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Introduction

The Michelson-Morley optical experiment of 1887 had the aim to detect the famous "ether wind", the ether being the medium where light propagates according to Maxwell's laws of electromagnetism. No ether wind was detected and the experiment provided a surprising null result that gave support to Einstein's theory of special relativity of 1905, where light is assumed to propagate in empty space at the same speed c relative to any inertial observer in motion (light speed invariance), as described by the Lorentz transformations (LT).

After decades of controversy, recent advances in optical experiments justify the early criticisms of Lorentz and light speed invariance, suggesting that a paradigm shift is taking place in relativity theory, practically unnoticed to most physicists. To measure the one-way speed of light c traveling from point A to point B, with fixed distance AB = L, Einstein adopted a procedure for synchronizing two spatially separated clocks, one at A and the other at B, assuming that the one-way light speed coincides with the average round-trip light speed c = 2L/T , where T is the time interval measured by clock A in the light roundtrip from A to B and back to A. Then, with Einstein synchronization, the clock at B is set at t = L/c when light reaches it.

Epistemologists [START_REF] Reichenbach | Axiomatization of the Theory of Relativity[END_REF]- [START_REF] Kuhn | The Structure of Scientific Revolutions[END_REF] and physicists soon criticized Einstein synchronization procedure, pointing out that, since the one-way speed from A to B can be different from the return speed from B to A, Einstein synchronization leaves undetermined and arbitrary (conventional) the one-way speed. At this point in the evolution of special relativity, in 1977 the physicists Mansouri and Sexl [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] introduced a set of coordinate transformations in agreement with the requirement of Einstein synchronization, but with a speed from A to B that can be different from the return speed from B to A, depending on the synchronization parameter ε:

t ′ = t γ - εx ′ c 2 = γ[t(1 + εv c 2 - v 2 c 2 ) - εx c 2 ] (1) 
t ′ = γ(t - vx c 2 ) LT t ′ = t/γ LTA x ′ = γ(x -vt) y ′ = y z ′ = z c ′ = c ′ (ε) = dx ′ dt ′ = c 1 + v/c -ε/c
the Lorentz transformations. Hence, as pointed out in mainstream journals, the original postulate that the one-way light speed is c, as originally introduced by Einstein, has changed and, presently, the universal constant c no longer represents the local one-way light speed, but the average round-trip light speed c = 2L/T [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF]. Then, to different one-way speeds correspond different, but physically equivalent types of Lorentz transformations. Thus, special relativity can be described either with the standard LT, based on relative simultaneity, or any other transformations with different synchronization, e.g., the LTA, which have been used by many physicists, although under different names (e.g., Tangherlini transforms [START_REF] Tangherlini | Galilean-Like Transformation Allowed by General Covariance and Consistent with Special Relativity[END_REF], Selleri transforms [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF]- [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF], ALT [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], etc.). Hence, for physicists [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] De Abreu | The Conceptualization of Time and the Constancy of the Speed of Light[END_REF]- [START_REF] Mamone Capria | On the Conventionality of Simultaneity in Special Relativity[END_REF] adhering to the "conventionalist" view of Mansouri and Sexl, the LT and LTA are physically equivalent and interchangeable and foresee the same relativistic effects, even though they adopt different, conventional values for the one-way light speed.

In the evolution of special relativity, physicists have discovered and formulated many paradoxes. Although there is no consensus about the solutions of all paradoxes, most of them are ascribed unanimously to the nonconservation of simultaneity of the LT. Instead, no paradoxes arise with the LTA. Of the many 'paradoxes' of the theory, we mention here the important Selleri [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF]- [START_REF] Selleri | Sagnac effect : end of the mystery[END_REF] paradox related to the Sagnac [START_REF] Sagnac | L'éther lumineux démotré par l'effet du vent relatif d'éther dans un intertféromètre en rotation uniforme[END_REF] optical effect, carried out in 1913 and shown in Fig 1-a. Later, other optical effects of the Sagnac type have been discovered (such as the linear effect of Fig. 1-b [START_REF] Wang | Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber[END_REF], [START_REF] Wang | Generalized Sagnac effect[END_REF]) and physicists favoring conservation of simultaneity [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF]- [START_REF] Selleri | Sagnac effect : end of the mystery[END_REF], [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF]- [START_REF] Hajra | Spinning Earth and its Coriolis effect on the circuital light beams: Verification of the special relativity theory[END_REF] have been questioning the conventionalism of Mansouri and Sexl and the validity of the "equivalence" between relative (LT) and absolute simultaneity (LTA).

The purpose of our paper is to introduce a one-way internal synchronization applicable to closed contours (at rest or in motion), make a revision of the effects of the Sagnac type including the recent reciprocal linear effect [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF], [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF], and present some of the most important arguments of supporters and detractors of the LT. Note that high-precision experimental confirmation of the relativistic effects of standard special relativity (equally foreseen by both the LT and LTA), involves the average light speed c, as in the Michelson-Morley experiment, and not the one-way light speed, proven to be not invariant by the Sagnac effects. We show that the approach of Mansouri and Sexl, with the contended equivalence between relative (LT) and absolute simultaneity (LTA), has no general validity and is limited to the following special case:

"The arbitrary synchronization involves two spatially separated clocks and makes use of the two-way Einstein synchronization procedure, without any reference to other relatively moving inertial frames."

By considering a single propagating photon along a closed contour, as in the Sagnac effects of Fig. 1, we show in Sections 2, 3, and 4, that, in general, Einstein synchronization, the LT, and Mansouri and Sexl's approach are unfeasible:

-For the recent reciprocal linear Sagnac effect [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF], the LT and LTA foresee strikingly different values for some observables and the reciprocity is maintained in the scenario where the relativity principle holds with the LTA, but not with the LT. Hence, the reciprocal linear Sagnac effect can be used for testing Lorentz and light speed invariance. This result invalidates the conventionalist claim of the validity of the physical equivalence between the LT and LTA. Other examples of nonequivalence, such as the Thomas precession, are given.

-As well known [START_REF] Klauber | Comments regarding recent articles on relativistically rotating frames[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF], [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF], Einstein synchronization and the LT fail when applied to the closed contour of the Sagnac effects. The failure of the LT indicates that these transformations are not suitable for describing these aspects of physical reality and, thus, have limited validity. Instead, possessing a more general validity, the LTAs do not fail and foresee the correct result for these optical effects.

-If the local light speed is c on one section of the linear effect (Fig. 1-b), the local speed on the other section cannot be c. In fact, in the observed round-trip interval T and at the local speed c on both sections, a counter-propagating photon covers only the distance 2L(1 -v/c), which is shorter than the closed contour 2L. The missing path indicates a breach in spacetime continuity and is related to the "time gap" of relative simultaneity arising when using the LT. Instead, spacetime continuity is preserved using the LTA.

-Considering the role of coordinates transformations within the mere kinematical perspective, the one-way synchronization and the effects of the Sagnac type single out the corresponding correct synchronization parameter (LTA with ε = 0) that leads to a consistent interpretation of relativistic effects, ruling out relative simultaneity in favor of a scenario preserving the relativity principle with transformations based on conservation of simultaneity.

The circular and linear Sagnac effects and their interpretations

In his experiment, shown in a schematic idealized form in Fig. 1-a, Sagnac measured the one-way speed of light with an interferometer (or clock C*) on the rim of a circular rotating platform (or disk) where light (or a photon) travels along an optical fiber. The linear Sagnac effect [START_REF] Wang | Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber[END_REF], discussed below, is shown in Fig. 1-b. In these effects, two counter-propagating photons are traveling on the fiber moving at speed v, where the device C*, fixed to the fiber, is co-moving with it. Then, C* measures the time interval ∆T = T ⇐= -T =⇒ , where T ⇐= and T =⇒ represent the round-trip proper time of the co-and counter-moving photons along the contour of perimeter 2πr, or 2L, in the circular and linear effects, respectively. Following Post [START_REF] Post | Sagnac effect[END_REF], for the linear effect, ∆T can be written as,

∆T = T ⇐= -T =⇒ = 2L γ(c -v) - 2L γ(c + v) = 4γvL c 2 . (2) 
For the circular Sagnac effect, with v = ωr, result (2) with 2L = 2πr, is usually expressed [START_REF] Post | Sagnac effect[END_REF] as ∆T = 4 ω • A/c 2 , where ω is the platform angular velocity and A is the area enclosed by the light path. Since the Sagnac effect is of the first order in v/c, in some cases, for simplicity, we may take the factor γ as

γ = (1 -v 2 /c 2 ) -1/2 ≃ 1 in (2).
Sagnac's experiment indicates that the average one-way speed of light along the rotating fiber is approximately c ± v, where v is the peripheral speed of the disk. In the following, we shall consider a single propagating photon, usually the counter-propagating one. The expression for the proper time interval T =⇒ can be written as,

T =⇒ = T = 2L γ(c + v) = 2γL γ 2 (c + v) ≃ 2L c + v or 2πr c + v (3) = 2γL(1 -v/c) c ≃ 2L(1 -v/c) c or 2πr(1 -v/c) c ,
where the terms with 2πr refers to the circular effect.

For the circular and linear Sagnac effects, let us consider the interpretation of the last terms in the first and second line of expression (3) where we take γ ≃ 1. To avoid discussions on the inertiality of the moving clock C* in the circular effect, we may consider the linear effect only, where C* can be always in uniform motion during the interval T . Still, considering that the circular and linear are equivalent effects, the argument of Sagnac presented below should hold for both the circular and linear effects.

According to any reference frame, such as S lab (where the arm AB is stationary), which sees clock and photon counter-moving in Fig. 1-a and 1-b, the spatial distance covered is different from that observed by measuring it along the fiber. In fact, the shorter "spatial" distance 2L(1-v/c) ≃ 2L-vT , differs from the longer fiber "ground" length 2L, by v2L/c, as shown in Fig. 1-a and1-b. For an observer instantaneously co-moving with the fiber and C* (Fig. 1-b), the last term in the first line of (3) indicates that, in the interval T , the photon has covered at the average one-way speed c +v, the "ground" distance 2L along the fiber. Instead, the last term in the second line indicates that, in the same interval T , the photon has covered at the average speed c, the shorter "spatial" distance 2L(1-v/c). From the mere kinematical perspective, in the same time interval T different distances must be covered at different speeds. Hence, the "ground" light speed along the fiber cannot be the same as the "spatial" light speed.

If we assume space isotropy on S lab where the one-way light speed is c, in the case of a fiber in uniform motion and on account of symmetry, the average speed c + v measured by C* along 2L must coincide with the uniform "ground" local speed along the whole fiber. Thus, according to Sagnac [START_REF] Sagnac | L'éther lumineux démotré par l'effet du vent relatif d'éther dans un intertféromètre en rotation uniforme[END_REF], Selleri [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF]- [START_REF] Selleri | Sagnac effect : end of the mystery[END_REF], and many physicists, [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF]- [START_REF] Hajra | Spinning Earth and its Coriolis effect on the circuital light beams: Verification of the special relativity theory[END_REF], light speed invariance is invalidated by the experiment because it is c for the observer S lab and c+v locally along the fiber upper (or lower) section for an observer on the inertial frame of Fig. 1-b co-moving with the fiber. Sagnac's result and interpretation are in agreement with coordinate transformations based on absolute simultaneity, such as the LTA, which foresee the one-way light speed c + v along the fiber, and not the invariant c foreseen by the LT.

Objections and rebuttals on the interpretation of the Sagnac experiment can be found in literature and some are given in Refs. [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF]- [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF], [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF]. Historically, the main objection to Sagnac's interpretation is that the observer on the rotating platform is on an accelerated frame and not on an inertial frame. Thus, some physicists suggested that the kinematical problem inherent to the circular Sagnac effect, requires to be interpreted within the framework of General Relativity. Actually, rather than solving the simple kinematical problem, this suggestion can be taken as an indication that standard special relativity theory is incomplete, and a different theory is needed for its solution. This polemic objection about inertiality became obsolete after the discovery of the linear Sagnac effect (Wang et al. [START_REF] Wang | Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber[END_REF], [START_REF] Wang | Generalized Sagnac effect[END_REF]), which is considered to be equivalent to the circular effect. In the linear effect the interferometer, or clock, can be always in uniform motion during the round-trip time interval T and, thus, on an inertial frame. The one-way light speed along a closed contour can be measured by a single clock and, since it is c ± v locally along the fiber, detractors of the LT claim that the Lorentz and light speed invariance do not hold and fail [START_REF] Klauber | Comments regarding recent articles on relativistically rotating frames[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF], [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF], [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF] in this case.

Practically, all physicists (supporters or detractors of the LT) agree that, from the kinematical perspective, the LTA (or, for γ = 1, the Galilean transforms) correctly interpret the Sagnac effects. Yet, the physical interpretation of special relativity through more than a century has been evolving and, currently, the supporters of the LT argue that although the LTAs provide the correct interpretation, it does not invalidate the LT because, on account of the arbitrariness of synchronization, the LTs are equivalent to the LTA [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] De Abreu | The Conceptualization of Time and the Constancy of the Speed of Light[END_REF], [START_REF] Mamone Capria | On the Conventionality of Simultaneity in Special Relativity[END_REF]. We shall consider in detail the arguments of the detractors and supporters of the theory about this contended point on " LT-LTA equivalence" and show, instead, why the LT and LTA are not equivalent and represent different physical realities.

Standard two-way Einstein synchronization and oneway synchronization in special relativity

Epistemologists [START_REF] Reichenbach | Axiomatization of the Theory of Relativity[END_REF]- [START_REF] Kuhn | The Structure of Scientific Revolutions[END_REF] claim that the basic postulates of a meaningful physical theory must be falsifiable (i.e., testable). Then, if one of its basic postulates is not falsifiable, it may be argued that the theory is not physically meaningful. If the LT (with relative simultaneity) are equivalent to the LTA (with absolute simultaneity) and the speed of light is conventional [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], the standard theory of special relativity based on Einstein synchronization and the LT, has a drawback because its fundamental postulate of the one-way light speed invariance cannot be tested. Moreover, as mentioned above, Einstein synchronization fails when applied to moving closed contours. These problems inherent to Einstein synchronization can be solved by introducing, as we do in the next section, the one-way clock synchronization procedure.

Standard two-way Einstein synchronization procedure Referring to Fig. 2, let s ′ = s g be the "ground" distance traversed by the photon, as measured along the moving optical fiber (refractive index n = 1) starting from C*. When v = 0, the curvilinear distance s ′ coincides with the corresponding distance s, measured from the lab inertial rest frame S lab , where O lab and the arm AB are at rest. Two clocks, C* and C 0 (not shown), are placed at the same point in Fig. 2-a and 2-b, but spatially separated in Fig. 2-c. By ∆s ′ , we denote the distance C*C 0 measured along the fiber from C* to C 0 . We may apply Einstein synchronization to the usual linear path C*C 0 of the rod of rest length ∆s ′ = ∆ 0 of Fig. 2-c, and also to the paths C*C 0 of the circular or linear effects of Figs. 2-a and2-b, where C 0 coincides with C*.

When C* is stationary (v = 0, ∆s ′ = ∆s), for the two-way photon round-trip from C* to C 0 (out trip) and, after changing direction, back from C 0 to C* (return trip), the proper time interval measured by C* is given by, where c is the invariant average two-way light speed. Assuming space isotropy on frame S lab , the one-way light speed on S lab is c and c out = c ret = c. When C* (and the optical fiber, to which C* is fixed) is moving with uniform speed v relative to S lab , the "ground" length ∆s ′ = C*C 0 = C 0 C* of the fiber is the same, as measured locally along the fiber, regardless of whether in relative motion or not, and the expression (4) for the invariant average two-way light speed is valid for all the instances of Fig. 2. Using Einstein synchronization procedure, we may arbitrarily synchronize the clock at C 0 by setting,

T two-way = T out + T ret = 2∆s ′ c = ∆s ′ c out + ∆s ′ c ret , (4) 
(T out ) E = (T ret ) E = ∆s ′ c , (5) 
in agreement with the LT.

Einstein synchronization for the rod of Fig. 2-c. Since we are unable to measure T out without first synchronizing the two spatially separated clocks, in this case, the one-way light speed remains undetermined because of the arbitrariness of the clock synchronization procedure. Then, the corresponding one-way light speed c out along the path C*C 0 = ∆s ′ = ∆ 0 can be conventionally chosen [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] (e.g., c out = c or c out = γ 2 (cv)), as long as ( 4) is verified (e.g., with

c ret = c or c ret = γ 2 (c + v) ).
Determining the synchronization parameter ε for the Sagnac effects of Fig. 2-a and 2-b with the one-way synchronization. When the fiber is in motion, Sagnac's experiments show that the one-way light speeds, c out = c out (v) in the out trip, and c ret = c ret (v) in the return trip, are different from c. Nevertheless, the interval T two-way in (4) may remain invariant if the average c is invariant because, on average, the different one-way out trip interval T out from C* to C 0 , may be balanced by the one-way return trip interval T ret from C 0 to C* along the same path.

For the Sagnac effects, there is no arbitrariness because T out = T ≃ (T out ) lab can be measured by the single clock C*. Then, on account of ( 2), for a co-propagating photon, the observable interval,

T one-way = T = ∆s ′ c ′ = ∆s ′ γ 2 (c -v) , (6) 
with the known ∆s ′ = ∆s g = 2γL ≃ 2L, provides the correspondent average one-way

ground speed c ′ = c g = γ 2 (c -v) = c/(1 + v/c
) along the optical fiber.

Let us consider an inertial frame S ′ instantaneously co-moving with the fiber, with c ′ = dx ′ /dt ′ the differential local speed along an elementary "ground" section dx ′ = ds ′ = ds g of the fiber. For the circular effect of Fig. 2-a, we have to consider the set of inertial frames instantaneously co-moving with the fiber at the adjacent infinitesimal sections ds ′ 1 , ds ′ 2 ,...etc. [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF], while for the linear effect of Fig. 2-b, we may consider just two inertial frames, S ′ co-moving with the fiber upper section and S ′′ (not shown) co-moving with the lower section, which has velocity -v relative to S lab . Assuming space to be isotropic and the one-way light speed to be c on frame S lab , symmetry implies that any observer instantaneously co-moving with the fiber "sees" the same ground local light speed, which coincides with the average one-way ground speed. Thus, the ground local light speed c ′ = c g along the upper section of the co-moving fiber seen by an observer on S ′ in Fig. 2-b, is the same as the ground local light speed c ′′ = c g seen by an observer on S ′′ along the lower section of the fiber. Hence, for one-dimensional light propagation along the contour, symmetry allows us to express [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF] the transformations [START_REF] Reichenbach | Axiomatization of the Theory of Relativity[END_REF] in terms of the one-dimension curvilinear coordinate s ′ = s g and write

t ′ = t/γ -εs ′ /c 2 , s ′ = γ(s -vs/c 2 ), c ′ (ε) = ds ′ /dt ′ . Integrating dt ′ = ds ′ /c ′ (ε) over ds ′ along C*C 0 ,
with the help of ( 1) and ( 6), we find,

T = dt ′ = ds ′ c ′ (ε) = ∆s ′ c ′ (ε) = ∆s ′ γ 2 (c -v) (7) c ′ (ε) = c 1 + v/c -ε/c = γ 2 (c -v) ⇒ ε = 0
Thus, the synchronization parameter is determined (ε = 0) and singles out the LTA based on conservation of simultaneity, invalidating the LT and relative simultaneity. The same result is obtained in Section 4 using Cartesian coordinates in the form of (1) applied to the linear effect. Result [START_REF] Tangherlini | Galilean-Like Transformation Allowed by General Covariance and Consistent with Special Relativity[END_REF] reflects the well-known problem inherent to Einstein synchronization when applied to a moving closed contour. In fact, if we apply Einstein synchronization and set the local ground speed to be c ′ = c, after integrating dt ′ = ds ′ /c over ds ′ along C*C 0 , in agreement with (5) the clock at C 0 is foreseen to display the reading,

(T out ) E = ∆s ′ c ≃ 2L c = T out = T, (8) 
which, compared with [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], implies that the clock C 0 ≡ C* is out of synchrony with itself [START_REF] Klauber | Comments regarding recent articles on relativistically rotating frames[END_REF], [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF], [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF], [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF], [START_REF] Field | The Sagnac and Hafele Keating experiments: two keys to the understanding of space time physics in the vicinity of the earth[END_REF] [26]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF]. Moreover, since also

(T ret ) E = ∆s ′ /c ≃ 2L/c, we have, ∆T = (T ret ) E -(T out ) E ≃ 0, (9) 
and there is no Sagnac effect. Hence, as recognized also by physicists adhering to the conventionalist view [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] De Abreu | The Conceptualization of Time and the Constancy of the Speed of Light[END_REF]- [START_REF] Mamone Capria | On the Conventionality of Simultaneity in Special Relativity[END_REF], [START_REF] Klauber | Comments regarding recent articles on relativistically rotating frames[END_REF], Einstein synchronization and the LT fail to interpret the Sagnac effects, when observed along the fiber from the moving device C*. Moreover, we show in Section 4 that the use of the LT in the linear effect leads to a spacetime continuity breach and, in the case of the reciprocal linear Sagnac effect, the LT and LTA foresee different observable results, confirming that they are not equivalent. In any event, by itself, Einstein synchronization does not determine the one-way light speed. Thus, results ( 5), [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF], and ( 9), point out the limited validity of Lorentz and light speed invariance, which are not applicable to the Sagnac effects.

Extending the one-way internal synchronization procedure to the rod of Fig.

2-c and 2-d.

We denote as "one-way synchronization" the procedure, alternative to Einstein synchronization and applicable to the effects of Fig. 2-a and 2-b, that we wish to extend to the rod of Fig. 2-c and the example of Fig. 2-d, as described below. For our procedure, we consider in Fig. 2-d two generic reference frames, S ′ and S, in relative motion and, without introducing the synchronization parameter ε of (1), we make use directly of the results (2) and (3). We assume first that the one-way light speed is c on frame S of Fig. 2-d, where the section AB = L has a mirror placed at A and another at B. With the clock C* on frame S ′ moving at the velocity v relative to S, when A is passing by C*, a photon is sent from the position of C* toward the mirror at B and, after being reflected, travels back to reach C*. The round-trip interval derived from S provides the same result as in (3),

T = T lab γ = 2γL γ 2 (c + v) = 2γL(1 -v/c) c . (10) 
Let us now consider the analogy between the physical situation of Fig. 2-d and that of Fig. 2-b. For the example in Fig. 2-b, the result (10) corresponds to the counterpropagating photon emitted by C*, traveling initially along the fiber's lower section from A≡C* to B and returning from B to C* on the upper section. For this photon, the local ground speed along the moving fiber is c g = γ 2 (c + v), which, on frame S ′ co-moving with the fiber, represents the local one-way return speed from B to C* on the fiber's upper section. However, the motion of this photon is indistinguishable from that of the photon performing a round trip in Fig. 2-d. Regardless of whether an experiment analogous to that in Fig. 2-b is actually performed or hypothetically thought of for Fig. 2-d 

c ret (v) = c ′ g = γ 2 (c + v)
for the return ground speed of the photon moving from B to C*. Furthermore, since in frame S ′ the two-way average light speed is c, on account of (4), the one-way light speed in the opposite "out" direction from C* to B, is found to be c out (v) = γ 2 (cv), which is the speed of the photon seen by S ′ in Fig. 2-b and Fig. 2-d when traveling from A≡C* to B.

By exploiting the analogy between Fig. 2-d and Fig. 2-b and assuming S to be the preferred frame, we have determined the one-way light speed in S ′ . Analogous results are obtained by assuming the one-way light speed to be c in S ′ , which is now the preferred frame. Hence, what the linear Sagnac effect implies is that, if the light speed is c in the chosen preferred frame S, the one-way light speed in the relatively moving frame S ′ is c ′ (v) = γ 2 (c ± v), as foreseen by transforms (1) with ε = 0. Although, in principle, the choice of the preferred inertial frame is arbitrary, symmetry considerations may indicate the more convenient choice. For example, for the description of the circular effect of Fig. 2-a, the frame S lab can be conveniently chosen as representing the preferred frame.

Once the one-way light speed c

′ (v) = c out (v) = γ 2 (c -v)
is known, for a clock at a point P along the fiber at the distance s ′ = s ′ g from C* in Fig. 2-b or along the x ′ = s ′ axis of S ′ in Fig. 2-d, the one-way synchronization procedure requires setting the clock readings to,

t ′ = s ′ c ′ (v) = s ′ γ 2 (c -v) , (11) 
in agreement with experimental evidence [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF]. The synchronization can be applied along any finite section of frame S ′ of Fig. 2-b and 2-d, where the rod of Fig. 2-c forms a section of frame S ′ . However, using curvilinear coordinates, the synchronization can be applied along the whole moving fiber s g . Our procedure represents an "internal" synchronization [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], because the ground one-way speed c ′ g is determined without any reference to the readings of the external synchronized clocks on the preferred frame S lab . If we use these S lab readings to synchronize the clocks on S ′ , we are performing an "external" absolute synchronization [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], which turns out to coincide with our one-way internal synchronization. Synchronization [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF] supports the LTAs, which are the only transformations that can interpret consistently the Michelson-Morley and Sagnac experiments [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Gift | On the Selleri transformations: analysis of recent attempts by Kassner to resolve Selleri's paradox[END_REF], [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF]. [START_REF] Kuhn | The Structure of Scientific Revolutions[END_REF] The linear Sagnac effect, its reciprocal, and the principles of Einstein and Galilean relativity

The reciprocal linear Sagnac effect

More evidence supporting the fact that the LT and LTA are not physically equivalent comes from our recent publications [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF], [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF] where we consider a new optical effect (denoted by some physicists as the "Spavieri-Haugh effect"), which may be considered as a kind of reciprocal linear Sagnac effect.

In the standard linear effect (Fig. 1-b) the invariant interval T is independent of whether the device C* stays, or not, on the same section (upper or lower) during the interval T . If the principle of relativity is valid, concerning the invariant proper time interval T , there should be no difference between the situation when the clock C* moves back and forth relative to the stationary contour as in the standard effect (Fig. 1-b), or the situation when the contour moves back and forth relative to the stationary clock on frame S, as in the reciprocal effect of Fig. 1-c and Fig. 3. Actually, calculations show [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF] that, for the two counter-propagating photons, ∆T in (2) is always invariant, the same in the reciprocal linear effect as in the standard linear effect, thus confirming the reciprocity of the two effects for ∆T .

However, for the LT and with X = AC* in Fig. 3, in the reciprocal effect the one-way round-trip interval T for a single photon is X-dependent (T = T (X)) when, in changing the direction of motion, the contour has the device C* first on one section and then on the other. On the contrary, if the LTAs are adopted and the one-way light speed is c on the rest frame S count of the contour, both ∆T and T are always invariant and T independent of X [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF]. Then, we may formulate, tentatively, a weak form of the relativity principle for the LT, where ∆T only is invariant, and a strong form for the LTA (or simply the traditional relativity principle) where both ∆T and T are invariant.

In the framework of the LTA, the relativity principle and the reciprocity of the linear effect hold if the contour inertial frame S count represents, regardless of changing or not direction of motion, the preferred frame where Maxwell's equations are valid and the electromagnetic waves travel at speed c. The property can be extended to the Michelson-Morley interferometer and other electromagnetic phenomena involving interferometry. In particular, the Michelson-Gale experiment [START_REF] Michelson | The Effect of the Earth's Rotation on the Velocity of Light, II[END_REF] of 1925, which provided a non-null result, can be another indication that the contour of the interferometer can be linked to a preferred frame, as considered below about the problem of synchronization in the Global Positioning System.

To prove the nonequivalence of the LT and LTA, we show below that, in the reciprocal effect, T depends on X for the LT, but is X-independent for the LTA.

a) Showing that the LT foresee T = T (x) for the reciprocal linear effect.

The calculations for a generic value of X are made in Ref. [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF]. If, during the interval T , C* is always on the same (lower or upper) section, T is invariant. Here, we consider in Fig. 3 the case when the stationary C* emits the counter-propagating photon initially on the lower section (Fig. 3-a) and, after the contour changes its direction of motion (Fig. 3-b), receives the photon traveling on the upper section (Fig. 3-c). To simplify calculations, we assume that the original position X = AC* is such that the photon reaches B when, simultaneously, point A reaches C*. At this moment (Fig. 3-b), simultaneously on the inertial clock frame S, the whole contour changes the direction of motion in the interval η. We also assume, for simplicity, that the rest length L of the arm AB of the contour is quite large, relative to the dimension R of the pulleys, L >> R. In this hypothetically ideal linearized case, T >> η, we can neglect the details of the motion taking place during the interval η.

With reference to Fig. 3-a and considering that B is moving with velocity v relative to the clock frame S, using the LT, we calculate the interval T LT for the photon roundtrip. Starting from C* and taking into account the length contraction of the arm AB, the photon reaches B after the time interval determined by the equation, ct = (L -X)/γ + vt, while the moving point A, initially at X/γ, reaches C* after the interval determined by the equation, -X/γ + vt = 0. Then, with X/γ = vt, the equation for the photon becomes, ct = L/γ, and T out = L/γc, while X = (v/c)L. With the photon at B as in Fig. 3-b, the return time is obtained from the equation L/γct = 0, providing T ret = L/γc. Note that, in the return trip, T ret is independent of whether the contour changes or not its direction of motion. Hence, instead of the expected invariant T = 2γ -1 L/(c + v) (3) of the standard linear effect, in the reciprocal effect the round-trip time interval is

T LT = T (X) X=(v/c)L = T out + T ret = 2L γc . (12) 
Different values for T LT = T (X) are obtained for different X [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF]. By taking into account the effect of relative simultaneity with the LT, the same result ( 12) is obtained if derived from the contour frame S count , where the light speed is c when S count is in uniform motion before and after the interval η. b) T is X-independent when derived in the framework of the LTA. Assuming conservation of simultaneity, according to the relativity principle the result is the same whether the clock is moving relative to the contour or vice versa. In the standard linear effect the one-way light speed is assumed to be c on the stationary contour frame S count . Therefore, assuming again that the one-way light speed is c on the moving S count , before and after the small interval η, C* is seen from S count to be in relative motion and, when calculated from the contour frame S count , the result for the invariant T is just the one derived for the standard linear effect.

Let us confirm that T is invariant by deriving it also from the frame S of the stationary clock. We derive T from the frame S of the clock, using, for simplicity, the first order approximation in v/c. The exact result, calculated from the frame S to all orders in v/c, can be derived without problems assuming that the contour frame S count is the preferred frame where the LTAs are adopted (before and after the negligible interval η). Since the one-way speed of light along AB is c on the moving preferred frame S count , according to the LTAs, which now coincide with the Galilean transformations, the corresponding light speed on frame S is c + v. Then, the photon reaches B at the time determined by the equation, (c + v)t = (L -X) + vt, while A reaches C* at the time determined by the equation, -X + vt = 0. With X = vt, the equation for the photon becomes, (c + v)t = L, and we have T out = L/(c + v). According to the LTA, on the clock frame S the return light speed from B to C* is again c + v. Then, with the photon at B, as in Fig. 3-b, the return time is obtained from the equation L -(c + v)t = 0, providing T ret = L/(c + v). Hence, for the reciprocal effect, the LTAs foresee the approximated round-trip time invariant interval,

T = T out + T ret ≃ 2L c + v , (13) 
the same as for the standard linear effect, as foreseen by the relativity principle, but different from the result [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF] foreseen by the LT. The difference between ( 12) and ( 13) is due to the "time gap" δt ′ of relative simultaneity between the two frames in relative motion, as shown explicitly in the examples below. In this case, we derive the round-trip interval T , measured by C*, from the rest frame S count of the contour, where clock C* is fixed at the distance X from point A, as shown in Fig. 4. S count and the inertial frame S are in relative motion before and after the small interval η.

Assuming the local light speed to be c on S count , the counter-propagating photon leaves C* in the direction of B and performs the round-trip C*B, BA, AC* to return to C*. The arm AB and frame S are in relative motion and, if the relative velocity does not change, the round-trip interval measured by C* is T = 2L/c. However, when the photon reaches point B, the contour changes the direction of motion relative to S. Therefore, the contour is moving with velocity v relative to the inertial frame S during the out trip from C* to B, and with velocity -v during the return trip from B to C*. Vice versa, frame S is seen in relative motion from S count , as in Fig. 4 (before and after the small interval η).

Since conservation of simultaneity is assumed, the relative change of motion occurs simultaneously on both S count and S. As usual, we neglect the interval η taken by the contour to change velocity, assuming that T >> η. Then, before and after changing velocity, the contour is an inertial frame, S count , on which the one-way light speed is c.

Therefore, from Fig. 3-a, on (S count ) bef ore we have T out = (L -X)/c, and, from Figs. 3-b and3-c, on (S count ) af ter we find T ret = (L + X)/c , with the expected invariant result,

T = T out + T ret = 2L c , (14) 
corresponding to the proper time measured by C* for the one-way round trip of the photon, independent of its state of motion.

Together with the invariance of the clock's proper time, even when accelerating, the invariant ( 14) should be holding for circular or other shapes of contours and, in general, for models of elementary particles or atomic systems where a particle performs a closed trajectory in the interval T . The invariant result [START_REF] De Abreu | The Conceptualization of Time and the Constancy of the Speed of Light[END_REF] implies that S count (before and after the interval η) stands as a preferred frame where Maxwell's equations are valid and the electromagnetic waves are confined to traveling at the one-way speed c along the closed contour. Consequently, if the LTA and conservations of simultaneity are valid, the invariant T of ( 14) must be foreseen from any other inertial frame of reference. However, we show below that result ( 14) is not foreseen by the LT.

b) Deriving T from frame S assuming light speed invariance with the Lorentz transformations.

The calculations performed from the inertial frame S are straightforward and, with

γ -2 = (1 + v/c)(1 -v/c), the results are, (T (X)) S = (T out + T ret ) S = L -X γ(c -v) + L γ(c -v) + X γ(c + v) (15) 
T LT (X) = (T (X)) S γ = L -X γ 2 (c -v) + L γ 2 (c -v) + X γ 2 (c + v) = 2L c + 2v c L -X c = 2L c + 2δt ′ ,
where, in ( 15), (T (X)) S represents the time interval derived from frame S and T (X) LT = γ -1 (T (X)) S represents the proper time reading of C* foreseen by the LT. The term δt ′ = v(L -X)/c 2 in (15) corresponds to the "time gap" between the two frames (S and (S count ) bef ore ) due to relative simultaneity (see also Section 4, Eq. ( 23) and ( 32) below) foreseen by the time transform of the LT [START_REF] Reichenbach | Axiomatization of the Theory of Relativity[END_REF]. As in the case of the reciprocal effect, the result T in ( 14), foreseen by the LTA, differs from T LT (X) in [START_REF] De Abreu | Relativity and the Indeterminacy of Special Relativity[END_REF] foreseen by the LT. Let us consider the case when X = 0. Then, according to the LT, clock C* measures the following intervals,

T LT = (T out ) LT + (T ret ) LT = L c (1 + v c ) + L c (1 + v c ) (16) 
= 2L c (1 + v c ) = 2L c + 2δt ′ ,
indicating that, due to the effect of relative simultaneity, as seen from clock C* on S count , the photon covers in the proper time interval T LT the distance 2L + v2L/c > 2L, which is greater by 2cδt ′ than the size 2L of the contour.

The difference between results ( 14) and ( 16), represents the Spavieri-Haug relativesimultaneity effect foreseen by standard special relativity when the contour reverses its velocity. The corresponding space, 2cδt ′ , and time, 2δt ′ , variations represent a spacetime discontinuity foreseen by the LT, but not by the LTA. The analogous spacetime discontinuity, or breach in spacetime continuity, for the standard linear Sagnac effect, is discussed below.

In conclusion, the difference between ( 12) and ( 13) (and ( 15) and ( 14)) is related to the "time gap" δt ′ of relative simultaneity. Since the difference is observable, it implies that relative (LT) and absolute simultaneity (LTA) can be discriminated experimentally. Possible experimental setups for the test of Lorentz and light speed invariance using the reciprocal effect are described in Refs. [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF], [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF]. The unexpected results of the reciprocal effect confirm that the predictions of the LT and the LTA for the round-trip interval T are different, and that, in general, the LT and LTA are by no means equivalent and reflect different physical realities. The conventionalist thesis of Mansouri and Sexl is valid in the special cases when the two-way Einstein synchronization between spatially separated clocks is applicable and the one-way light speed is undetermined, as in Fig. 2-c. However, in the case of the Sagnac effects the one-way light speed is determined by the one-way internal synchronization that, for a closed contour, relies on the use of a single clock. Hence, the strategy to adopt the LTA for "solving" the paradoxes that arise with the "equivalent" LT, implemented for decades by supporters of the LT, fails with the Sagnac effects, particularly in the case of the reciprocal linear effect. Unfortunately, this flawed strategy has delayed considerably the correct interpretation of the various paradoxes and optical experiments.

4.3

The linear Sagnac effect: Spacetime continuity requires to adopt conservation of simultaneity with the corresponding local speed ≃ c ± v along the moving optical fiber.

We revise the linear Sagnac effect of Fig. 1-b, focusing on the special case when the device C* moves from the lower to the upper section in the interval T ′ , as discussed in detail in Refs. [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF], [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF], [START_REF] Spavieri | Light propagation on a moving closed contour and the role of simultaneity in special relativity[END_REF]. We consider the case of a counter-propagating photon that leaves the clock C* and returns to it after the round-trip time interval T . To simplify the calculations, we assume as usual that the interval η, taken by C* to move around the pulley of radius R, while moving from the lower to the upper fiber section, is negligible and much less than T , which implies L >> R.

Let us denote by S ′′ the inertial rest frame of C* when on the fiber lower section and by S ′ the rest frame when on the upper section. The round-trip interval T (3) measured by C* co-moving with the fiber, is,

T = 2γL γ 2 (c + v) = 2γL(1 -v/c) c , (17) 
and we gave above the interpretation of the two terms of ( 17), which we consider once more below. We denote by c ′′ = c ′′ g the "ground" local light speed on S ′′ . Then, c ′′ g represents the "ground" local light speed along the fiber ground section that is at rest on S ′′ on the lower section. Similarly, we denote by c ′ = c ′ g the ground local light speed on S ′ . A priori, c ′′ and c ′ do not necessarily coincide, depending on the theory and the kinematical relation revealed by experimental evidence. As a way to check the consistency and completeness of the theory, with the LT or the LTA, we need to verify what is the ground local speed on both the lower and upper sections and the ground fiber total length covered by the photon in the interval T . For this purpose, it is convenient to consider the following case where, in the interval T , C* moves from the lower to the upper section.

Single frame description with the LT from S ′′ . With C* initially on the frame S ′′ of the lower section (Fig. 1b), the initial position of C* relative to A, can be chosen in such a way (AC* = X = (v/c)L/γ) that the counter-propagating photon leaving C* reaches B when, simultaneously, A reaches C*, as indicated in Fig. 5. Assuming c ′′ = c as seen from C* on the clock frame S ′′ , the time interval taken by the photon to reach B is,

T ′′ out = T out = L ′′ c ′′ = L γc , (18) 
which is the same time interval T out = X/v taken by A to reach C*. Since L ′′ and c ′′ are "ground" kinematical quantities measured on S ′′ , L ′′ represents the fiber "ground" section covered by the photon at the local "ground" speed c ′′ . Hence, the fiber ground length covered at speed c ′′ = c by the photon in the out trip T out from C* to B, is

L ′′ = γ -1 L.
For the return trip on the upper section, the situation is shown in Fig. 5, where we introduce the second clock C ′ , co-moving on the fiber upper section with the inertial frame S ′ moving with velocity v relative to the arm AB. Clock C ′ is set at t ′ = t ′′ = 0 at point A when coinciding with C*. Of course, the time intervals measured by C ′ after t ′ = 0 are the same intervals that C* would measure after having moved to the upper section. In any case, it should be clear that we are dealing with time intervals measured on inertial frames, corresponding to the invariant proper time intervals of C*, within the approximations made.

Denoting by w ≃ 2v the relative velocity between S ′′ and S ′ , the corresponding LT [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF], [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF] and some of its relations with the AB frame S, are,

x ′ = γ w (x ′′ -wt´) t ′ = γ w (t ′′ - wx ′′ c 2 ) (19) 
w = 2v/(1 + v 2 /c 2 ) γ -2 w = (1 + w 2 /c 2 ) 1/2 γ w = γ 2 (1 + v 2 /c 2 ) (20) 
γ w (1 + w/c) = γ 2 (1 + v/c) 2 = 1 + v/c 1 -v/c
The return trip time interval seen from S ′′ is obtained from the equation wt ′′ = L/γct ′′ , and,

T ′′ ret = L γ(c + w) = γ w L(1 -v/c) γc(1 + v/c) (21) 
T ret = T ′ ret = T ′′ ret γ w = γL(1 -v/c) 2 c ,
where the proper time interval T ′ ret = γ -1 w T ′′ ret is equally foreseen by the time transforms (1) of the LTA and LT (at x ′ C ′ = 0). The S ′′ spatial distance covered by the photon in the return trip is,

cT ′′ ret = L γ(1 + w/c) = γ w L(1 -v/c) γ(1 + v/c) ≃ L(1 -2v/c) < L, (22) 
less than L because, as seen from S ′′ , clock C* ′ is moving at speed w toward the photon approaching at speed c. Then, as seen from the single frame S ′′ , in the round trip T (17) the photon covers, at speed c, the total distance,

cT out + cT ′′ ret ≃ L + L(1 -2v/c) ≃ 2L -cδt ′ < 2L. (23) 
In ( 23) the term δt ′ = γ w γ -1 wL/c 2 = 2γvL/c 2 is the "time gap" from S ′ to S ′′ due to relative simultaneity foreseen by the time transform of the LT in [START_REF] Sagnac | L'éther lumineux démotré par l'effet du vent relatif d'éther dans un intertféromètre en rotation uniforme[END_REF]. Thus, as seen from S ′′ or any other single frame, the spatial distance covered is 2L -cδt ′ , less than the total ground fiber length ≃ 2L, and the uncovered path ≃ 2γvL/c = cδt ′ ≃ vT is shown for the circular and linear effects in Fig. 1-a and1-b.

Description with the LT involving the two frames S ′′ and S ′ . In the out trip, the ground distance covered is L ′′ = γ -1 L, as given by [START_REF] Mamone Capria | On the Conventionality of Simultaneity in Special Relativity[END_REF]. The return trip T ′ ret is given by [START_REF] Wang | Generalized Sagnac effect[END_REF]. According to the LT, the return light speed is c on S ′ and T ′ ret = L ′ /c. For the observer on S ′ ,

L ′ = cT ′ ret = γL(1 -v/c) 2 ≃ L -cδt ′ < L, (24) 
indicating that the photon does not cover the whole path L in the return trip. The total ground path covered at speed c by the photon, L ′′ on S ′′ and L ′ on S ′ , is exactly,

L ′′ + L ′ = γ -1 L + γL(1 -v/c) 2 = 2γL -cδt ′ < 2L, (25) 
essentially as in [START_REF] Lundberg | Travelling light[END_REF]. Hence, both observers S ′′ and S ′ agree that, at the ground local speed c, the photon cannot cover the whole fiber length 2γL in the round-trip interval T . This result implies a breach in spacetime continuity by cδt ′ because the missing path 2γvL/c = cδt ′ has not been covered in the interval T out + T ret . Result [START_REF] Field | The Sagnac effect and transformations of relative velocities between inertial frames fund[END_REF] shows once more that Einstein synchronization fails because, as derived in [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF], foresees that at the photon speed c, the resulting round-trip interval is (T out ) E = ∆s ′ g /c ≃ 2L/c, and not T as in [START_REF] Anderson | Conventionality of Synchronization, Gauge Dependence and Test Theories of Relativity[END_REF].

4.4 Imposing spacetime continuity in deriving T .

In the return trip from B to C* on the upper section, in terms of "ground" kinematical quantities, clock C'* measures the observable interval T ret = L ′ /c ′ from the instant t ′ = 0, when it coincides with A, to the moment when the photon reaches it. Assuming c ′ undetermined, also the ground distance L ′ is undetermined, but light propagation along the closed contour imposes a constraint: spacetime continuity requires the total ground length of the fiber, covered by the photon in the round trip interval T , to be 2γL. Since the distance L ′′ = γ -1 L has been covered in the out trip, the remaining distance, According to the LTA, the photon is at B at t ′ = 0, when C ′ is at A and covers the whole distance γ w L/γ in the return trip.

L ′ = 2γL -L ′′ = γ 2 (1 + v 2 c 2 ) L γ = γ w γ -1 L,
must be covered at speed c ′ in the return trip.

With the help of ( 21) and [START_REF] Wang | Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber[END_REF],

T ret = L ′ c ′ = γ w γ -1 L c ′ = γL(1 -v/c) 2 c ( 26 
)
γ w c ′ = 1 -v/c c(1 + v/c) = 1 cγ w (1 + w/c) ,
and, from [START_REF] Spavieri | Light propagation and local speed in the linear Sagnac effect[END_REF], we find c ′ to be,

c ′ = γ 2 w (c + w) = c 1 -w/c . ( 27 
)
According to the approach of Mansouri and Sexl [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] of (1), for the transformations from S ′′ to S ′ in terms of the synchronization parameter ε, we have [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] Spavieri | Light propagation on a moving closed contour and the role of simultaneity in special relativity[END_REF],

t ′ = t ′′ /γ -εx ′ /c 2 (28) x ′ = γ(x ′′ -wt ′′ ) y ′ = y ′′ z ′ = z ′′ c ′ = c ′ (ε) = dx ′ dt ′ = c 1 + w/c -ε/c ,
where we have set c ′′ = dx ′′ /dt ′′ = c on frame S ′′ . For counter-propagation c ′ (ε) = c(1-w/c+ε/c) -1 and, by setting c ′ = c ′ (ε) in ( 27), the equation determines the value ε = 0, implying that the resulting synchrony, reflecting the interpretation of the linear Sagnac effect consistent with spacetime continuity, is that of the LTA with absolute simultaneity. With c ′ given by ( 27) on S ′ , c ′′ = c on S ′′ , and the help of ( 20), the total ground length covered is

cT out + c ′ T ret = γ -1 L + γ w γ -1 L = γ -1 L + γ(1 + v 2 /c 2 )L = 2γL, as expected.
Adopting the LTA with conservation of simultaneity in the linear Sagnac effect

In the previous Section, we assumed the one-way light speed to be c on the frame S ′′ of the fiber lower section. Nevertheless, considering that the relativity principle holds when the preferred frame is the contour frame S count , let then be S = S count the preferred frame and introduce the LTA transformations from S to the frames S ′ and S ′′ . The curvilinear transformations (already used in [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF]) along the length s ′ of the optical fiber may be expressed as,

s ′ = γ(s -vt) t ′ = t γ . (29) 
As seen from frame S (Fig. 2-b), starting from the origin of S ′ , light can travel along the fiber the distance s = ct to the generic point on the upper or lower section. The corresponding distance seen from the fiber is

s ′ = γ(c -v)t = γ 2 (c -v)t ′ = c ′ t ′ .
In the circular Sagnac effect, after a counter-propagating photon covers the whole circumference traveling the distance s ′ = γ2πr, we find T ′ = T = s ′ /c ′ = γ2πr/[γ 2 (c + v)] in agreement with [START_REF] Anderson | Conventionality of Synchronization, Gauge Dependence and Test Theories of Relativity[END_REF]. For inertial frames in Cartesian coordinates, the corresponding LTA (1) can be written as,

x ′ = γ(x -vt) t ′ = t γ (30) 
x ′′ = γ(x + vt) t ′′ = t γ

where, relative to S, the equation of the first line is replaced by the equation of the second line when c changes sign and direction at B. In this case, with V = γ 2 2v for the relative velocity, the LTAs between S ′′ and S ′ coincide with the Galilean transformations,

x ′ = x ′′ -V t ′′ t ′ = t ′′ . (31) 
From [START_REF] Spavieri | Testing light speed invariance by measuring the one-way light speed on Earth[END_REF] we find the ground light speed c ′ = c ′′ = γ 2 (cv), at which the photon covers the length 2γL in the interval T one-way [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF]. No inconsistencies arise (such as spacetime breach) by describing the Sagnac effects with the simpler transformations LTA based on conservation of simultaneity.

4.5 Short review of the arguments in favor and against the LT.

The current main argument against Sagnac's interpretation. Supporters of standard special relativity agree that the LTAs interpret all the relativistic effects of the theory and that the LTA can be used, in lieu of the LT, to describe the Sagnac effect and "solve" the Selleri and other paradoxes [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF]- [START_REF] Selleri | Sagnac effect : end of the mystery[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF]. Their main argument for claiming that the LT and LTA are equally valid is that they differ by the arbitrary synchronization parameter ε only [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], and thus they are physically equivalent and interchangeable. Hence, according to them, the LTs are still valid if the paradoxes of the LT can be "solved" with the LTA.

Arguments against the equivalence of the LT and the LTA, showing the limited validity of the LT.

1-For the result (17) of the linear Sagnac effect we have the following two interpretations. As seen by the ground observer C* co-moving with the fiber of ground length L ground ≃ 2L, in the interval T ≃ 2L/(c + v) the counter-moving photon covers at the ground local light speed c g ≃ c + v the whole fiber ground length L ground . Instead, for the observer on the lab frame S lab (where space is isotropic) the spatial distance covered by the particle is L space ≃ 2L(1 -v/c), as can be seen also for the circular effect of Fig. 1-a, and, consequently, with T ≃ 2L(1 -v/c)/c, the one-way light speed is c. Hence, since T is the same and the two distances L ground and L space are different, also the relative local speeds of the photon must be different and are c g ≃ c + v locally along the moving fiber and c locally in the frame S lab in relative motion. Hence, light speed invariance is invalidated, as Sagnac claimed.

2-The reciprocal linear Sagnac effect indicates that the LT and LTA foresee different values for the observable T . In fact, T = T (X) is X-dependent for the LT in ( 12), [START_REF] De Abreu | Relativity and the Indeterminacy of Special Relativity[END_REF], and ( 16), while T is invariant and X-independent for the LTA [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF]. Then, the LT and LTA are not equivalent and represent different physical realities, invalidating the current main argument supporting the LT.

3-In the case of the linear effect of Fig. 5, the requirement of spacetime continuity for the photon covering the whole fiber length 2γL in the interval T , supports conservation of simultaneity (LTA) and invalidates relative simultaneity (LT).

Note that the spacetime discontinuity of the LT has been pointed out more than 50 years ago by Landau and Lifshitz [START_REF] Landau | The Classical Theory of Fields[END_REF] by stating: ". . .However, synchronization of clocks along a closed contour turns out to be impossible in general. In fact, starting out along the contour and returning to the initial point, we would obtain for dx o a value different from zero . . ." .

In relation to Fig. 5, the inconsistencies of the LT emerge when the effective "ground" section, covered by the photon in the round-trip interval T is pointed out.

-For the LT, the total ground length covered in the interval T by the photon at the local speed c, is (25), 2γL -2γvL/c = 2γL -cδt ′ < 2γL.

Hence, the photon does not cover the "missing" section of Fig. 5,

cδt ′ = 2γvL/c, (32) 
where δt ′ = 2γ(v/c 2 )L represents the delay, or time gap, between S' and S" due to relative simultaneity. In Fig. 5, it seems as if the photon "jumps" from B to K ′ traversing the missing path at infinite speed.

-If the local ground speed is c ′′ = c on the fiber's lower section, the local ground speed on the upper section can no longer be c, but c ′ = γ 2 w (c + w), for the photon to be able to cover also the missing section in the return interval T ret .

-If the differential local ground speed is c along the whole fiber length, after integrating dt ′ = ds ′ /c over s ′ , we have,

T c ′ = c ≃ 2L/c,
in disagreement with observation (3). 4-The Thomas precession [START_REF] Thomas | The kinematics of an electron with an axis[END_REF] related to the electron spin. In Ref. [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF] we consider the different symmetries of the LT and LTA. Exploiting the symmetry of the transformations along the electron orbit, Jackson's [START_REF] Jackson | Classical Electrodynamics, Sect. 11.8[END_REF] derivation shows that the Thomas precession is foreseen by the LT. Repeating the derivation using the LTA, we show that, due to the different symmetry, the LTAs foresee no Thomas precession [START_REF] Spavieri | The reciprocal linear effect, a new optical effect of the Sagnac type[END_REF]. Once more, the LT and LTA foresee different results.

5-If the LTAs interpret consistently and solve the paradoxes of the LT, while the LTs do not, it is an indication that the LT and LTA are different and physically non-equivalent, rather than "equivalent". Conceptually, the fact that the LTAs do solve the paradox, does not change the reality that the LTs do not.

6-GPS (Global Positioning System). We consider here the GPS argument by Gift [START_REF] Gift | A Simple Demonstration of One-Way Light Speed Anisotropy Using GPS Technology[END_REF], as described in Ref. [START_REF] Spavieri | The Sagnac effect and the role of simultaneity in relativity theory[END_REF], favoring absolute, rather than relative simultaneity.

"As considered by Gift [START_REF] Gift | A Simple Demonstration of One-Way Light Speed Anisotropy Using GPS Technology[END_REF], Ashby [START_REF] Ashby | Relativity and the Global Positioning System[END_REF], and other authors, the existence of the ECI (Earth Centered Inertial frame) is supported by the fact that it clarifies the problem of clock synchronization on the Earth. Indeed, for achieving the clock synchronization with Einstein synchronization in the GPS and maintaining accuracy, the GPS must apply a Sagnac velocity correction to the propagation of its electromagnetic signals. This can be understood by considering that, if the speed of light is c locally in the ECI frame, it turns out to be c ± v on the rotating Earth surface (at the distance R from its center) because of the tangential velocity v = ωR. Thus, the GPS algorithm seems to be supportive of the ECI frame and absolute synchronization for maintaining global accuracy among synchronized clocks. The result is a world-wide network of precisely synchronized clocks that are within 4 nanoseconds of "perfect synchronization" with global simultaneity within the GPS [START_REF] Gift | A Simple Demonstration of One-Way Light Speed Anisotropy Using GPS Technology[END_REF]."

In support of Gift's argument, we may say that the non-null result of the Michelson-Gale experiment [START_REF] Michelson | The Effect of the Earth's Rotation on the Velocity of Light, II[END_REF] is generally interpreted as a Sagnac effect capable of detecting the angular velocity of the Earth [START_REF] Schreiber | From a tabletop experiment to the variation of the Earth's rotation[END_REF], [START_REF] Stedman | Ring-laser tests of fundamental physics and geophysics[END_REF]. In fact, if the inertial frame of the Michelson-Gale interferometer is taken to be the ECI frame, the rotation of the interferometer coincides with Earth's rotation. Ideally, we can conceive a Michelson-Gale interferometer of the size πR 2 (the cross-section area of the Earth) perpendicular to the Earth's axis of rotation. Then, on account of the implications of the Sagnac effects described in Section 4, the ECI frame stands for the preferred frame where Maxwell's equations are valid and the one-way light speed is c and, on the surface of the rotating Earth the light speed must be c ± v, as required for the GPS synchrony and foreseen by the LTA.

In short, considering the various inconsistencies of the LT in relation to the Sagnac effects and the other several arguments presented above, with regard to the "LT-LTA equivalence", we may say that there is sufficient evidence showing that the LT and LTA are not equivalent.

Conclusions

The one-way internal synchronization procedure along a closed contour is viable and applicable either when the device C* and the contour are at rest or in relative motion. In the case of relative motion, the validity of Einstein synchronization and the LT of standard special relativity is limited to the case considered by Mansouri and Sexl [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] where synchronization between two spatially separated clocks is arbitrary (Fig. 2-c). As well known, the LTs are not applicable, or nonintegrable, on a moving closed contour and the transformations that interpret consistently the invariant one-way round-trip interval T for light propagation along the moving contour, are those based on conservation of simultaneity. Thus, generally speaking, the one-way internal synchronization and the Sagnac effects rule out the LT and favor the Lorentz transforms based on absolute simultaneity (LTA).

The nonequivalence between the LT and LTA becomes apparent even in the reciprocal linear effect (Fig. 1-c) where, relative to the inertial frame of the device C*, the contour frame changes the direction of motion in the interval T . In this case, the LTs fail to foresee reciprocity for the one-way invariant interval T , which is now X-dependent (T = T (x)), suggesting a weak form only of the relativity principle. Instead, the relativity principle is completely feasible with the LTAs, which foresee full reciprocity for the invariant T and ∆T .

In the standard linear Sagnac effect, the use of the LT indicates that, in the interval T , the photon does not cover the "missing" section cδt ′ = 2γvL/c of the fiber length 2γL, where δt ′ represents the delay, or relative simultaneity time gap, between the frames S ′ and S ′′ . The existence of a missing section reveals a breach in spacetime continuity due to relative simultaneity. Instead, there is no missing path with the LTA based on conservation of simultaneity and spacetime continuity.

To solve the paradoxes and remove the unusual consequences of the LT in some physical situations [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF], [START_REF] Selleri | Noninvariant one-way speed of light and locally equivalent reference frames[END_REF], [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF], [START_REF] Kipreos | An approach to directly probe simultaneity[END_REF], [START_REF] Kipreos | Assessment of the relativistic rotational transformations[END_REF], [START_REF] Lundberg | Critique of the Einstein clock variable[END_REF]- [START_REF] Spavieri | The One-Way Linear Effect, a first order optical effect[END_REF], conventionalist physicists [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] adopt the LTA, claiming that the paradoxes do not invalidate the LT because the two transforms, LT and LTA, are physically equivalent and interchangeable on account of the arbitrariness of synchronization and the conventionality of the one-way light speed. Still, considering that the reciprocal linear Sagnac effect and other physical effects render apparent the nonequivalence of transforms with different synchronies (ε), the sole transforms capable of interpreting consistently the various paradoxes and light propagation along closed moving contours, are the LTAs. Outside the limited conventionalist context where the LT and LTA can be considered equivalent, in the more general scenario of nonequivalence and by means of the reciprocal Sagnac effect, Lorentz and light speed invariance can be tested and the one-way speed of light is measurable in principle, as required by epistemologists.

In short, we may conclude that: 1-In Einstein's second postulate, what is constant is no longer the one-way light speed, but the observable round-trip speed of light (i.e., the average light speed c during the round-trip from C* to C 0 and then back to C*) [START_REF] Lee | Simultaneity in cylindrical spacetime[END_REF].

2-For the description of physical phenomena (e.g., light propagation along a closed moving contour), a preferred (not absolute) frame S, where the one-way light speed is c and Maxwell's equations are valid, can be conveniently chosen. However, the one-way synchronization and spacetime continuity require the transformations from S to any other relatively moving frame, to be based on conservation of simultaneity (e.g., LTA).

Optical experiments, supporting the Lorentz transformations (LT) and light speed invariance in 1905, disprove today their validity and that of relative simultaneity. The LTAs interpret without paradoxes the optical and all the other experiments supporting standard special relativity [START_REF] Mansouri | A Test Theory of Special Relativity[END_REF] and represent a viable alternative to the LT in the scenario where the principle of relativity is holding.

Figure 1 :

 1 Figure 1: a) On the rotating platform of the circular Sagnac effect, the clock C* located on the circumference emits two counter-propagating photons (only a single photon is shown) traveling along the rim. C* measures the difference ∆T in the photons' arrival times after a round trip. The position of C* after the round trip indicates that the photon has covered the distance 2πr -vT . b) In the linear Sagnac effect, the two photons are emitted by C*, which is moving with velocity v relative to the stationary frame AB. The counter-propagating photons travel in an optical fiber that slides frictionless around pulley A and B. c) In the reciprocal Sagnac effect, the clock C* emitting the counter-propagating photons, is stationary, while the frame AB moves with velocity v relative to C*.

Figure 2 :

 2 Figure 2: Einstein and one-way synchronization. For the circular a) and linear b) effects, when v = 0 and clock C* is stationary on S lab , with Einstein synchronization the photon moves from C* to C 0 , changes direction and gets back to C*. With the one-way synchronization, the photon travels from C* to C 0 only. If v = 0, the two synchronizations coincide. When C* is in motion (v = 0), for the effects a) and b), the one-way synchronization foresees the light speed ≃ cv, which does not coincide with the speed c of Einstein synchronization. c) For the rod, the one-way light speed is undetermined. d) Two mirrors, one at A and the other at B, are placed in the preferred frame S where the one-way light speed is c. The analogy with Fig. 2-b for the photon round trip determines the one-way light speed c ′ along the rod co-moving with frame S ′ .

  , physical reality is the same for both Fig. 2-b and 2-d and the invariant round-trip interval T is the same in both cases. Hence, in frame S ′ of Fig. 2-b and Fig. 2-d, we must have

Figure 3 :

 3 Figure 3: Interval T in the reciprocal effect. a) Clock C* is stationary and initially located on the contour lower section, while the arm AB of the contour is moving at the speed v relative to C*. b) The initial distance X of A from C*, is such that the photon emitted from C* reaches B at the same moment when A reaches C*. At this instant, the contour changes the direction of motion and the photon moves toward C*. c) The photon completes its round trip and reaches C* on the upper section after the interval T .

Figure 4 :

 4 Figure 4: Interval T calculated from the contour rest frame S cont when C* is fixed to the contour and the inertial frame S is moving at the velocity v. a) Clock C* is fixed at the distance X from A. The photon emitted from S* moves at speed c toward B. b) When the photon reaches B, the contour changes its direction of motion relative to S. After the negligible interval η, the contour rest frame is still an inertial frame and the photon moves at speed c from B toward A. c) After reaching A, the photon moves toward C* and completes its round trip in the interval T .

Figure 5 :

 5 Figure 5: In the linear Sagnac effect, clock C* is at rest on the inertial frame S ′′ and clockC ′ is at rest on the inertial frame S ′ . S ′ and S ′′ are in motion with opposite velocities v relative to the frame AB of the contour and coincide at A at t ′ = t ′′ . After being emitted earlier by C* on the fiber lower section (Fig.1-b), the photon reaches B when A reaches C* and, as observed from C* on frame S ′′ , the photon has covered the distance L/γ. According to the LT, the photon is at K ′ at t ′ = 0 and covers the shorter distance γL(1 -v/c) 2 in the return trip. The missing section K ′ B = cδt ′ = 2γ(v/c)L has not been covered for t ′ > 0. According to the LTA, the photon is at B at t ′ = 0, when C ′ is at A and covers the whole distance γ w L/γ in the return trip.
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