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ABSTRACT
With the advent of transformer based models, the use of

fully automated ASR-pipelines in a real-world context has
come close to a reality. However, for faithful transcription of
conversational speech, there remain challenges both in terms
of the content predicted by these models (hallucinations,
unintended normalizations of disfluencies and transcriptions
of background noises) and in terms of alignment accuracy.
In this paper we present a hybrid ASR-pipeline which
augments transformer models with other algorithms in order
to transcribe conversational data. Through experiments on
two French datasets, we show that: 1) VAD preprocessing
can significantly improve transcription quality as well as
word level temporal alignment, 2) prompting can reduce
unintended normalizations of disfluencies, 3) heuristic-based
detection of untranscribed sounds can further improve align-
ment quality. We conclude that our hybrid pipeline is an
efficient way to improve and augment existing ASR-models.

Index Terms—ASR, Transformer, French, Conversation

I. INTRODUCTION
While automatic speech recognition (ASR) has steadily

improved over the past few decades for a variety of tasks and
domains, conversational speech has remained a challenge.
Until recently, word error rate (WER) had been so high that
for tasks requiring accurate transcripts, manual transcrip-
tion was often more efficient than correcting ASR output.
The situation changed dramatically with the introduction of
Whisper [1], a transformer-based, end-to-end model trained
on massive amounts of speech data. Other models followed,
including models supporting additional languages [2], [3],
and diverse extensions of the Whisper model [4], [5].

This significant improvement in ASR models promises to
greatly facilitate the production of conversational datasets,
eliminating the central bottleneck for downstream linguistic
study and modeling of conversational speech. Still, applying
Whisper to conversational corpora presents certain chal-
lenges: Whisper (i) easily registers and transcribes back-
ground voices in cases where speakers have individual
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microphones but are in the same room (the standard scenario
for conversational corpora such as ICSI [6], AMI [7] and
CID [8]), (ii) hallucinates content (inserts words not in the
audio signal), (iii) frequently omits disfluencies and dis-
course markers, which are common in spontaneous speech,
and (iv) either lacks word-level alignment (original model)
or struggles with alignment when there are untranscribed
disfluencies or other noises (more recent implementations).

In this paper, we present a pipeline designed to address
the above challenges and facilitate transcription of conver-
sational speech with a model like Whisper. We illustrate
the impact of our pipeline on two datasets in French,
a language which is well represented in the multilingual
models but without large manually transcribed or corrected
conversational corpora available for developing and training
conversational models like AMI [7] or Switchboard [9] for
English. We hope this will open the door to the development
of further conversational corpora and benchmarks in a wide
variety of languages.

II. DATASET DESCRIPTION
We evaluate our pipeline on two French datasets: the

Corpus of Interactional Data (CID) [8] and the newly
created SUMM-RE corpus. CID features eight 1-hour long
conversations between two friends talking about a given
topic but without other constraints. SUMM-RE includes 300
roughly 20-minute conversations between 3-4 speakers, most
of whom did not know each other before recording.1

Participants in SUMM-RE were instructed to enter into a
loosely guided role-play to simulate meeting-style interac-
tions. Both corpora contain highly spontaneous interactional
speech with a high rate of disfluencies [10] and a complex
mix of monologic (e.g., telling a story) and dialogic (e.g.,
negotiating the next topic to address) contributions.

CID was manually transcribed in its entirety and double-
checked. In addition, each transcript was manually seg-
mented based on silences, yielding gold timestamps for the
beginning and end of each speech segment. While most
SUMM-RE transcripts have been produced automatically

1While most recordings were made in a studio, Covid restrictions forced
us to collect some data (<20%) via Zoom.
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Name Duration # speakers / conv. total # unique speaker
CID 8h08 2 16

SUMM-RE-sm 3h33 3-4 28

Table I. Basic statistics for our two datasets

using the pipeline described in this paper, a small subset of
10 meetings, SUMM-RE-sm, has been manually corrected
at both the transcription and segment-timestamp level. Tran-
scription and correction for both corpora were carried out
with the Praat phonetic annotation tool [11]. A summary of
the data sets is provided in Table I. We will release SUMM-
RE-sm with the paper and the rest of the SUMM-RE dataset
at the end of the associated research project.

III. CHALLENGES
Background voices While participants in both CID and

SUMM-RE wore individual headsets, their microphones
often picked up the voices of other speakers when the
participants were all in the same room and the ASR system
thus transcribed the words of secondary speakers alongside
those of the main speaker. The first challenge that we faced
was thus to isolate the utterances of the main speaker in each
individual speaker recording.

Hallucinations Like other transformer-based models,
Whisper has a tendency to hallucinate. We found, for in-
stance, numerous cases in which Whisper predicts “sous-
titres réalisés par [x].org” (“subtitles created by [x].org”).
Other types of hallucinations involve getting stuck in loops
of strings of words or just more standard cases of transcrib-
ing words that were not uttered in the conversation. Our
second challenge was thus to find ways to keep Whisper
from hallucinating.

Transcript “cleaning” Spontaneous conversation con-
tains disfluencies and conversation-specific uses of discourse
markers, as illustrated by (1-a):

(1) a. donc euh on a euh enfin j’ai contacté euh notre
fournisseur
so um we have um well I have contacted um our
supplier

b. j’ai contacté notre fournisseur
I have contacted our supplier

However, as shown in (1-b), Whisper has a tendency to
delete discourse markers (in cyan) and disfluencies, in-
cluding filled pauses (in blue) and fragments (in orange).
This not only has a negative impact on the evaluation of
ASR output (by increasing deletions and complicating word-
level alignment) but also removes information valuable for
downstream linguistic tasks requiring richer representations
of the dialogue dynamics. Our third challenge was therefore
to find ways to help Whisper more faithfully transcribe
conversational speech.

Signal alignment Precise word-level2 timestamps are use-
ful for a variety of downstream tasks that require multimodal,
text/audio representations, including discourse segmentation
and dialogue act tagging. The original Whisper model, how-
ever, only provides timestamps for speech segments. And
more recent implementations that add word-level timestamps
struggle when there are untranscribed noises in the signal.
Omitted disfluencies and discourse markers, for example,
complicate the the idenification of timestamps for nearby
words. Our fourth challenge, then, was to develop a means
of accurately predicting word-level timestamps.

IV. PIPELINE
At a high level, the first part of our pipeline is designed

to isolate the contributions of the main speaker in order to
reduce the impact of both background voices and silences,
which are correlated with hallucinations, on ASR quality.
The next part focuses on ASR, exploiting three important
additions to the original Whisper model: a prompt that
encourages Whisper to transcribe disfluencies and discourse
markers, word-level timestamps, and a method for mitigating
the impact of untranscribed words and sounds on word-
level alignment. Motivation for our pipeline choices comes
from tests on CID and SUMM-RE-sm, but also on a small
subset of SUMM-RE-sm consisting of roughly 60-90 second
extracts of 10 of the files from SUMM-RE-sm. This smaller
subset was used to reduce the search space for what we
wanted to explore in more depth on the larger datasets.

IV-A. Isolating the main speaker
To isolate contributions from the main speaker, we tested

three approaches: (i) inter-pausal-unit (IPU) detection using
the SPPAS annotation toolkit [12], (ii) repurposing the Pyan-
note speaker diarization model [13], [14] for main speaker
detection, and finally, (iii) combining SPPAS and Pyannote.

The SPPAS IPU-detection algorithm [15] allows for an
optimized threshold value for each file. First, it calculates
the root-mean-square (RMS) of the intensity inside a sliding
time window of duration 20 ms and then calculates the
threshold value Θ = min+µ − 1.5σ where min is the
minimum, µ is the mean, and σ is the standard deviation
for RMS values. Once Θ is calculated, IPU intervals are
determined to be those that exceed both Θ and a specified
minimum duration (500ms in our case). Silences longer than
a given length (100ms in our case) and IPUs that fall under
the minimum are treated as silences.

The second approach uses Pyannote to predict speaker
turns and labels. We identify the loudest speaker as the
main speaker, except in two types of cases that complicate
this assumption. First, background speakers sometimes make
short but very loud utterances. We tried to eliminate these
by applying a minimum duration of 0.3 seconds. Second,

2For “word”-level timestamps, we ignore here the difference between
words and contractions of words such as “j’ai” (I’ve).



all speakers with a relative intensity above a given threshold
(0.8 dBFS) were taken as candidates for main speaker, but
sometimes, a single speaker could be assigned two different
labels. To remove these cases, we added a secondary filter
with intensity threshold of 0.5 dBFS and duration threshold
of 0.2 seconds. For the current data set we additionally
performed manual verification/correction of the main speaker
assignment (2 files out of 39 modified).

Our third approach exploits the complementary benefits
of SPPAS and Pyannote. For each case in which SPPAS
predicts an interval that overlaps an interval predicted by
Pyannote, we take the IPU to be the maximum interval on
which the models agree. This approach shows significantly
fewer false positives than either system alone, where errors
in SPPAS are due to background voices with an intensity
too close to that of the main speaker and false positives
in Pyannote are linked to similarity in voice quality (e.g.,
similar age and gender, etc.).3

IV-B. Passing segments to Whisper
As preliminary investigations showed that hallucinations

are often triggered by silences or non-speech sounds, we
decided to feed Whisper segments that had been separately
identified as speech (either IPUs or segments selected by a
VAD). While such segments can be processed independently
by Whisper, we found that it was more efficient to first
glue together the relevant segments of audio, separated
by intervals of silence, and then pass the whole audio
to Whisper (later recovering the original timestamps). We
also applied post-processing to remove non-Latin characters,
emojis, URLs and any remaining sentences about subtitles.

IV-C. Prompting Whisper
Like other transformer-based models, Whisper can con-

dition its prediction on a given prompt. As it has the
particularity of chunking audio files into 30-second segments
for transcription, we developed a customized prompt and
injected it for the first chunk and then continually reinjected
it for the other chunks to maintain its effect throughout the
audio. We tried dozens of different prompts that illustrated
a variety of disfluencies in order to encourage Whisper
to output the disfluencies that were present in the audio
signal. The following prompt, involving discourse markers,
repetitions, and filled pauses, was the most successful: Bon.
Ben je crois euh je vois ce que euh tu veux dire. Hum tu tu
tu euh ben tu me diras.4

3Note that as Pyannote detects mainly speech, non-speech sounds such
as laughs, coughs etc. are not recognized by this approach, although they
are generally included in conversation/dialogue-processing pipelines.

4The prompt can be translated as follows:
Bon. Ben je crois euh je vois ce que euh tu veux dire.
Well. Well I think um I see what um you mean.

(literally: what you want to say)

Hum tu tu tu euh ben tu me diras.
Um you you you uh well you’ll tell me

(literally: you me will tell)

IV-D. Signal alignment
Several strategies are possible to recover plausible word-

level timestamps. We considered three:
1) Using the external Wav2Vec2 [16] model that predicts

character probabilities for each speech frame, and
performing an alignment based on Dynamic Time
Warping (DTW) [17] on these probabilities for the
characters predicted by Whisper. This is the approach
adopted by WhisperX [5].

2) Performing DTW on combined cross-attention weights
(of the decoder attending to the encoded speech signal)
for each predicted token. This is the approach adopted
by Whisper-Timestamped [18], Faster Whisper [4] and
OpenAI-Whisper [1].

3) Analyzing the probability distribution over timestamps
at the end of each word, as in [19], [20].

Preliminary experiments showed that (3) produces very
inaccurate timestamps. We therefore restricted our attention
in subsequent experiments to the systems using (1) or (2).

Even when using the prompt described above in IV-C,
untranscribed disfluencies remain. These together with other
non-transcribed acoustic noises degrade the prediction of
the timestamps for nearby words that are successfully tran-
scribed. Based on the observation that combined cross-
attention weights often form a concave curve around the
prediction of each transcribed token, Whisper-timestamped
[18] proposes an option to make timestamps more accurate
around untranscribed disfluencies and other noises. The
heuristics consist in applying a peak detection on the portion
of cross-attention weights that correspond to the first token
of each word. If several peaks are detected in the vicinity of
a single token, the region corresponding to the first peaks is
marked as silence, and the start of the last peak is chosen
as the start of the word. We adopt this approach to further
refine predictions of start timestamps.

V. EVALUATION METRICS
In our experiments, described in Section VI, we evaluated

transcription accuracy in terms of Word Error Rate (WER),
and its decomposition into Deletion (Del), Insertion (Ins)
and Substitution (Sub) rates. We also used the two following
metrics to take into account timestamp predictions.

V-A. F1-score
To measure both word errors and timestamp accuracy with

a single metric, we use the harmonic mean of precision and
recall metrics introduced in [5]. For each word in the ground
truth transcript, we extend the interval determined by its
start and end time by adding a collar of 20 ms5 before and
after it. If the model correctly predicts the word and predicts
that the word overlaps this extended gold interval, then it is

5The original paper used 200ms, but a higher degree of precision is
needed for downstream applications exploiting both signal and transcripts.



considered a true positive. If the word falls entirely out of
the expanded window or if the model fails to predict the
word, it is classified as a false negative. Any word predicted
by the ASR and for which there is no corresponding word
in the gold transcript is counted as a false positive.6

V-B. Average timestamp difference T-δ
To evaluate the quality of word timestamps, we first iden-

tified the set of words that were correctly predicted. Using
DTW [17], we aligned the tokens based on the distance
between timestamped words, which we calculated as the sum
of the Levenshtein edit distance and the absolute difference
between start/end timestamps (in seconds). We found that
using DTW with such a hybrid distance calculation is more
robust than a simple Levenshtein alignment, for instance in
cases where some words are repeated but the repetition only
appears in the ground truth or in the prediction.

We then calculated the absolute difference between the
predicted start/end time and the real start/end time for each
of these correctly predicted words. The average timestamp
difference, T-δ, is simply the average of these values.

VI. RESULTS
Table II shows, in the form of an ablation study, the results

obtained from testing our pipeline on CID and SUMM-
RE-sm. The systems we compare all use Whisper large-
v2 as the core model. Our reference system uses IPUs
obtained by combining SPPAS and Pyannote predictions
(cf. Section IV-A) and then glued together as described in
IV-B. It also uses the custom prompt introduced in IV-C,
disfluency detection heuristics (cf. IV-D) and then Whisper-
Timestamped as the ASR implementation.

Results of Table II:A show a clear reduction in insertions
when Whisper receives information on IPUs (Reference)
relative to the case where Whisper receives no information
on speech segments (No VAD). We also see a notable
improvement with the state of the art VAD Silero [21],
further underscoring the value of speech segments.

Insertions can be due to a) transcription of background
speaker voices or b) hallucinations from Whisper. To dis-
tinguish these possibilities, we used gold IPUs to identify
intervals of background speech and intervals of silences, as
the latter are associated with hallucinations. We then used
these intervals to filter (i.e., remove words from) transcripts
that had been produced in three different settings: (1) without
any VAD, (2) with the VAD Silero, and (3) with our pipeline.
In particular, we compare results when (i) background voices
are filtered out but silences remain, and (ii) both background
voices and silences are filtered, leaving only the main
speaker contributions. Figure 1 shows that (i) leads to a
significant decrease in insertions when no particular attempt

6This metric does not measure a model’s capacity for recognizing zones
of silence, as there is no penalty for predicting that a word not only overlaps
the desired (gold) interval but also covers the silences around that word.

Fig. 1. WER details for different pipeline settings and with
different types of filtering for the predicted words.

is made to isolate main speaker contributions (settings (1)
and (2)), suggesting that most insertions can be traced to
background speakers. Still, the reduction of insertions in
these settings when we additionally filter silences suggests
that a portion of the errors come from hallucinations.

Table II:B shows that using our custom prompt (cf. IV-C)
significantly reduces the number of deletions, as more disflu-
encies and discourse markers are transcribed. It also slightly
increases the insertion rate, but Figure 1 (right column)
shows that this is not due to an increase in hallucina-
tions. Whisper also offers the possibility of conditioning
its prediction for a given chunk on that of the previous
chunk. Table II:B shows that considering the previous chunk
(previous) slightly lowers performance on all metrics except
insertions, where we see only a subtle improvement.

Heuristics on cross-attention weights to refine the start
times of words uttered after untranscribed sounds greatly
improve the accuracy of T-δ, while they have no influence
on other metrics. Using no prompt and no conditioning on
the previous chunk slightly improves T-δ. This is because
words recovered by use of our custom prompt are harder to
align, which calls into question the reliability of T-δ when
comparing models with different WER.

In terms of ASR implementation (Table II:C), WhisperX
outperforms others in WER while Whisper-Timestamped has
the best T-δ and overall F1-score. Faster Whisper has better
T-δ than WhisperX but a poor WER. Differences in WER
are most likely due to details relating to decoding heuristics.

We also tested the impact of applying IPUs as a post-
processing step to filter out words from ASR transcripts,
instead of providing them as input to Whisper. Taking Silero
(represented with (✻) in Table II:D) as the only VAD during
pre-processing, we tested IPUs predicted by (i) SPPAS, (ii)
Pyannote and (iii) our combined approach. We also checked



Pipeline SUMM-RE CID
F1 T-δ WER Del Ins Sub F1 T-δ WER Del Ins Sub

(ms) (%) (%) (%) (%) (ms) (%) (%) (%) (%)
Our Reference 0.81 108 18.8 8.1 5.8 4.8 0.81 78 22.9 13.5 3.0 6.4

(A) Speech detection
Silero (✻) 0.63 117 78.4 5.1 67.1 6.3 0.74 82 40.8 9.7 22.7 8.4
No VAD 0.49 196 133.0 4.3 119.1 9.6 0.68 101 52.6 9.3 34.3 9.1

(B) ASR details
No prompt & no previous 0.80 94 23.6 14.1 4.7 4.8 0.77 71 29.1 20.9 2.2 5.9
No prompt + previous 0.77 114 24.2 15.0 4.0 5.2 0.70 114 32.3 24.3 2.1 5.9
No heuristics 0.82 204 18.8 8.1 5.8 4.8 0.81 105 22.9 13.5 3.0 6.4

(C) ASR implementation
WhisperX 0.80 157 18.3 7.9 6.1 4.3 0.80 90 21.4 13.3 3.5 5.7
Faster Whisper 0.80 120 24.0 15.1 4.3 4.7 0.77 82 30.0 22.2 1.7 6.1

(D) Post-processing
Filter: (✻) SPPAS IPU 0.72 109 44.8 6.9 31.8 6.0 0.79 76 27.6 11.4 8.1 8.1
Filter: (✻) Pyannote IPU 0.79 108 26.4 8.2 12.6 5.6 0.80 78 24.8 13.5 4.2 7.0
Filter: (✻) combined IPU 0.81 105 21.5 8.8 7.3 5.3 0.80 76 23.8 14.0 3.0 6.8

Filter: combined IPU 0.81 107 19.2 9.0 5.4 4.9 0.81 77 23.5 14.5 2.8 6.2
Combined IPU + Julius 0.72 113 18.8 8.3 5.7 4.8 0.72 82 22.8 13.9 2.6 6.4

Table II. Evaluation of different ASR pipelines with word-level timestamps for SUMM-RE-sm and CID.

(iv) filtering with combined IPUs after preprocessing with
combined IPUs. To see if we could further improve align-
ment, we evaluated the impact of (v): supplementing case
(iv) with a dedicated alignment tool, Julius [22]. We chose
the SPPAS [12] wrapper for Julius and an alignment model
that had been trained on conversational French.

Table II:D shows that using combined IPU after Silero
yields a lower WER than using SPPAS or Pyannote alone.
Using combined IPU post-processing does not lead to signif-
icant differences, suggesting that IPUs can be applied before
or after the ASR model. Forced alignment with Julius also
failed to improve performance.

VII. DISCUSSION
In our experiments, accurately detecting the main speaker

had the greatest effect on both transcription accuracy and
word-level alignment for all models. This was particularly
evident on SUMM-RE, most likely because background
speakers were more active than in dyadic CID. Post-
processing experiments suggest that this improvement holds
regardless of whether IPUs are given as input to the ASR
system or applied as filtering after the fact. The use of a
custom prompt significantly reduces deletions, and heuristics
for dealing with untranscribed noises clearly improve align-
ment. Noteworthy is the very high WER for out-of-the-box
models suggesting that mainstream systems are not suitable
for meetings and other natural, conversational data without
modification. Our results show that various strategies and
heuristics can be applied to enhance state of the art models.

VIII. CONCLUSION AND FUTURE WORK
The pipeline described in this paper is designed to ad-

dress certain challenges that arise when applying high-

performance, transformer-based ASR models to conversa-
tional speech. Our pipeline first exploits a combination of an
intensity-based VAD and a slightly modified speaker diariza-
tion model in order to isolate the conversational contributions
of the main speaker in a situation in which speakers have
individual microphones. We show that this step allows for
a significant reduction in insertions, which can be traced to
background voices and hallucinations, and overall improve-
ment in WER, F1-scores and word alignment. Our pipeline
then employs a prompt that leads to improvements on ASR
metrics by helping the model to predict disfluencies and
discourse markers in the audio signal. Finally, we apply
additional heuristics to reduce the impact of untranscribed
words and other noises on word-level alignment.

Our approach is fairly generic and can be applied to
any language. Moreover, the modular nature of our pipeline
allows for a flexible combination of various components
(ASR, IPU-detection, alignment) as new and improved mod-
els become available. Thus, the pipeline can be constantly
improved even as the individual models become obsolete.

Future work could consider laughs, coughs and other
paralinguistic sounds that are not currently addressed by our
pipeline. These signals are not only of interest to researchers
of human communication but may also confound ASR
models and lead to erroneous transcriptions. Addressing this
issue could thus further improve the performance.
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