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We numerically realize breather gas for the focusing nonlinear Schrödinger equation. This is done
by building a random ensemble of N ∼ 50 breathers via the Darboux transform recursive scheme
in high precision arithmetics. Three types of breather gases are synthesized according to the three
prototypical spectral configurations corresponding the Akhmediev, Kuznetsov-Ma and Peregrine
breathers as elementary quasi-particles of the respective gases. The interaction properties of the
constructed breather gases are investigated by propagating through them a ‘trial’ generic breather
(Tajiri-Watanabe) and comparing the mean propagation velocity with the predictions of the recently
developed spectral kinetic theory (El and Tovbis, PRE 2020).

I. INTRODUCTION

The study of nonlinear random waves in physical sys-
tems well described at leading order by the so-called in-
tegrable equations, such as the Korteweg-de Vries (KdV)
or nonlinear Schrödinger (NLS) equations has recently
become the topic of intense research in several areas of
nonlinear physics, notably in oceanography and nonlin-
ear optics. This interest is motivated by the complex-
ity of many natural or experimentally observed nonlin-
ear wave phenomena often requiring a statistical descrip-
tion even though the underlying physical model is, in
principle, amenable to the well-established mathematical
techniques of integrable systems theory such as inverse
scattering transform (IST) or finite-gap theory (FGT)
[1]. An intriguing interplay between integrability and
randomness in such systems is nowadays associated with
the concept of integrable turbulence introduced by V. Za-
kharov in [2]. The integrable turbulence framework is
particularly pertinent to the description of modulation-
ally unstable systems whose solutions, under the effect
of random noise, can exhibit highly complex spatiotem-
poral dynamics that are adequately described in terms
of turbulence theory concepts, such as the distribution
functions, ensemble averages, correlations etc.

Solitons and breathers are the elementary “quasiparti-
cles” of nonlinear wave fields in integrable systems which
can form ordered coherent structures such as modulated
soliton trains and dispersive shock waves [3, 4], “su-
perregular breathers” [5, 6] or “breather molecules” [7].
Furthermore, solitons and breathers can form irregular
structures or statistical ensembles that can be viewed as
soliton and breather gases. The nonlinear wavefield in
such integrable gases represents a particular case of inte-
grable turbulence [2, 8–13]. The observations of soliton
and breather gases in the ocean have been reported in
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[14–17]. Recent laboratory experiments on the genera-
tion of shallow-water and deep water soliton gases were
reported in [18] and [19] respectively. It has also been
demonstrated that the soliton gas dynamics in the focus-
ing NLS equation provides a remarkably good descrip-
tion of the statistical properties of the nonlinear stage of
spontaneous modulational instability [20].

Analytical description of soliton gases was initiated by
Zakharov in ref. [21], where a spectral kinetic equation
for KdV solitons was derived using an IST based phe-
nomenological procedure of computing an effective ad-
justment to a soliton’s velocity in a rarefied gas due to
its collisions with other solitons, accompanied by appro-
priate phase-shifts. Zakharov’s kinetic equation for KdV
soliton has been generalized to the case of a dense gas in
ref [22] using the spectral finite-gap theory. Within this
theory, a uniform (equilibrium) soliton gas is modelled
by a special infinite-phase, thermodynamic type limit of
finite-gap KdV solutions. The kinetic description of the
non-equilibrium soliton gas is then enabled by consid-
ering the same thermodynamic limit for the associated
modulation (Whitham) equations. The resulting kinetic
equation describes the evolution of the density of states
(DOS) defined as the density function in the spectral
(IST) phase plane of soliton gas. The spectral construc-
tion of the KdV soliton gas in ref. [22] has been gener-
alized to the soliton gas of the focusing NLS equation in
[23, 24]. The latter work [24] provides also the spectral
kinetic description of a breather gas (BG), which is the
main subject of the present work.

An isolated generic breather can be broadly viewed as
a soliton on the plane wave (or finite) background. The
1D-NLSE equation supports a large family of breather
solutions that have attracted a particular interest due to
their explicit analytic nature and the potential for mod-
eling the rogue wave events in the ocean and in non-
linear optical fibers [25–29]. Three types of breathers,
namely the Akhmediev breather (AB), the Kuznetsov-
Ma (KM) breather and the Peregrine soliton (PS) have
aroused significant research interest, see [30–35] and ref-



2

erences therein. AB, KM breather and PS represent spe-
cial cases of a generic breather called the Tajiri-Watanabe
(TW) breather [36]. A simplest example of breather gas
can be viewed as an infinite random ensemble of the TW
breathers [24]. By manipulating the spectral parameters
the TW breather gas can be reduced to the AM, KM
and PS gases as well as to the fundamental soliton gas.
The latter is achieved by vanishing the plane wave back-
ground of the TW breather gas [24].

The present paper has two goals: (i) numerical real-
ization of a breather gas; (ii) verification of the spectral
theory of breather gas developed in [24].

Numerical realization of a breather gas as a large en-
semble of TW breathers with prescribed parameters rep-
resents a challenging problem. Numerical methods for
the construction of breather solutions of the 1D-NLSE
suffer from accuracy problems that prevent the numeri-
cal synthesis of breathers of order N & 5 [37, 38]. In the
context of soliton gases this latter difficulty has been re-
cently resolved by Gelash and Agafontsev [39] via the ap-
plication of the so-called dressing method combined with
high precision numerical computations. In this paper, we
extend the algorithm of [39] to numerically realize various
breather gases and verify some predictions of the spectral
kinetic theory of [24]. In particular we demonstrate that
random ensembles of N ∼ 50 breathers can be build via
the Darboux transform recursive scheme in high preci-
sion arithmetics. To our knowledge, this represents an
improvement of an order of magnitude compared to the
results reported in previous numerical works. In addition
we show that the construction method can be used to pro-
vide evidence of the space-time evolution of the generated
breather gases. This feature cannot be achieved by us-
ing direct numerical simulations of the 1D-NLSE due to
the inevitable presence of modulational instability that
quickly desintegrates the plane wave background.

The paper is organized as follows. In Section II we
present the algorithm of the spectral synthesis of breather
gas using the Darboux transform. This algorithm is then
realized numerically using the high precision arithmetics.
In Section III we numerically study the interactions in
breather gases and compare the results of the numer-
ical simulations with the theoretical predictions of the
breather gas kinetic theory of Ref [24]. Specifically, we
consider the propagation of the ‘trial’ breather through
a homogeneous breather gas for three prototypical con-
figurations: Akhmediev, Kuznetsov-Ma and Peregrine
gases. The study of interaction in the gas of Akhmediev
breathers has revealed some special features that have re-
quired further development of the theory of Ref [24]. The
Appendix provides the identification of the interaction
kernel in the breather gas with the position shift formula
in two-breather collisions, obtained in earlier works.

II. NONLINEAR SPECTRAL SYNTHESIS OF
BREATHER GASES

A. Soliton and breather ensembles in the
1D-NLSE: an overview

We consider the integrable one-dimensional focusing
NLS equation (1D-NLSE) in the following form:

iψt + ψxx + 2 |ψ|2 ψ = 0, (1)

where ψ(x, t) represents the complex envelope of the wave
field that evolves in space x and time t.

In the inverse scattering transform (IST) method, the
1D-NLSE (1) is represented as a compatibility condition
of two linear equations [1, 40],

Φx =

(
−iλ ψ
−ψ∗ iλ

)
Φ, (2)

Φt =

(
−2iλ2 + i|ψ|2 iψx + 2λψ
iψ∗
x − 2λψ∗ 2iλ2 − i|ψ|2

)
Φ, (3)

where λ is a (time-independent) complex spectral param-
eter and Φ(x, t, λ) = (r(x, t, λ), s(x, t, λ))T is a column
vector. The spatial linear operator (2) and the temporal
linear operator (3) form the Lax pair of Eq. (1). For a
given potential ψ(x, t) the problem of finding the scatter-
ing data σ[ψ] (also sometimes called the IST spectrum)
and the corresponding scattering solution Φ specified by
the spatial equation (2) is called the Zakharov-Shabat
(ZS) scattering problem [41]. The ZS scattering problem
is formally analogous to calculating the Fourier coeffi-
cients in Fourier theory of linear systems, hence the term
‘Nonlinear Fourier Transform’ is often used in the context
of telecommunications systems research, particularly in
the context of periodic boundary conditions [42–44].

For spatially localized potentials ψ such that ψ(x, t)→
0 as |x| → ∞, the complex eigenvalues λ are gener-
ally presented by a finite number of discrete points with
=(λ) 6= 0 (discrete spectrum) and the real line λ ∈ R
(continuous spectrum). The scattering data σ(ψ) consist
of a set of N discrete eigenvalues λn (n = 1, ..., N) , a set
of N norming constants Cn for each λn and the so-called
reflection coefficient ρ(ξ),

σ(ψ) = {ρ(ξ); λn, Cn} (4)

where ξ ∈ R denotes the continuous spectrum compo-
nent. In this setting where the wavefield ψ lives on a zero
background (ZBG), the discrete part of the IST spectrum
is related to the soliton content of the wavefield whereas
the continuous part of the IST spectrum is related to the
nonlinear dispersive radiation [41].

A special class of (reflectionless) solutions of Eq. (1),
the N -soliton solutions (N-SS’s), exhibits only a discrete
spectrum (ρ(ξ) = 0) consisting of N complex-valued
eigenvalues λn, n = 1, ..., N and N associated complex-
valued norming constants. The IST formalism has been
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extensively applied to examine the processes of inter-
action, collision and synchronisation in N-SS’s, see e.g.
ref. [41, 45]. The numerical synthesis of N-SS’s can be
achieved in standard computer simulations (double preci-
sion, 16-digits) up to N ∼ 10 [39]. On the other hand the
numerical synthesis of N-SS’s with N large represents a
challenging problem that has been resolved only recently
[39]. Combining the so-called dressing method and nu-
merical calculations made using high numerical precision
(a 100-digits precision is typically necessary for the syn-
thesis of N-SS’s with N ∼ 100), the numerical synthesis
of soliton gases (SGs), i. e. large ensembles of N-SS’s
characterized by a given spectral distribution, has been
demonstrated in ref. [39]. The opportunity to synthe-
size numerically large soliton ensembles has opened the
way to the experimental generation of strongly nonlinear
wavefields with a pure solitonic content. In particular re-
cent experiments made in a one-dimensional water tank
with deep-water surface gravity waves have revealed that
the controlled synthesis of dense SGs can be achieved
in hydrodynamics [19]. Moreover, it has been also re-
cently shown that the so-called bound state SGs provide
a model that describes well the nonlinear stage of the
noise-induced modulation instability [20].

In addition to the soliton solutions living on zero back-
ground, the focusing NLS equation (1) admits a large
variety of solutions living on a nonzero (plane wave)
background. The IST theory for the focusing nonlinear
Schrödinger equation with nonzero boundary conditions
(NZBC) at infinity has been reported in ref. [46–48].
As in IST with zero boundary conditions, the scattering
data σ[ψ] in the IST with NZBC consist of a set of N
discrete complex-valued eigenvalues λn, a set of N associ-
ated norming constants Cn and the reflection coefficient
ρ(λ). In IST with NZBC, the continuous spectrum does
not live on the real axis R but on R ∪ [−iq0, iq0] where
q0 > 0 represents the amplitude of the plane wave back-
ground [46, 47].

The focusing NLS equation with NZBC possesses a rich
family of purely solitonic solutions (reflectionless poten-
tials, ρ(λ) = 0) named breathers or sometimes solitons
on finite background. The generic “elementary” breather
parametrized by one single complex-valued eigenvalue
(N = 1) in the framework of IST with NZBC is the
so-called Tajiri-Watanabe breather [36]. This elemen-
tary solution reduces under certain limits to the solu-
tions found over the years by Kuznetsov and Ma [30, 48],
Peregrine [31], and Akhmediev [32]. Using the dress-
ing method, Zakharov and Gelash constructed a class
of two-soliton solutions on finite background, termed su-
perregular breathers and corresponding to small initial
perturbations of a constant background [49]. This was
generalized to several pairs of breathers in ref. [5, 50].
Note that most of these breather solutions of Eq. (1)
have been experimentally realized in hydrodynamics and
in optics [6, 7, 33, 34, 51–56] but also recently with mat-
ter waves [57].

B. Darboux transform-based synthesis of breather
gases

The recent interest in studying the breather solutions
of various kind has been fuelled by the rogue wave re-
search, see e.g. [58] and references therein. The pro-
totype rogue-wave solutions represent coherent struc-
tures of large amplitude, strongly localized in both
space and time, on an otherwise quiescent background
[25, 27, 38, 59–65]. In this context the Darboux transform
has been extensively used as a reliable method to gener-
ate higher-order breather solutions of Eq. (1), i.e. reflec-
tionless solutions of the focusing 1D-NLSE with NZBC
[37, 66–69]. Note that the Darboux transform is now also
used in the context of nonlinear eigenvalue communica-
tion to build ordered soliton ensembles used to carry out
the transmission of information in fiber optics communi-
cation links [43, 44, 70].

The Darboux method is a recursive transformation
scheme where a “seeding solution” of the focusing 1D-
NLSE is used as a building block for the construction
of a higher-order solution through the addition of one
discrete eigenvalue. Here we give a brief review of the
Darboux transform method used for the generation of
higher-order breathers. We largely follow the exposition
given in ref. [38, 71] but other important references where
this method is described and used are ref. [37, 66–69].

In the IST for the 1D-NLSE with NZBC, the seeding
solution commonly used at the first step of the recur-
sive process of constructing a higher-order breather so-
lution is the plane wave solution of Eq. (1) with unit
amplitude, i.e. ψ0(x, t) = e2 i t. The first-order breather
(Tajiri-Watanabe) ψ1(x, t) parametrized by the complex
eigenvalue λ1 is obtained by

ψ1(x, t) = ψ0(x, t) +
2(λ∗1 − λ1)s1,1r

∗
11

|r1,1|2 + |s1,1|2
. (5)

The functions r1,1(x, t) and s1,1(x, t) in Eq. (5) are ob-
tained by setting j = 1 in the following expressions

r1,j(x, t) = 2ie−it sin(Aj),

s1,j(x, t) = 2eit cos(Bj),
(6)

where Aj and Bj are given by

Aj =
1

2

(
arccos

(κj
2

)
+ (x− xj)κj −

π

2

)
+(t− tj)κjλj ,

Bj =
1

2

(
− arccos

(κj
2

)
+ (x− xj)κj −

π

2

)
+(t− tj)κjλj ,

(7)

with κj = 2
√

1 + λ2
j . The parameters (xj , tj) are con-

nected with the complex norming constants Cj in the
IST with NZBC [37]. The first-order breather ψ1(x, t)
is parametrized by the complex eignevalue λ1 and by
the two real parameters x1 and t1. Once the first-order
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Figure 1. Numerical synthesis of a generic BG (left column (a), (e), (i)) and of three single-component BGs: a KM-BG (second
column (b), (f), (j)), a AB-BG( third columnn (c), (g), (k)) and a PS-BG (fourth column (d), (h), (i)). The four BGs are
parametrized by N = 50 complex eigenvalues λn, see bottom row. The first row (a)–(d) represents the space-time evolution
of the BGs, with the second row (e)–(h) being an enlarged view of some restricted region of the (x− t) plane. The third row
(i)–(l) represents the spectral portraits of each BG with the vertical line between 0 and +i being the branchcut associated with
the plane wave background. Each point in the upper complex plane in (i), (j), (k), (l) represents a discrete eigenvalue in the
IST problem with NZBC. The eigenvalues parametrizing the single-component BGs are densely placed in a small square region
which is centered around a point λ0 of the imaginary vertical axis and which is strongly enlarged in the insets shown in (j),
(k), (l). The xj are uniformly distributed in the range [−1, 1] for the generic gas (a) and for the Peregrine gas (d) while they
are uniformly distributed in the range [−32, 32] for the KM gas (b) and the AB gas (c).

breather ψ1 is constructed using Eqs. (5), (6), (7),
breather solutions of order n ≥ 2 can be recursively gen-
erated by using

ψn(x, t) = ψn−1(x, t) +
2(λ∗n − λn)sn,1r

∗
n,1

|rn,1|2 + |sn,1|2
(8)

with

rn,p = [(λ∗n−1 − λn−1)s∗n−1,1rn−1,1sn−1,p+1

+(λp+n−1 − λn−1)|rn−1,1|2rn−1,p+1

+(λp+n−1 − λ∗n−1)|sn−1,1|2rn−1,p+1]/

(|rn−1,1|2 + |sn−1,1|2),

(9)

sn,p = [(λ∗n−1 − λn−1)sn−1,1r
∗
n−1,1rn−1,p+1

+(λp+n−1 − λn−1)|sn−1,1|2sn−1,p+1

+(λp+n−1 − λ∗n−1)|rn−1,1|2sn−1,p+1]/

(|rn−1,1|2 + |sn−1,1|2).

(10)

Despite the efficiency of the Darboux method for the
construction of high-order breather solutions of Eq. (1),

its practical implementation in numerics suffers from the
same type of issues as those previously mentioned for
the numerical construction of N-SS’s. As noted in ref.
[37, 38], problems of numerical accuracy may prevent
the numerical synthesis of breathers of order N & 5.
In this paper we show that this limit can be overcome
by the implementation of the same strategy as the one
used to build N-SS’s with N large [39]. Implementing the
Darboux recursive scheme in high precision arithmetics
using the BOOTS C++ Multiple precision Library, we
show that breather solutions of Eq. (1) can be synthe-
sized up to order N ∼ 50. As will be shown in detail
in Sec. III, this provides a numerical tool that enables
one to verify the results of the spectral theory of breather
gases recently developed in ref. [24].

Fig. 1(a) shows the space-time evolution of a generic
BG, i.e. a breather solution of Eq. (1) of order N = 50
with random spectral charateristics. The amplitude of
the plane wave background is unity (q0 = |ψ0| = 1)
and the 50 complex-valued eigenvalues λj (j = 1 − 50)
parametrizing the BG are randomly distributed within
some rectangular region of the upper complex plane,
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see Fig. 1(i). The parameters tj are fixed to zero
(tj = 0 ∀j) and the randomness of the gas is achieved
by uniformly distributing the xj in some interval centered
around x0 = 0. Note that the vertical line between 0 and
+i in Fig. 1(i) represents the so-called branchcut associ-
ated with the plane wave background in the IST formal-
ism of the 1D-NLSE with NZBG, see e.g. [24, 35, 46, 47].
Fig. 1(a) reveals that the space-time dynamics of the
generic BG synthesized in numerical simulations is highly
complicated. In particular, breathers cannot be indi-
vidualized due to their strong overlap and interaction.
Note also that the maximum amplitude reached locally
in space and time by the incoherent breather ensemble
of Fig. 1(a) does not exceed ∼ 5.5, which demonstrates
that the multiple breathers are far from a synchroniza-
tion state that would eventually produce isolated rogue
waves of large amplitude [72, 73].

We emphasize that BGs shown in the space-time plots
of Fig. 1 are not obtained from a numerical simulation
of Eq. (1). Taking a BG generated at a given time t0
using the Darboux method and using this wavefield as
initial condition in a numerical simulation of Eq. (1), we
observe that modulation instability quickly desintegrates
the plane wave background by amplifying the numeri-
cal noise inherent to any pseudo-spectral (split-step like)
method commonly used for the numerical integration of
the 1D-NLSE. On the other hand space-time plots re-
ported in Fig. 1 are obtained from a pure spectral (IST)
construction based on the Darboux recursive method
which has been implemented in computer simulations
made with high numerical precision. Starting from an
ensemble of N complex eigenvalues λj and N coordinates
(xj , tj), the BG is synthesized at time t using the Dar-
boux machinary (Eqs. (5)-(10)). A 100 digits precision
is typically necessary to synthesize a BG parametrized
by an ensemble of N ∼ 50 eigenvalues. The space-time
plots shown in Fig. 1 are obtained by reiterating the same
synthesis at different values of time t. Our numerically
synthesized solutions can be validated by computing the
discrete Zakharov-Shabat spectrum (using for instance
the Fourier collocation method [35, 41]) at different mo-
ments of time to verify that the obtained discrete eigen-
values are indeed the same as the ones specified for the
construction of the BG under consideration.

The central concept in the theory of SGs and BGs is
the density of states (DOS) [74] which represents the dis-
tribution function u(λ, x, t) in the spectral phase space.
In the context of the 1D-NLSE (1) the DOS u(λ, x, t),
where λ = β + iγ, is defined such that udβdγdx is the
number of breather states with complex spectral param-
eter λ ∈ [β, β + dβ] × [γ, γ + dγ] contained in a portion
of BG within a spatial interval [x, x+ dx] at time t.

One-component BGs have been defined in ref. [24] as
being characterized by a DOS in the form of the Dirac
δ distribution, i.e. u(λ) = w δ(λ − λ0) where w > 0
represents the mass of the δ distribution which is cen-
tered around one specfic point λ0 in the complex spectral
plane. Fig. 1(b-d)(f-h) display the space-time evolutions

together with the spectral portraits (Fig. 1(j-l)) typifying
some one-component BGs of particular interest.

For the Kuznetsov-Ma BG (KM-BG), the spectral por-
tait consists of the branchcut (associated with the plane
wave background of unity amplitude) and a dense set of
N = 50 spectral points randomly placed in a small square
region of width δ = 10−3 centered around λ0 = 1.3i, as
shown in Fig. 1(j). Fig. 1(b) shows that the KM-BG is
a dense ensemble of individual KM breathers having all
a zero velocity in the (x, t)-plane. Contrary to Fig. 1(a)
each KM breather inside the BG can be individualized
and it follows the same periodic time evolution where the
time period is fully determined by =(λ0). The random-
ness in the one-component KM-BG can be seen from the
random distance between individual KM breathers and
their random initial phase, see Fig. 1(f).

The Akhmediev BG (AB-BG) is characterized by the
same distribution of the spectrum λ as the KM-BG ex-
cept that the point λ0 around which the multiple discrete
eigenvalues are accumulated is now placed inside the
branchcut associated with the plane wave background,
see Fig. 1(k) where λ0 = +0.8i. As a result, the AB-BG
is more naturally characterized by the spectral flux den-
sity, the temporal counterpart of the DOS. As shown in
Fig. 1(c), the AB-BG consists of a random series of indi-
vidual ABs having identical spatial period, which is fully
determined by =(λ0). Similarly to the KM-BG, the ran-
domness in the one-component AB-BG can be seen from
the random time separation between individual Akhme-
diev breathers and their random relative phases, see Fig.
1(g).

It must be mentioned that the density (spatial or
temporal) of the AB or KM breather gases cannot be
made arbitrary large: there is a configuration termed
“breather condensate” [24] corresponding to a critically
dense breather gas, similar to a soliton condensate nu-
merically realized in [20].

It is well known that the Peregrine breather can be
obtained as the spatial and temporal infinite period
limits of Akhmediev and Kuznetsov-Ma breathers re-
spectively [68, 71]. In the spectral (IST) domain, the
Peregrine breather is obtained by placing the eigenvalue
parametrizing a first-order breather solution of Eq. (1)
exactly at the endpoint +i of the branchcut associated
with the plane wave background of unit amplitude [35].
Following the same approach, the one-component Pere-
grine BG (P-BG) is obtained by accumulating a large
number of discrete eigenvalues in a small area surround-
ing the endpoint of the branchcut, see Fig. 1(l). As
shown in Fig. 1(d) and in Fig. 1(h), the P-BG repre-
sents a collection of individual and identical Peregrine
breathers that are randomly positioned in space and
time.

While the PG synthesized in our work represents a
high-order breather solution of Eq. (1), this solution
contrasts with the high order breather solutions consid-
ered previously because it is intrinsically of a random
nature. The localized breather solutions of high order
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Figure 2. (a), (b) Propagation of a Tajiri-Watanabe breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Peregrine
BG. The space-time evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in
(a) and (b) represents the trajectory of the “free” Tajiri-Watanabe breather propagating on a plane wave background with a
group velocity given by Eq. (11). The plot shown in (c) represents the spectral portrait associated with the numerical results
shown in (a), (b). The vertical line between 0 and +i represents the branchcut associated with the plane wave background and

the blue point is the discrete eigenvalue η[1] associated with the Tajiri-Watanabe breather propagating in the P-BG. The 50
spectral points characterizing the P-BG are densely placed around +i and they are shown in the inset plotted in (c).

that have been considered in previous works (see e.g. ref.
[38, 62, 64, 71]) have been arranged in regular patterns
with well-organized geometrical shapes because they rep-
resented synchronized states having no degree of random-
ness. In contrast, in the construction plotted in Fig. 1(d)
and 1(h), the parameters xj are randomly and uniformly
distributed over [−1,+1] which implies that each individ-
ual Peregrine breather in the PG has a random position
in the (x, t) plane. We also mention that the solitonic
eigenvalues in our numerical construction are clustered
(also randomly) in a close proximity of the endpoints
of the spectral branch cut so the individual Peregrine
solitons in the PG are realized in our synthesis approxi-
mately, with the accuracy determined by the closeness of
the solitonic eigenvalues to the endpoints of the branch
cut.

III. INTERACTIONS IN BREATHER GASES:
COMPARISON BETWEEN NUMERICAL

EXPERIMENTS AND SPECTRAL THEORY

The analytical theory of BGs has been introduced and
developed in ref. [24]. It has been shown that spa-
tially non-homogeneous BGs are described by a kinetic
equation formed by a transport equation for the slowly-
varying DOS u(λ, x, t) and the integral equation of state
relating the gas’ velocity to the DOS. In this Section,
we show that some predictions of the spectral theory of
BGs can be verified in simulations involving BGs that
have been numerically synthesized using the methodol-
ogy described in Sec. II B. In Sec. III A, we provide the
key elements of spectral theory of BGs that are relevant
for the comparison between theoretical and numerical re-

sults. In Sec. III B, we examine the collision between one
trial soliton and various single-component BGs.

A. Analytical results from the spectral theory of
breather gases

The nonlinear spectral theory of SGs and BGs for the
focusing 1D-NLSE developed in ref. [24] provides a full
set of equations characterizing the macroscopic spectral
dynamics in a spatially nonhomogeneous BG.

An important result of the theory is the so-called equa-
tion of state which provides the mathematical expression
of the modification of the mean velocity of a “tracer”
breather due to its interaction with other breathers in
the gas.

The group velocity (in the (x, t)-plane) of a first-order
breather (TW) parametrized by the complex eigenvalue
λ ≡ η (we shall use in this section this latter notation for
the spectral parameter to be consistent with notations
of ref. [24] and previous works on the spectral kinetic
theory) is given by

s0(η) = −2
= [ηR0(η)]

= [R0(η)]
(11)

where R0(z) =
√
z2 − δ2

0 with δ0 the endpoint of the
branchcut corresponding to the plane wave (δ0 = i for
the plane wave of unit amplitude considered in all the
numerical simulations reported in this paper). It is not
difficult to see that, if η ∈ iR\ [−i, i] (KM breather) then
s0(η) = 0, while if η ∈ (−i, i) (AB) then s0(η) = ±∞
depending on the way the limit Re(η) → 0 in (11) is
taken (either from the left or right side of the branch
cut).
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Figure 3. (a), (b) Propagation of a TW breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Kuznetsov-Ma BG.
The space-time evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and
(b) represents the trajectory of the “free” TW breather propagating on a plane wave background with a group velocity given
by Eq. (11). The plot shown in (c) represents the spectral portrait associated with the numerical results shown in (a), (b).
The vertical line between 0 and +i represents the branchcut associated with the plane wave background and the blue point is
the discrete eigenvalue η[1] associated with the TW breather propagating in the KM-BG. The 50 spectral points characterizing
the KM-BG are densely placed around η[2] = 1.3i and they are shown in the inset plotted in (c).

As shown in ref. [24], the equation of state of a BG
reads

s(η) = s0(η) +

∫
Λ+

∆(η, µ)
[
s(η)− s(µ)

]
u(µ)|dµ| (12)

where Λ+ is the 2D compact support of the DOS u(η)
(defined earlier in Section II B) located in the upper half
plane C+ of the complex spectral plane,

∆(η, µ) =
1

= [R0(η)]

[
ln
∣∣∣µ− η̄
µ− η

∣∣∣
+ ln

∣∣∣R0(η)R0(µ) + ηµ− δ2
0

R0(η̄)R0(µ) + η̄µ− δ2
0

∣∣∣] . (13)

The integral term in Eq. (12) describes the modification
of the ‘tracer’ breather mean velocity in a gas due to
its interaction with other breathers in the gas having a
DOS specified by u. The spectral value η in (12) can
be taken outside Λ+—in that case formula (12) describes
the mean velocity of a “trial” or “test” TW breather with
the eigenvalue η propagating through a breather gas with
DOS supported Λ+.

The interaction kernel ∆(η, µ) given by Eq. (13) de-
scribes the position shift arising in a two-breather inter-
action. We note that the two-breather interactions have
been studied in [75], [50] using the IST, where different
forms of the expressions for the position shift were ob-
tained. In the Appendix we demonstrate the equivalence
of the kernel ∆(η, µ) given by (13) to the position shift
formula obtained for two-breather collisions in previous
works.

For a two-component breather gas, the DOS is a su-
perposition of two Dirac delta-functions centered at the

complex spectral points η[j] (j = 1, 2)

u(η) =

2∑
j=1

w[j]δ(η − η[j]) (14)

where w[j] are the weights of the components. For the
DOS specified by Eq. (14), Eq. (12) yields the following
linear system for the gas’ component velocities s[j] ≡
s(η[j]) (j = 1, 2)

s[1] = s
[1]
0 +

∆1,2w
[2](s

[1]
0 − s

[2]
0 )

1− (∆1,2w[2] + ∆2,1w[1])

s[2] = s
[2]
0 −

∆2,1w
[1](s

[1]
0 − s

[2]
0 )

1− (∆1,2w[2] + ∆2,1w[1])

(15)

where s
[j]
0 ≡ s0(η[j]) (j = 1, 2), ∆j,k = ∆(η[j], η[k]).

In the numerical simulations presented in Sec. III B,
we will consider an even simpler situation where a single
trial breather parametrized by the eigenvalue η[1] inter-
acts with a one-component breather-gas having its spec-
tral distribution centered in η[2]. In such a limit w[1] → 0
and Eqs. (15) reduces to:

s[1] =
s

[1]
0 −∆1,2w

[2]s
[2]
0

1−∆1,2w[2]
.

s[2] = s
[2]
0 .

(16)

The validity of Eqs. (16) in the context of the 1D-
NLSE dynamics (1) will be verified for the P-BG, the
KM-BG and the AB-BG in numerical simulations pre-
sented in Sec. III B. As a matter of fact, formula (16)
can be obtained directly from equation (12) by setting
η = η[1] /∈ Λ+ (the trial breather eigenvalue), and using

u(µ) = w[2]δ(µ− η[2]), s(η2) = s
[2]
0 where η[2] ∈ Λ+.
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B. Interactions in one-component breather gases:
Comparison between spectral theory and numerical

simulations

In the numerical simulations presented in this Sec-
tion, a trial TW breather with the spectral parameter
η = η[1] is propagated through various single-component
BGs having their DOS defined by u(η) = w[2]δ(η − η[2]).
We define spectral parameter η[2] as η[2] = α i with α = 1
for the P-BG, α > 1 for the KM-BG, α < 1 for the AB-
BG. Similar to Fig. 1, the spectral portait of the consid-
ered BGs consists of the branchcut (associated with the
plane wave background of unity amplitude) and a “clus-
ter” of N = 50 spectral points randomly placed in a small
square region of width δ = 10−4 centered around η[2].
The spectral parameter η[1] is chosen in such a way that
<(η[1]) > 0 which implies that the free trial TW breather
has a negative group velocity in the (x− t) plane, see Eq.
(11).

1. Interactions in the Peregrine breather gas

Fig. 2 shows a trial Tajiri-Watanabe breather prop-
agating through a P-BG. We observe that the trial
breather passes through the P-BG without change in its
group velocity. This confirms the theoretical result es-
tablished in ref. [24] that the propagation of a trial TW
breather through a P-BG is ballistic. This result can be
understood at the qualitative level by the fact that the
interaction cross section between the trial breather and
the individual Peregrine breathers composing the gas is
so weak that the propagation of the trial breather is un-
affected by the P-BG.

2. Interactions in the Kuznetsov-Ma breather gas

Fig. 3 shows a trial TW breather propagating through
a KM-BG. Contrary to Fig. 2, the multiple interactions
between the trial breather and the KM breathers com-
posing the KM-BG now significantly influences the prop-
agation ot the trial breather, see Fig. 3(a) and 3(b) for
a comparison between the trajectory of the free Tajiri-
Watanabe breather (in white dashed lines) and the tra-
jectory followed by the trial breather in the KM-BG. As
shown in Fig. 3(b), the trial breather acquires a signif-
icant space shift each time that its trajectory intersects
the trajectory of an individual KM breather composing
the BG. At the macroscopic scale, this produces a ve-
locity change of the trial breather inside the KM-BG.
This leads to a spatial shift ∆X in the position of the
trial breather which is measurable when the trial breather
emerges from the KM-BG, see Fig. 3(a).

For the KM-BG, Eq. (16) simplifies to

s[1] =
s

[1]
0

1−∆1,2w[2]
(17)

given that s
[2]
0 = 0. Eq. (17) clearly shows that the group

velocity of the trial Tajiri-Watanabe breather is increased
by a factor 1/(1 −∆1,2w

[2]) due to the interaction with
the KM-BG.

Note that the space shift ∆X acquired by the trial
breather as a result of propagation inside the KM-BG
simply represents the product of the number N of in-
terations (equivalently the number of breathers in the
KM-BG) with the elementary space shift ∆1,2 induced
by each interaction: ∆X = N∆1,2. This provides an al-
ternative and straightforward way to check the validity
of Eq. (17) which gives the group velocity of the trial
breather inside the KM-BG.

Figure 4. Quantitative verification of the spectral theory of
BGs introduced in ref. [24]. Comparison between numerics
(red dots) and theory (dashed lines) for the effective velocity

(s[1]) of a trial breather (η[1]) propagating in a a KM-BG

(η[2]).

A set of numerical simulations with different values of
the spectral parameters η[1] and η[2] has been made to
check the validity of the spectral theory. Different real-
izations of the KM-BG have been made and the value of
w[2] is determined from numerical simulations as the ra-
tio between the selected number N of breathers in the gas
over the spatial extension L of the gas: w[2] = N/L As
shown in Fig. 4, we observe full quantitative agreement
between the numerical experiment and the predictions of
the spectral theory.

3. Interactions in the Akhmediev breather gas

The case of AB-BG is special and requires a separate
consideration, particularly because it has not been con-
sidered in any detail in [24]. The AB is a “static” ob-
ject, not localized in space, so it is not immediately ob-
vious how to identify the key quantities u(η) and s(η)
for the AB-BG. A single AB is a limiting case of the
TW breather where the soliton eigenvalue η[2] is placed
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Figure 5. (a), (b) Propagation of a TW breather with the spectral parameter η1 = 0.06 + 1.01i inside a Akhmediev BG. The
space-time evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b)
represents the trajectory of the “free” TW breather propagating on a plane wave background with a group velocity given by
Eq. (11). The plot shown in (c) represents the spectral portrait associated with the numerical results shown in (a), (b). The
vertical line between 0 and +i represents the branch cut associated with the plane wave background and the blue point is the
discrete eigenvalue η1 associated with the TW breather propagating in the AB-BG. The 50 spectral points characterizing the
KM-BG are densely placed around η[2] = 0.8i and they are shown in the inset plotted in (c).

within the branch cut [0, i] in the upper half plane, The
AB-BG is generally characterized by some distribution of
soliton eigenvalues along the branch cut. Similar to the
above consideration of KM-BG, we consider the AB-BG
with soliton eigenvalues clustered around a given spectral
point η[2] (and c.c.) to mimic a one-component gas.

As we have already mentioned in Section III A the for-
mula (11) for the group velocity of the TW breather im-
plies |s(η)| → ∞ as η → η[2], which is consistent with the
delocalized nature of the AB. On the other hand, it can
be shown using the results of ref. [24], that in the AB-BG
limit the DOS u(η)→ 0 while the spectral flux function
v(η) = s(η)u(η) = O(1). This motivates the following
alternative form of the equation of state (12):

s(η) = s0(η) +

∫
Λ+

∆(η, µ)
[ s(η)

s(µ)
− 1
]
v(µ)|dµ|, (18)

which is more suitable for the characterization of the AB-
BG interactions. Equation (18) was obtained from (12)

by substituting u(η) = v(η)
s(η) . Assuming Λ+ to be a nar-

row region surrounding the branch cut [0, i] and using
|s(µ)| � 1 for µ ∈ Λ+ equation (18) to leading order
becomes

s(η) = s0(η)−
∫

Λ+

∆(η, µ)v(µ)|dµ|. (19)

Equation (19) describes the modification of the veloc-
ity of the TW breather with eigenvalue η propagating
through the AB-BG characterized by the spectral flux
density v(µ).

An important property of ∆(η, µ) given by (13) is that

∆(η, µ) + ∆(η,−µ̄) = 0 when µ ∈ [0, i], (20)

that is, when µ is on the branch cut [0, i]. The second
variable η can take any value in the upper half-plane.
Equation (20) implies that ∆(η, µ) takes opposite values
on the opposite sides of the branchcut.

It can further be shown that in the case of a breather
gas, whose spectral support Λ+ is symmetric with re-
spect to the branch cut [0, i], the function v(η) also takes
opposite values on the opposite sides of [0, i]. Thus the
speed of the AB-BG s(η) from (18) does not depend on
which side of the upper part of the branch cut [0, i] the
domain Λ+ or its parts are situated.

Let us now consider a one-component AB-BG with the
spectral flux v(η) = wtδ(η − η[2]), where η[2] ∈ [0, i] and
wt is a real constant weight. As a result, equation (19)
assumes a simple form

s(η) = s0(η)− wt∆(η, η[2]), (21)

We note that the sign of wt, as was explained above,
depends on the side of [0, i] but the sign of the product
wt∆ does not. Hence we have the general result s(η) −
s0(η) < 0 for the propagation of a trial breather through
a AB-BG.

We note that formula (21) can be obtained directly
from the basic result (16) by using w[2] → 0 and introduc-

ing w[2]s
[2]
0 ≡ wt. This simple formal consideration, how-

ever, does not provide the important information about
the sign of wt∆.

Fig. 5 shows a trial TW breather propagating through
a AB-BG. Similar to Fig. 3, the propagation of the trial
breather is significantly influenced by the the multiple
interactions with the AB breathers composing the AB-
BG, see Fig. 5(a) and 5(b). One can see that, in con-
trast to the interaction of the trial TW breather with the
KM-BG, the group velocity of the trial TW breather is
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reduced in the interaction with the AB-BG, in agreement
with Eq. (21). Indeed, the space shifts observed in Fig.
3(a) and in Fig. 5(a) have opposite signs.

Similar to the KM-BG interactions, a set of numerical
simulations with different values of the spectral parame-
ters η[1] and η[2] has been made to check the validity of
equation (21). Different realizations of the AB-BG have
been produced and the value of wt was determined from
numerical simulations as the ratio between the selected
number N of AB in the gas over the temporal extension
T of the gas: wt = N/T As shown in Fig. 6, we ob-
serve full quantitative agreement between the numerical
experiment and the predictions of the spectral theory.

Figure 6. Comparison between numerics (red dots) and the-

ory (dashed lines) for the effective velocity (s[1]) of a trial TW

breather (η[1]) propagating in a a AB-BG (η[2]).

IV. CONCLUSIONS

We have developed a numerical algorithm of the IST
spectral synthesis of breather gases for the focusing 1D-
NLS equation. The algorithm is based on the recur-
sive Darboux transform scheme realized in high precision
arithmetics. Using this algorithm we have synthesized
numerically three types of “prototypical” breather gases:
the Akhmediev, Kuznetsov-Ma and Peregrine gas.

Using the developed spectral algorithm, the interaction
properties of breather gases, predicted by the kinetic the-
ory of ref. [24] have been tested by propagating through
them a ‘trial’ generic TW breather whose effective veloc-
ity is strongly affected by the interaction with the gas. In
all cases the theoretically predicted effective mean veloc-
ity of the trial breather propagating through a breather
gas demonstrates excellent agreement with the results of
the numerical simulations. The verification of the theory,
despite the inevitable effects of modulational instability
present in the 1D-NLSE dynamics, has been made possi-
ble due to the whole numerical algorithm being based on

the spectral construction rather than direct simulations
of the 1D-NLSE equation.

The quantitative verification of the kinetic theory of
breather gases undertaken in this paper is an important
step towards a better understanding of this type of a
turbulent motion in integrable systems. We also believe
that the ability to synthesize numerically BGs represents
a step of importance towards the controlled laboratory
generation of BGs, possibly following an approach similar
to the one recently reported for hydrodynamic SGs [19].
Finally the possibility to generate numerically breather
solutions of order N & 10 paves the way for further works
devoted to the investigation of the properties of localiza-
tion in space and time of breather solutions of the 1D-
NLSE of very high order [38, 50, 73].
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APPENDIX: POSITION SHIFT IN
TWO-BREATHER INTERACTIONS

The two-breather interactions have been studied in
refs. [75], [50] where the expressions for the phase and
position shifts in the interaction of two Tajiri-Watanabe
breathers have been derived using the IST analysis. In
Section III A of this paper the interaction kernel in the
equation of state (12) for breather gas has been obtained
in the form (13). The natural interpretation of this in-
teraction kernel, consistent with the previously studied
cases of KdV and NLS soliton gases, is the position shift
in a two-breather collision. However, the equivalence be-
tween formula (13) and the expressions from [75], [50] is
far from being obvious. Here we establish this equiva-
lence enabling one to extend the phenomenological inter-
pretation of soliton gas kinetics [23] to breather gases.

We consider the position shift expression from [75]

∆ξ̄2 = − ln(ξ0)/(c−,2 cosα2) = ∆(λ2, λ1), (22)

where

ξ0 =
d+ − 2 (cos(α1 − α2) + c−,1c−,2) cos(α1 − α2)

d+ − 2 (cos(α1 + α2)− c−,1c−,2) cos(α1 + α2)
(23)
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with

c±,j = zj ± q2
0/zj λj = (ζj − q2

0/ζj)/2

d±,j = z2
j ± q4

0/z
2
j q0 = −iδ0

d+ = d+,1 + d+,2 R0(λj) = (ζj + q2
0/ζj)/2

ζj = R0(λj) + λj = izje
iαj .

(24)

One can verify that substituting (24) in (13) and invoking

the identities

|λi|2 =
(
d+,i + 2q2

0 cosαi
)
/4

d+ =

(
z1z2 +

q4
0

z1z2

)(
z1

z2
+
z2

z1

)
(cos 2α1 + cos 2α2) /2 = cos(α1 + α2) cos(α1 − α2)

(25)
yields the position shift expression (22).
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[35] Stéphane Randoux, Pierre Suret, and Gennady El, “In-
verse scattering transform analysis of rogue waves using
local periodization procedure,” Scientific reports 6, 29238
(2016).

[36] Masayoshi Tajiri and Yosuke Watanabe, “Breather so-
lutions to the focusing nonlinear schrödinger equation,”
Phys. Rev. E 57, 3510–3519 (1998).

[37] N.N. Akhmediev, V.I. Korneev, and N.V. Mitskevich,
“N-modulation signals in a single-mode optical waveg-
uide under nonlinear conditions,” Sov. Phys.–JETP 67,
89–95 (1988).

[38] David J. Kedziora, Adrian Ankiewicz, and Nail Akhme-
diev, “Classifying the hierarchy of nonlinear-schrödinger-
equation rogue-wave solutions,” Phys. Rev. E 88, 013207
(2013).

[39] A. A. Gelash and D. S. Agafontsev, “Strongly interacting
soliton gas and formation of rogue waves,” Phys. Rev. E
98, 042210 (2018).

[40] V. E. Zakharov and A. B. Shabat, “Exact theory of
two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media,” Sov. Phys.–
JETP 34, 62–69 (1972).

[41] J. Yang, Nonlinear Waves in Integrable and Non-
integrable Systems, Mathematical Modeling and Compu-
tation (Society for Industrial and Applied Mathematics,
2010).

[42] S. Wahls and H. V. Poor, “Fast numerical nonlinear
fourier transforms,” IEEE Transactions on Information
Theory 61, 6957–6974 (2015).

[43] Son Thai Le, Vahid Aref, and Henning Buelow, “Non-
linear signal multiplexing for communication beyond the
kerr nonlinearity limit,” Nat. Photon. 11, 570 (2017).

[44] Sergei K. Turitsyn, Jaroslaw E. Prilepsky, Son Thai Le,
Sander Wahls, Leonid L. Frumin, Morteza Kamalian,
and Stanislav A. Derevyanko, “Nonlinear fourier trans-
form for optical data processing and transmission: ad-
vances and perspectives,” Optica 4, 307–322 (2017).

[45] Yu-Hao Sun, “Soliton synchronization in the focus-
ing nonlinear schrödinger equation,” Phys. Rev. E 93,
052222 (2016).

[46] Gino Biondini and Gregor Kovai, “Inverse scattering

transform for the focusing nonlinear schrdinger equation
with nonzero boundary conditions,” J. Math. Phys. 55,
031506 (2014).

[47] Gino Biondini and Emily Fagerstrom, “The integrable
nature of modulational instability,” SIAM J. Appl. Math.
75, 136–163 (2015).

[48] Yan-Chow Ma, “The perturbed plane-wave solutions of
the cubic schrdinger equation,” Studies in Applied Math-
ematics 60, 43–58 (1979).

[49] V. E. Zakharov and A. A. Gelash, “Nonlinear stage of
modulation instability,” Phys. Rev. Lett. 111, 054101
(2013).

[50] A. A. Gelash, “Formation of rogue waves from a locally
perturbed condensate,” Phys. Rev. E 97, 022208 (2018).

[51] A. Chabchoub, N. Hoffmann, M. Onorato, and
N. Akhmediev, “Super rogue waves: Observation of a
higher-order breather in water waves,” Phys. Rev. X 2,
011015 (2012).

[52] A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev,
A. Sergeeva, E. Pelinovsky, and N. Akhmediev, “Obser-
vation of a hierarchy of up to fifth-order rogue waves in
a water tank,” Phys. Rev. E 86, 056601 (2012).

[53] B. Frisquet, B. Kibler, and G. Millot, “Collision of
akhmediev breathers in nonlinear fiber optics,” Phys.
Rev. X 3, 041032 (2013).

[54] Bertrand Kibler, Julien Fatome, Christophe Finot, Guy
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