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Abstract . A reduced model for Trapped Electron Mode stability has been developed,
which incorporates basic effects of magnetic surface shaping, in particular elongation and
triangularity. This model shows that while elongation is stabilising, though weakly, nega-
tive triangularity usually leads to a more unstable plasma. This is in marked contrast with
the experimental evidence of a better confinement at negative triangularity, and with re-
cent gyrokinetic linear simulations. This paradox is solved when finite orbit and/or finite
mode width effects are included. These effects give more weight to particles trapped at
low bounce angles, which are the ones that exhibit lower precession frequencies at neg-
ative – as compared to positive – triangularity. As a result, the interchange growth rate
becomes lower at negative triangularity and large temperature gradients, so that negative
triangularity appears to have an overall stabilizing effect.

1 Introduction

Improving confinement is an essential step on the path towards fusion energy. Shaping
offers an attractive alternative to well documented recipes such as shear flows or elec-
tromagnetic effects combined with energetic ions. Effect of shaping on confinement is
a complex process. Indeed, shaping changes metric elements in transport equations and
hence on confinement [1], even at constant heat diffusivity. The analysis is here restricted
to changes in stability and scales, hence growth rates and perpendicular wave numbers.
Two shaping parameters are particularly scrutinised, namely elongation and triangularity.

Increasing plasma elongation is known to decrease the growth rate of ion temperature
gradient driven modes (ITGs) [1, 2] - we note though that both elongation and triangularity
were simultaneously changed in the latter work - and Trapped Electron Modes (TEMs) [3].
Destabilisation of ITGs was found for flat density profiles when using a fluid description
[4]. Most of these stability studies were undertaken well above instability threshold. It
turns out that the instability threshold of ITG modes depends weakly on elongation [2], a
surprising observation. This property was recovered by Angelino et al [5] - dependence of
threshold on shaping is reestablished when using the temperature gradient length defined
in the equatorial plane. In all cases, a clear decrease of heat diffusivity is found with
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elongation in turbulent regime, stronger than expected on the basis of linear stability [2, 5].
This was attributed to a beneficial role of zonal flows, itself related to a higher Rosenbluth-
Hinton residual with elongation [6], though this explanation remains speculative to date.

The situation is even less clear for triangularity. Since the initial discovery of the ben-
eficial effect of negative triangularity on confinement in TCV [7, 8], several theoretical
and numerical works have been undertaken to elucidate the reasons for improvement. The
favourable impact of negative triangularity on trapped electron modes (TEM) has been
early identified linearly [9] and in simulations non linearly [10], then confirmed in [11]
together with a strong role of zonal flows in non linear regime. Recent experiments on
DIII-D suggest negative triangularity also improves ion confinement [12, 13, 14]. How-
ever, numerical analyses of ITG stability and turbulent transport are sometimes difficult
to interpret [15] since a clear effect is seen only at very high negative triangularities. On
the other hand, a recent numerical stability analysis indicates that negative triangularity
is stabilising, provided magnetic shear is large enough [16]. Subsequent linear simula-
tions confirm that negative triangularity improves confinement if magnetic shear is large
enough [17], even in cases previously analysed in [15]. Moreover, it also appears that the
radial shear of triangularity plays an important role. The Rosenbluth-Hinton residual was
investigated by Singh and Diamond [18]. They found that negative triangularity lowers
the RH residual, hence opposite to expectation since this suggests a lower level of zonal
flows. The same study indicates that the fraction of trapped particles decreases when going
from negative to positive triangularity, hence does not support the idea of enhanced TEM
stability at negative triangularity on the basis of this criterion alone. The same authors
also investigated the effect of shaping on mean E × B shear stabilisation, and found a
rather complex behaviour [19], in particular a weaker shearing at the outboard mid-plane
at negative triangularity.

In fact it appears that several contradictory ingredients come into play, making difficult
a clear-cut conclusion. This is why it is instructive to derive a quasi-analytical model of
stability for small scale modes, complemented by some estimate of quantities that come
into play non linearly, namely flow generation and perpendicular wave number.

The objective of this work is to assess the effect of shaping on trapped electron modes
(TEM) with the help of a reduced model. This model is inspired by previous analytical or
numerical works on TEMs [20, 21, 22, 23, 24, 25, 26]. Various key quantities like bounce
and precession frequencies, and also perpendicular wave numbers, are computed with a
local magnetic equilibrium derived by Hegna [27, 28]. For axisymmetric configurations
such as tokamaks, this class of solutions is similar to Miller’s equilibria [29], itself derived
from solutions of the Grad-Shafranov equation computed close to magnetic axis [30]. It
bears the advantages of flexibility, and gives access to stability analysis in tokamaks while
accounting for 3D effects such as magnetic perturbations [31]. This methodology is applied
to the class of “Culham equilibria” [32, 33, 34] to assess the impact of shaping on TEM
stability.

It appears that the simplest model (local dispersion relation), while predicting enhanced
stability with elongation as expected, finds that negative triangularity is destabilising (see
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sections 4.1 to 4.4). Stabilisation is found only when finite orbit width effect and mode
structure are accounted for (sections 4.5 to 4.7). This agrees qualitatively with findings of
Merlo and Jenko [16] while providing a physical understanding. In particular it is consis-
tent with a stabilisation that occurs when magnetic shear is large enough.

The remainder of the paper is organised as follows. The geometry is introduced in
section 2, the shaping being parametrized by elongation and triangularity. Its consequences
on the magnetic drift velocity and associated frequencies is detailed in section 3. The
reduced model for the TEM instability is presented in the last section 4, together with the
outcomes of the associated dispersion relations when accounting for various refinements,
in particular finite orbit width effects and mode localisation.

2 Magnetic field near a reference magnetic surface

2.1 Magnetic field representation
It is well known that as long as the magnetostatic force balance condition J ×B = ∇p is
satisfied (p pressure, B magnetic field, and J current density), and thus B · ∇p = 0, the
magnetic field can be written [35, 36]

B = ∇α×∇ψ

where ψ is the poloidal flux normalised to 2π, α = ζ−qθ, and ζ is a toroidal angle, chosen
here equal to minus the toroidal geometric angle, and θ a poloidal angle, thus defining a
full set of magnetic flux coordinates (ψ, θ, ζ). This is in fact a contravariant representation
of the magnetic field. Introducing the mapping x(ψ, θ, ζ), where x is the position vector,
an equivalent expression of the magnetic field is therefore

B =
1
√
g

(
q
∂x

∂ζ
+
∂x

∂θ

)
(1)

The gradient of the poloidal flux ψ(x), normal to magnetic surfaces, is a function of
poloidal and toroidal derivatives of the mapping x(ψ, θ, ζ), namely

∇ψ =
1
√
g

∂x

∂θ
× ∂x

∂ζ
(2)

Axisymmetry imposes a toroidal field of the form I(ψ)∇ζ , so that the Jacobian reads

√
g =

1

B · ∇θ
=
qR2

I

Let us introduce a reference magnetic surface, labelled by its poloidal fluxψs , and parametrised
by its major radius Rs(θ), and altitude Zs(θ). The position xs of a point on the reference
magnetic surface is

xs = RsêR + ZsêZ
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2.1 Magnetic field representation

where êR and êZ are unit vectors in the horizontal and vertical directions. The magnetic
field on the reference magnetic surface, noted Bs, and the poloidal flux gradient, noted
∇ψs are then given by Eqs.(1, 2) applied to x = xs. In the same way, the Jacobian

√
gs

reads
√
gs =

qsR
2
s

Is

where qs is the safety factor on the magnetic surface, and Is is a constant current that is
written Is = B∆R∆, with B∆ the toroidal magnetic field at the reference radius R = R∆.

It is desirable to determine the magnetic field in the vicinity of this reference magnetic
surface. Following Hegna [27, 28], a Taylor development provides the mapping that relates
the position vector x to its value on the reference magnetic surface

x(ψ, θ, ζ) = xs(θ, ζ) + x′
s(θ, ζ)(ψ − ψs) + o(ψ − ψs)

2

The displacement x′
s is conveniently expressed as

x′
s = hBsb+

1

|∇ψs|
n+DH

|∇ψs|
Bs

τ (3)

where h and DH are functions of (θ, ζ), and b = Bs/Bs is the unit tangent vector to the
field on the reference surface, n = ∇ψs/ |∇ψs| the unit vector normal to the reference
magnetic surface (the notation ∇ψs has to be understood as ∇ψ calculated at ψ = ψs),
and τ = b × n a binormal unit vector, thus defining a Darboux frame. This set of unit
vectors is a variant of the Frenet basis (in the Frenet basis, the normal unitary vector κc is
such that, by definition: (b · ∇)b = κc. The curvature κc should not be confused with the
elongation κ) that satisfies the following set of relations

(b · ∇)b = κnn+ κgτ

(b · ∇)n = −κnb+ τrτ

(b · ∇)τ = −κgb− τrn

The normal and geodesic curvatures κn, κg, and relative torsion τr are fully determined by
the mapping xs(θ, ζ), and are therefore considered as given.

The coefficient of n in Eq.(3) is set by the condition ∇ψ · ∂x
∂ψ

∣∣∣
s
= 1. Hence two func-

tions h(θ, ζ) and DH(θ, ζ) remain to be calculated, given the magnetostatic force balance
condition J ×B = ∇p (the pressure p is a magnetic flux function), and Ampère equation
∇×B = µ0J. Moreover, the h and DH functions are related in axisymmetric equilibria,
since the metric element ∂x

∂ζ
· ∂x
∂ψ

vanishes, hence ∇ζ · x′
s = 0. Plugging Eq.(3) in this

constraint, an expression

h =
|∇ψs|2√
gsqsR2

sB
2
s

DH

4



2.2 Large aspect ratio class of equilibria

is found that relates h and DH [27, 28] - hence only the DH function is needed. Still
following closely Hegna [27, 28], the function DH is given by the following relationship

(Bs · ∇)DH =
1

√
gs

dqs
dψ

+
B2
s

|∇ψs|2
Ss (4)

where Ss = τ · ∇ × τ is the local magnetic shear, related to the average parallel current
density σs = µ0

⟨Js·Bs⟩ψs
⟨B2
s ⟩ψs

and pressure gradient via the relation

Ss = σs +
dps
dψ

λH − 2τr (5)

and the function λH is given by the relation

(Bs · ∇)λH = 2κgµ0
|∇ψs|
Bs

(6)

under the constraint ⟨λHB2
s ⟩ψs = 0. As pointed out by Hegna [28], the flux surface average

of Eq.(4) yields a constraint that relates the average parallel current σs, average magnetic
shear dqs

dψ
and pressure gradient dps

dψ
. Hence, as always in tokamak equilibrium calculations,

two functions must be prescribed, which will be here the pressure gradient and the parallel
current. Wrapping-up, given a mapping that prescribes a reference magnetic surface, plus
average current and pressure gradient, a local equilibrium is computed by solving Eqs.(4)
and (6) on functions λH and DH . Once this is done all quantities of interest can be cal-
culated, in particular bounce and precession frequencies, opening the path towards a full
assessment of stability. The objective here is to determine conditions for stabilisation with
elongation and triangularity.

2.2 Large aspect ratio class of equilibria
2.2.1 Mapping of a magnetic surface

Following [28], this methodology is now applied to the following mapping of the reference
magnetic surface, inspired from [32, 33, 34],

Rs(θ) = R∆ + (rs − Es) cos (θ) + Ts cos (2θ)

Zs(θ) = (rs + Es) sin (θ)− Ts sin (2θ) (7)

where R∆ is a reference major radius and rs a minor radius. Es is related to the elongation
κs and Ts to the triangularity δs via the relationships

Es ≃ rs
κs−1
κs+1

Ts ≃ rs
δ
4

Note that these expressions are approximate: they hold for small values of (κs − 1) and δ,
and large aspect ratios. This equilibrium is reminiscent of the class of “Culham” shaped
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2.2 Large aspect ratio class of equilibria

global equilibria [32, 33, 34]. However it is stressed that θ denotes here a straight field
line poloidal angle, hence different from the geometrical poloidal angle used in the class of
“Culham” equilibria. Also no Shafranov shift is included in the mapping of the reference
surface Eq.(7) since it is a local approximation, hence included in R∆.

Examples of magnetic surface cross-sections are shown in Fig.1 with parameters rs/R∆ =
0.3, κs = 1.5 and δs = ±0.5. For all plots below, the choice of safety factor and magnetic
shear is qs = 3, ss = 2.

Figure 1: Shape of magnetic surfaces with a Culham equilibrium. top left: circular κs = 1, δ = 0,
top right: elongated κs = 1.75, δ = 0, bottom left: positive triangularity κs = 1.5, δs = 0.5 (left
panel) bottom right: negative triangularity κs = 1.5, δs = −0.5.

2.2.2 Local magnetic equilibrium

The full expressions of the functions λH and DH are quite complex for a Culham equilib-
rium. They get simpler when using a large aspect ratio expansion, in the spirit of the initial
derivation of this class of equilibria. A small expansion parameter is defined as ϵ = rs/R∆.
Let us define an effective θ-dependent minor radius as

as =

[(
∂Rs

∂θ

)2

+

(
∂Zs
∂θ

)2
]1/2

The minor radius rs can be chosen as the poloidal average of the effective radius as over
θ, so that ∂θRs ∼ ∂θZs ∼ rs, and also Es ∼ Ts ∼ rs. In the special case of a Culham
equilibrium, rs is chosen identical to the eponymous radius that appears in the mapping
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2.2 Large aspect ratio class of equilibria

Rs(θ), Zs(θ) at requested order in the ϵ expansion. The function λH is then given by the
following expression

λH = −2µ0

Is
R∆ (rs − Es) cos θ + Ts cos(2θ)

where Is = BsRs is a constant at order 1 in ϵ.
Key parameters for the computation of the magnetic equilibrium are the magnetic shear

ss = Bs
r2s
q2s

dqs
dψ

and MHD pressure parameter

αm = −2µ0qsrsRs
1

Bs

dps
dψ

(8)

The function DH is solution of Eq.(4), which involves the local shear Eq.(5). The analysis
is restricted to the limit dps

dψ
λH > |σs − 2τr|. In circular geometry where ss

qsR∆
+σs−2τr =

0, this is equivalent to αm > ss. In this case the pressure prevails over parallel current and
relative torsion in Eq.(5). This approximation, similar to the “s−α equilibrium”, has been
widely used, in particular to study ballooning mode stability [37] and “α-stabilisation” of
ITG modes [38]. To illustrate the physics at play, we use here the special case αm = 0.
The following expression is then found

DH =
q2s
r2sBs

αmD̃ (9)

where
∂D̃

∂θ
= k̃(θ)

with k̃ = k − ⟨k⟩θ, and

k(θ) =
r2s

a2s(θ)
R̃s(θ)

where

as =
(
r2s + E2

s + T 2
s + 2rsEs cos 2θ + 4rsTs cos θ + 4EsTs cos 3θ

)1/2
In the circular limit, D̃ = sin θ, as expected. Strictly speaking, magnetic shear ss and
pressure αm parameters depend on the poloidal angle θ. However, at lowest order in ϵ,
both can be considered as constant by replacing (Rs, Bs) by (R∆, B∆), and hence will be
considered as given.
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3 Magnetic drift velocity and precession frequency
Key ingredients to compute the drive of ITG modes are components of the magnetic drift
velocity. The counterpart for TEMs is the precession frequency of trapped particles, which
also depends on components of the magnetic drift velocity. Indeed the growth rate well
above instability threshold for ITG/TEM modes is of the interchange type, i.e. is propor-
tional to the square root of the precession frequency times the diamagnetic frequency.

3.1 Components of the magnetic drift velocity
The expression of the magnetic drift velocity for a species labelled “a” reads

vD =
mav

2
∥

eaB
b× κc +

µ

ea
b× ∇B

B

where ea is the species algebraic charge, and ma its mass. An alternative expression is

vD =
mav

2
∥ + µB

eaB
b× κc −

µ

ea
b× µ0∇p

B2

It is convenient to compute the contravariant components of the magnetic drift velocity vD ·
∇ψ and vD · ∇α. The expressions derived in section Eq.(2.2.2) yield explicit expressions
of the magnetic drift velocity components

vD · ∇α =
qs

eaBsr2sRs

[(
mav

2
∥ + µBs

)(r2s
a2s

∂Zs
∂θ

−
(
ssθ − αmD̃

) ∂Rs

∂θ

)
− αmµBs

2q2s

]
(10)

and
vD · ∇ψ =

1

qseaRs

(
mav

2
∥ + µBs

) ∂Rs

∂θ
(11)

3.2 Precession frequency
3.2.1 Analytical expressions

There are two ways to compute the precession frequency. One way consists in expressing
the parallel adiabatic invariant J∥ as a function J of (µ,H, ψ)

J (µ,H, ψ) =
1

π

∫ θb

−θb
dℓ mav∥(µ,H, ψ) (12)

where H is the Hamiltonian, ψ the poloidal flux at the banana tip, µ the magnetic moment,
and ℓ the curvilinear abscissa along a field line. It is also known that the Hamiltonian H is
some function of the 3 invariants of motion (µ, J∥, Pζ), where Pζ = −eaψ is the toroidal
kinetic momentum. The precession frequency is the partial derivative of the Hamiltonian
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3.2 Precession frequency

with respect to Pζ , i.e. Ωd =
∂H
∂Pζ

∣∣∣
µ,J∥

, at constant (µ, J∥). Taking the derivative of Eq.(12)

with respect to ψ with H considered as a function of (µ, J∥, ψ), one gets the relation

∂J
∂H

∣∣∣∣
µ,ψ

∂H

∂ψ

∣∣∣∣
µ,J∥

+
∂J
∂ψ

∣∣∣∣
µ,H

= 0 (13)

which can be recast as

Ωd =
1

ea

∂J
∂ψ

∣∣∣
µ,H

∂J
∂H

∣∣
µ,ψ

The second way is a direct calculation that involves the bounce average of the magnetic
drift frequency, i.e.

Ωd =

∫ θb
−θb

dℓ
v∥
vD · ∇α∫ θb

−θb
dℓ
v∥

Both yield the same result, as they should, i.e.

∂J
∂ψ

∣∣∣∣
µ,H

=
qs
rs

1

BsRs

1

π

∫ θb

−θb
dθ
√
gs
Bs

v∥

(
mav

2
∥ + µBs

)
[
r2s
a2s

1

rs

∂Zs
∂θ

−
(
ssθ − αmD̃

) 1

rs

∂Rs

∂θ

]
− αm

2q2s

qs
rs

1

BsRs

1

π

∫ θb

−θb
dθ
√
gs
Bs

v∥
µBs

∂J
∂H

∣∣∣∣
µ,ψ

=
1

π

∫ θb

−θb
dθ
√
gs
Bs

v∥

where θb is the bounce angle, see Eq.(14). The derivative ∂J
∂H

∣∣
µ,ψ

is also related to the
bounce frequency Ωb

1

Ωb

=
∂J
∂H

∣∣∣∣
µ,ψ

=
1

π

∫ θb

−θb
dθ
√
gs
Bs

v∥

Let us note that for passing particles, the transit frequency, still noted Ωb, reads

1

Ωb

=
1

2π

∫ π

−π
dθ
√
gs
Bs

v∥

Note the jump by a factor 2 at the passing/trapped boundary. The expression of Ωd for
passing particles is somewhat more intricate, and will not be given here, since passing
electrons are not included in this model.

The bounce frequency is conveniently written in a separable form in energy and pitch-
angle variable

Ωb = Ω̄b(λ)
√
E vT
2qsRmax
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3.2 Precession frequency

with E = E/T the energy normalised to the temperature, and vT =
√
T/ma a thermal

velocity. Similarly the precession frequency is written

Ωd(λ) = ΩdT Ω̄d(λ)E

where
ΩdT =

qs
rs

T

eaBsRs

The pitch-angle variable, defined below, is replaced whenever convenient by the bounce
angle θb, such that

λ =
µBmin

E

=
1

bs(θb)
=
Rs(θb)

Rmax

(14)

where Bmin = Bs(θ = π) and bs is the ratio Bs
Bmin

. Explicit expression for a Culham
equilibrium are given in Appendix A.

3.2.2 Effect of shaping on precession frequency

Let us now analyse the impact of shaping on the precession frequency, keeping in mind that
far above threshold, drive is proportional to the square root of the product of diamagnetic
frequency with precession frequency. Hence the sign and amplitude of Ωd as a function of
the bounce angle θb is instructive. Parameters qs, ss and ϵ are given in Table 1.

Fig.2 compares circular (κ = 1.0, δ = 0) and elongated (κ = 1.75, δ = 0) configura-
tions. The precession frequency decreases with increasing elongation (apart from the case
of marginally trapped particles with θb ≈ π), thus indicating a decrease of the interchange
drive. This observation is consistent with the fluid approach, and goes in the direction of
improved confinement when the plasma elongation increases. This behaviour also agrees
with the expectation from global scaling laws of confinement that also show enhanced
confinement with elongation.

Fig.3 compares positive and negative triangularities δ = 0.5 and δ = −0.5 at vanish-
ing MHD pressure parameter αm = 0. The precession frequency turns out to be smaller
at negative than positive triangularity, in the range θb ≲ 2. One may argue that the inter-
change drive should be weighted by the fraction of trapped particles. However, this fraction
scales as

√
Rs(θ = π)−Rs(θ = 0) in a Culham equilibrium, and thus depends weakly on

triangularity (second order in T (rs)/rs). It will be seen later on (cf. section 4.5 and the
following ones) that a weight on deeply trapped particles results from finite orbit width
effects, and also mode ballooning.

Hence the situation is rather intricate, since the effect of triangularity is not the same de-
pending on the bounce angle, i.e. depending whether a particle is deeply or barely trapped.
Negative δ is favorable for deeply trapped particles. However the effect reverses for barely
trapped particles. Moreover, a fluid interchange drive is a poor indicator for a resonant
instability driven by trapped particles. Hence the need for a better kinetic indicator.
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Figure 2: Precession frequency of trapped particles vs bounce angle θb for αm = 0 for circular
κ = 1.0 (red) and elongated κ = 1.75 (blue) configuration at zero triangularity δ = 0.

Figure 3: Precession frequency of trapped particles vs bounce angle θb for αm = 0, κ = 1.2 for
positive δ = 0.5 (blue) and negative δ = −0.5 (red) triangularities.

4 A reduced kinetic model for trapped electron modes

4.1 Model description
A simple model for trapped electron modes is derived by assuming a Boltzman-like re-
sponse for the perturbed ion density δNi = Neq Ξ eiδϕ/Ti,eq (δϕ the perturbed electric
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4.1 Model description

potential, Neq the unperturbed density, ei the ion charge), and also for passing electrons,
while the response of trapped electrons is kinetic. Slef-consistency is ensured by a charge
quasi-neutrality constraint δNe = δNi, where δNe is the perturbed electron density, sum
of trapped and passing contributions. In principle, Ξ is a complex function that depends on
the mode frequency and wavenumber, and plasma parameters. In this model, it is a con-
stant. This constant is zero in the limit of low wave numbers, and large frequencies - other
choices can be made as long as Ξ is treated as a constant (e.g. Ξ = 1 in [20]). The price
to pay is the impossibility to compute a mode structure, which requires a numerical solu-
tion. This procedure allows a computation of a local dispersion relation. This dispersion
relation, written for an arbitrary species labelled ”a”, reads [20, 39]

L(ω) = 1− ft

〈
ω∗T

(
E − 3

2
+ 1

η

)
− ω

ωdE − ω

〉
E,λ

= 0 (15)

where ω is the mode angular frequency, ω∗T the thermal diamagnetic frequency, η =
d lnTeq/d lnNeq (Teq is the unperturbed temperature), and ωd a magnetic drift frequency.
The thermal diamagnetic frequency is defined as ω∗T = nΩ∗T , where n is the toroidal wave
number, Ω∗T = −Teq

ea

d lnTeq
dψ

(for TEMs, ea = −e, where e is the proton charge). Similarly
the magnetic drift frequency reads ωd = ωdT Ω̄d(λ), with ωdT = nΩdT . The bracket is an
average on both energy and pitch-angle

⟨...⟩E =
2√
π

∫ +∞

0

dE
√
Ee−E ...

and

⟨...⟩λ =
1

ft

∫ λ+

λ−

dλ√
2 Ω̄b(λ)

...

where ft is the fraction of trapped particles

ft =

∫ λ+

λ−

dλ√
2 Ω̄b(λ)

(16)

Here λ− = Bmin
Bmax

and λ+ = 1 are lower and upper-bounds of the trapped domain, while
Ω̄b(λ) and Ω̄d(λ) are the normalised bounce and precession frequencies. Hence an explicit
expression of the resonant part of the dispersion relation is〈

ω∗T

(
E − 3

2
+ 1

η

)
− ω

ωdE − ω

〉
E,λ

=
1

ft

∫ λ+

λ−

dλ√
2 Ω̄b(λ)

2√
π

∫ +∞

0

dE
√
Ee−E

ω∗T

(
E − 3

2
+ 1

η

)
− ω

ωdT Ω̄d(λ)E − ω − i0+
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4.1 Model description

It is reminded that the pitch-angle variable is unequivocally related to the bounce angle θb,
Eq.(14). The diamagnetic frequency ω∗T does not depend explicitly on shaping, just on
the temperature derivative with respect to the poloidal flux ψ. As a consequence the key
stability parameter ω∗T

ωdT
weakly depends on shaping. In the case of a Culham equilibrium,

it is just the ratio R∆

LT
, where LT is a temperature gradient length L−1

T = −d lnTeq/dr. We
use the following normalisations

Figure 4: Growth rate vs R∆/LT for three different values of elongation κ = 1.25, and κ = 1.5
and κ = 1.75 with null triangularity δ = 0.

ϵT =
ωdT

ftω∗T ⟨Kd⟩λ
(17)

and

Ω =
ω ⟨Kd⟩λ
ωdT

(18)

where
Kd(λ) =

1

Ω̄d(λ)

and

kd(λ) =
Kd(λ)

⟨Kd⟩λ
=

Ω̄−1
d (λ)〈
Ω̄−1
d

〉
λ

The dispersion relation then reads

D(Ω) = ϵT − 1−
〈[(

Ω (kd − ftϵT )−
3

2
+

1

η

)]
kdGϵd (Ωkd)

〉
λ

= 0 (19)

13



4.2 Instability threshold

where ϵd = sign(Kd). When multiplying the resonant function by the Kd function, one
must be careful to change the Landau prescription accordingly, so that the function Gϵ is
defined as

Gϵ(Ω) =

〈
1

E − Ω− iϵ

〉
E

This notation means that when ϵ > 0, the function Gϵ is defined in the upper complex half-
plane, and continued analytically in the lower half-plane of complex Ω, while for ϵ < 0,
one starts from the lower half-plane and performs an analytical continuation towards the
upper-half plane. This implies that whenever Ω is a real and positive number Ωr, the
Landau prescription imposes

Gϵ(Ωr) = P.P.

〈
1

E − Ωr

〉
E
+ 2sign(ϵ)i

√
πΩ1/2

r e−Ωr

Details and properties of this function, in particular its expression in terms of the plasma
dispersion function are given in Appendix B. The derivative of the dispersion relation
function is

dD
dΩ

= −⟨(kd − ftϵT ) kdGϵd (Ωkd)⟩λ

−
〈[(

Ω (kd − ftϵT )−
3

2
+

1

η

)]
k2dG

′
ϵd
(Ωkd)

〉
λ

where G′
ϵd

is the derivative of Gϵd , also derived in Appendix B.

4.2 Instability threshold
At marginal stability Ω = Ωr = ℜ(Ω), ℑ(Ω) = 0, the real frequency is solution of the
following equation 〈

k2dGϵd,i(Ωrkd)
〉
λ
Ωr = c0 ⟨kdGϵd,i(Ωrkd)⟩λ (20)

where c0 = 3
2
− 1

η
+ ftϵT,crit. Eq.(20) is obtained by cancelling the imaginary part of

the dispersion relation Eq.(19). Existence of a solution is not granted. However since all
quantities are normalised, one may expect a solution Ωr = O(1) – and in practice it is so.
The real part of the dispersion relation yields the threshold ϵT,crit

ϵT,crit = 1 +
c0

⟨k2dGϵd,i⟩λ

[〈
k2dGϵd,r

〉
λ
⟨kdGϵd,i⟩λ − ⟨kdGϵd,r⟩λ

〈
k2dGϵd,i

〉
λ

]
(21)

where all functions Gϵd,r, Gϵd,i are computed at Ωrkd.
Quite surprisingly, shaping does not change much the real frequency Ωr, nor the thresh-

old ϵT,crit, which never departs much from 1. This is due to compensations in the integral
Eq.(21) between moments of the kd function. This property is verified as follows: if kd is

14



4.3 Solution well above instability threshold

not far from 1, say kd(λ) = 1 + e(λ), with e ≪ 1, then corrections are of order e, more
exactly

ϵT,crit ≃ 1 +
c0

⟨Gϵd,i⟩λ

[
⟨eGϵd,r⟩λ ⟨Gϵd,i⟩λ − ⟨Gϵd,r⟩λ ⟨eGϵd,i⟩λ

]
+O(e2) (22)

At this point, one should avoid a hasty conclusion since Ωr and ϵT,crit are not the actual
frequency and threshold, but quantities normalised to parameters that depend on geometry.
Hence a “de-normalisation” must be performed using Eqs.(17,18), more precisely

ω

ωdT
=

Ω

⟨Kd⟩λ
and

AT,crit =
1

ftϵT,crit ⟨Kd⟩λ
where AT = ω∗T

ωdT
= R∆

LT
. If the threshold is given by ϵT,crit ≃ 1, then

AT,crit ≃
1

ft ⟨Kd⟩λ
(23)

4.3 Solution well above instability threshold
The “hydrodynamic” limit of the dispersion relation is obtained via an expansion at large
arguments Ω, and thus covers solutions with large growth rates. Using the asymptotic
expression of the Gϵ at large arguments Eq.(31), one finds

D(Ω) = (1− ft) ϵT +

(
1

η
− 3

2
ftϵT

〈
1

kd

〉
λ

)
1

Ω

+
3

2

[(
1 +

1

η

)〈
1

kd

〉
λ

− 5

2
ftϵT

〈
1

k2d

〉
λ

]
1

Ω2

+
15

4

[(
2 +

1

η

)〈
1

k2d

〉
λ

− 7

2
ftϵT

〈
1

k3d

〉
λ

]
1

Ω3
= 0

Keeping the two first lines, one gets the usual fluid dispersion relation

(1− ft) ϵTΩ
2 +

(
1

η
− 3

2
ftϵT

〈
1

kd

〉
λ

)
Ω

+
3

2

[(
1 +

1

η

)〈
1

kd

〉
λ

− 5

2
ftϵT

〈
1

k2d

〉
λ

]
= 0

For a small fraction of trapped particles ft → 0 and vanishing density gradients η → ∞,
one recovers the interchange growth rate of TEMs

γ =

√
3

2

√
ftωdTω∗T

〈
Ω̄d

〉
λ

(24)
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4.4 Numerical results

q s ϵ κ αm or β R∆/LN
3.0 2.0 0.16 1.2 0 4

Table 1: Parameters used to solve the dispersion relation.

A striking and paradoxical result emerges. The instability threshold is given by (from
Eq.(23))

R

LTcr
≃ 1

ft
〈
Ω̄−1
d

〉
λ

(25)

Well above the instability threshold, the growth rate behaves as Eq.(24). Suppose Ω̄d is
proportional to some shaping parameter S. Then γ ∼ S0.5, while R

LTcr
∼ S. So if shaping

is stabilising well above threshold, it is destabilising near threshold in the sense it decreases
the instability threshold – and vice-versa. Of course this rule of thumb is mitigated by
the dependency of the fraction of trapped particles on shaping, and also shortcoming on
averages, i.e. 1/

〈
Ω̄−1
d

〉
λ
̸=
〈
Ω̄d

〉
λ
.

Figure 5: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2.

4.4 Numerical results
The dispersion relation has been solved numerically for parameters shown in Table 1 and
for a fixed density gradient R∆/LN = 4, with L−1

N = −d lnNeq/dr.
Solving numerically the dispersion relation brings several useful results:

16



4.4 Numerical results

• the instability threshold is quite close to the criterion ϵT = 1 for all geometries hence
Eq.(23) approximately holds.

• a favourable effect of elongation is recovered, but not very large, see Fig.4. This is
consistent with [2, 5] for ITG modes. We note that curves cross. This is a conse-
quence of the result found above: a stabilising effect near threshold becomes desta-
bilising well above threshold, and vice-versa.

• negative triangularity is found destabilising, as shown in Fig.5.

This last result is of course unexpected. It is a consequence of the intricate shape of the
precession frequency with bounce angle. A closer look at Fig.3 indicates that stabilisation
must come from a smaller weight of barely trapped particles than predicted by this simple
model. Different physical mechanisms can reduce the weight of barely trapped particles in
the bounce angle integral, hence allowing to retrieve a stabilisation of negative triangularity.
These mechanisms are investigated in the following sections.

Figure 6: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2 with FOW effects included C = 1.0.
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4.5 Adding finite orbit width effects

4.5 Adding finite orbit width effects
Using Appendix C, the dispersion relation that accounts for Finite Orbit Width (FOW)
effects is of the form

1−
∫ λ+

λ−

dλ√
2Ω̄b(λ)

2√
π

∫ +∞

0

dE
√
Ee−E

ω∗T

(
E − 3

2
+ 1

η

)
− ω

ωdT Ω̄d(λ)E − ω − i0+
J2
0

(
C
√
Eθ2b (λ)

)
= 0

where C = δb
2d

, with δb = ma
ea
vT [R∆ (rs − Es + 4Ts)]

1/2 the banana width in ψ unit, and

d−1 = n dq
dψ

∣∣∣
ψ=ψs

the inverse of the distance between resonant surfaces. Hence, one has

C =
1

2
qssskθρi

√
me

mi

√
1

ϵ

(
1− Es

rs
+ 4

Ts
rs

)
The parameter C turns out to be proportional to the poloidal wave number kθ = nqs/rs and
magnetic shear s (see derivation in Appendix C). The dispersion relation can be reshaped
in a form identical to Eq.(19). Unfortunately energy/pitch-angle separability is lost. A new
G function must be defined

Gϵ(Ω, θb) =

〈
J2
0

(
C
√
Eθ2b
) 1

E − Ω− iϵ

〉
E

which will now enter bounce angle averages. All normalised quantities remain the same.

Figure 7: Function kd vs θb for κ = 1.5 and δ = 0.5.

Solving numerically this new relation dispersion shows that a negative triangularity is
now stabilising, see the case C = 1.0 in Fig.6. As an indication, the choice of parameters
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4.5 Adding finite orbit width effects

kθρT i = 2 (ρT i is a thermal ion gyroradius), ss = 3, qs = 4, ϵ = 0.1 in an hydrogen plasma
gives C ≃ 0.9 - so C = 1.0 is kind of an upper bound. As expected, increasing the C pa-
rameter is stabilising. This drastic change in stability is due to a stronger relative weight of
deeply trapped particles θb ≪ 1 in the integrals over the bounce angle θb, which favors the
low θb part of the precession frequency Ω̄d shown Fig.3. Indeed the precession frequency
Ω̄d, and thus the interchange growth rate, is lower at negative triangularity for θb ≃ 0. In
absence of FOW effects, this favorable role of negative triangularity is counterbalanced by
barely trapped electrons, i.e. near trapped/passing boundary. Barely trapped electrons con-
tribute a lot because they spend a long time near their bounce point, in contrast with deeply
trapped particles. Mathematically this feature translates in a 1/Ω̄b weight in all integrals in
λ (or θb). This effect is amplified by the behaviour of the function kd vs the bounce angle
θb, see Fig.7, which also confers some extra weight to barely trapped particles. When finite
orbit width effects are included, these terms are annihilated by a bounce average weight,
which is stronger for deeply rather than barely trapped particles. In a nutshell, FOW ef-
fects give more weight to deeply trapped particles, thus leading to an inversion of stability
between positive and negative triangularities. Since the FOW parameter C increases with
both magnetic shear and toroidal wave number n, it is expected that the favourable stabilis-
ing effect of negative triangularity should increase with these two parameters, consistently
with recent numerical results [16].

The real frequency is shown on Fig.8. Negative triangularity effectively lowers the
real angular frequency. It is always positive as it should be, i.e. modes rotate in the same
direction as the precession frequency of trapped electrons.

Figure 8: Frequency vs R∆/LT for a triangularity scan δ = −0.5, and δ = 0.5 at fixed elongation
κ = 1.2 with FOW effects included C = 1.0.
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4.6 Finite mode width effects

4.6 Finite mode width effects
The localised character of modes along a field line further amplify FOW effects. Mode
structures cannot be calculated with the present simple model, but their impact can be as-
sessed by imposing an ad-hoc shape. Assuming a mode Gaussian shape ∼ exp(−Dθ2/2),
this is equivalent to incorporating a weight function W 2(θb), where W (θb) = Γ0

(
D
2
θ2b
)

is
the bounce average of the perturbed electric potential, with Γ0(x) = exp(−x)I0(x), and
I0 is the modified Bessel function of the first kind and index 0 (see derivation in Appendix
C). A rough estimate of D is D ≃ kθρT i

√
ssqs, where ρT i, hence increases with magnetic

shear and poloidal wave number, similarly to the FOW parameter C. ParameterD can thus
exceed 1 more easily than C. Average over the bounce angle θb (or pitch-angle variable λ),
and definition of the effective fraction of trapped particles are then changed accordingly.
An example with D = 1.0 is shown on Fig.9. It appears that negative triangularity is more
stable that its positive counterpart. The frequency is also about the same, i.e. modes drift in
the electron diamagnetic direction. Effect increases with D as expected. An example with
D = 2, is shown on Fig.(10). Note that FOW effects are not included in this calculation at
this stage (see next section).

Figure 9: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2 with mode width effects D = 1.0.
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4.7 Inclusion of finite orbit width, finite mode width and collisions

Figure 10: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2 with mode width effects D = 2.0.

4.7 Inclusion of finite orbit width, finite mode width and collisions
A more general dispersion relation that includes finite orbit and mode width effects, and
collisions, is given by

1−
√

2

π

∫ λ+

λ−

dλ

Ω̄b

∫ +∞

0

dE
√
Ee−E

ω̂∗T

(
E − 3

2
+ 1

η

)
− ω̂

Ω̄dE − ω̂ − iν̂0E−3/2
W 2(E , θb) = 0

where all the frequencies with a hat correspond to the frequencies normalized to ωdT , and
W (E , θb) is given by (see Appendix C)

W (E , θb) = exp

(
−D

2
θ2b

)
I0

[(
D2 − δ2b

d2
E
)1/2

θ2b
2

]

An example is shown on Fig.11 with C = 0.5 and D = 0.5.
Finally the effect of collision is illustrated on Fig.12, for the same parameters and

ν∗ = 0.1. Here, the collision frequency ν̂0 is computed from the collisionality ν∗ as ν̂0 =
ν∗

(kθρi)
√

me
mi

q
where (kθρi) has been chosen equal to 1. Collisions are stabilising, as expected

for TEMs. Collisions are found to amplify the synergetic effect of FOW/mode localisation
with negative triangularity. Values of temperature gradients R∆/LT that are needed to
destabilise TEMs are unrealistic for this choice of paramaters. A parameter scan shows
that the trend remains the same when C,D become smaller, while the instability threshold
gets lower.
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Figure 11: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2 with FOW C = 0.5 and mode width effects D = 0.5 included.

Figure 12: Growth rate vs R∆/LT for a triangularity scan δ = −0.5, δ = 0.0 and δ = 0.5 at fixed
elongation κ = 1.2 with FOW effects C = 0.5, FMW effects D = 0.5 and collisions included
ν∗ = 0.1.

5 Conclusion
A reduced model for Trapped Electron Modes (TEMs) stability has been developed, which
incorporates basic elements of magnetic surface shaping, in particular elongation and tri-
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angularity. It is based on a class of local magnetic equilibria developped by Hegna [27, 28]
combined with shapes of magnetic surfaces similar to the class of “Culham equilibria”
[32]. This approach allows a fast calculation of bounce and precession frequencies, which
can be incorporated in a simplified dispersion relation of TEMs. The advantage of this
model is that it allows a detailed investigation of various ingredients that come into play
when shaping matters.

This model shows that while elongation is stabilising, though weakly, negative trian-
gularity usually leads to a more unstable situations. This is against observation. This
conundrum is solved when finite orbit and/or mode width effects are included. These ef-
fects put some weight on the precession frequency at low bounce angles, where negative
triangularity produces lower precession frequencies compared with their positive counter-
parts. As a result, the interchange growth rate becomes lower, leading to stabilisation at
large temperature gradients and negative triangularity.
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Appendices

A Explicit expressions of bounce and precession frequen-
cies for a Culham equilibrium

In the special case of a Culham equilibrium, the Hamiltonian frequencies can be computed
in a fast and efficient way. The pitch-angle is related to the bounce angle by

λ =
Rs (θb)

Rmax

=
R∆ + (rs − Es) cos θb + Ts cos 2θb

R∆ + (rs − Es) + Ts
(26)

This equation admits a single positive value of θb for small enough values of elongation
and triangularity. This condition is equivalent to request that the major radius is a decreas-
ing function of the poloidal angle for θ ∈ [0, π] mod (2π). More precisely we request that
the condition rs ≥ Es + 4∥Ts∥ is fulfilled. The analysis is restrained to this case in the
following. The bounce angle is then related to λ by the relationship

cos θb = −rs − Es
4Ts

+
1

4Ts

√
D (27)

where
D = (rs − Es)

2 + 8Ts (λRmax −R∆ + Ts)

provided that λ− ≤ λ ≤ λ+, where

λ− =
Bmin

Bmax

=
Rmin

Rmax

=
R∆ − (rs − Es) + Ts
R∆ + (rs − Es) + Ts

λ+ = 1

where Bmin and Bmax are the minimum and maximum values of the magnetic field on the
reference magnetic surface.

Using the relationship Ωb = Ω̄b(λ)
√
E vT

2qsRmax
, the normalised bounce frequency is

1

Ω̄b(λ)
=

1

2π

∫ θb

−θb
dθ
R

3/2
s (θ)

Rmax

1√
2 (Rs(θ)−Rs(θb))

The precession frequency Ωd(λ) is of the form Eq.(14) where

Ω̄d(θb) =
L1(θb)

L0(θb)

The functions L0 and L1 are given by

L0(θb) =

∫ θb

0

dθ

π

R
3/2
s (θ)

Rmax

1√
2 (Rs(θ)−Rs(θb))
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and

L1(θb) =

∫ θb

0

dθ

π

R
3/2
s (θ)

Rmax

2− λ(θb)bs(θ)√
2 (Rs(θ)−Rs(θb))(

r2s
a2s

∂Zs
rs∂θ

−
(
ssθ − αmD̃

) ∂Rs

rs∂θ

)
− αm

2q2s
λ(θb)

∫ θb

0

dθ

π

R
3/2
s (θ)

Rmax

bs(θ)√
2 (Rs(θ)−Rs(θb))

Derivatives of (Rs, Zs) are straightforward

∂Rs

∂θ
= − (rs − Es) sin θ − 2Ts sin 2θ

∂Zs
∂θ

= (rs + Es) cos θ + 2Ts cos 2θ

Let us note the following identity

Rs(θ)−Rs(θb) = (cos θ − cos θb) (rs − Es + 2Ts (cos θ + cos θb))

The part (cos θ− cos θb) is responsible for integrable singularities at θ = θb in the integrals
L0 and L1, and can be recast as

cos θ − cos θb = 2 sin2

(
θb
2

)(
1−

sin2
(
θ
2

)
sin2

(
θb
2

))
The prefactor appears both in L0 and L1 and can be removed safely since only the ratio
L1/L0 matters. One can then perform the usual change of variables

sin v =
1

χ
sin

(
θ

2

)
(28)

where χ = sin
(
θb
2

)
. The functions L0 and L1 then read

L0(θb) =

∫ π/2

0

dv√
1− χ2 sin2 v

L(θ, θb)

and

L1(θb) =

∫ π/2

0

dv√
1− χ2 sin2 v

L(θ, θb) [2− λ(θb)bs(θ)]

×
(
r2s
a2s

∂Zs
rs∂θ

−
(
ssθ − αmD̃(θ)

) ∂Rs

rs∂θ

)
− αm

2q2s
λ(θb)

∫ π/2

0

dv√
1− χ2 sin2 v

L(θ, θb)bs(θ) (29)
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where

L(θ, θb) =
1

π

R
3/2
s (θ)

Rmax

1√
rs − Es + 2Ts (cos θ + cos θb)

In these expressions, θ must be considered as a function of v, using the change of variables
Eq.(28) and the usual trigonometric relations

cos(θ) = 1− 2χ2 sin2 v

sin(θ) = 2χ sin v

√
1− χ2 sin2 v

sin(2θ) = 2 sin θ cos θ

cos(2θ) = 2 cos2 θ − 1

The bounce frequency can also be readily calculated using these definitions

1

Ω̄b(λ)
= L0 (θb)

and a fraction of trapped particles accordingly

ft =

∫ λ+

λ−

dλ√
2Ω̄b(λ)

For passing particles λ ≤ λ−, the normalised transit frequency is

1

Ω̄b(λ)
=

1

2π

∫ π

−π
dθ

(
Rs

Rmax

)3/2
1√

2
(

Rs
Rmax

− λ
)

It is stressed that for highly passing particles, the effect of shaping is quite small since for
λ→ 0, Ω̄b →

√
2.

B Properties of the Gϵ function

B.1 Relation of Gϵ function with plasma dispersion function
We want to compute

Gϵ(Ω) =
2√
π

∫ +∞

0

dEE1/2e−E 1

E − Ω− iϵ

as function of the plasma dispersion function. Here ϵ is a small number which can be
positive or negative. Note that the function E1/2e−E is holomorphic except on a branch
cut, usually chosen along the negative real axis. If ϵ is positive, the function Gϵ, noted
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B.2 Derivative of the Gϵ function

G+, is defined in the upper half of the complex plane, then analytically continued in the
lower half-plane. In the opposite case ϵ < 0, Gϵ, noted G−, is defined in the lower half
of the complex plane, then analytically continued in the upper half-plane. First step is to
introduce a change of variable on E , then introduce u = ±Ω1/2. A delicate question is
to choose the branch cut on ℜ(Ω) when computing u. A reasonable choice is to choose
a branch cut on the semi-axis of negative values of real Ω when ϵ > 0, and half-axis of
positive real Ω when ϵ < 0 , i.e. u = ϵΩ1/2. After a few manipulations, one finds

Gϵ = 2 + 2u2
1√
π

∫ +∞

−∞
dve−v

2 1

v2 − u2

Using
2u

v2 − u2
=

1

v − u
− 1

v + u

and changing v in −v in the second integral, one readily finds that

Gϵ(Ω) = 2 + 2uZ (u)

where

Z(u) =
1√
π

∫ +∞

−∞
dve−v

2 1

v − u

is the plasma dispersion function. It is reminded that

Z(u) = i
√
πe−u

2

erfc(−iu) = i
√
πw(u)

where w(u) is the Faddeeva function. Note that the dependence on ϵ is now hidden in the
choice of u = ±Ω1/2. This relation can in fact be recast as Gϵ(Ω) = −Z ′(u), where Z ′

is the derivative of Z. It can be checked that the choice u = ϵΩ1/2 is consistent with the
expectation from Landau prescription.

B.2 Derivative of the Gϵ function
Since zeros of the dispersion relation are to be computed, and a Newton-Raphson method
is used, it is useful to calculate the first derivative of Gϵ with respect to Ω

dGϵ

dΩ
= −2 +

(
1− 2u2

) Z (u)

u

The derivative of D(Ω) is then easily derived

dD
dΩ

= −Gϵ −
(
u2 − 3

2

)
dGϵ

dΩ
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B.3 Asymptotic expression at large arguments

B.3 Asymptotic expression at large arguments
An expansion at large arguments yield the following expression relation

Gϵ(Ω) = − 1

Ω

+∞∑
n=0

Γ
(
n+ 3

2

)
Γ
(
3
2

) 1

Ωn

with Γ the gamma function (Γ
(
3
2

)
=

√
π
2

, Γ (z + 1) = zΓ (z) ). A bit of algebra shows that(
Ω− 3

2

)
Gϵ(Ω) = −1−

+∞∑
n=2

(n− 1)
Γ
(
n+ 1

2

)
Γ
(
3
2

) 1

Ωn
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Similarly (
Ω (1− ftϵT )−

3

2
+

1

η

)
Gϵ(Ω) = − (1− ftϵT )

−
+∞∑
n=1

[(
n+

1

2

)
(1− ftϵT )−

3

2
+

1

η

]
Γ
(
n+ 1

2

)
Γ
(
3
2

) 1

Ωn
(31)

C FOW and mode width effect
The structure of FOW and mode width effects is derived here with simple arguments. Let
us consider a mode in ballooning formalism, from the ballooning representation of the
perturbed electric potential

δϕ(α, ψ, θ, t) = ϕω(α, ψ, θ) exp (−iωt) + c.c.

with
ϕω(α, ψ, θ) = ϕ̂kω(θ) exp (inα + iKψ(ψ − ψs)) (32)

where the radial wave number is conveniently rewritten Kψ = n dq
dψ
θk, θk the ballooning

angle, and (n,Kψ) are the components of the perpendicular wave number k. In the gen-
eral case (weakly ballooned modes), this expression can be made periodic in θ thanks to a
convolution with a Dirac comb

∑+∞
p=−∞ δ(θ′ − θ − 2pπ). For the sake of simplicity, only

the strong ballooning limit will be considered.

Eq.(32) can be seen as an eikonal representation δϕ = ϕ̂kω(θ)e
iS−iωt, where S = nα +

Kψ(ψ − ψs) contains the fast variation, thus leading to the definition k⊥ = ∇S. Hence
assuming zero ballooning angle and strongly ballooned modes, one finds

ϕ̃ω = ϕ̂ (θ) exp (inζ − inq(ψ)θ)
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Periodicity in θ is not an issue here since ϕ̂ (θ) is supposed to be a localised function.
Poloidal and toroidal angles of trapped particles are of the form

θ = θ̂ (αb)

ζ = ζd + q (ψs) θ̂ (αb) + ζ̂ (αb)

where δb is a banana width, ζd the precession angle, δ̂, θ̂, ζ̂ are periodic functions of the
bounce angle αb, which also depends on the invariants of motion E, θb, Pζ = −eaψ(rs).
The angle ζ̂ represents the departure from a uniform precession motion, and is neglected
here. The radial displacement δψ = ψ − ψs of a trapped particle is prescribed by the
invariance of the toroidal kinetic momentum Pζ = −eaψs = maRs(θ)v∥(E, µ, θ)− eaψ (it
is reminded that in the large aspect ratio approximation, the toroidal field coincides with
the field modulus so that Rsv∥ ≈ v∥Is/Bs), hence δψ = ma

ea
Rs(θ)v∥(E, µ, θ). The parallel

velocity is prescribed by energy conservation, hence

v∥ = [2E ]1/2 vT
[
1− bs(θ)

bs(θb)

]1/2
where it is reminded that bs = Bs

Bmin
= Rmax

Rs
.

δψ =
ma

ea
vT [2Rs(θ)E ]1/2 [Rs(θ)−Rs(θb)]

1/2

Anticipating that deeply particles θb ≪ 1 principally matter when FOW effects are ac-
counted for, the poloidal angle is just θ̂ = θb sin(αb). The radial displacement is obtained
via a development of the major radius near θ = 0, i.e. Rs(θ)−Rs(θb) =

1
2
∂2Rs
∂θ2

∣∣∣
θ=0

(θ2 − θ2b ),
so that

δψ = δb
√
E δ̂(αb)

where δb = ma
ea
vT [R∆ (rs − Es + 4Ts)]

1/2 is the banana width in ψ unit, and δ̂ = θb cosαb.
Let us note that it depends on elongation and triangularity.

The quantity that matters in the dispersion relation is the square of the modulus of the
bounce average of the electric potential, hence the square of〈

ϕ̃ω

〉
b
=

∫ 2π

0

dαb
2π

ϕ̂
(
θ̂
)
exp

(
−iδb

d

√
E δ̂θ̂
)

where the safety factor has been linearised and d−1 = n dq
dψ

∣∣∣
ψ=ψs

is the inverse of the

distance between resonant surfaces. In the case where the mode structure is ignored, i.e.
ϕ̂
(
θ̂
)
= ϕ̂0 one gets 〈

ϕ̃ω

〉
b
= ϕ̂0J0

(
δb
2d

√
Eθ2b
)
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Hence C = δb
2d

and thus increases with wave number n and magnetic shear ss = dlogq
dlogr

.

In the other extreme case where δb ≪ d, and ϕ̂ (θ) = ϕ̂0 exp
(
−D

2
θ2
)

then〈
ϕ̃ω

〉
b
= ϕ̂0 exp

(
−D

2
θ2b

)
I0

(
D

2
θ2b

)
= ϕ̂0Γ0

(
D

2
θ2b

)
where I0 is the modified Bessel function of the first kind and index 0. The Γ0 function is
localised in θb, and the dispersion relation should be weighted by its square. A full cal-
culation of the mode structure is beyond the scope of this study. However, it is possible
to speculate about the parametric dependencies of the parameter D. If the non adiabatic
response of ions rules the mode structure, then it appears that it results from a balance be-
tween finite Larmor radius effects, which behave as k2⊥(θ)ρ

2
i (ρi a thermal Larmor radius),

and parallel gradient, which roughly goes like v2Ti
ω2q2sR

2
s

∂2

∂θ2
, where vT i is the thermal ion ve-

locity. An estimate of the perpendicular wave number k⊥ is obtained in the general case
(arbitrary ballooning angle) by using the definition k⊥ = ∇S, i.e.

k⊥ = n∇α + n
dq

dψ
θk∇ψ

and therefore its modulus on the resonant surface

k2⊥ = n2

(
|∇αs|2 +

dqs
dψ

θk (∇ψs · ∇αs) +
(
dqs
dψ

)2

θ2k |∇ψs|
2

)

Using calculations developed in [27, 28], one gets

k2⊥ = n2

(
B2
s

|∇ψs|2
(1 + Λ2) +

dqs
dψ

θkBsΛ +

(
dqs
dψ

)2

θ2k |∇ψs|
2

)

where

Λ = −a
2
s

r2s

(
ssθ − αmD̃

)
In the large aspect ratio limit, a tractable expression is obtained

k2⊥ = k2θ

(
r2s
a2s

(1 + Λ2) + 2ssΛθk +
r2s
a2s
s2sθ

2
k

)
Balancing k2⊥(θ)ρ

2
i with v2Ti

ω2q2sR
2
s

∂2

∂θ2
is expected to yield a solution that approximately be-

haves as a Gaussian exp(−Dθ2/2). A back of the envelope calculation based on the esti-
mate ω ≃ ωdT yields D ≃ kθρT i

√
ssqs, where ρT i is the thermal ion gyroradius. Hence the

D parameter is expected to increase with the magnetic shear ss and poloidal wave num-
ber kθ = nqs

rs
, similarly to the FOW bounce average term. These two effects are therefore

cumulative.
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In the general case, the bounce average potential is
〈
ϕ̃ω

〉
b
= ϕ̂0W (E , θb), where the

function W is given by

W (E , θb) = exp

(
−D

2
θ2b

)
∫ 2π

0

dαb
2π

exp

[(
−iδb

d

√
E sin(2αb) +D cos(2αb)

)
θ2b
2

]
= exp

(
−D

2
θ2b

)
I0

[(
D2 − δ2b

d2
E
)1/2

θ2b
2

]
where I0 is the modified Bessel function of the first kind, index 0, and complex argument
(choice of branch for the square root does not matter since I0 is an even function of its
argument). Previous expressions are recovered in the asymptotic cases, i.e. respectively
D = 0 and δb = 0. The square of the bounce average potential contributes to the resonant
response, hence W 2(E , θb).
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