
HAL Id: hal-04404876
https://hal.science/hal-04404876

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Fly Plane Detection and Time Consistency for
Indoor Building Wall Recognition Using a Tablet

Equipped With a Depth Sensor
Adrien Arnaud, Michèle Gouiffès, Mehdi Ammi

To cite this version:
Adrien Arnaud, Michèle Gouiffès, Mehdi Ammi. On the Fly Plane Detection and Time Consistency
for Indoor Building Wall Recognition Using a Tablet Equipped With a Depth Sensor. IEEE Access,
2018, 6, pp.17643 - 17652. �10.1109/access.2018.2817838�. �hal-04404876�

https://hal.science/hal-04404876
https://hal.archives-ouvertes.fr

Received January 24, 2018, accepted March 13, 2018, date of publication March 21, 2018, date of current version April 23, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2817838

On the Fly Plane Detection and Time Consistency
for Indoor Building Wall Recognition Using a
Tablet Equipped With a Depth Sensor
ADRIEN ARNAUD , MICHÈLE GOUIFFÈS, AND MEHDI AMMI
LIMSI-CNRS, Universitè Paris-Saclay, F-91405 Orsay, France

Corresponding author: Adrien Arnaud (adrien.arnaud@limsi.fr)

ABSTRACT This paper presents an on the fly planar segmentation algorithm that runs on a tablet equipped
with a depth sensor andwhich uses amotion tracking algorithm.Our algorithm segments each incoming point
cloud from the depth sensor and it then updates a global model containing all of the previously identified
planes. Consequently, identical planes are identified in successive frames. We use a fast segmentation
algorithm that generates and merges smaller intermediate clusters to identify all of the planes contained in
the incoming point cloud. We then give each plane a unique ID by computing an histogram of its parameters.
These IDs are used as a key for storage in a hash map. Identifying similar planes in different frames will
enable us to update the plane’s borders and will serve to identify the walls of an indoor scene. Our algorithm
enables us to perform a 3-D planar segmentation of a point cloud that is issued from a depth sensor in less than
200 ms. Moreover, we are able to estimate the maximal size of a roomwith a mean error inferior at 10%. This
will serve as a basis to develop a 3-D reconstruction algorithm that can automatically generate, in real time
a 3-D editable model of an existing building. The generated 3-D model will contain the principal structural
elements (i.e., walls, doors, and windows) of the building. This algorithm has a a number of applications,
from simple 3-D modeling to building energetic performance assessment.

INDEX TERMS Computer vision, mobile devices, planes detection, time consistency.

I. INTRODUCTION
The digital mockup of buildings (or BIM: Building Infor-
mation Modeling [1]) has become a key element of the
lifecycle of buildings. This includes all of the related infor-
mation, from the design to the management of the build-
ings. Recently, BIM has became the norm in the industry
and it is particularly suited for energetic renovation works.
While a BIM model is made at the conception stage for
newer buildings, it also has to be done for old buildings
for which construction plans have not been kept. However,
generating a 3D model of a building can become a fastid-
ious task to perform when manually making the measure-
ments. Consequently, the 3D modeling process tends to be
automatized.

Professional solutions already allow us to perform a 3D
scan of an existing indoor building environment, such as
DotProduct’s DPI-8 scanner1 and FARO’s Focus 3D series

1http://www.dotproduct3d.com/DPI8.php

of sensors.2 Highly accurate point clouds of an existing
indoor building environment can be generated with these
tools. These point clouds can then be processed to extract the
building’s geometry, which can then be enhanced to generate
a complete BIM mockup.

Previous works have already studied the automation of
BIM mockup generation from an indoor building point cloud
[2], [3]. However, the process is partially automatic and only
the principal edges of the building are detected to simplify the
modeling process. These solutions rely on professional tools
that are not affordable for small companies or individuals.
Moreover, constructing a highly accurate 3D model often
takes a lot of time. For some applications, there is no need
for a highly detailed 3D model and only the main structural
elements (i.e., walls, windows, and doors) are needed, such as
for the energetic performance evaluation of a building or to
take measurements to do subsequent works.

2http://www.faro.com/en-us/products/3d-surveying/faro-
focus3d/overview

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17643

https://orcid.org/0000-0003-3159-414X

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

The development of more affordable depth sensors, such
as the Microsoft Kinect, allows the modeling of smaller
scale buildings at a lower cost. Depth sensors are now even
available on tablets, such as Apple’s StructureSensor,3 Stere-
olabs’s Zed sensor,4 and the Google Tango project.5

Our work focuses on using a tablet equipped with a depth
sensor to generate a 3D editable model of an existing indoor
environment. Our basic approach consists in generating a
3D mesh of the building in real time. This approach has
been developed using a Kinect sensor [4], [5] and it has
been adapted with a tablet [6], [7]. A 3D segmentation of
the generated mesh can then be performed to identify the
structure of the building. This approach has been investigated
in [8]. Unfortunately, in this previous study, to make the 3D
mesh generation run in real time, the accuracy of the mesh
generation had to be reduced, which affects the results of the
post-processing. Moreover, the identification of the openings
is limited because these are viewed as empty rectangular
shapes on a wall, which cannot be discriminated clearly
enough in some scenarios.

From this observation, our reflection has turned to a new
methodology which, instead of generating a 3D mesh and
then using it to identify the structural elements, performs the
identification on the fly from the rough data provided by the
device. We can use all of the information available from the
tablet’s sensors, including the depth map, pose estimation,
and the full RGB image. To make this work, the different
structural elements observed by the tablet have to be identi-
fied in each frame and then matched to previously identified
structural elements. This approach has two advantages: first,
a larger amount of information is available to distinguish
the structural elements; and second, the storage of a heavy
3D mesh is no longer required, which saves precious time
and memory resources. The following reasonable assumption
is made to simplify the analysis: the walls are planar and
orthogonal to the ground.

This paper presents the first step of our 3D modeling
algorithm. The algorithm performs a real-time planar seg-
mentation of a 3D point cloudwhich runs on a tablet equipped
with a depth sensor and it then simultaneously matches cor-
responding planes between successive frames. A user simply
scans an existing indoor building environment (see Fig.1) and
a list of all the planes contained in the building is generated.
This algorithm relies on a quick planar segmentation and it
uses a histogram to conduct noise resistant planes estimation.
It is able to perform the planes detection for a frame in less
than 200ms and it reaches a precision of around 10% in
placing the planes. In this study, this algorithm will serve as
a basis for detecting walls on the fly.

Th rest of this paper is organized as follows. A review of
previous studies is made in Section II. Our algorithm is then
described in Section III. Finally, the implementation of the

3https://structure.io/
4https://www.stereolabs.com/zed/
5https://developers.google.com/tango/

FIGURE 1. Our algorithm works on a tablet equiped with a depth sensor.
Users can scan an existing environment, and at each frame, the input
point cloud (a) is segmented into a set of small clusters (b), and these
clusters are merged (c). Similar planes through different frames are
merged so it is possible to extract the building’s geometry (d).

tablet is discussed in IV and an evaluation is carried out in
SectionV.

II. RELATED WORKS
The following review focuses on the two main issues
addressed by our algorithm, namely the planes detection in
a 3D point cloud and the alignment of data from different
frames.

A. PLANAR SEGMENTATION
Planar segmentation is often performed by finding the normal
vectors at each point. The normal vectors estimation requires
that the k-nearest neighbours (KNN) are known for each
point. Many solutions exist to find the KNN of a 2D point,
such as [9]–[13], but this is immediate when using an ordered
point cloud, such as when using structured light sensors. Oth-
erwise, a k-nearest neighbours or a triangulation algorithm
have to be used. The main approaches to compute the nor-
mals of a cloud are averaging based methods and optimiza-
tion based methods [14], [15]. With the averaging methods,
the normal for a point is estimated using weightedmeans; see,
for example, [16]–[18]. Optimization based methods mainly
exploit SVD methods [19], [20] over the KNN of a point to
find the statistically best normal for this point. This results in
highly accurate results [15].

Although planes can be detected using a 3D generalization
of the Hough transform [21], [22], such as in [23], this

17644 VOLUME 6, 2018

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

method is costly in terms of computation time and it can
provide a poor precision. Alternatively, a basic approach to
perform a 3D segmentation of a point cloud consists in using
a RANSAC algorithm [24]–[26]. A first planar model is fitted
to the input point cloud and this method is then recursively
applied to the remaining points. RANSAC algorithms are
easy to implement but can lead to wrong results when the
parameters are not correctly set. Tarsha-Kurdi et al. [27]
suggest that RANSAC ismore accurate and faster thanHough
transforms.

Holz et al. [28] perform a planar segmentation by first
achieving a segmentation of the normals space and then
doing a refinement to distinguish the parallel planes. The
authors then used these results to detect obstacles and
graspable objects in a scene, with a detection rate of up
to 90%.

To accelerate the normals space segmentation, the task
can be divided into smaller segmentation tasks by divid-
ing the space into seed points and adapting the superpixels
technique [29]. Erdogan et al. [30] achieve a planar segmen-
tation of a depth map issued from a Kinect sensor. They gen-
erate superpixels and then merge them into the final planes
by using Barbu et al.’s [31] generalization of the Swendsen-
Wang sampler [32]. Papon et al. [33] define the supervoxels
algorithm, based on the superpixels technique [29], which is
adapted to perform a planar segmentation of a point cloud.
The cloud is divided into seed voxels and 3D clusters are
generated around these seeds by adding points considered
as similar. Similarity between two points depends on their
normal, their spatial position, and their color. The type of
segmentation can be chosen by adjusting the algorithm’s
parameters.

B. TIME CONSISTENCY
Time consistency consists in identifying similar areas in
RGB-D data taken at different times or points of view. Being
able to identify similar regions can either serve to correct pose
estimations, or it can identify shapes or similar objects in a
3D set.

This task is often performed by finding key points in
the data set and then computing local features around these
points, which are scale, translation, and rotation independent.
These features convey information about the geometry of the
neighborhood of the key point, such as the normal vectors
and the curvature. Popular 3D feature algorithms extend well
known 2D image processing feature algorithms, such as SIFT
[34], [35], the Harris corner detector [36], [37] or SURF [38].
Although the Harris detector provides transformation invari-
ant features, the are not scale invariant. SIFT features provide
scale invariant features by using local gradient histograms.
SURF features provide transformation and scale invariant
features, and they are fast to compute. Flint et al. [39] extend
the 3D SIFT and SURF features, and create the THIRFT
features. These features use the normal vectors computed at
different scales to produce scale and transformation invariant
histograms. A more complete list of 3D point features can

be found in [40]. Features histograms have been shown to be
resistant to translations, rotations, and noise.

Our analysis of the previous studies shows that a super-
pixels algorithm is the best option to perform a real time
planar segmentation with a tablet. Indeed, the normals can
easily be computed using an average based method when
the point cloud is ordered and can easily be vectorized.
A rough planar segmentation can be performed because our
work focuses on the detection of walls, which are large
planes. Histograms of the planes’ attributes can be suffi-
cient to identify the same planes in different frames. In fact,
the planes’ attributes depend on their normal vector and
distance from the origin. The use of an external motion track-
ing algorithm ensures that we have transformation invariant
plane parameters that are sufficient descriptors for a plane
object.

III. ON THE FLY PLANE DETECTION
This section details our plane detection algorithm. It is based
on the hypothesis that we are scanning an indoor building
environment and that the building structure is aligned with a
Manhattan grid [41]. The plane detection is performed on the
fly by exploiting the latest complete RGB-D information that
is available from the camera and the depth sensor. Given that
RGB-D data can be easily ordered if we know the sensor’s
intrinsic parameters, the complexity of the different algo-
rithms can be significantly simplified. With these consider-
ations, and by optimizing the code for the target architecture,
we are able to perform plane and wall recognition in less
than 200ms. Although our algorithm runs fully on the device’s
CPU, some parts can easily be implemented on the GPU of a
compatible device.

A. OVERVIEW
Our algorithm processes each incoming point cloud in three
main steps. First, different maps are computed using the
RGB-D data, which includes an XYZ map, a color map,
a normal map, an edge map, and a D-map. When speaking
about a map, we mean that each point feature (position, color,
normal, on an edge or not) is indexed with a (u, v) couple
of coordinates. With this, we can instantly get the nearest
neighbors of a given feature. The resolution of each map is
the same; that is, the resolution of the depth sensor. Several
different maps, as detailed in III-B, are used as parameters
for the plane detection algorithm. These maps are then used
to compute the planes contained on the current point cloud.
The plane detection is performed in two steps. The space is
first divided into smaller regions and an algorithm similar to
superpixels [33] is used to generate multiple clusters. These
clusters are then merged to obtain the final planes. The whole
process is detailed in III-C and the different steps are depicted
in Fig.2. The detected planes are then used to update the list of
all of the previously detected planes; this process is detailed
in III-D. Fig.3 shows the different modules that are used in
our algorithm and their order of computation.

VOLUME 6, 2018 17645

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

FIGURE 2. An example of input data with the resulting planar segmentation. All the data are ordered in the 2D space, that avoid the use of
k-nearest neighbours algorithms. (a) Colored point cloud. (b) Computed normals map. (c) Computed edges map. (d) Generated clusters. (e)
Final planes.

FIGURE 3. Overview of the segmentation algorithm.

B. DATA ACQUISITION
Our algorithm requires a depth map, the associated RGB
frame, and a pose estimation of the device. RGB-D data
are used to generate the different input maps and the pose
estimation is used to estimate the different planes parameters
in an absolute reference frame so that we can merge them
with the planes that were previously detected. In order to
keep reasonable computation time, the depth image can be
downsampled, especially when there is no available GPU.
The downsapling of the input depth map has no effect on the
algorithm accuracy since it focuses on large planar surfaces
detection. To reduce the amount of noise, a Gaussian filter is
applied to the input depth map.

1) NORMAL ESTIMATION
Normal vectors are estimated using a sliding window algo-
rithm that browses the depth map depth_map. The fact that
the points are ordered avoids the need to use a k-nearest
neighbors search algorithm and we can easily compute the
neighborhood of each point of the map with a given radius
window_width.

For each pixel Px(u, v) of map coordinates, we define a
windowW by :

W =
{
px(u, v) ∈ D_map,

|u− U | ≤ window_width
|v− V | ≤ window_width

}
(1)

W is divided into four quadrants, NW ,NE, SW , SE as
illustrated in Fig:5. For each Px ∈ Qi, where i ∈
{NW ,NE, SW , SE}, we compute the vector

−→
Vi for each Qi

defined by :

−→
Vi =

∑
p∈Ni
−−−−−−−−−→
depth_map(p)

|Ni|
(2)

where |.| denotes the cardinality. Then, the normal vector
−→
N

for the point at depth_map(Px) is defined by:

−→
N =

(
−→
VSE −

−−→
VNW) ∧ (

−−→
VNE −

−−→
VSW)

‖ (
−→
VSE −

−−→
VNW) ∧ (

−−→
VNE −

−−→
VSW) ‖

(3)

Although the use of a large window improves the normal
estimation accuracy for planar areas, it also increases the
computation times and the inaccuracies on the corner points
by smoothing the normal estimation. To avoid this, we use a
small windowwidth and apply a Gaussian filter on the normal
map to reduce the noise. Fig. 9b shows an example of normal
map computed with our algorithm.

2) ESTIMATION OF THE EDGE MAP
Given that the segmentation algorithm that we use is a region
growing algorithm, we compute an edge map to improve the
segmentation. Therefore, it constrains the region on some
borders and avoids some region ‘‘leaks’’. Although we can
use both the depth map edges or the color image edges, in our
implementation we used the color camera edges because our
depth map was not continuous. Edge detection is made using
a Canny edges detection [42]. The edges are stored in a byte

17646 VOLUME 6, 2018

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

FIGURE 4. Some examples of the planes detection algorithm applied on different areas. From left to right : RGB images, map of the normals,
generated clusters, and final planes.

FIGURE 5. Example of a sliding window with a size of 5. The four
quadrants are identified by North West (NW), South West (SW), North
East (NE) and South East (SE).

map, where each byte is set to 0 if the point indexed by (u, v) is
supposed to be on an edge, and it is 0 elsewhere. An example
of the edges computed is shown in Fig.9h.

3) D-MAP COMPUTING
The D-map is constructed by computing for each point
P(x, y, z) the d parameter of the plane passing by P and

verifying nxx + nyy + nzz + d = 0, where −→n (nx , ny, nz)
represents the unitary normal vector computed at this point.
The D-value of each point P of the RGB-D data set is then
defined by :

d = −(nxx + nyy+ nzz). (4)

This D-map is used in combination with the normal and the
depth map to perform the planar segmentation. Each d value
is computed to avoid the need to recompute them during the
plane detection phase.

C. PLANAR SEGMENTATION
Our point descriptor is defined as a vector that embeds the
spatial, normal, and d information computed for a point,
and also a weight which indicates the confidence given
to the descriptor. The planar segmentation uses a set of
point descriptors as an input and it returns a set of clus-
ters defined by a set of clusters defined by a structure
superpixels_cluster_t . This structure contains two vectors:
the actual plane parameters and the list of the point descrip-
tors belonging to this plane.

When a point descriptor is used as an input, the weight
values are set as 1. When a cluster has to be updated,
its descriptor weight is updated whenever a new point is
added to this cluster. The cluster’s references are supposed to

VOLUME 6, 2018 17647

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

represent the parameters of the plane containing the cluster’s
points.

The algorithm performs a planar segmentation of the input
descriptors in two steps. The points descriptors map is first
divided into a grid of seed descriptors and a subset of clusters
is generated around each seed descriptor, as depicted in Fig.6.
These clusters are then merged to generate the final segmen-
tation. This method is similar to the supervoxels method [33].
Examples of planar detection performed with our algorithm
are shown in Fig.4.

FIGURE 6. Clusters generation process : a grid of seed points is applied on
the point descriptors map, with a fixed interval. The algorithm processes
line by line: it selects the next available seed point (a), and generates a
cluster with the neighbour points in a given max radius (in red) having
the same characteristics (b). Then the next non observed seed point is
used to generate the next cluster (c), each point already placed in a
cluster is ignored, and the spreading stops if an edge is detected (d).

1) CLUSTER GENERATION
Algorithm 1 shows how a point descriptorP at the index (u, v)
can be added to a cluster . Because a descriptor can belong to
only one cluster at one time, a Boolean map is used. There-
fore, we used the noted seenmap, which contains true if the
descriptor at any index (u, v) has been already integrated. Let
Pref be the descriptor of cluster . If P has not been previously
added, then if cluster is empty, we initialize it with P. Other-
wise, we compute the distance dist(P,Pref) as the Euclidean
distance between the four parameters: nx , nx , nx , d . If the
distance is inferior to an ε value, then Pref is updated with P
by adding (u, v) to the cluster’s indices list and then updating
its reference. Let α be a real number. Then, we compute :

α =

1 if δ > 1
|P.d − Pref .d |
|Pref .d |

otherwise
(5)

Let ω be the weight of Pref , then we update Pref with :

Pref ←
ωPref + αP
α + ω

(6)

Algorithm 1 Cluster Generation
1: P← features.at(u, v)
2: if seen(u, v) then
3: return
4: end if
5: if cluster .size = 0 then
6: seen(u, v)← true
7: Pref ← P
8: cluster .indices.add(u, v)
9: else
10: d ← superpixels_dist(P,Pref)
11: if d ≤ ε then
12: seen(u, v)← true
13: update_reference(Pref ,P)
14: cluster .indices.add(u, v)
15: end if
16: end if
17: if depth < DEPTH_MAX then
18: for (u′, v′) ∈ neighborhood(u, v) do
19: add_point(u′, v′, cluster, depth+ 1)
20: end for
21: end if

and then

ω = α + ω (7)

If the algorithm is recursively applied to the neighbour
descriptors of P, it stops when a descriptor is not inte-
grated or when the maximum recursive depth DEPTH_MAX
has been reached. This process is depicted in Fig.6.

Algorithm 2 Fusion of Clusters
1: merged ← ∅
2: planes← ∅
3: for base ∈ clusters, base /∈ merged do
4: plane← base
5: for c ∈ clusters, c /∈ merged, c 6= base do
6: if dist(c.ref , base.ref) ≤ ε then
7: plane+ = c

8: plane.ref ←
ωref plane.ref + ωcc.ref

ωref + ωc
9: ωplane← ωref + ωc
10: merged+ = c
11: end if
12: end for
13: planes+ = plane
14: end for

2) PLANE GENERATION
Algorithm 2 describes the merging process of the clusters
that were previously detected. Once again, the Euclidean
distance is computed between the different clusters. If two
clusters are considered to be similar, then they are merged

17648 VOLUME 6, 2018

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

FIGURE 7. Time consistency: simular planes have the same color through different frames.

FIGURE 8. Planes storage mechanism : for each identified plane,
we compute an histogram for each of its parameter. This histogram serves
to compute an ID that will be used as a key for storing the plane in a
hash map.

together. The parameters of the resulting cluster are com-
puted using a weighted mean of the parameters of the two
clusters.

D. PLANE STORAGE
In this section, we describe how the planes are actually stored
in memory and how we detect similar planes in different
frames. The planes storage mechanism is depicted Fig.8. It is
assumed here that a motion tracking algorithm is already
provided by the device. Alternatively, some existing tracking
algorithms, such as Visual Inertial Odometry [43], can be
used instead.

Our algorithm is developed to serve as a basis for on the
fly interior building wall detection. Consequently, we focus
on detecting large planes, which are supposed to be wall
candidates. Focusing on large planes ensures us that we

have planes with a sufficient number of points to use a
statistical description of the plane parameters. In practice,
we keep each previously detected plane if it has more
than 100 points, while the other planes are considered as
irrelevant.

1) PLANES HISTOGRAMS
Once the segmentation has been achieved, we use the device’s
pose data to transform our cluster descriptors into the world’s
frame coordinates.

Let E be a countable set of R, and ε ∈ R. We define the
histogram Hε(E) by ∀i ∈ Z:

Hε(E)(i) = |{x ∈ E/x ∈ [iε, (i+ 1)ε]}|, (8)

where |.| denotes the cardinality of a set. Its median value
µi,ε(E) with i ∈ N is then defined by:

µi,ε(E) =
6i
p=−i(pHε(E)(p))

6i
p=−i(Hε(E)(p))

(9)

Let P be a plane that was previously detected, and
Nx ,Ny,Nz,D, the sets of the different values of the
planes parameters for each point descriptor are included
in P. We then compute the associated histograms
Hε(Nx),Hε(Ny),Hε(Nz) andHε(D), and we compute an iden-
tifier (ID) Ii,ε(P) ∈ Z4 defined by :

Ii,ε(P) = (µi,ε(Nx), µi,ε(Ny), µi,ε(Nz), µi,ε(D)) (10)

VOLUME 6, 2018 17649

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

Because P has been constructed by gathering descriptors
that have similar planar parameters, (nx , ny, nz, d), it can
be assumed that their distribution follows a binomial law.
Then, Ii,ε(P) can serve to retrieve the actual parameters of P.
Histograms provide a strong estimation of the cluster’s plane
parameters and they are resistant to estimation errors. We
computed the histograms for our parameters using ε = 0.001,
and i = 100. Therefore, to simplify the notations, we will
callHx ,Hy,Hz andHd the different computed histograms for
our planes, and Ip = Ii,ε(P) its associated ID. The planes
are defined with their set of four histograms, their ID and
their weight, which increases each time the parameters of
the plane are updated. In addition to the histogram and to
the ID, we compute a weight for the plane. This weight will be
increased each time that the plane’s parameters are updated.

2) PLANES LIST STORAGE
A hash map is used to store each identified plane P, using
Ip = ((id0, id1, ud2, id3)) as a key. The index of a plane
in the map is computed similarly to the method used by
Niessner et al. [44]. Given four large primers p0, p1, p2, p3,
we compute an index i = (p0id0⊕p1 id1⊕p2 id2⊕p3 id3)[n],
where n is the size of the hash map and ⊕ denotes the xor
operator. Planes with similar IDs are stored in lists. When
inserting a P, its hash entry is computed and compared with
the IDs of the planes previously stored at this entry. If a
similar plane is found, then they are merged; otherwise, P is
added at the queue of the list. Using a hash map allows us
to have a O(1) access time to an element, independent of the
number of stored planes.

Let p1 and p2 be two planes. To compare them, their
parameters are first retrieved using their IDs and a Euclidean
distance is used. When inserting a plane Pref , with a weight
ωref in our hash table T , if we find an already stored plane
P with a weight ω having similar parameters, then Pref is
merged with P. The histogram of P, its ID, and its weight
are updated using the corresponding data of Pref . Let H be
the histogram of P and Href be the histogram of Pref . Then,
H is updated in the following way:

H ←
ωH + ωrefHref
ω + ωref

(11)

The ID of P is then computed and its weight is updated with
ω+ωref , and its position is updated in T. The storage update
process is shown in algorithm.3.

Algorithm 3 Planes List Update
1: P← find_if _exists(Pref)
2: if P 6= ∅ then
3: merge_planes(Pref ,P)
4: insert(Pref)
5: else
6: insert(P)
7: end if

E. DRIFT CORRECTION
Although the use of histograms provides a robust and time
consistent estimation of the planes parameters, some drifts in
the motion tracking can occur and they can affect the final
results. An Iterative Closest Points (ICP) algorithm [45] is
used to correct small frame-to-frame drifts. ICP is an iterative
process that follows two steps: first, correspondences are
found between a source and a target point cloud; and second,
an estimate is made of a transformation that minimizes the
overall distance (often the least square distance) between
them. However, finding correspondences can be costly in
terms of computing resources, even though the use of ordered
clouds as an input can simplify the process.

Let S be a source point cloud and T be the target cloud
that we want to align with. These clouds are ordered, so each
point can be referenced as S(i, j) or T (i, j) where i and j are
integers. Assuming that there is a small movement between
two successive point clouds, it can be assumed that for each
point S(i, j) in the input point cloud, a corresponding point,
if it exists, can be found in the neighborhood of T (i, j).
So for each point S(i, j), a corresponding point is searched

in a fixed size window around the associated point T (i, j).
Once the correspondences are found, Arun et al.’s [46]

SVD method developed is used to find a transformation that
minimizes the least square distance between the correspon-
dences.

IV. IMPLEMENTATION
We used a Google Project Tango Yellowstone tablet for our
developments.6 This tablet has an Nvidia Tegra K1 processor
with 4 GM of RAM, and it integrates a depth and a motion
tacking sensor. The Google Tango API already provides
motion tracking and callbacks to use the depth data issued
from the depth sensor.

The different processes to generate the different data maps
used for the planar segmentation can easily be vectorized
to optimize the performance. The Arm NEON intrinsic [47]
has been used to optimize these phases. Some other parts
were vectorized, such as the histograms merging parts. This
process is kept as linear as possible to avoid the use of mutual
exclusions. Given the fact that several tasks are repetitive and
independent, OpenMP [48] is used in most of the steps to
parallelize these tasks.

The tablet’s depth sensor and the Google Tango API pro-
vide ordered point clouds with a resolution of(640 × 480),
each 200ms.

Our implementation allows us to process each of these
incoming point clouds in less than 200ms, using only the
device’s CPU capabilities.

V. EXPERIMENTAL VALIDATION
We tested our plane detection algorithm by measuring the
maximal dimensions of different places. We chose three dif-
ferent places, including roomswith a lot of furniture along the

6https://developers.google.com/tango/

17650 VOLUME 6, 2018

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

FIGURE 9. Application: the detected planes are merged frame to frame and will serve to identify the building walls.

TABLE 1. Comparison between computed and real dimensions in meters.

walls, each having three dimensions to measure (length (L),
height (H) and width (W)), and a corridor with two measures
(height (H) and width(W)). For each room, we made a com-
plete scan using the tablet to ensure that we had detected all of
the main planes. We started the scan so that we were sure that
each wall would be aligned on our base frame of reference.
We then looked to the planes with the most important weight.
We computed the distances between parallel planes to extract
the room’s maximal dimension. The measures were repeated
10 times for each room. The results are shown in Table 1,
where the first line shows the real dimensions and the second
shows the mean distance provided by our algorithm. The
next two lines show the standard deviation for each measure,
in meters and in percentages. The last line shows the maxi-
mum error for each measure.

Our tests show that the error is on average below 5%,
except for one case where there were a number of lights
on the roof that added some noise to the sensor. Fig.9
shows an example of a complete output, including an RGB
image of the considered scene and the output planes in a
3D model.

Errors aremainly caused by the noises in the depth data and
small pose estimation errors. Normals estimation can produce
some errors around edge areas in the depth map, but doesn’t
affect the planar segmentation since we are looking for large
planar areas. Because of the noise, parallel planes can be
dinstinguished if they are sufficiently distant, othrewise, they
could be merged into one single plane.

VI. CONCLUSION AND FUTURE WORK
We developed a plane detection algorithm that runs entirely
on a tablet that is equipped with a depth sensor and a
self-contained motion tracking algorithm. Our algorithm
performs on-the-fly plane detection whenever a point cloud is

available from the depth sensor. The segmentation is achieved
by creating clusters of points that have the same supposed
plane parameters. Once the segmentation is achieved, an his-
togram of the plane parameters is computed for each cluster
after being transformed into the world’s coordinates. These
histograms serve to give a unique ID to each plane and to
detect similar planes through different frames.

Our algorithm will serve as a basis for an application that
will perform 3D modeling of an existing indoor building on
the fly. Our future work will focus on updating the border
of the detected planes at each new frame and identifying the
walls. We will then focus on using the RGB image to detect
the building’s openings and attach them to a wall element.

REFERENCES
[1] C. Eastman, C. M. Eastman, P. Teicholz, and R. Sacks, BIM Handbook: A

Guide to Building Information Modeling for Owners, Managers, Design-
ers, Engineers and Contractors. Hoboken, NJ, USA: Wiley, 2011.

[2] X. Xiong, A. Adan, B. Akinci, and D. Huber, ‘‘Automatic creation of
semantically rich 3d building models from laser scanner data,’’ Autom.
Construction, vol. 31, pp. 325–337, May 2013.

[3] J. Jung et al., ‘‘Productive modeling for development of as-built BIM
of existing indoor structures,’’ Autom. Construction, vol. 42, pp. 68–77,
Jun. 2014.

[4] S. Izadi et al., ‘‘KinectFusion: Real-time 3D reconstruction and interaction
using a moving depth camera,’’ in Proc. 24th Annu. ACM Symp. User
Interface Softw. Technol., 2011, pp. 559–568.

[5] R. A. Newcombe et al., ‘‘Kinectfusion: Real-time dense surface mapping
and tracking,’’ in Proc. 10th IEEE Int. Symp. Mixed Augmented Real-
ity (ISMAR), Oct. 2011, pp. 127–136.

[6] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, ‘‘Chisel: Real
time large scale 3D reconstruction onboard a mobile device using spatially
hashed signed distance fields,’’ in Proc. Robot., Sci. Syst., Rome, Italy, Jul.
2015.

[7] T. Schöps, T. Sattler, C. Häne, and M. Pollefeys, ‘‘3D modeling on the go:
Interactive 3D reconstruction of large-scale scenes on mobile devices,’’ in
Proc. Int. Conf. 3D Vis. (DV), Oct. 2015, pp. 291–299.

[8] A. Arnaud, J. Christophe, M. Gouiffès, and M. Ammi, ‘‘3D reconstruction
of indoor building environments with new generation of tablets,’’ in Proc.
22nd ACM Conf. Virtual Reality Softw. Technol., 2016, pp. 187–190.

VOLUME 6, 2018 17651

A. Arnaud et al.: On the Fly Plane Detection and Time Consistency

[9] V. Garcia, E. Debreuve, and M. Barlaud, ‘‘Fast k nearest neighbor search
using GPU,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2008, pp. 1–6.

[10] A. Nuchter, K. Lingemann, and J. Hertzberg, ‘‘Cached k-d tree search for
ICP algorithms,’’ in Proc. 6th Int. Conf. 3-D Digit. Imag. Modeling (DIM),
2007, pp. 419–426.

[11] M. Greenspan and M. Yurick, ‘‘Approximate k-d tree search for efficient
ICP,’’ in Proc. 4th Int. Conf. 3-D Digit. Imag. Modeling (DIM), 2003,
pp. 442–448.

[12] M. Connor and P. Kumar, ‘‘Fast construction of k-nearest neighbor graphs
for point clouds,’’ IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 4,
pp. 599–608, Apr. 2010.

[13] J. Sankaranarayanan, H. Samet, and A. Varshney, ‘‘A fast all near-
est neighbor algorithm for applications involving large point-clouds,’’
Comput. Graph., vol. 31, no. 2, pp. 157–174, 2007.

[14] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, ‘‘Adaptive
neighborhood selection for real-time surface normal estimation from orga-
nized point cloud data using integral images,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2012, pp. 2684–2689.

[15] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, ‘‘Comparison of surface
normal estimation methods for range sensing applications,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2009, pp. 3206–3211.

[16] H. Gouraud, ‘‘Continuous shading of curved surfaces,’’ IEEE Trans.
Comput., vol. COM-100, no. 6, pp. 623–629, Jun. 1971.

[17] G. Thürrner and C. A. Wüthrich, ‘‘Computing vertex normals from polyg-
onal facets,’’ J. Graph. Tools, vol. 3, no. 1, pp. 43–46, 1998.

[18] S. Jin, R. R. Lewis, and D. West, ‘‘A comparison of algorithms for vertex
normal computation,’’ Vis. Comput., vol. 21, no. 1, pp. 71–82, 2005.

[19] R. Hoffman and A. K. Jain, ‘‘Segmentation and classification of range
images,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 5,
pp. 608–620, Sep. 1987.

[20] J. Huang and C.-H. Menq, ‘‘Automatic data segmentation for geometric
feature extraction from unorganized 3-D coordinate points,’’ IEEE Trans.
Robot. Autom., vol. 17, no. 3, pp. 268–279, Mar. 2001.

[21] R. O. Duda and R. E. Hart, ‘‘Use of the Hough transformation to detect
lines and curves in pictures,’’ Commun. ACM, vol. 15, no. 1, pp. 11–15,
Jan. 1972.

[22] P. V. C. Hough, ‘‘Method and means for recognizing complex patterns,’’
U.S. Patent 3 069 654, Dec. 18, 1962.

[23] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, ‘‘The 3D
Hough transform for plane detection in point clouds: A review and a new
accumulator design,’’ 3D Res., vol. 2, no. 2, pp. 1–13, 2011.

[24] R. Raguram, J.-M. Frahm, and M. Pollefeys, ‘‘A comparative analysis of
RANSAC techniques leading to adaptive real-time random sample con-
sensus,’’ in Computer Vision—ECCV. Berlin, Germany: Springer, 2008,
pp. 500–513.

[25] M. A. Fischler and R. Bolles, ‘‘Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy,’’ Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[26] R. Schnabel, R.Wahl, and R. Klein, ‘‘Efficient ransac for point-cloud shape
detection,’’ Comput. Graph. Forum, vol. 26, no. 2, pp. 214–226, 2007.

[27] F. Tarsha-Kurdi et al., ‘‘Hough-transform and extended RANSAC algo-
rithms for automatic detection of 3D building roof planes from lidar data,’’
in Proc. ISPRS Workshop Laser Scanning, vol. 36. 2007, pp. 407–412.

[28] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, ‘‘Real-time plane segmen-
tation using RGB-D cameras,’’ in RoboCup: Robot Soccer World Cup XV.
Berlin, Germany: Springer, 2011, pp. 306–317.

[29] B. Fulkerson, A. Vedaldi, and S. Soatto, ‘‘Class segmentation and object
localization with superpixel neighborhoods,’’ in Proc. IEEE 12th Int. Conf.
Comput. Vis., Oct. 2009, pp. 670–677.

[30] C. Erdogan, M. Paluri, and F. Dellaert, ‘‘Planar segmentation of RGB-D
images using fast linear fitting and Markov chain Monte Carlo,’’ in Proc.
9th Conf. Comput. Robot Vis. (CRV), 2012, pp. 32–39.

[31] A. Barbu and S.-C. Zhu, ‘‘Generalizing Swendsen-Wang to sampling
arbitrary posterior probabilities,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 8, pp. 1239–1253, Aug. 2005.

[32] R. H. Swendsen and J.-S. Wang, ‘‘Nonuniversal critical dynamics in
Monte Carlo simulations,’’ Phys. Rev. Lett., vol. 58, no. 2, p. 86, 1987.

[33] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, ‘‘Voxel cloud
connectivity segmentation-supervoxels for point clouds,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2027–2034.

[34] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999, pp. 1150–1157.

[35] P. Scovanner, S. Ali, and M. Shah, ‘‘A 3-dimensional sift descriptor and its
application to action recognition,’’ in Proc. 15th ACM Int. Conf. Multime-
dia, 2007, pp. 357–360.

[36] C. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’ in
Proc. Alvey Vis. Conf., vol. 15. Manchester, U.K., 1988, p. 5244.

[37] I. Sipiran and B. Bustos, ‘‘Harris 3D: A robust extension of the harris
operator for interest point detection on 3D meshes,’’ Vis. Comput., vol. 27,
no. 11, pp. 963–976, 2011.

[38] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[39] A. Flint, A. Dick, and A. Van Den Hengel, ‘‘Thrift: Local 3D structure
recognition,’’ in Proc. 9th Biennial Conf. Austral. Pattern Recognit. Soc.
Digit. Image Comput. Techn. Appl., 2007, pp. 182–188.

[40] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, ‘‘3D object recogni-
tion in cluttered scenes with local surface features: A survey,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 11, pp. 2270–2287, Nov. 2014.

[41] J. M. Coughlan and A. L. Yuille, ‘‘Manhattan world: Compass direction
from a single image by Bayesian inference,’’ in Proc. 7th IEEE Int. Conf.
Comput. Vis., vol. 2. Oct. 1999, pp. 941–947.

[42] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[43] M. Li and A. I. Mourikis, ‘‘Improving the accuracy of EKF-based visual-
inertial odometry,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2012, pp. 828–835.

[44] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, ‘‘Real-time 3D
reconstruction at scale using voxel hashing,’’ ACM Trans. Graph., vol. 32,
no. 6, p. 169, 2013.

[45] P. J. Besl and D. N. McKay, ‘‘A method for registration of 3-D shapes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[46] K. S. Arun, T. S. Huang, and S. D. Blostein, ‘‘Least-squares fitting of two
3-D point sets,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9,
no. 5, pp. 698–700, Sep. 1987.

[47] V. G. Reddy, Neon Technology Introduction. Cambridge, U.K.:
ARM Corporation, 2008.

[48] L. Dagum and R.Menon, ‘‘OpenMP: An industry standard API for shared-
memory programming,’’ IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55,
Mar. 1998.

ADRIEN ARNAUD is currently pursuing the
Ph.D. degree with the Laboratory LIMSI-CNRS,
where he conducts research in 3-D reconstruction
on mobile devices.

He is particularly interested in computer graph-
ics and algorithmics.

MICHÈLE GOUIFFÈS received the Ph.D. degree
from Poitiers Université in 2005. She has been
an Engineer with INSA Rennes since 2002. She
has been an Assistant Professor with the Univer-
sity Paris Sud (Paris Saclay) since 2006 where
she conducts her research in image processing at
laboratory LIMSI-CNRS. She is particularly inter-
ested in image feature descriptors andmatching for
interaction.

MEHDI AMMI is an Associate Professor with
Paris-Sud University specializing in HCI, virtual
reality, and Internet of Things. His research inter-
ests include the design and the study of smart
systems and smart environments that consider the
human capacities and the technological dimen-
sion. He is the Leader of a research team at LIMSI-
CNRS. He was/is involved in several scientific
organizations, such as IEEE Technical Committee
on Haptics and the EuroVR Special Interest Group
on Haptics.

17652 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORKS
	PLANAR SEGMENTATION
	TIME CONSISTENCY

	ON THE FLY PLANE DETECTION
	OVERVIEW
	DATA ACQUISITION
	NORMAL ESTIMATION
	ESTIMATION OF THE EDGE MAP
	D-MAP COMPUTING

	PLANAR SEGMENTATION
	CLUSTER GENERATION
	PLANE GENERATION

	PLANE STORAGE
	PLANES HISTOGRAMS
	PLANES LIST STORAGE

	DRIFT CORRECTION

	IMPLEMENTATION
	EXPERIMENTAL VALIDATION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ADRIEN ARNAUD
	MICHÈLE GOUIFFÈS
	MEHDI AMMI

