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Work-related musculoskeletal disorders (WMSDs) are among the most common
work-related injuries affecting industrial workers. Over the recent years, industrial
workspace has witnessed an increased integration of robots [1]. While many indus-
trial robots work separated from human workers, there is an increasing effort to use
collaborative robots (cobots) which work in direct interaction with humans. This, in
parallel with the seriousness of the WMSD rates, has given rise to a research direction
investigating using cobots to reduce WMSDs risk.

Repetitive motions, prevalent in repetitive industrial tasks, are a common cause of
WMSDs [2] since they repeatedly load the same joints leading to localized joint fatigue.
Thus, motor variability (varying motions during task execution) is recommended to
reduce the risk of WMSDs [3]. To induce motor variability that could reduce joint
fatigue in repetitive tasks, we propose using cobots to influence the human motion
by changing the pose (or motion) of the cobot’s end-effector which interacts with the
human. Since we are dealing with repetitive tasks, the long term effect of a choice
of the robot’s end-effector (cobot’s action) should be considered in each cycle through
long-term planning. Also, the cobot’s end-effector only partially constrains the human
motion, due to human kinematics redundancy, which leads to planning under uncer-
tainty. Finally, the human joint fatigue is not measurable and only partially observable
through some motion measures which directly means dealing with partial observabil-
ity. To account for the problem specifications we have, in a previous work, proposed a
framework to plan cobot’s end-effector pose using Partially Observable Markov Deci-
sion Process (POMDP) [4]. The proposed framework was validated on a simplified task
example with two robot end-effector poses to select from in the planning phase. While
the proposed approach showed promising results, one of its limitations was being tested
using a hand-picked set of actions within the continuous robot workspace. Yet, other
robot actions (not within the set) might lead to better fatigue minimization in the long
run. However, it is not possible, in the POMDP planning phase, to consider the entire
continuous action space nor sample a huge set of actions due to computational costs.
Hence, in this work we address selecting a relevant set of actions for the problem’s
POMDP to plan from.

Our objective is finding an optimized set of actions which when used improves fatigue
minimization compared to our previously hand-picked set and to a uniformly-sampled
set of actions. Also, the action set should improve the planning outcome while re-
specting the limited-time constraint due to online action selection in each cycle. When
dealing with continuous action space POMDPs, many discretize the action space online
as with the Progressive Widening algorithms [5, 6]. Online approaches generate for
each system state, or belief around the system state, a tailored discrete set of actions.
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Ultimately, this can lead to more interesting choices compared to offline approaches con-
structing a global action set beforehand to use it later in planning. However, to refine
these tailored sets and sample enough interesting actions per state, online approaches
might need long computational times. Long computational times are hardly compatible
with human-robot interaction applications in which the cobot needs to decide online
its action for each cycle. Thus, we opt for an offline action space discretization which
comes with no or limited time constraints. We investigate the characteristics of an
action set that could potentially lead to improving joint fatigue minimization. For
each joint j, if j is fatigued, the action set should contain actions allowing to reduce
j’s fatigue over future cycles. Our approach focuses on the set of Pareto-front actions
of the high-dimensional (one dimension per joint direction) fatigue evolution function.
The Pareto-front action set contains for each joint j, and for any initial fatigue of j, an
action that, when applied, would reduce to the best j’s fatigue. To approximate the
Pareto-front action set, we begin by uniformly sampling a large number of executable
actions. Then, using a Digital Human Model Simulator [7], we dynamically simulate
the human whole-body motion in reaction to a robot action, in order to compute the
human joint torques associated with the motion. The associated torques are then fed
to a state-of-the-art fatigue model to estimate the fatigue induced by an action at a
joint j for any initial fatigue. We tested our approach on a specific use-case and ap-
proximated the Pareto-front action set starting from an initial set of 100 actions. The
size of the Pareto-front set didn’t exceed 10% of the initial set and we observed multiple
joints whose fatigue evolution is idle to the action choice. In the future, we plan to
test the performance of the POMDP using the Pareto-front action set. We also might
test existing online approaches by sampling actions according to a reduced-dimension
fatigue space excluding idle joints observed when finding the Pareto-front set.
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