrum of D γ,ξ is symmetric with respect to 0. Moreover, for b ą 0, we have ν Dir n pb, ξq " `8 .

Figures 1a and 1b

give the dispersion curves of the zigzag Dirac operators and on the left of each figure, their spectrum. All illustrations presented in this article are obtained thanks to standard finite difference schemes, inverse power and Newton-like methods.

1.1.2. Main results for the energy dispersion curves. In view of the symmetry it is enough to consider the cases of positive magnetic field and non-negative boundary parameter i.e. the case pb, γq P p0, `8q ˆr0, `8s (see Remark 1.9).

The following theorem gives a description of the dispersion curves when γ P p0, `8q and generalizes the result obtained in [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF] for γ " 1.

Theorem 1.7. Let γ P p0, `8q, ξ P R, b ą 0. The spectrum of D γ,ξ pbq can be described as follows. Let n ě 1.

(i) The function ϑ ǹ pγ, ¨q is increasing and Figure 2 gives the dispersion curves of the infinite mass Dirac magnetic operator with a special focus on the global maxima of the negative dispersion curves. Here a 0 P p0, ? 2q, was introduced in [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF], it is the minimum of ϑ 1 p1, ¨q, i.e., it is the size of the spectral gap of the Dirac operator with infinite mass boundary condition. The spectral gap of D γ as a function of γ can be read off from Figure 3. Our next result describes the dispersion curves as functions of γ and their zigzag limits.

lim ξÑ´8 ϑ ǹ pγ,
Theorem 1.8. Let b ą 0. The families of functions r0, `8q Q γ Þ Ñ ϑ ǹ pγ, ¨q and r0, `8q Q γ Þ Ñ ´ϑń pγ, ¨q are increasing with γ. Moreover, for all n ě 1 and all ξ P R, we have

lim γÑ0 ϑ n pγ, ξq " ϑ n p0, ξq , lim γÑ`8
ϑ n pγ, ξq " ϑ n p`8, ξq .

In Figure 5 we present various pictures of the dispersion curves with varying γ P p0, `8q. Moreover, Figure 6 illustrates the action of the symmetries, described in the following. Remark 1.9 (Symmetries). In view of the underlying symmetries it is enough to study the dispersion curves when pb, γq P p0, `8q ˆr0, `8s. Indeed, in order to also consider γ ă 0, we notice that Moreover, for b ă 0 we used the charge conjugation Cψ " σ 1 ψ which turns the boundary conditions into ψ 2 " γ ´1ψ 1 and hence

σ 3 D γ pbq " ´D´γ pbqσ 3 .
CD γ pbq " ´Dγ ´1 p´bq C .
For the fiber operators this leads to:

CD γ,ξ pbq " ´Dγ ´1,´ξ p´bq C , σ 3 D γ,ξ pbq " ´D´γ,ξ pbq σ 3 .

(1.7)

In particular, we obtain the dispersion curves when b ă 0 from the curves when b ą 0 by changing γ into γ ´1 and ξ into ´ξ. Organization of this article. In Section 2 we prove Theorem 1.2. Sections 3, 4, and 5 are devoted to the description of the energy dispersion relations ϑ n pγ, ξq. In Section 3 we prove Propositions 1.4 and 1.5. In addition, we state in Theorem 3.5 a fixed-point characterization of ϑ n pγ, ξq in terms of a family `νn pα, ξq ˘αą0 of the eigenvalues of certain magnetic Schrödinger-like operators with Robin boundary conditions. We give a proof of this characterization in Section 5. In Section 4 we investigate the fundamental mapping properties of ν n pα, ξq for α ą 0 and ξ P R. Finally, in Section 5, we apply Theorem 3.5, together with the analysis of Section 4, to prove Theorems 1.7 and 1.8.

Edge conductance formula

In this section we prove Theorem 1.2. In doing so we use various results on the energy dispersion curves which are stated in Section 1.1 and proved in the next sections.

We let, for all j ě 1,

λ j pξq " ϑ j pγ, ξq ,
and, for all j ď ´1, λ j pξq " ´ϑj pγ, ξq .

Let pΨ ξ,j q ξPR be an analytic family of normalized eigenfunctions of D γ,ξ associated with λ j pξq (see Proposition 1.4).

In view of the asymptotic behavior of λ j pξq as ξ Ñ ˘8 -stated in Theorem 1.7 (for the non-zigzag case) and Proposition 1.5 and Remark 1.6 (for the zigzag case) -the proof of Theorem 1.2 reduces to showing the following result.

Proposition 2.1. We let χ " 1 p0,1q and consider γ P R Y t`8u. Let us consider a function f P C 1 0 pRq being zero near the Landau levels. Then, the operator χpX 1 qσ 1 f pD γ q is trace class and there exists a finite J Ă Zzt0u such that

2πTr `χpX 1 qσ 1 f pD γ q ˘" ÿ jPJ ż R f pλ j pξqqλ 1 j pξqdξ .
In particular, if n P N and F P C 2 0 pRq equals 1 near n Landau levels and 0 near the others, we have ´2iπTr pχpX 1 qrD γ , X 1 sF 1 pD γ qq " ÿ jPJ ´F `λj p´8q ˘´F `λj p`8q ˘¯.

(2.1)

Let us first state two useful elementary results. The first one is a direct consequence of Proposition 1.4 and Theorem 1.7.

Lemma 2.2. Let us consider a function f P C 0 pRq being zero near the Landau levels t˘?2n , n P Nu. Then, there exists a finite J Ă Zzt0u such that for all k R J, f ˝λk " 0 and for all j P J, the functions ξ Þ Ñ f pλ j pξqq have compact supports.

The following result might be elementary. We give its proof for the reader's convenience. Proof. The integral in (2.2) can be seen as a limit of a Riemann sum T n , which a priori only converges in the operator norm topology. The integrand is a rank-one trace class operator, with a trace norm which is uniformly bounded in ξ on ra, bs.

Hence, the trace norm of the T n 's is uniformly bounded in n. By Lemma A.1 from the Appendix we see that T , which a priori is only a compact operator, is actually trace class. Let tf j u jě1 be any orthonormal system. Then for all N ě 1 we have

N ÿ j"1 xf j , T f j y " ż b a N ÿ j"1 xf j , ψpξqy xϕpξq, f j y dξ. (2.4) 
Using Cauchy-Schwarz and Bessel inequalities we get for every N : 

3). □

Proof of Proposition 2.1. Let us first investigate the integral kernel of f pD γ q for some f P C 1 0 pRq. We can write ´f pD γ qψ ¯pxq " ż

R 2 `Kf px, x 1 qψpx 1 qdx 1 , with K f px, x 1 q " 1 2π ż R dξe ipx 1 ´x1 1 qξ k f pξ, x 2 , x 1 2 q ,
where k f pξ, x 2 , x 1 2 q " ÿ jPJ f pλ j pξqq ˇˇΨ ξ,j px 2 q D @ Ψ ξ,j px 1 2 q ˇˇ, and J Ă Zzt0u is the finite set from Lemma 2.2. The technical issue here is that, even if we multiply by χ " χpX 1 q from the left we can not directly apply Lemma 2.3 since the function px 1 , x 2 q Þ Ñ e ix 1 ξ Ψ ξ,j px 2 q is not square integrable on R 2 `. However, we observe that

σ 1 χf pD γ q " σ 1 χp1`iX 1 qf pD γ qp1`iX 1 q ´1 `σ1 χp1`iX 1 q " p1`iX 1 q ´1, f pD γ q ‰ . (2.5)
The first operator above can be written as

σ 1 χp1 `iX 1 qf pD γ qp1 `iX 1 q ´1 " 1 2π ÿ jPJ ż R f pλ j pξqq ˇˇp1 `iX 1 qχ e iX 1 ξ Ψ ξ,j D @ p1 ´iX 1 q ´1 e iX 1 ξ Ψ ξ,j ˇˇdξ . (2.6)
The second operator has a commutator term r¨, ¨s which can be explicitly computed using the following identity: We get, by doing partial integration,

2π K f px, x 1 q `1 `i x 1 1 ˘" ż R ξ dξ ´p1 `ix 1 ´Bξ q e ipx 1 ´x1 1 qξ ¯kf pξ, x 2 , x 1 2 q " 2π `1 `i x 1 ˘Kf px, x 1 q `żR dξ e ipx 1 ´x1 1 qξ B ξ k f pξ, x 2 , x 1 2 q .
Therefore, we get as operators on L 2 pR 2 `q

σ 1 χp1 `iX 1 q " p1 `iX 1 q ´1, f pD γ q ‰ " 1 2π ÿ jPJ ż R f 1 pλ j pξqq λ 1 j pξq ˇˇσ 1 χ e iX 1 ξ Ψ ξ,j D @ p1 ´iX 1 q ´1 e iX 1 ξ Ψ ξ,j ˇˇdξ `1 2π ÿ jPJ ż R f pλ j pξqq ˇˇσ 1 χ e iX 1 ξ `Bξ Ψ ξ,j ˘D @ p1 ´iX 1 q ´1 e iX 1 ξ Ψ ξ,j ˇˇdξ `1 2π ÿ jPJ ż R
f pλ j pξqq ˇˇσ 1 χ e iX 1 ξ Ψ ξ,j D @ p1 ´iX 1 q ´1 e iX 1 ξ `Bξ Ψ ξ,j ˘ˇd ξ .

(

Notice that thanks to Lemma 2.2 the integrals above take place on a finite interval. Therefore, each of the four terms appearing in (2.6) and (2.7) can be seen as Bochner integrals involving rank one operators in L 2 pR 2 `q whose trace is uniformly bounded on compact sets. Hence, Lemma 2.3 can be applied to each of the terms involved in (2.5). In particular, as a finite sum of trace class operators, σ 1 χf pD γ q is trace class. A quick computation using Lemma 2.3 for each term in (2.7) gives

Tr ´σ1 χp1 `iX 1 q " p1 `iX 1 q ´1, f pD γ q ‰ " 1 2π ÿ jPJ ż R B ξ ´f pλ j pξqq @ σ 1 χΨ ξ,j , p1 ´iX 1 q ´1 Ψ ξ,j D ¯dξ " 0 ,
where in the last step we used that the term B ξ p. . . q has compact support in ξ. Thus, we get

Tr `χσ 1 f pD γ q ˘" Tr `σ1 χp1 `iX 1 qf pD γ qp1 `iX 1 q ´1" 1 2π ÿ jPJ ż R f pλ j pξqq xσ 1 Ψ ξ,j , Ψ ξ,j y L 2 pR `,C 2 q dξ .
Now the conclusion follows since xσ 1 Ψ ξ,j , Ψ ξ,j y L 2 pR `,C 2 q " xB ξ pD γ,ξ qΨ ξ,j , Ψ ξ,j y L 2 pR `,C 2 q which, by the Feynman-Hellmann theorem, equals λ 1 j pξq. In particular, we get (2.1) by writing F 1 " f and integrating in ξ. □

Energy dispersion curves

We start this section by showing Propositions 1.4 and 1.5. They state the basic properties of the solutions of the eigenvalue problem, for ξ P R and pb, γq P p0, `8qr 0, `8s D γ,ξ u " λu .

(3.1)

We show that these solutions are related to a Schrödinger-like problem with Robin boundary conditions. For zigzag boundary conditions this property is already clear from Proposition 1.5. For γ P p0, `8q we establish this relation in Lemma 3.4 below. Moreover, we present in Theorem 3.5 a characterization of the eigenvalues ϑ n pγ, ξq in terms of a fixed-point problem that runs along a family of eigenvalues `ν˘p α, ξq ˘αą0 of certain Schrödinger-like operators.

3.1. Preliminaries. Let us investigate some preliminary facts. (Throughout this paragraph we assume b ą 0.) The eigenvalue equation (3.1) can be rewritten as

d : ξ u 1 " λu 2 , d ξ u 2 " λu 1 . Then, we have d ξ d : ξ u 1 " λ 2 u 1 and d : ξ d ξ u 2 " λ 2 u 2 .
Moreover, from the classical theory of ODEs, we see that u 1 and u 2 are smooth on r0, `8q. Since u 2 p0q " γu 1 p0q (or u 1 p0q " 0 when γ " `8) we obtain Robin-type boundary conditions for u 1 and u 2 , separately. Thus, (3.1) implies From the standard theory of initial value problems, we see that u j belongs to a space of dimension at most 1. Therefore, dim ker `Dγ,ξ ´λ˘ď 1. This proves the simplicity of the non-zero eigenvalues.

d ξ d : ξ u 1 " λ 2 u 1 `d : ξ u 1 p0q " γλu 1 p0q ˘, (3.2) 
d : ξ d ξ u 2 " λ 2 u 2 `dξ u 2 p0q " λ γ u 2 p0q ˘. ( 3 
Let us now discuss the existence of zero modes. For λ " 0, we have d ξ u 2 " 0 so that u 2 is proportional to e 1 2b pξ`bx 2 q 2 , which is not in L 2 pR `q implying that u 2 " 0 holds. Moreover, we also check that γu 1 p0q " 0. Using d : ξ u 1 " 0 we see that u 1 is proportional to e ´1 2b pξ`bx 2 q 2 , which belongs to L 2 pR `q but it does not vanish at x 2 " 0. Therefore, we find that u 1 " 0 unless γ " 0.

The family pD γ,ξ q ξPR being analytic of type pAq (in the Kato sense, see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]), the simplicity of the eigenvalues implies their analyticity. □

Next we discuss the zigzag operators i.e. the cases γ P t0, `8u.

Proof of Proposition 1.5. The fact that the eigenvalues are symmetric with respect to zero follows from (1.7), hence, we may look at the non-negative ones only.

Let us consider the case γ " 0 i.e. u 2 p0q " 0. As we have just seen, we have a zero mode and, with our convention, we have ϑ 1 p0, ξq " 0. Let us describe the non-zero eigenvalues. Let λ be a positive eigenvalue and u a corresponding eigenfunction. In view of (3.2), we see that u 2 cannot be 0 and it is an eigenfunction of

d : ξ d ξ " ´B2 2 `pξ `bx 2 q 2 `b ,
and for u ˘P Domph α,ξ q

h ὰ,ξ u `" d ξ d : ξ u `, d : ξ u `p0q " αu `p0q , (3.5) 
h ά,ξ u ´" d : ξ d ξ u ´, d ξ u ´p0q " ´αu ´p0q . (3.6) 
Remark 3.3. Integration by parts yields q b,α,ξ puq " }u 1 } 2 `}pξ `bx 2 qu} 2 ´b}u} 2 `pα ´ξqu 2 p0q , q b,α,ξ puq " }u 1 } 2 `}pξ `bx 2 qu} 2 `b}u} 2 `pα `ξqu 2 p0q .

We also observe that q b,α,ξ " q `b,α,´ξ ,

which reflects the first relation in (1.7). In what follows, we drop the reference to b in the notation.

In relation to our problem we see that, for u " pu 1 , u 2 q an eigenfunction of D γ,ξ , we have q λγ,ξ pu 1 q " xu 1 , d ξ d : ξ u 1 y " λ 2 }u 1 } 2 , for λ ą 0 and, q ´λγ ´1,ξ pu 2 q " xu 2 , d : ξ d ξ u 2 y " λ 2 }u 2 } 2 , for λ ă 0 . Next, we describe a bijection existing between the kernels of D γ,ξ ´λ and h γλ,ξ ´λ2 provided γλ ą 0. If γλ ă 0 analogous statements can be obtained for h ´λ{γ,ξ ´λ2 . The following lemma is a straightforward adaptation of [3, Proposition 2.9]. We recall its proof for the convenience of the reader and we emphasize that it does not require sign assumptions on b and γ. Lemma 3.4. Let pb, γq P R 2 , ξ P R. Then, for any λ P Rzt0u with γλ ą 0, the map

J : kerph γλ,ξ ´λ2 q Q u Þ Ñ pu, λ ´1d :
ξ uq P kerpD γ,ξ ´λq is well-defined and it is an isomorphism.

Proof. First, let u P kerph γλ,ξ ´λ2 q and v P DompD γ,ξ ´λq. We have xJ puq, pD γ,ξ ´λqvy " xu, d ξ v 2 ´λv 1 y `λ´1 xd : ξ u, d : ξ v 1 ´λv 2 y , so that, by integrating by parts, xJ puq, pD γ,ξ ´λqvy " λ ´1pq γλ,ξ pu, v 1 q ´λ2 xu, v 1 yq " 0 , where we used that u P kerph γλ,ξ ´λ2 q. Thus, J is well defined. It is also injective from the very definition. For the surjectivity, we consider pu 1 , u 2 q P kerpD γ,ξ ´λq. We have d ξ u 2 " λu 1 , d : ξ u 1 " λu 2 . We only have to check that u 1 P kerph γλ,ξ ´λ2 q. Take v P B 1 pR `q and notice that q γλ,ξ pu 1 , vq ´λ2 xu 1 , vy " xd : ξ u 1 , d : ξ vy `γλu 1 p0qvp0q ´λ2 xu 1 , vy " λxu 2 , d : ξ vy `γλu 1 p0qvp0q ´λ2 xu 1 , vy " λxd ξ u 2 , vy ´λ2 xu 1 , vy " 0 . This finishes the proof. □

Let us now turn to the characterization. Since the family pq α,ξ q pα,ξqPR `ˆR is analytic on the common domain B 1 pR `q the eigenvalues of h α,ξ (which are all simple) are also real analytic with respect to α and to ξ. We denote them by ν n pα, ξq so that 0 ď ν 1 pα, ξq ă ν 2 pα, ξq ă . . . The proof of this theorem uses Lemma 3.4 and requires the analysis of the auxiliary quadratic forms performed in Section 4; we postpone it to Section 5.

The auxiliary quadratic forms

In this section we perform a detailed study of the auxiliary quadratic forms from Definition 3.4. We restrict the analysis to the case in which pb, γq P p0, `8qˆp0, `8q.

For α ą 0 and ξ P R consider the eigenvalue problems (recall Remark 3.2)

h α,ξ u α,ξ " ν ˘pα, ξqu α,ξ . (4.1) 
Most of the following results can be traced back to [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF] (notice, however, the different convention for q ά,ξ ). For the sake of completeness we present a concise argument.

4.1. Study of α Þ Ñ ν n pα, ξq.

Lemma 4.1. Let ν ˘pα, ξq be an eigenvalue as in (4.1). Then, the function α Þ Ñ ν ˘pα, ξq is increasing and

B α ν ˘pα, ξq " pu α,ξ p0qq 2 ą 0 . (4.2) 
Proof. We only argue for the `case. To simplify notation, we denote the corresponding normalized solution of (4.1) as u p" u ὰ,ξ q and we drop the reference to ξ and α when not relevant. Let us first observe that for any smooth function g on r0, 8q we have, integrating by parts, xu, pdd : ´νqgy " xd : u, d : gy `up0qpd : gqp0q ´νxu, gy " up0qpd : gqp0q ´pd : uqp0qgp0q .

(4.3)
In view of the smoothness of u with respect to α and x, we see that d : B α u " d : B α u. Hence, since d : up0q " αup0q, we get that pd : B α uqp0q " up0q `αB α up0q .

(4.4)

Taking derivative with respect to α in the eigenvalue equation we get pdd : ´νqB α u " pB α νqu .

After multiplying by u and integrating we use (4.3) to get B α ν " xu, dd : B α uy ´νxu, B α uy " up0qpd : B α uqp0q ´pd : uqp0qpB α uqp0q .

The conclusion follows using (3.5) Proof. The proof is similar to that of Lemma 4.2. We have q 0,ξ puq " }d : ξ u} 2 . In particular, 0 is an eigenvalue associated with x 2 Þ Ñ e ´1 b pξ`bx 2 q 2 . So, ν 1 p0, ξq " 0. Then, let us consider a positive eigenvalue ν. We have In addition, if ξ α is a critical point of ξ Þ Ñ νpα, ξq, we have

d ξ d : ξ u " νu , d : ξ up0q " 0 . This implies that d : ξ d ξ v " νv , with v " d : ξ u ‰ 0 ,
B 2 ξ ν ˘pα, ξ α q " ¯α 2 b pu α,ξ p0qq 2 . (4.10)
In particular, ν ˘pα, ¨q has at most one critical point. This critical point can only be a local maximum for ν `pα, ¨q and a local minimum for ν

´.

Proof. We give again the proof only for the `case. We use the notation from the proof of the previous Lemma 4. In addition, integrating by parts and using (4.1), we calculate

xu, 2pξ `btquy " 1 b ż R `uptq 2 B t pξ `btq 2 dt " ´ξ2 b up0q 2 ´2 b ż R `u1 ptqpξ `btq 2 uptq dt " ´ξ2 b up0q 2 ´2 b ż R `u1 ptqpν `b `B2 t quptq dt " ´ξ2 b up0q 2 ´1 b ż R
`Bt rppν `bquptq 2 `u1 ptq 2 qs dt . Using that u 1 p0q " pα ´ξqup0q we readily obtain (4.9). Hence, if a critical point ξ α exists, it satisfies ν `pα, ξ α q `α2 ´2αξ α " 0. Taking the derivative of (4.9) with respect to ξ and evaluating at ξ α we obtain (4.10).

□

With the help of the perturbation theory, we get the following (see [START_REF] Barbaroux | On the Dirac bag model in strong magnetic fields[END_REF]Lemma 4.14]). This allows us to show the following.

Lemma 4.6. The function ν `pα, ¨q has no critical points. Moreover, ν ´pα, ¨q has a unique critical point, which is a global minimum.

Proof. Since ν `pα, ¨q ą 0, from (4.9) we see that it is increasing on p´8, 0q. If it has a (unique) critical point for some ξ α ą 0, it must be a non-degenerate global maximum. This contradicts the limit at ξ " `8, hence ν `pα, ¨q is increasing on R. Now assume that ν ´pα, ¨q does not have critical points. From (4.9) we must have ν ´pα, ξq `α2 `2αξ ă 0 for all ξ (since it is the case for ξ Ñ ´8). But this would imply that ν ´pα, ¨q is decreasing on R, which contradicts its limit at ξ Ñ `8. □

Proofs for the energy dispersion curves

In this section we start by proving the characterization described in Theorem 3.5. Next, we apply that result to show Theorems 1.7 and 1.8.

Proof of Theorem 3.5. It is enough to deal with the positive eigenvalues of D γ,ξ pbq. Indeed, due to the charge conjugation (1.7), ϑ ń pγ, ξq is the n-th positive eigenvalue of D γ ´1,´ξ p´bq. Thus, if the characterization (3.9) is established, ϑ ń pγ, ξq is the unique positive solution of ν ǹ p´b, γ ´1λ, ´ξq " λ 2 or equivalently of (3.10) (here we use (3.8)).

Let us now prove that (3.9) has exactly one positive solution. Remember that γ ą 0. We let f pλq " ν ǹ pγλ, ξq ´λ2 , and notice that lim λÑ`8 f pλq " ´8, f p0q ě 0, and f 1 p0q ą 0 (see (4.2)). Thus (3.9) has at least one positive solution. If E is such a solution, we have f pEq " 0 and we notice that f 1 pEq " γB α ν ǹ pγE, ξq ´2E " γ ru γE,ξ p0qs 2 ´2E . To get the sign of f 1 pEq, we consider the polynomial of degree two given by P pλq " q γλ,ξ pu γE,ξ q ´λ2 . Because P p0q ě 0, P p´8q " ´8, and P pEq " f pEq " 0 with E ą 0, the polynomial must have two roots of opposite sign. Thus, f 1 pEq " P 1 pEq ă 0. This shows that (3.9) has at most one positive solution and thus exactly one, which is denoted by E n pγ, ξq.

In fact, pE n q ně1 is increasing. Indeed, 0 " ν ǹ`1 pγE n`1 , ξq ´E2 n`1 ą ν ǹ pγE n`1 , ξq ´E2 n`1 " f pE n`1 q, which implies that E n ă E n`1 .

For all n ě 1, due to Lemma 3.4, E n pγ, ξq is a positive eigenvalue of D γ,ξ . This tells us that A : N ˚Q n Þ Ñ E n pγ, ξq P specpD γ,ξ q X R ìs well-defined (and it is injective). We now show that the map is surjective. For all n ě 1, Lemma 3.4 implies that h γϑ ǹ pγ,ξq,ξ ´pϑ ǹ pγ, ξqq 2 has a non-zero kernel. This means that, for some m ě 1, we have ν mpγϑ ǹ pγ, ξq, ξq " pϑ ǹ pγ, ξqq 2 , and thus ϑ ǹ pγ, ξq " E m pγ, ξq. This implies that A is bijective, hence E n pγ, ξq " ϑ ǹ pγ, ξq for all n ě 1. □ 5.1. Proof of Theorems 1.7 and 1.8. In what follows, in order to ease the readability, we drop the reference to the index n in the notation. In view of Theorem 3.5 we have ν `pγϑ `, ξq " pϑ `q2 and, due to the analyticity and the chain rule, the derivative with respect to ξ gives (with α " γϑ `q pγB α ν `pγϑ `, ξq ´2ϑ `qB ξ ϑ ``B ξ ν `pγϑ `, ξq " 0 ,

and differentiating with respect to γ yields: pγB α ν `pγϑ `, ξq ´2ϑ `qB γ ϑ ``B α ν `pγϑ `, ξqϑ `" 0 .

(5.2)

We saw in the proof of Theorem 3.5 that γB α ν `pγϑ `, ξq ´2ϑ `ă 0 .

In the `case, we see that ϑ `pγ, ¨q has no critical points and is increasing. We also see that γ Þ Ñ ϑ `pγ, ξq is increasing (by using (4.2)), which proves the monotonicity in γ of ϑ `announced in Theorem 1.8. In the ´case, by performing the same derivatives on (3.10), we have pγ ´1B α ν ´pγ ´1ϑ ´, ξq ´2ϑ ´qB ξ ϑ ´`B ξ ν ´pγ ´1ϑ ´, ξq " 0 , (5.3) and pγ ´1B α ν ´pγ ´1ϑ ´, ξq ´2ϑ ´qB γ ϑ ´´γ ´2B α ν ´pγ ´1ϑ ´, ξqϑ ´" 0 .

(5.4)

Remark 1 . 3 (

 13 On the boundary condition). General local boundary conditions for Dirac operators are usually written as p´iσ 3 pσ ¨nq cos η `σ3 sin ηqψ " ψ, on BR 2 `,

ϑCase γ " 8 :

 8 ǹ p`8, ξq " a ν Dir n pb, ξq ´2b pn ě 1q , ϑ 1 p0, ξq " 0, and ϑ ǹ p0, ξq " b ν Dir n´1 pb, ξq pn ě 2q . Case γ " 0: Here 0 is an eigenvalue of D γ Here 0 is not an eigenvalue. Dashed lines correspond to the Landau levels of the bulk operator.

Figure 1 .

 1 Figure 1. Dispersion curves for the zigzag boundary conditions

Figure 2 .

 2 Figure 2. The dispersion curves of D γ,ξ for γ " b " 1

Figure 3 .

 3 Figure 3. The value of the maximal negative energy of the full operator as a function of γ for b " 1.

cFigure 4 .

 4 Figure 4. The location of the critical point of the first negative dispersion curve for b " 1. The red bullet refers to γ " 1.

Figure 5 .

 5 Figure 5. The dispersion curves for b " 1 and various γ

Figure 6 .

 6 Figure 6. Action of the symmetries on the dispersion curves.

Lemma 2 . 3 . 2 )

 232 Consider an operator T on L 2 pR 2 `q given as a Bochner integral (on a finite interval) of a continuous family of rank one operators T " Assume further that the trace norm }ψpξq} }ϕpξq} of the above integrand is uniformly bounded on ra, bs. Then, T is trace class and TrpT q "

  j , ϕpξqy| 2 ď }ψpξq} }ϕpξq}. By Lebesgue's dominated convergence theorem we can take N Ñ 8 in (2.4) to get(2.

. 3 )

 3 Proof of Proposition 1.4. Let us consider the eigenvalue equations (3.2) and (3.3).

  The following result completely characterizes positive and negative eigenvalues of D γ,ξ in terms of α Þ Ñ ν n pα, ξq. Recall the notation in (1.5).Theorem 3.5. Let b ‰ 0 and γ P p0, `8q. The equationν ǹ pγλ, ξq " λ 2 (3.9)has a unique positive solution λ " ϑ ǹ pγ, ξq. Moreover, the equationν ń pγ ´1λ, ξq " λ 2 (3.10)has a unique positive solution λ " ϑ ń pγ, ξq.

Lemma 4 . 5 . 8 ν 8 ν

 4588 We have lim ξÑ´8 ν ǹ pα, ξq " p2n ´2qb , lim ξÑ`ǹ pα, ξq " `8 , and lim ξÑ´8 ν ń pα, ξq " 2nb , lim ξÑ`ń pα, ξq " `8 .

  The argument to show the limit in (4.8) follows the same lines as the proof of (4.6).

and vp0q " 0 . Conversely, if v is an eigenfunction of the Dirichlet realization of d : ξ d ξ with eigenvalue ν, we have d ξ d : ξ u " νu , with u " d ξ v , and d : ξ up0q " 0 . □ 4.2. Study of ξ Þ Ñ ν n pα, ξq. Lemma 4.4. Let ν ˘pα, ξq be an eigenvalue as in (4.1). Then, we have B ξ ν ˘pα, ξq " 1 b `ν˘p α, ξq `α2 ¯2αξ ˘pu α,ξ p0qq 2 . (4.9)

  1. (We also replace x 2 by t in the notation.) Observe that since B ξ d : u " d : B ξ u `u, we get pd : B ξ uqp0q " αpB ξ uqp0q ´up0q .

	(4.11)
	By differentiating (4.1) with respect to ξ we get

pdd : ´νqB ξ u " rB ξ ν ´2pξ `btqsu .

Hence, (4.3) and (4.11) yield

B ξ ν " xu, 2pξ `btquy ´up0q 2 .

(4.12)
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with Dirichlet condition. In particular, λ 2 belongs to the spectrum of d : ξ d ξ with Dirichlet condition. Conversely, if µ ą 0 is an eigenvalue of this operator, we write d : ξ d ξ v " µv with vp0q " 0 and we let u " µ ´1 2 d ξ v p‰ 0q and we have d : ξ u " ? µv , d ξ v " ? µu , vp0q " 0 , which means that ? µ is an eigenvalue of D 0,ξ . The case γ " `8 is quite similar although we have no zero modes. Now, u 1 is an eigenfunction (with eigenvalue λ 2 ) of

ξ " ´B2 2 `pξ `bx 2 q 2 ´b , with Dirichlet condition. Conversely, consider an eigenvalue µ ą 0 of this operator. Proceeding as before, we write d ξ d : ξ u " µu with up0q " 0 and let v " µ ´1 2 d : ξ u p‰ 0q to get that ? µ is an eigenvalue of D 8,ξ . □

3.2.

A characterization of the eigenvalues for the non-zigzag case. We consider γ P p0, `8q. Let λ ‰ 0 be an eigenvalue of D γ,ξ pbq. Multiplying (3.2) by u 1 and integrating by parts yields

. Moreover, proceeding analogously for the second component in (3.3) we get

. This suggests to introduce the following family of quadratic forms. Definition 3.1. Let α ą 0. We define the auxiliary quadratic forms, for u P B 1 pR `q, as q b,α,ξ puq " }d : ξ u} 2 `αu 2 p0q , q b,α,ξ puq " }d ξ u} 2 `αu 2 p0q .

(3.4)

They are both non-negative and closed. We denote by h α,ξ the corresponding selfadjoint Schrödinger operators.

Remark 3.2. By Friedrichs' extension theorem we have that Domph α,ξ q Ă B 1 pR

Proof. The first equality follows by analyticity. Then, we have q 0,ξ puq " }d ξ u} 2 . The corresponding operator h 0,ξ has no zero mode. Now, if ν is a positive eigenvalue, we have d : ξ d ξ u " νu , d ξ up0q " 0 . Letting v " d ξ u, we get d ξ d : ξ v " νv with vp0q " 0. This shows that ν belongs to the spectrum of the Dirichlet realization of

ξ associated with the eigenfunction v, we have

We can check that u ‰ 0 (unless v " 0). Thus, ν belongs to the spectrum of the operator h 0,ξ .

When α Ñ `8, we are in a singular regime. By using that H 1 0 pR `q X B 1 pR `q Ă B 1 pR `q and the min-max principle, we see that

We notice that, for all u P E n pα, ξq, pα `ξqu 2 p0q ď q ά,ξ puq ď ν ń pα, ξq}u} 2 ď ν Dir n pb, ξq}u} 2 , so that, for α large enough, u 2 p0q ď ν Dir n pb, ξq α `ξ }u} 2 " Opα ´1q}u} 2 . Then, we also notice that }u 1 } 2 `}pξ `bx 2 qu} 2 `b}u} 2 ď q ά,ξ puq ď ν Dir n pb, ξq}u} 2 . Let us consider a smooth cutoff function χ with compact support equal to 1 near 0. The function ũpx 2 q " upx 2 q ´up0qχpx 2 q satisfies the Dirichlet boundary condition. We notice that p1 ´Cα ´1 2 q}u} ď }ũ} ď p1 `Cα ´1 2 q}u} . This tells us that, when u runs over E n pα, ξq, ũ also runs over a space of dimension n.

In the same way, we get

We deduce that

Using the min-max principle, we infer that ν Dir n pb, ξq ď p1 `Cα ´1 2 qν ń pα, ξq , and the result follows.

□

We still have γ ´1B α ν ´pγ ´1ϑ ´, ξq´2ϑ ´ă 0. In particular, γ Þ Ñ ϑ ´pγ, ξq is decreasing. If ξ γ is a critical point of ϑ ´pγ, ¨q, then we have B ξ ν ´pγ ´1ϑ ´pγ, ξ γ q, ξ γ q " 0 .

Remark 5.1. We recall Lemma 4.4 and we have ν ´pα, ξ γ q `α2 `2αξ γ " 0 , with α " γ ´1ϑ ´pγ, ξ γ q .

Hence, ϑ ´pγ, ξ γ q " ´2γ γ 2 `1 ξ γ and ξ γ " ξ α by the uniqueness of the critical point.

Being a non-degenerate minimum, it is necessary that B 2 ξ ν ´pγ ´1ϑ ´pγ, ξ γ q, ξ γ q ą 0 and, by taking one more derivative in ξ of (5.3), we see that B 2 ξ ϑ ´pγ, ξ γ q ą 0. Therefore, all the critical points of ϑ ´pγ, ¨q are local non-degenerate minima and thus there is at most one such point. If there is no critical point, we have, for all ξ, B ξ ϑ ´pγ, ξq " C ´p1 `γ´2 qϑ ´pγ, ξq `2γ ´1ξ ¯‰ 0 , C ą 0.

Let us assume for the moment that (1.6) is true; we will prove that later on. If ξ is sufficiently negative, then the left-hand side of the above expression is negative, so it must remain negative for all ξ. This implies that ϑ ´pγ, ξq must be bounded from above, contradicting the limit ξ Ñ `8 in (1.6). This ends the analysis of critical points announced in Theorem 1.7.

It remains to explain why (1.6) holds. We only consider the limit ξ Ñ ´8. We recall Lemma 4.5. Let us fix ε ą 0 and define λ 1 " ? 2nb ´ε and λ 2 " ? 2nb `ε. Then there exists ξpϵq ă 0 such that for all ξ ă ξpϵq we have ν ´pγ ´1λ 1 , ξq ´λ2 1 ą 0 and ν ´pγ ´1λ 2 , ξq ´λ2 2 ă 0. This implies that λ 1 ă ϑ ´pγ, ξq ă λ 2 , @ξ ă ξpϵq.

The limit ξ Ñ `8 can be analyzed similarly (as well as the limits for the ϑ `). This ends the proof of Theorem 1.7.

It remains to discuss the limits in Theorem 1.8. Let us consider ϑ ǹ pγ, ξq. Take ε ą 0 and λ " ϑ n p0, ξq ´ε (for n ě 2). We have ν `pγλ, ξq ´λ2 ą 0 for γ small enough since ν `p0, ξq " pϑ `p0, ξqq 2 . Thus, ϑ `p0, ξq ´ε ă ϑ `pγ, ξq. In the same way, we get ϑ `pγ, ξq ă ϑ `p0, ξq `ε. This proves the first limit in Theorem 1.8. Next, we consider the limit γ Ñ `8. We take λ " ϑ `p`8, ξq ´ε. We have ν `pγλ, ξq ´λ2 ą 0 for γ large enough since ν `p`8, ξq " pϑ `p`8, ξqq 2 . Thus, ϑ `p`8, ξq ´ε ă ϑ `pγ, ξq. We easily get the upper bound ϑ `pγ, ξq ă ϑ `p`8, ξq `ε. The case of ϑ ´pγ, ξq is similar.

Appendix A. Lemma on trace class operators

Lemma A.1. Let tT n u ně1 be a sequence of trace class operators on some separable Hilbert space, having the property that their trace norms are uniformly bounded, i.e. sup ně1 }T n } 1 " c ă 8. Assume that T n converges to T in the operator norm topology. Then T is trace class.

Proof. Since the T n 's are compact operators, T is also compact and admits a singular value decomposition (SVD), i.e. there exist two orthonormal systems tf j u jě1 and tg j u jě1 , together with a set of non-increasing singular values s j ě 0 such that

T is trace class if ř jě1 s j ă 8. We will show that for every N ě 1 we have ř Email address: stock@fis.puc.cl