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Students’ arguments about the growth of a two-variable function 

Andreas Bergwall 

Örebro University, Department of Science and Technology, Sweden; andreas.bergwall@oru.se 

Calculus is a central part of the curriculum for tertiary educations in mathematics, science, and 

technology. At its core lies the concept of derivative, which is known to be problematic for many 

students. As the corresponding multi-variable concepts of partial derivative, gradient, and directional 

derivative are not mathematically equivalent, it is essential for students to learn their relations and 

what they represent geometrically. In this paper, 20 students’ written solutions to an exam problem 

about the growth of a two-variable function are studied. The warrants they present for their claims 

are characterized in terms of which representations, concepts, connections, and calculations they 

use. The findings indicate that students who solve the problem by calculation of directional 

derivatives are less explicit with their warrants than students who rely on properties of the gradient 

vector. While the first group only uses algebraic representations, the second combines algebraic and 

graphical representations.  

Keywords: Tertiary mathematics education, gradient, directional derivative, Toulmin model. 

Introduction, review and aim of the study 

Millions of students around the world study calculus at university. In educations in science, 

technology, and economics calculus are often mandatory. In parts of the world, such as Europe, 

calculus is also a dominant part in upper secondary mathematics. On this level the approach is usually 

informal with focus on applications and procedural skills (Törner et al., 2014). The transition to the 

more formal mathematical analysis at university level is often problematic for students as it involves 

a shift from a pragmatic to a deductive praxeology (Job & Schneider, 2014). While there is a rather 

extensive body of educational research with focus on basic problems of teaching and learning 

calculus, at upper secondary and introductory tertiary level, there has been a shortage of studies that 

go beyond the early topics of calculus (Rasmussen et al., 2014). Multivariable calculus is such a topic. 

The existing research shows that the concepts of multivariable analysis are abstract and difficult for 

students (Martínez-Planell et al., 2015a). On the one hand research has highlighted the importance of 

being able to use multiple representations, on the other that most students’ have difficulties with 

graphical representations of two-variable functions (Kabael, 2011). While textbooks tend to assume 

that concepts such as slope naturally extend to multivariable settings, this has been showed to be a 

source of learning difficulties (McGee & Moore-Russo, 2015). 

One of the most central concepts of calculus is that of derivative, which in the single-variable setting 

represents instantaneous growth and slope of tangent lines. When generalizing to the multivariable 

case several concepts arise, which are not mathematically equivalent to each other, such as partial 

derivative, gradient, and directional derivative. Connected to them are properties such as partial 

differentiability, differentiability, directional differentiability, and 𝐶1-regularity. Understanding and 

using the relations between these objects and properties, and what they represent geometrically, are 

an essential part of learning multivariable differential calculus. However, little is known about how 

students understand basic concepts such as partial derivatives, differentials, directional derivatives, 
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and gradients. It is documented that they have difficulties interpreting the geometric meaning of 

partial derivatives and differentials (Martínez-Planell et al., 2015a), and problems understanding that 

the gradient of a two-variable function is a two-dimensional vector, and not a normal to the function’s 

graph in three-dimensional space (Cline et al., 2012). Even students who have successfully finished 

a course in multivariable calculus often lack a deeper understanding of directional derivatives and 

rely on memorized facts and formulas (Martínez-Planell et al., 2015b). Regarding the logical relations 

between continuity, partial differentiability, differentiability, and directional differentiability, the 

study by Lankeit and Biehler (2019) indicates that students often can decide which implications that 

are true, but that they have difficulties producing correct arguments for their claims. With the present 

study we aim to contribute on how learners of multivariable calculus understand and use the various 

multivariable concepts of derivative in a simple situation. More precisely, in relation to a specific 

exam problem, we aim to answer the following research question: What characterizes the warrants 

students offer for their claims about growth of a two-variable function? 

Method and analytic approach 

Analytic framing 

This study is based on a qualitative analysis of students’ written solutions to a task given as part of a 

written exam. As we are interested in students’ argumentation, their solutions will be analyzed using 

the three fundamental parts of Toulmin’s model of argument (Toulmin, 2003): ground, warrant, and 

claim. In this model, the claim (or conclusion) refers to an assertion of some kind, and the ground (or 

data) is the facts the assertion is based on. The warrant is what links ground and claim. In relation to 

the student solutions analyzed in the present paper, the information given in the task is considered the 

ground. The answer the student produce is the claim. Anything additional the student presents to back 

up the answer is the warrant. In this respect, the complete solution is the unit of analysis. As 

mathematical calculations and reasoning usually proceed stepwise, we will allow ourselves to also 

make this analysis on a more fine-grained level: the outcome of one step of the solution will be 

considered both a claim of that step and ground for the next step, and so on. This means that a solution 

usually includes a sequence of grounds, warrants, and claims.  

As research has shown the importance of using multiple representations, this is one of the aspects of 

students’ solutions that will be analyzed. We will distinguish between verbal, algebraic, and graphic 

representations. Verbal representations refer to texts written in ordinary language, algebraic 

representations refer to numeric and algebraic calculations and derivations, and graphic 

representations refer to geometric figures and diagrams. 

We will also focus on content specific aspects in students’ solutions. Their warrants and claims will 

be described in terms of which mathematical concepts they make use of (such as partial derivatives, 

gradients, and directional derivatives). How the students connect these (and other) concepts to each 

other will be inferred from how they combine them in their solutions. What mathematical calculations 

and operations they use will also be accounted for (e.g., partial differentiation, dot multiplication of 

vectors, normalization of vectors, comparison of magnitudes and angles, substitution of variables 

with numbers). 



 

 

Context and data sample 

The data sample consists of 20 students’ written solutions to the following task: 

Assume that grad 𝑓(𝑥, 𝑦) = (−3𝑥2𝑦 + 2𝑥𝑦, −𝑥3 + 𝑥2 − 2𝑦). Viewed from the point (1, −1), in 

which of the directions (1,1) and (2,1) does 𝑓(𝑥, 𝑦) increase most rapidly? 

The task was one of a set of elementary tasks at a written re-exam on a course in multi-variable 

calculus, given in the third semester of a civil engineering program in computer science at a Swedish 

university. The exam also included a set of more advanced and complex tasks. The general 

instructions included that the students should justify their reasoning, include all essential steps of 

calculations, draw clear figures, and present exact answers. The assessment criteria included that 

solutions should be easy to follow, be based on a working solution strategy, be presented using 

suitable forms of representations, include arguments for the essential steps, and not lead to 

unreasonable or absurd answers.  

During earlier semesters the students had had courses in discrete mathematics, linear algebra, and 

single-variable calculus, as well as courses in programming and physics. The multi-variable calculus 

course included differential calculus, integral calculus, and vector calculus. The differential calculus 

part included limits, partial derivatives, gradients, directional derivatives, the chain rule, Taylors 

formula, and local and global optimization, all with focus on the two- and three-dimensional cases. 

Properties such as continuity, partial differentiability, differentiability, and 𝐶1-regularity, and how 

they are related, were included in the course but the students were not required to learn the proofs. 

Differentials were not given explicit attention. 

In the course (textbook and lectures) the gradient was defined in cartesian coordinates as 

grad 𝑓(𝑥, 𝑦) = (𝑓𝑥
′(𝑥, 𝑦), 𝑓𝑦

′(𝑥, 𝑦)). Directional derivatives were defined for unit vectors 𝒗:  

𝑓𝒗
′(𝑎, 𝑏) = lim

ℎ→0

𝑓((𝑎, 𝑏) + ℎ𝒗) − 𝑓(𝑎, 𝑏)

ℎ
 

The students were presented the proof (using the chain rule) for the identity 𝑓𝒗
′(𝑎, 𝑏) = grad 𝑓(𝑎, 𝑏) ∙

𝒗 (which holds if 𝑓 is differentiable at (𝑎, 𝑏)) and its corollary (which follows by using the Cauchy-

Schwarz inequality) that grad 𝑓(𝑎, 𝑏) is the direction of most rapid growth (steepest accent) at (𝑎, 𝑏).  

The lectures included calculations of growth in specific directions and determination of direction of 

most rapid growth by use of algebraic methods, but never comparisons of growth in different 

directions. Despite that, the course teacher (the author of this paper) considered the exam task a 

routine task and expected most students to solve it by comparing the values of the directional 

derivative 𝑓𝒗
′(1, −1) = grad 𝑓(1, −1) ∙ 𝒗 = (1,2) ∙ 𝒗 with respect to the two normalized vectors 𝒗 =

1

√2
(1,1) and 𝒗 =

1

√5
(2,1). 

Analytic procedures 

The students’ written solutions were first sorted according to which solution strategy they applied. 

Nine of the 20 solutions used a working strategy in the sense that the applied algorithms and 

procedures would surely lead to a correct answer (to any task of this kind) if all computational details 

were done correctly. However, these solutions often included minor computational or notational 



 

 

errors or lacked important steps. To characterize warrants used to back up claims, the nine solutions 

were analysed in terms of what representations, concepts, connections, and calculations that were 

presented to justify the answer to the task. Through this analysis two subcategories of solutions were 

formed. Examples and a detailed analysis are presented in the result section. 

The remaining eleven solutions (all based on non-working strategies) were also analysed according 

to use of representations, concepts, connections, and calculations. This led to the realization that eight 

of them would have worked had the formulation of the task (i.e. the ground) been slightly different. 

We believe these solutions can bring some insight in typical misunderstandings or misconceptions 

about growth of two-variable functions. Examples are given in the result section. 

Analysis and results 

As we are not aiming for general conclusions about students’ argumentation, we will not provide a 

full account of all data but focus on detailed accounts of three selected solutions, which represent the 

three most common solution strategies and illustrate the variation in the data. The first two strategies 

lead to correct solutions (if calculations are carried out correctly), while the third does not. We will 

also mention some details of the other incorrect solutions in the data. The student solutions have been 

translated to English and reproduced in the handwriting of the author of this paper. Solution steps are 

numbered according to the disposition in the authentic student solutions. 

Two working strategies 

Four student solutions included the following steps: calculation of grad(1, −1) by substituting (𝑥, 𝑦) 

for (1, −1) in the expression for grad 𝑓(𝑥, 𝑦), calculation of the directional derivatives 𝑓𝒗
′(1, −1) for 

the vectors (1,1) and (2,1) by using the formula 𝑓𝒗
′(𝑎, 𝑏) = grad 𝑓(𝑎, 𝑏) ∙ 𝒗, and selection of the 

direction that yielded the largest directional derivative. An example is given in Figure 1. 

 

Figure 1: Correct solution based on comparison of directional derivatives 

The warrant that students who use this strategy presents for their choice of direction vector is that the 

directional derivative is largest in that direction, that is, their claim rests on comparison of directional 

derivatives. Breaking down the argument, it has two parts. First, the students make claims about the 

values of the directional derivatives. The warrants for these claims are algebraic and consist of 

calculations of dot products (Figure 1, steps 2 and 3). Second, these values are used as grounds for 

choosing a direction vector (Figure 1, step 5). In the solution in Figure 1, no warrant is presented for 

this second part. In one of the other solutions in this category, the student underlined the largest value 



 

 

but made no further comment. One student backed up this final step by calculating and comparing 

(3 √2⁄ )
2
 and (4 √5⁄ )

2
. 

None of the students who produced solutions in this category explicitly pointed out that directional 

derivatives correspond to growth in a specific direction, or that it is directional derivatives they are 

calculating. However, the use of the notation 𝑓𝒗
′(𝑎, 𝑏) and/or the use of the formula grad 𝑓(𝑎, 𝑏) ∙ 𝒗 

(as in Figure 1, steps 2 and 3), makes it plausible to assume that this is what they do. Either way, the 

students obviously see no need to make this an explicit part of their warrant. 

Summarizing, students, who make claims about direction of most rapid growth based on calculation 

of directional derivatives, provide explicit warrants for the values of the directional derivatives in the 

form of algebraic computations. They use the algebraic connection between gradient and directional 

derivative expressed in the formula 𝑓𝒗
′(𝑎, 𝑏) = grad 𝑓(𝑎, 𝑏) ∙ 𝒗. Mistakes observed in the solutions 

(aside from minor arithmetic errors) are that direction vectors are not normalized, errors in the 

calculation of the dot product, and notational errors. 

Five students chose another approach and provided solutions that included the following steps: 

calculation of grad(1, −1) by substituting (𝑥, 𝑦) for (1, −1) in the expression for grad 𝑓(𝑥, 𝑦), 

marking of the gradient vector grad(1, −1) and the direction vectors (1,1) and (2,1) in a diagram,  

and selection of the direction that deviates the least from grad(1, −1). An example of this kind of 

solution is given in Figure 2. 

  

Figure 2: Correct solution based on comparison with the gradient vector 

The warrant that students who use this strategy presents for their choice of direction vector is that the 

chosen direction deviates the least from the direction of most rapid growth, that is, their claim rests 

on comparison of directions. Breaking down the argument, it has two parts. First, the students make 

a claim about which of all possible directions that gives the most rapid growth. The warrant for this 

is the algebraic computation of grad(1, −1) (Figure 2, step 1) combined with a verbal statement that 

the gradient provides the direction of most rapid growth (Figure 2, steps 2). This statement is not 

backed up with a refence to a theorem or a derivation. Second, the students choose the direction vector 

they claim to deviate the least from the gradient vector. This claim is expressed verbally (Figure 2, 

step 5), and a warrant is given graphically as a diagram in which the gradient and the direction vectors 

are marked from the same point (Figure 2, step 4).  Not all students explicitly tell that they pick the 

vector which deviates the least from the gradient, and only one student explicitly says that it is the 

smallest angular deviation that is essential. Unfortunately, students will answer correctly even if they 



 

 

compare the norms of the vector differences. Thus, it is not possible to know if they have compared 

angles or vector differences. None of the students provide a warrant for why the least deviation from 

the gradient gives the most rapid growth. 

Summarizing, students, who make claims about direction of most rapid growth based on comparison 

with the direction of the gradient vector, provide explicit warrants for the gradient as the direction of 

most rapid growth in the form of verbal statements, and explicit warrants for which direction that 

deviates the least from the gradient vector in the graphical form of a diagram. They use the 

connections between the gradient vector and the direction of most rapid growth, and the assumption 

that the lesser a direction deviates from the gradient, the more rapid is the growth. An interesting 

feature of this solution strategy is that the students are able to answer the question about growth 

without actually calculating the growth. This simplifies the task from a computational perspective 

and may explain why none of the students made any computational errors. 

Non-working strategies 

The most common non-working strategy to solve the task included the following steps: calculation 

of the gradient vector at the points (1,1) and (2,1), calculation of the length of grad(1,1) and 

grad(2,1), and selection of the vector/point that yielded the largest length. Five solutions were of this 

kind. An example is given in Figure 3. 

 

Figure 3: Incorrect solution based on comparison of the lengths of gradient vectors 

This strategy would be correct if the task had asked at which of the points (1,1) and (2,1) the function 

has its largest maximum rate of change. Without additional data on the student reasoning (such as 

interview data) it is impossible to judge whether the students misunderstood the formulation of the 

task or if they do not understand the difference between rate of change at different points and rate of 

change in different directions. It could also be that students lack fundamental knowledge about the 

difference between points and vectors in the plane. Thus, it is difficult to say if the flaw lies in the 

ground or the warrant of their arguments. Anyway, the warrant that students who use this strategy 

presents for their choice of direction/point is that the gradient has its largest length at that point, that 

is, their claim rests on comparison of the lengths of gradient vectors. In the solution above the 

student’s claim about most rapid growth in the gradient direction is given without warrant (Figure 3, 

step 1). The gradient vectors’ coordinates and lengths are claims warranted by algebraic computations 

(Figure 3, steps 2 and 3). The vector lengths can be assumed to be the ground for the final claim 

(Figure 3, step 4), even though there is no explicit warrant offered for this claim. 

Summarizing, students, who make claims about direction of most rapid growth based on comparison 

of lengths of gradient vectors at different points, provide explicit warrants for the gradient as the 

direction of most rapid growth in the form of verbal statements, and explicit warrants for the lengths 



 

 

of gradient vectors in the form of algebraic computations. They use (at least implicitly) the 

connections between the gradient vector and the direction of most rapid growth, and the length of the 

gradient vector and the rate of change.  

The remaining six student solutions were incorrect and differed considerably from each other. In 

several of them the students mixed up the meanings of points and vectors in some way. In one of 

them the student argued as if the phrase “the directions (1,1) and (2,1)” in the formulation of the task 

should be interpreted as “the directions towards the points (1,1) and (2,1)”. Aside from this, that 

particular solution was very similar to the one exemplified in Figure 2. 

Concluding remarks 

With this study we contribute with findings on students’ argumentation about how the growth of a 

two-variable function relate to its gradient, a field sparsely studied in the research literature. Based 

on an analysis of 20 written solutions to an exam problem, two common working solution strategies, 

and one non-working, have been identified. These strategies have been described with focus on the 

warrants students offer for their claims. While existing literature tends to focus on students’ 

difficulties and shortcomings, this study also describes correct student solutions. Regarding student 

difficulties, the findings confirm existing research. 

It is impossible to infer whether students who chose one of the working strategies also were familiar 

with the other one. To find out more about this, a follow-up study with classroom observations and 

interviews is planned. But if we assume that students chose the strategy they are most confident with, 

there are some possible differences between the two categories of students that are worth discussing. 

The students who chose to compare directional derivatives showed knowledge about how to use the 

gradient to compute them. They also seemed to rely on procedures, algebraic representations, and 

memorized formulas. If this is a correct interpretation it is in line with the findings reported by 

Martínez-Planell et al. (2015b). The warrants they offered for their claims were only in form of 

algebraic computations. The second group, who compared directions with the gradient vector, may 

not have been confident with the concept of directional derivative, but they included a multitude of 

forms of representations in their arguments, and showed a deeper conceptual understanding of the 

core concepts. In addition to algebraic computations, they offered warrants in the form of diagrams, 

and they verbally stated important facts about the connection between the gradient and the direction 

of most rapid growth. Contrary to the findings in Cline et al. (2012) they did not mistake the gradient 

for being a three-dimensional vector. In a sense it was the students who did not show any knowledge 

about directional derivatives that showed the deepest understanding of how growth of a two-variable 

function is related to its gradient, and it was those students who could argue for their claims using a 

multitude of representations. This indicates the importance, and difficulty, of designing learning 

activities that promote learning of algebraically efficient methods (such as the formula for directional 

derivatives) as well as geometrical understanding and skills in algebraic and non-algebraic reasoning 

and communication. 

Eleven out of the 20 analyzed solutions did not apply a working strategy, even though the task is an 

elementary multivariable calculus task. Even among those who chose a correct approach minor errors 

of various kinds were common. This confirms the findings of Martínez-Planell et al. (2015a) that 



 

 

fundamental concepts of multivariable calculus are abstract and difficult for students, even after they 

have attended a multivariable calculus course. 

The fact that a directional derivative depends on a function, a point, and a vector, contributes to its 

complexity. In this study, only the vector varied, albeit some students interpreted it as if the point 

varied. This suggests that design research, using principles from variation theory, can offer a way 

forward to develop (theories for) teaching and learning about directional derivatives.   

References 

Cline, K., Parker, M., Zullo, H., & Stewart, A. (2012). Addressing common student errors with 

classroom voting in multivariable calculus. Primus, 23(1), 60–75. https://doi.org/10.1080/ 

10511970.2012.697098 

Job, P., & Schneider, M. (2014). Empirical positivism, an epistemological obstacle in the learning of 

calculus. ZDM - The International Journal of Mathematics Education, 46(4), 635–646. 

https://doi.org/10.1007/s11858-014-0604-0 

Kabael, T. U. (2011). Generalizing single variable functions to two-variable functions, function 

machine and APOS. Educational Sciences: Theory and Practice, 11(1), 484–499. 

Lankeit, E., & Biehler, R. (2019). Students’ work with a task about logical relations between various 

concepts of multidimensional differentiability. Paper presented at the Eleventh Congress of the 

European Society for Research in Mathematics Education. 

Martínez-Planell, R., Gaisman, M. T., & McGee, D. (2015a). On students’ understanding of the 

differential calculus of functions of two variables. The Journal of Mathematical Behavior, 38, 57–

86. https://doi.org/10.1016/j.jmathb.2015.03.003 

Martínez-Planell, R., Gaisman, M. T., & McGee, D. (2015b). Student understanding of directional 

derivatives of functions of two variables. In T. G. Bartell, K. N. Bieda, R. T. Putnam, K. Bradfield, 

& H. Dominguez (Eds.). Proceedings of the 37th annual meeting of the North American chapter 

of the international group for the psychology of mathematics education (pp. 355-362). Michigan 

State University. 

McGee, D. L., & Moore-Russo, D. (2015). Impact of explicit presentation of slopes in three 

dimensions on students' understanding of derivatives in multivariable calculus. International 

Journal of Science and Mathematics Education, 13(2), 357–384. https://doi.org/10.1007/s10763-

014-9542-0 

Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we know 

and where do we need to go? ZDM - The International Journal of Mathematics Education, 46(4), 

507–515. https://doi.org/10.1007/s11858-014-0615-x 

Toulmin, S. E. (2003). The uses of argument. Cambridge University Press. 

Törner, G., Potari, D., & Zachariades, T. (2014). Calculus in European classrooms: Curriculum and 

teaching in different educational and cultural contexts. ZDM - The International Journal of 

Mathematics Education, 46(4), 549–560. https://doi.org/10.1007/s11858-014-0612-0 

https://doi.org/10.1080/10511970.2012.697098
https://doi.org/10.1080/10511970.2012.697098
https://doi.org/10.1007/s11858-014-0604-0
https://doi.org/10.1016/j.jmathb.2015.03.003
https://doi.org/10.1007/s10763-014-9542-0
https://doi.org/10.1007/s10763-014-9542-0
https://doi.org/10.1007/s11858-014-0615-x
https://doi.org/10.1007/s11858-014-0612-0

	Students’ arguments about the growth of a two-variable function
	Introduction, review and aim of the study
	Method and analytic approach
	Analytic framing
	Context and data sample
	Analytic procedures

	Analysis and results
	Two working strategies
	Non-working strategies

	Concluding remarks
	References


