
HAL Id: hal-04404746
https://hal.science/hal-04404746v1

Submitted on 19 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ctbench - compile-time benchmarking and analysis
Jules Penuchot, Joel Falcou

To cite this version:
Jules Penuchot, Joel Falcou. ctbench - compile-time benchmarking and analysis. Journal of Open
Source Software, 2023, 8 (88), pp.5165. �10.21105/joss.05165�. �hal-04404746�

https://hal.science/hal-04404746v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ctbench - compile-time benchmarking and analysis
Jules Penuchot 1 and Joel Falcou 1

1 Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay,
France

DOI: 10.21105/joss.05165

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @dirmeier
• @weilewei

Submitted: 01 February 2023
Published: 23 August 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
With libraries like Eigen (Guennebaud et al., 2010), Blaze (Iglberger, 2012), and CTRE
(Dusíková, 2018) being developed with a large tempalte metaprogrammed implementation,
we’re seeing increasing computing needs at compile time. These needs might grow even larger
as C++ embeds more features over time to support and extend these kinds of practices,
like compile-time containers (Dimov et al., 2019) and static reflection (Vandevoorde et al.,
2022). However, there is still no clear cut methodology to compare the performance impact of
different metaprogramming strategies. And as new C++ features allows for new techniques
with claimed better compile-time performance, no proper methodologies are provided to back
up those claims.

This paper introduces ctbench, a set of tools for compile-time benchmarking and analysis
in C++. It aims to provide developer-friendly tools to declare and run benchmarks, then
aggregate, filter out, and plot the data to analyze it. As such, ctbench is meant to become
the first layer of a proper scientific methodology for analyzing compile-time program behavior.

We’ll first have a look at current tools for compile-time profiling and benchmarking and
establish the limits of current tooling, then we’ll explain what ctbench brings to overcome
these limits.

Statement of need
C++ template metaprogramming raised interest for allowing computing libraries to offer great
performance with a very high level of abstraction. As a tradeoff for interpreting representations
of calculations at runtime, they are represented at compile time, and transformed directly into
their own programs.

As metaprogramming became easier with C++11 and C++17, it became more mainstream
and consequently, developers have to bear with longer compilation times without being able to
explain them. Therefore, being able to measure compilation times is increasingly important, as
is being able to explain them as well. A first generation of tools aims to tackle this issue with
their own specific methodologies:

• Buildbench (Tingaud, 2017) measures compiler execution times for basic A-B compile-
time comparisons in a web browser,

• Metabench (Dionne et al., 2017) instantiates variably sized benchmarks using embedded
Ruby (ERB) templating and plots compiler execution time, allowing scaling analyses of
metaprograms,

• Templight (Porkoláb et al., 2009) adds Clang template instantiation inspection capabilities
with debugging and profiling tools.

Additionally, Clang has a built-in profiler (Afanasyev, 2019) that provides in-depth time
measurements of various compilation steps, which can be enabled by passing the -ftime-trace

Penuchot, & Falcou. (2023). ctbench - compile-time benchmarking and analysis. Journal of Open Source Software, 8(88), 5165. https:
//doi.org/10.21105/joss.05165.

1

https://orcid.org/0000-0002-6377-6880
https://orcid.org/0000-0001-5380-7375
https://doi.org/10.21105/joss.05165
https://github.com/openjournals/joss-reviews/issues/5165
https://github.com/JPenuchot/ctbench
https://doi.org/10.5281/zenodo.8270239
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/dirmeier
https://github.com/weilewei
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05165
https://doi.org/10.21105/joss.05165


flag. Its output contains data that can be directly linked to symbols in the source code, making
it easier to study the impact of specific symbols on various stages of compilation. The output
format is a JSON file meant to be compatible with Chrome’s flame graph visualizer, which
contains a series of time events with optional metadata like the mangled C++ symbol or the
file related to an event. The profiling data can then be visualized using tools such as Google’s
Perfetto UI.

Figure 1: Perfetto UI displaying a sample Clang time trace file

Clang’s profiler data is very exhaustive and insightful; however, there is no tooling to make
sense of it in the context of variable size compile-time benchmarks. ctbench tries to bridge the
gap by providing a tool to analyze this valuable data. It also improves upon existing tools by
providing a solution that’s easy to integrate into existing CMake projects, and generates graphs
in various formats that are trivially embeddable in documents like research papers, web pages,
and documentation. Additionally, relying on persistent configuration, benchmark declaration
and description files provide strong guarantees for benchmark reproductibility, as opposed to
web tools or interactive profilers.

Functionality
Originally inspired by Metabench (Dionne et al., 2017), ctbench development was driven by
the need for a similar tool observes Clang’s time-trace files to help get a more comprehensive
view on the impact of metaprogramming techniques on compile times. A strong emphasis was
put on developer friendliness, project integration, and component reusability.

ctbench provides:

• a well documented CMake API for benchmark declaration, which can be generated using
the C++ pre-processor,

• a set of JSON-configurable plotters with customizable data aggregation features and
boilerplate code for data handling, which can be reused as a C++ library.

In addition to ctbench’s time-trace handling, it has a compatibility mode for compilers that
do not support it like GCC. This mode works by measuring compiler execution time just
like Metabench (Dionne et al., 2017) and generating a time-trace file that contains compiler
execution time. Moreover, the tooling allows setting different compilers per target within a
same CMake build, allowing black-box compiler performance comparisons between GCC and
Clang for example or comparisons between different versions of a compiler.

All these features make ctbench a very complete toolkit for compile-time benchmarking, making
comprehensive benchmark quick and easy, and the only compile-time benchmarking tool that
can use Clang profiling data for metaprogram scaling analysis.

Penuchot, & Falcou. (2023). ctbench - compile-time benchmarking and analysis. Journal of Open Source Software, 8(88), 5165. https:
//doi.org/10.21105/joss.05165.

2

https://ui.perfetto.dev/
https://doi.org/10.21105/joss.05165
https://doi.org/10.21105/joss.05165


Statement of interest
ctbench was first presented at the CPPP 2021 conference (Penuchot, 2021), which is the main
C++ technical conference in France. It is being used to benchmark examples from the poacher
(Penuchot, 2020) project, which was briefly presented at the Meeting C++ 2022 (Paul Keir,
2022) technical conference.

Related projects
• Poacher: Experimental constexpr parsing and code generation for the integration of

arbitrary syntax DSL in C++20

• Rule of Cheese: A collection of compile-time microbenchmarks to help set better C++
metaprogramming guidelines to improve compile-time performance

Acknowledgements
We acknowledge contributions and insightful suggestions from Philippe Virouleau and Paul
Keir.

References
Afanasyev, A. (2019). Adds ‘-ftime-trace‘ option to clang that produces chrome ‘chrome://trac-

ing‘ compatible JSON profiling output dumps. https://reviews.llvm.org/D58675

Dimov, P., Dionne, L., Ranns, N., Smith, R., & Vandevoorde, D. (2019). More constexpr
containers. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html

Dionne, L., Dutra, B., Holmes, O., & others. (2017). Metabench: A simple framework for
compile-time microbenchmarks. https://github.com/ldionne/metabench/

Dusíková, H. (2018). Compile time regular expression in C++. https://github.com/
hanickadot/compile-time-regular-expressions

Guennebaud, G., Jacob, B., & others. (2010). Eigen. 3. https://eigen.tuxfamily.org

Iglberger, K. (2012). Blaze C++ linear algebra library. https://bitbucket.org/blaze-lib

Paul Keir, J. P., Joel Falcou. (2022). Meeting C++ - a totally constexpr standard library.
https://www.youtube.com/watch?v=ekFPm7e__vI

Penuchot, J. (2020). Poacher: C++ compile-time compiling experiments. https://github.
com/jpenuchot/poacher/

Penuchot, J. (2021). Ctbench: Compile time benchmarking for clang. https://www.youtube.
com/watch?v=1RZY6skM0Rc

Porkoláb, Z., Mihalicza, J., & Pataki, N. (2009). Measuring compilation time of C++ template
metaprograms. http://aszt.inf.elte.hu/~gsd/s/cikkek/abel/comptime.pdf

Tingaud, F. (2017). Build-bench. https://build-bench.com/

Vandevoorde, D., Childers, W., Sutton, A., & Vali, F. (2022). P1240R2: Scalable reflection.
https://wg21.link/p1240r2; WG21.

Penuchot, & Falcou. (2023). ctbench - compile-time benchmarking and analysis. Journal of Open Source Software, 8(88), 5165. https:
//doi.org/10.21105/joss.05165.

3

https://github.com/jpenuchot/poacher
https://github.com/jpenuchot/rule-of-cheese
https://reviews.llvm.org/D58675
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html
https://github.com/ldionne/metabench/
https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/hanickadot/compile-time-regular-expressions
https://eigen.tuxfamily.org
https://bitbucket.org/blaze-lib
https://www.youtube.com/watch?v=ekFPm7e__vI
https://github.com/jpenuchot/poacher/
https://github.com/jpenuchot/poacher/
https://www.youtube.com/watch?v=1RZY6skM0Rc
https://www.youtube.com/watch?v=1RZY6skM0Rc
http://aszt.inf.elte.hu/~gsd/s/cikkek/abel/comptime.pdf
https://build-bench.com/
https://wg21.link/p1240r2
https://doi.org/10.21105/joss.05165
https://doi.org/10.21105/joss.05165

	Summary
	Statement of need
	Functionality
	Statement of interest
	Related projects
	Acknowledgements
	References

