M Petris

F Naldini

P Pellegrini
email: paola.pellegrini@univ-eiel.fr

R Pesenti
email: pesenti@unive.it

A dynamic decomposition approach for the real-time Railway Trac Management Problem

Keywords: railway trac management, real-time scheduling, problem decomposition

INTRODUCTION

Railway services are operated following a predened timetable. However, their execution is often perturbed by unexpected events that make this timetable infeasible. Delay caused by these events is named primary delay, and it implies that trains occupy tracks at times that are dierent from the planned one. Depending on trac and track layout, these late occupations may bring to conicts, in which at least one train must slow down or even stop to preserve safe separation. This slowing down generates secondary delay, which may quickly propagate in the network. Dispatchers can take actions to limit delay propagation, as train rerouting and rescheduling. They mostly do so manually. Several optimization approaches have been proposed in the literature to tackle this problem and support dispatchers [START_REF] Cacchiani | An overview of recovery models and algorithms for real-time railway rescheduling[END_REF]. This problem is named real-time Railway Trac Management Problem (rtRTMP). The great majority of the existing approaches either focus on geographically limited infrastructures represented microscopically [START_REF] D'ariano | An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances[END_REF][START_REF] Krasemann | Design of an eective algorithm for fast response to the rescheduling of railway trac during disturbances[END_REF][START_REF] Pellegrini | RECIFE-MILP: An Eective MILP-Based Heuristic for the Real-Time Railway Trac Management Problem[END_REF], or merge some microscopic aspect to a macroscopic representation to deal with large infrastructures [START_REF] Lamorgese | An Exact Decomposition Approach for the Real-Time Train Dispatching Problem[END_REF]. One of the main challenges of the microscopic based approaches is their computational performance on large-scale networks. To deal with this challenge, few papers try to coordinate trac management decisions made on several microscopic parts of infrastructures [START_REF] Corman | Optimal inter-area coordination of train rescheduling decisions[END_REF], or on a somehow obtained decomposition of the overall problem. For example, [START_REF] Luan | Decomposition and distributed optimization of real-time trac management for large-scale railway networks[END_REF] presents various approaches to dene decompositions a priori and to force the various trac management decisions to be coherent. A rather dierent problem conception is proposed by [START_REF] Van Thielen | Considering a dynamic impact zone for real-time railway trac management[END_REF]: the decomposition of the problem changes with trac evolution. Specically, the paper denes an algorithm based on the so-called dynamic impact zone. As soon as a conict is detected, rst rerouting possibilities for the two involved trains are assessed. If no rerouting possibility exists to eliminate conicts, the further conicts that will be generated by the possible resolutions of the considered one are identied and included in the dynamic impact zone. The conict resolution is then decided by assessing its consequence in terms of delay propagation in the dynamic impact zone if rst-come-rst-served is applied.

In this work, we propose a neighborhood-based trac management algorithm, following to some extent the problem conception of [START_REF] Van Thielen | Considering a dynamic impact zone for real-time railway trac management[END_REF]. We model the infrastructure microscopically. Our algorithm consists in making asynchronous trac management decisions. Asynchronous decisions are made also in [START_REF] Sasso | The Tick Formulation for deadlock detection and avoidance in railways trac control[END_REF], where train movements are split in so called temporal ticks to assess the presence of deadlocks in a single track network with passing loops. In our case, these decisions allow trains to reach their destination aiming at the minimization of delay propagation. Specically, we identify the neighborhood of a reference train whenever a decision is to be made on its route or on the precedence with respect to another train. This neighborhood includes only the trains that may use track sections in common with the reference one, in the vicinity of the latter's current location and in the very near future. Trac is then managed by applying an optimization approach as the one by [START_REF] Pellegrini | RECIFE-MILP: An Eective MILP-Based Heuristic for the Real-Time Railway Trac Management Problem[END_REF], only considering trains in the neighborhood and the identied possibly common track sections. By doing so, alternative routes are taken into account, but they are as short as possible. This allows limiting the size of the instance and hence the optimization time. Moreover, whenever possible, it avoids making decisions that may have to be modied in the future, when the neighborhood is recomputed. However, routes must be long enough to guarantee that no deadlocks occur right out of the neighborhood due to the decisions made here. The algorithm starts identifying the concerned trains and their shortest but long enough routes. Then, it follows the principle that has proved to be successful in [START_REF] Pellegrini | RECIFE-MILP: An Eective MILP-Based Heuristic for the Real-Time Railway Trac Management Problem[END_REF], simultaneously optimizing routes and schedules. We theoretically show that, in networks with some specic characteristics, this algorithm guarantees the achievement of a deadlock-free network-level solution, if it exists.

MODELING PRINCIPLES

We denote by BS and T C the set of block sections and track-circuits composing the infrastructure, respectively. We consider a set T of n trains traveling in the network. They may use dierent routes to reach their nal destination: the set of the available routes for train t is denoted by R t . A train makes a decision upon alternative routes once it has reserved the block section where the switch that gives rise to the alternatives is located. We call route decision block section (RDBS) a block section where such decision is to be made: in a three-aspect system, it is the block section such that a further one exists between it and the block section including the switch. Given a route r ∈ R t , a sub-route r bs→bs ′ of r is the sequence of block sections of r from bs to bs ′ , where bs and bs ′ are block sections of r such that bs has to be traversed before bs ′ when traveling along r. To indicate that a sub-route is available for train t, we will write r bs→bs ′ ⊆ r ∈ R t . Moreover, given a subset of routes R ′ ∈ R and a subset of block sections BS ′ ∈ BS, we denote by Ext(R ′ , BS ′) the set of block sections composing sub-routes r bs→bs ′ ⊆ r, r ∈ R ′ , where bs ∈ BS ′ and bs ′ ∈ BS \ BS ′ is the next RDBS on r. As an example, consider Figure 1: let R ′ contain routes r ′ and r ′′ and BS ′ the block sections up to the one identied by the pair of signals s1 and s2. Set Ext(R ′ , BS ′) includes all the block sections along r ′ until the RDBS identied by s3 and s4 and those along r ′′ until the RDBS identied by s5 and s6.

TRISTAN XI Symposium

Original abstract submittal We describe railway trac as a discrete event system. Events occur at the latest times at which route or precedence decisions must be made. They are the situations in which a train must exit a RDBS. Hereinafter, with a little abuse of notation, when we write time k we understand the time instant of the occurrence of event k. The state of the network at time k = 0, 1, 2, . . . is identied by: (i) the vector p(k) = [p t (k) : t ∈ T] of the positions of all trains, that is the last block section reserved by t; (ii) the set Y (k) = {y t,t ′ ,tc (k) : t, t ′ ∈ T, tc ∈ T C} of the precedences previously dened and, hence, in force between times k -1 and k, on common track-circuits. Specically, a value y t,t ′ ,tc ∈ Y (k) is set equal to 1 (respectively to 0) if train t is planned to use tc before (respectively after) train t ′ . If no precedence has been xed yet, y t,t ′ ,tc is undened. At a certain time k, the system is in its nal state if all the trains reserved or crossed their nal destination.

To conclude the section, let us introduce some sets of block sections that will be exploited in our algorithm (Section 3). Given the state of the system at time k, let S t (k) be the set of block sections that must be considered in the trac management decisions involving train t. These are the block sections claimed by t at k. They are the ones that t may use between p t (k) and further RDBSs. Given S t (k) and a route r ∈ R t such that p t (k) ∈ r, we denote bs(r, S t (k)) the last block section in S t (k) that t encounters when traveling along r. We denote by R t (k) = {r ∈ R t : p t (k) ∈ r} the set of routes available for t at k and by BS(S t (k)) the set of all bs(r, S t (k)). For example, in Figure 1, position p t (k) of t is the block section identied by signals s1 and s2. Assuming S t (k) contains all block sections shown in the gure, including those derived by the extension discussed there, then R t (k) = {r ′ , r ′′ }. Here, bs(r ′ , S t (k)) and bs(r ′′ , S t (k)) are, respectively, the ones identied by pairs of signals (s3, s4) and (s5, s6).

SOLUTION ALGORITHM

The algorithm is based on a dynamic decomposition of the problem. Specically, at time k, train t for which decisions are to be made is identied. Its neighborhood is dened and the rtRTMP is locally solved by iteratively calling the optimization algorithm RECIFE-MILP. The neighborhood constitutes a sub-instance of the overall problem. A sub-instance is dened by a pair (Q t (k), S(k)), where Q t (k) ⊆ T is a subset of trains and S(k) ⊆ BS is the subset of block sections claimed by the trains in Q t (k), i.e., those along which they may travel.

The procedure to determine a short-term strategy, i.e., a local solution to manage trac when event k is triggered for train t is outlined in Algorithm 1. To lighten the notation, we drop the dependency on k when possible. In the initialization phase the algorithm takes a snapshop of the entire network. Given the positions of all trains t ′ ∈ T , it determines sets S t ′ of block sections claimed by t ′ (lines 2-4). Subset of trains Q t is set to be equal to the singleton containing t. Each iteration starts with a call to function Sub-instance_generating_procedure, where some easy extensions of sub-instance (Q t , S) are performed in order to avoid trivially infeasible iterations (line 7). For example, trains in T \ Q t sharing claimed block sections with trains in Q t are included in Q t . Then, we call RECIFE-MILP to determine a short-term strategy ST S for sub-instance (Q t , S) (line 8). The set of previously established precedences Y (k) is also given as input to RECIFE-MILP. If a non-empty short-term strategy ST S is found, the algorithm stops and returns ST S (line 13). Otherwise, we try to further extend the sub-routes of some trains TRISTAN XI Symposium Original abstract submittal

Figure 1

 1 Figure 1 Graphical representation of relevant sets of block sections: round brackets show set BS ′ , curly brackets indicate set Ext(R ′ , BS ′) for train t having routes r ′ and r ′′ available.

5

set Qt := {t}, S := t ′ ∈Q t S t ′ and ST S := ∅; 6 while ST S = ∅ do 7

(Qt, S) := Sub-instance_generating_procedure(Qt, S);

(lines 10-12). If an extension is possible we start the next iteration. Otherwise, the algorithm stops and we return failure. We observe that in the worst-case scenario the sub-instance may be extended to consider the entire network and all the trains travelling on it. Finally, this algorithm enjoys an important property if the network of interest can be modeled as a series-parallel graph [START_REF] Dun | Topology of series-parallel networks[END_REF]:

Theorem 1 The algorithm always allows to reach the nal state of the railway trac system on a network that can be modeled as a series-parallel graph, if at all possible.

In the paper, we will formally prove the validity of this theorem and we will provide a proof-ofconcept of the applicability of the algorithm.