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(Dated: November 23, 2023)

The stochastic exploration of the configuration space and the exploitation of functional states un-
derlie many biological processes. The evolutionary dynamics stands out as a remarkable example.
Here, we introduce a novel formalism that mimics evolution and encodes a general exploration-
exploitation dynamics for biological networks. We apply it to the brain wiring problem, focusing
on the maturation of that of the nematode C. elegans. We demonstrate that a parsimonious max-
ent description of the adult brain combined with our framework is able to track down the entire
developmental trajectory.

Introduction. Modelling and analyzing the dynamics
of biological systems is notoriously challenging. Criti-
cally, they are often stochastic in nature as they involve
and possibly exploit some degree of randomness. At the
same time, biological dynamics are also shaped by func-
tional constraints that determine which outcomes are vi-
able. The constraints emerge from the need for biolog-
ical systems to perform specific tasks, and act on the
system as a whole, not on specific components. Stochas-
tic events that violate these constraints are unlikely to
persist, while those that align with them are more likely
to become integrated. If the details of such exploration-
exploitation (EE) dynamics are context-dependent, gen-
eral principles can still be formulated [1]. This entails
addressing several challenging questions. For instance,
how do biological systems explore the space of possible
configurations? How do they identify the optimal states
that satisfy specific functional demands?

A possible solution is offered by Nature itself. In evo-
lutionary dynamics, a population primarily evolves un-
der the combined action of mutations and recombina-
tions (exploration) and natural selection (exploitation).
The latter is based on the notion of fitness: those indi-
viduals that are more apt to the environment will have
a higher reproductive success (high fitness) and survive
to the next generations, while the others will go extinct,
Supplemental material Section I (SM-I) [2]. We argue
that evolutionary dynamics is a particular instance of the
aforementioned EE dynamics and build upon it to con-
struct a general EE formalism for networked biological
systems.

We use it to tackle the brain wiring problem and model
the developmental dynamics of the C. elegans connec-
tome, recently obtained by serial-section electron mi-
croscopy [3–5].

Theoretical framework. Let us begin by clarifying the
terminology. (a) Exploration refers to the act of stochas-
tically searching the configuration space. (b) Exploita-
tion refers to the harnessing the discovered configurations
to optimise the system function. The resulting optimi-
sation problem is defined once we specify (b.i) how the

optimal states are encoded and (b.ii) how the system ap-
proaches them.
Formally, let us consider a biological system repre-

sented as a simple graph (or network) G ∈ G over N
nodes, unweighted, undirected, with no self loops. It
can be identified with a finite, binary, symmetric and
with zero-diagonal adjacency matrix G = {aij}, where
aij ∈ {0, 1} indicates the absence or presence of an
edge within the pair of nodes, or dyad, (ij). There are
L = N(N − 1)/2 dyads, hence L possible edges. Let
P (G, t) be the probability of the graph G at time t.
(a) Exploration. Each dyad mutates its state in the

time interval ∆t with rate µ ≥ 0. A simple exploration
scheme is to randomly create or dissolve edges, e.g., an
edge is added if none existed or removed if present. The
effect on the graph distribution is

P (G, t+∆t) =

P (G, t) + ∆tµ
∑

i<j

[P (MijG, t)− P (G, t)] , (1)

where Mij is the operator that mutates the dyad aij of
the graph G. The exploration rate µ is here constant and
uniform across dyads.
(b) Exploitation. A functional metric F (G) : G → R

serves the purpose of representing the concept of biolog-
ical function, with optimal states defined as maxima of
F (b.i). In the time interval ∆t, we formally define ex-
ploitation as follows:

P (G, t+∆t) =
e∆tφF (G)

⟨e∆tφF ⟩t
P (G, t) , (2)

where ⟨·⟩t stands for the ensemble average at time t i.e.
⟨e∆tφF ⟩t =

∑
G e∆tφF (G)P (G, t) and φ ≥ 0, the exploita-

tion rate, is an overall scaling. Therefore, the way in
which the dynamics approach the most functional (high-
est F ) configurations is by exponentially increasing the
probability of those graphs that have higher F values
than the ensemble average at time t (b.ii).
We will refer to the ratio ρ = φ/µ as the functional

pressure: ρ ∼ 0 implies a dynamic dominated by ran-
domness, similar to a random walk in the graph space G,
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while ρ → ∞ corresponds to the limit of perfect exploita-
tion, where only the most functional graph configurations
have non-negligible probabilities.

In SM-II we introduce four simple models, namely the
cases of no exploitation, edge penalty, edge covariate and
distance-like F metric. We show that these cases can be
treated analytically and offer a formal understanding of
the intuitions (i) that the optimal states implied by a F
metric are not strictly attainable as long as µ ̸= 0, and
(ii) that the functional pressure ρ controls not only the
rate of approach to the maxima of F but also the final
stationary state.

The above framework closely mimics a Darwinian evo-
lution driven by mutations and fitness-based natural se-
lection, in the infinite population limit [6, 7]. Eq.(1-2)
can be regarded as an algorithm, inspired by evolution,
that (a) uses random choices to (b) direct an exploita-
tive search for solving an optimisation problem. In this
sense, it is similar to a genetic algorithm [8], see SM-I.
We further explore the parallel with the evolutionary dy-
namics to design simulations based on eq.(1-2), concisely
described in SM-III.

F is shaped by the environment and has the role of
mapping the functional requirements of the biological
system onto the configuration space. As a consequence,
the particular form of F depends on the specific context
and system. In general, there are no requirements on
the properties of F , which could be regarded as a black
box which returns a real number for each possible input
(graph). In this work, however, we will study a white-
box F metric which admits a mathematical formulation.
In particular, we will describe the state of a graph G by
a set of sufficient statistics x(G) ∈ Rr and in this latter
space the F : Rr → R will be formally defined.

C. elegans brain maturation. In the following, we will
consider the so-called brain wiring problem [4], i.e., how
the structural complexity of a natural brain arises during
the development of an organism. Answering the brain
wiring problem is an open challenge in neuroscience and
entails tackling at least two kind of questions: (i) what
drives the brain maturation (structural principles) (ii)
which is the driving algorithm (dynamical principles).
Here, we will formulate them in terms of a F -metric and
EE dynamics, respectively. In particular, the latter is
consistent with three essential and general features of the
brain wiring dynamics, which are

(a) functionally robust – the adult brains are capable
of supporting the functions that sustain the life of
an organism;

(b) not hardwired – genetically encoded developmen-
tal algorithms give rise to similar yet non-identical
structures, resulting in high inter-individual vari-
ability [4];

(c) self-referential – the updating rules evolve in time,

as a function of the state and therefore of the his-
tory of the system [9].

To tackle the brain wiring problem, a natural choice
is to consider that of the nematode C. elegans [10], SM-
V.A. This is the only organism for which a comprehen-
sive map of neuronal connections within a brain has been
reconstructed across development [5]. The dataset con-
sists of 8 fully reconstructed brains of the hermaphrodite
C. elegans, obtained from different isogenic individuals
at different developmental ages, including one at birth
and two adults (t ∼ 45 h after birth), SM-V.B. We con-
sider the unweighted and undirected networks of chemical
synapses between sensory, inter, motor and modulatory
neurons (161−180 nodes, 617−1669 edges). This choice
of representation is motivated by the statistical proper-
ties of the adult C. elegans connectome [11, 12], along
with the effort to devise a simplified growth model, a
critical discussion can be found in SM-V.B.
The developmental principles that guide the C.elegans

brain maturation are not entirely known. On the one
hand, approximately 43% of the synaptic connections be-
tween neurons are not conserved among genetically iden-
tical individuals, suggesting a prominent role of stochas-
ticity in the brain wiring [4, 5]. Conversely, the diverse
range of behaviors exhibited by adult C.elegans [13] de-
mands functional selection. Our EE framework captures
these two tendencies simultaneously. An overview of the
approach is illustrated in fig.(1). A micro-level interpre-
tation of eq.(1-2) for the wiring dynamics of the individ-
ual neurons is extensively discussed in SM-V.C.
A preliminary step of our modelling approach is the

characterization of the worm brain by a set of sufficient
statistics x(G). Based on recent evidence [14, 15], we
consider a parsimonious representation in which:

x(G) =

[ ∑
k>0 w

(k)
τd x

(k)
d (G)

∑
k>0 w

(k)
τesp x

(k)
esp(G)

]
, (3)

where x
(k)
d and x

(k)
esp are the number of nodes with de-

gree k and the number of connected dyads sharing ex-

actly k partners, respectively. The coefficients are w
(k)
α =

eα{1−
(
1− e−α

)k}, with α = τd, τesp > 0 decay param-
eters. In other words, these statistics are linear combi-
nations of the degree and edgewise shared partner dis-
tributions. They yield a model that is both realistic
and computationally tractable [16], SM-IV. More specif-
ically, the first statistic is called geometrically weighted
degree (gwd) and encodes the information, e.g., on the
presence/absence of hub-nodes in the graph, well docu-
mented in the case of the C.elegans [5, 14]. The second
statistic is called geometrically weighted edgewise shared
partner (gwesp) and is a proxy for a triadic-closure phe-
nomenon in the graph, i.e., pairs of nodes that have links
to one or more common neighbours have a higher chance
of being connected to each other. The latter could in
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FIG. 1. EE dynamics for the C. elegans brain matura-
tion. We consider the eight snapshots of the worm net-
work of chemical synapses, at different developmental ages
t = 5h, 8 h, 16 h, 23 h, 27 h and 45 h (two adults), from [5]
– some are omitted for visual clarity. The birth configuration
is fixed as the starting point of the dynamics. The two adult
snapshots are used to infer (i) the topography of the functional
landscape F (G) (bottom left), encoded in the set θ∗ – ERG
inference starting from the empirical statistics x∗ ≡ x(G∗

T );
(ii) the EE parameters, i.e., the exploration rate µ∗ and the
functional pressure ρ∗, see SM-VI.

turn result from a tendency of the network to segregate
into densely connected modules. [5, 14].

Given a choice of statistics as in eq.(3), we can char-
acterize any observed graph G∗ within the inferential
framework of exponential random graph (ERG) models
[16, 17], SM-IV. Accordingly, the ensemble G is endowed
with a maximum entropy probability distribution

PERGM (G|θ) = e−H(G,θ)/
∑

G̃∈G
e−H(G̃,θ) (4)

where H(G,θ) = −θ ·x(G) is the Hamiltonian. Given an
observed graph G∗, the vector of parameters θ∗ can be
inferred as approximate solution the maximum likelihood
estimation problem θ∗ = argmaxθ logP (G∗|θ). The in-
ferred parameters quantify the contribution of the associ-
ated statistics to the structure of the observed graph. For
example, if the statistic xα is non-negative, positive θ∗α
imply the existence of a bias towards graphs with higher-
than-random values of xα – given the rest of the model∑

β ̸=α θ∗βxβ [16], SM-IV.
We are now in the position to propose the following F

metric for the C. elegans brain maturation

F (G) = θ∗ · x(G) , (5)

where x(G) are defined in eq.(3). The parameters θ∗ are
obtained from the ERG inference in the adult stage, so
that the correct (functional) balance of model statistics
can be achieved at the end of the developmental process.
The topography of the functional landscape results from
the combined effect of physical, genetic and functional
constraints.
In particular, we consider the average estimated pa-

rameters from the two adult worms G∗
T = (G∗

T,1, G
∗
T,2)

and obtain θ∗gwd = 0.44, θ∗gwesp = 0.58, SM-VI.A. EE dy-
namics based on eq.(5) will favor both the emergence of
hubs and of a triadic closure behaviour since, by virtue of
the positive values of the linear parameters, higher val-
ues of the statistics in eq.(3) will imply higher F values.
This is in line with experimental observations that, dur-
ing development, hub neurons at birth get more inputs
and that the overall modularity of the C. elegansbrain
network increases [5].
We can now proceed to model the developmental dy-

namics by setting appropriate boundary conditions, and
the EE parameters of the dynamics: the exploration rate
and the functional pressure. As the argument goes, µ and
ρ are characteristic of the specific instance (C. elegans)
of the biological process (brain wiring), they are geneti-
cally encoded and therefore result from the evolutionary
history of the species.
We set the graph G∗

0 corresponding to the network
at birth as the starting point of the dynamics, P (G =
G∗

0, 0) = 1. In fact, (i) as reported in [5], the brain
morphology at birth serves as the structural foundation
upon which the adult connectivity unfolds. Moreover,
(ii) an implicit assumption of the EE graph dynamics is
the functional homogeneity, i.e., that the same F metric
holds true throughout the whole dynamics. This assump-
tion is likely to be violated before hatching (birth), during
the embryonic stage, where a different growth regime of
the nervous system has been observed [18].
Throughout development, the removal of synaptic con-

nections happens rarely [5]. Accordingly, we modify the
mutation scheme described in eq.(1) by restricting the re-
moval of edges. By Occam’s razor, we assume a constant
exploration rate

µ∗ =
1

TL

∑

i<j

[
āij(G

∗
T )−aij(G

∗
0)
]
= 1.43×10−3h−1, (6)

where T = 45h is the adult age, L = N(N − 1)/2 is the
number of dyads of the adult brain graphs (N = 180),∑

i<j āij(G
∗
T ) is the average number of edges between the

two adult worms and
∑

i<j aij(G
∗
0) is the number of edges

at birth. At the end of the developmental dynamics, µ∗

is assumed to drop to zero.
We are left with only one free parameter, i.e., the func-

tional pressure ρ = φ/µ > 0. Nonzero ρ describe the
scenario in which new connections emerge primarily in
locations where they result in an enhanced system func-
tion. Its value must be biologically regulated to ensure
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(a) (d)(c)

(b)

gwd

gwesp

(data) (sim) (null)

FIG. 2. Tracking down the C. elegans brain maturation. (a) We run 100 simulations ∀ρ ∈ {200+20 i, 0 ≤ i ≤ 60}. For each ρ,
we compute the mean and standard deviation of δmah

T (red line and shaded area, respectively). We fit the data with a quadratic
curve (dash-dotted line) and take the abscissa ρ∗ of its minimum (red diamond) as estimation of the functional pressure. On
the same curve, we show the value (blue diamond) corresponding to the abscissa ρ∗∗ we get by minimizing the sum of the
Mahalanobis distances over all experimental time-points, SM-VI.B. The two overlap within the error bars. (b) The exploration
rate is calculated by using the first and last time point (average). The shaded area corresponds to the estimation by a linear
fit over the whole time series. (c) One simulation run with µ∗, ρ∗. Main: the trajectory in the space of statistics (gwd, gwesp).
Experimental data (circles) are closely tracked by our simulations (dashed line, diamonds highlighting the observed time points
t∗). The trajectory of a null model with ρ = 0 is also shown (dotted line, squares) Inset: The simulated and experimental
time course of F in time. (d) Feature generalisation. The temporal trajectory of the average clustering coefficient and global
efficiency, markers as described in (c). See also SM-VI.C.

the development of adequately specialized functional cir-
cuits prior to reaching the adult stage. Therefore, we use
the corresponding degree of freedom to inform the EE
graph dynamics about the age of the adulthood. In par-
ticular, we set ρ∗ = minρ δ

mah
T , where the quantity to

be minimized is the Mahalanobis distance [19], at time
T , between the two-dimensional ensemble distribution of
the graph statistics and the average experimental values,
SM-VI.B.

In fig.(2a) we show that that δmah
T is a convex func-

tion of the functional pressure ρ. Both insufficient and
excessive ρ lead to the ensemble distribution diverging
from the experimental values. The minimization proce-
dure yields ρ∗ = 9.017× 102 (R2 = .98).

Notably, in estimating the dynamical parameters we
have relied solely on the C. elegans brain graphs at birth
and in the adult stage. We can ask if and how the esti-
mation would change when considering the whole avail-
able data, which include the developmental time-points
at 5 h, 8 h, 16 h, 23 h, 27 h and 45 h after birth. A linear
fit of the growth of the number of edges based on the
whole time series yields µ∗∗ = (1.39 ± 0.08) × 10−3h−1.

This estimation is compatible with the value µ∗ in eq.(6),
fig.(2b). As for the functional pressure, we can define an
equivalent minimization problem where the Mahalanobis
distance is summed over all experimental time points,
yielding a value ρ∗∗ that is statistically consistent with
ρ∗, fig.(2a), SM-VI.B.

This hints that (i) given the model eq.(5), the assump-
tion of functional homogeneity for the worm brain wiring
dynamics holds true and (ii) the EE graph dynamics, in-
formed about birth and adulthood, capture the entire
developmental trajectory.

To further investigate this result, we can fix µ∗, ρ∗ and
look at individual simulations of the brain growth, as in
fig.(2c). For comparison, we also plot the results of a null
model where ρ = 0, i.e., a random graph growth with ex-
ploration rate µ∗. As could be expected, the adult stage
is correctly reached in terms of the model statistics eq.(3)
and, by consequence, of the F -metric. Notably, however,
our simulations approximate en passant the other ob-
served developmental ages, which we have used nowhere
in inferring the parameters. This opens up the possibil-
ity of using our framework to make predictions also for
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stages of brain maturation for which no data are avail-
able.

The model described so far is a simple, low-dimensional
model of the underlying biological dynamics. Almost by
construction, a choice as simple as eq.(3) is unlikely to
capture the finer-scale topological details of the observed
graphs. Analogously, an exploration dynamics as sim-
ple as eq.(6) cannot capture transient dynamic patterns.
Yet, we can meaningfully ask to what extent the EE
graph dynamics based on the features eq.(3) reproduces
other network properties not included in the model for-
mulation, SM-VI.C. In fig.(2d) we show that our model
retrieves the propensity of the C. elegans brain networks
to exhibit relatively high efficiency (like random graphs)
and clustering (unlike random graphs) [20].

Discussion. To summarize, we have presented a par-
simonious, interpretable framework for the dynamics of
networked biological systems. It is built upon the dy-
namical principle of the exploration-exploitation (EE)
paradigm, which is general. It serves as theoretical scaf-
folding for formulating specific dynamical models, which
must be tailored to the biological system. We have used it
here to model the growth of the C. elegans connectome,
from birth to adulthood. Notably, our results suggest
that the knowledge of the birth and adult age is suffi-
cient for the EE graph dynamics to describe the whole
developmental trajectory. We speculate that the same
may be true for the connectomes of other living systems
[21–23], for which no such data as the developmental tra-
jectory are available to date. This hypothesis is poised
for experimental validation in the near future.

Our model should be regarded as a first step towards a
more detailed understanding of the brain maturation. To
this end, the framework here presented supports straight-
forward extensions to more complex exploration schemes,
accounting for non-uniform synapse addition, directed
flow of synaptic information, neuron-specific information,
homophily effects, and physical or functional constraints
[5, 14]. A detailed discussion of the possible model ex-
tensions can be found in SM-VII.A. Beyond structural
connectivity, it would be interesting to study under the
same lens the C. elegans brain functional connectivity,
recently mapped for the adult stage [24], where there ex-
ists a closer correlation between the notion of biological
function and the topology of the graph.

Zooming out, our framework can be broadly used to
study the dynamics of complex systems arising from the
interplay between (i) the variability fueled by a stochas-
tic search of the configuration space and (ii) the state-
dependent optimisation of an objective function – we pro-
pose three examples in SM-VII.B. Importantly, as show-
cased here, this can be done by introducing only a very
limited number of interpretable parameters [25][26].

We thank E Aurell, E Mauri, D Battaglia and M
Josserand for the many useful discussions. FDVF ac-

knowledges support from the European Research Council
(ERC), Grant Agreement No. 864729.
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In this document, we present additional information to supplement the discussion in the main manuscript, which
we will refer to as MS. All references (equations, figures, tables, listings) in the Supplemental Material are labeled with
roman numbers.

I. DARWIN AND THE OTHERS

The theoretical framework presented in MS is constructed by abstracting the core algorithm of Darwinian evolution
to a general exploration-exploitation (EE) dynamic. To elucidate this analogy, we here provide a glimpse of the main
features of the former.

Darwinian evolution, or simply Darwinism, is the widely-accepted theory of biological evolution introduced by the
English naturalist Charles Darwin in his seminal work, On the Origin of Species (1859). The problem considered is
that of a population (a group of organisms of a species) in the same environment, that reproduce across successive
generations. The key ingredient of evolution is inheritance: offspring inherit traits (phenotype) from their parents
through genetic information passed down from generation to generation. The different forms in which each gene
may exist are called alleles, the pool of alleles of an organism is its genotype. At the population level, two opposing
principles cooperate in defining the evolutionary dynamics.

(a) Genetic variation. Stochastic events drive the generation of genetic diversity within a population by introduc-
ing variability in the genetic makeup of individuals. This diversity arises primarily through two mechanisms:
mutations, which involve random alterations in the genotype, and recombinations, which involve the exchange
and shuffling of genetic material between homologous genotypes.

(b) Natural selection. It acts upon this genetic variation by favoring individuals with traits that confer a reproductive
advantage in a given environment. As a consequence of selection, populations gradually become better adapted
to the environment (adaptation).

General, up-to-date discussions of these concepts can be found in [27, 28]. Among the existing theoretical ap-
proaches to evolutionary dynamics, we mention in particular the one by Neher & Shraiman, i.e., the framework of
statistical genetics, proposed in [6] and recently reviewed in [7]. Here, genotypes are modelled as Ising spin-chains
g = {σ1, . . . , σL}, where σi ∈ {−1, 1} and L is the fixed genome length. The evolutionary dynamic is framed in
terms of a master equation for P (g), the probability distribution in the genotype space, which changes under the
effect of mutations (spin swaps), recombinations (reshuffling of a pair of genomic chains) and selection. The latter
is based on a fitness function F (g) ∈ R, which quantifies the aptness of an individual to the environment: at any
time, those individuals that are more apt to the environment (higher F ) than the others in the population will have
a higher chance to pass their genetic information to the next generation. Note that this implies that selection is
state-dependent, since what matters is not the aptness of an individual the environment per se but with respect to
that of all others in the population.

In formulating the exploration-exploitation (EE) dynamic, we borrowed the formal structure of the approach above
described. The key logical step is to recognize that the evolutionary dynamic is a particular instance of a general EE
dynamic in which (i) the configuration space is that of all possible genotypes (ii) exploration is realized by genetic
mutations and recombinations and (iii) the exploitation is driven by natural selection. If the interpretations we attach
to the concepts of exploration and exploitation are context-dependent, the algorithm coded by evolution to solve its
exploration-exploitation problem can be adapted and used elsewhere.

This same line of ideas underlies the family of genetic algorithms, a broad class of computational methods, designed
in a way to mimic the evolutionary process to solve complex optimisation problems [8]. An evolutionary process is
replicated in silico in order to optimise a target objective function. To this end, M individuals (instances of the system)
of a population are iteratively mutated, recombined and selected, until the appropriate termination criterion is met.
Albeit powerful, this approach is inherently algorithmic, meaning that its interpretation as a direct representation
of a real-world process (other than the evolutionary dynamic) is problematic. In particular, outside the context of
evolutionary (population) dynamics, it is unclear what the recombinations should correspond to.

In order to retain the potential for interpretation, in eq.(1-2) we implement an EE dynamic where exploration is
solely achieved by random mutations, while no recombination-like mechanism exists. In other words, when borrowing
from the Darwin’s algorithm, we limit ourselves to those mechanisms that are not specific of the evolutionary case
[3]. Both mutations and fitness-based selection indeed offer a straightforward abstraction - a dictionary can be found
in tab.(I) - and an interpretation in different contexts. In sec. VC the case of the C. elegans brain maturation is
discussed.
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TABLE I. Translation dictionary between exploration-exploitation EE graph dynamic (left) and evolutionary dynamic (right).
We group by colour those terms that refer to the structure of the configuration and state spaces (top), to the the structure of
the dynamics (middle) and to the dynamic parameters (bottom). No equivalent mechanism to genetic recombinations exists
in the EE graph dynamic. *See also sec. III.

EE graph dyn. Notation Evolutionary dyn.

graph space G genotype space
number of dyads L genome length
graph (unweighted, undirected) G/g genotype (biallelic)
graph statistics x phenotype (traits)
dyad (bit-like) aij/σij locus (spin-like)

time window T # generation
# samples∗ M population size
biological function (F metric) F fitness function

exploitation r. φ natural selection r.
exploration r. µ mutation r.
× r recombination r.

II. THE MATH OF SIMPLE SCENARIOS

Let us start by combining the EE graph dynamic eq.(1-2) in a single formula:

P (G, t+∆t) = P (G, t) + ∆tµ
∑

i<j

[P (MijG, t)− P (G, t)] +

[
e∆tφF (G)

⟨e∆tφF ⟩t
− 1

]
P (G, t) . (i)

where all symbols hold as defined in MS. In order to simplify the calculations, it is convenient to define the spin
variables σij = ±1 which are related to the dyadic variables aij in MSby the relations:

σij = 2aij − 1 , aij =
1 + σij

2
. (ii)

It is important to note that in the context of graphs, the dyads, not the nodes, assume the role analogous to spins in
classical statistical mechanics. In a similar fashion, we can define the average magnetization m ∈ [−1, 1] as the spin
analogous of the average graph density d ∈ [0, 1] as

m =
1

L

∑

i<j

⟨σij⟩ = 2d− 1 , d =
1

L

∑

i<j

⟨aij⟩ =
1 +m

2
. (iii)

The action of an operator Mij that mutates the state of the dyad aij from 1 → 0 or 0 → 1 (edge toggle) can
compactly be expressed as Mij : σij → −σij , a spin flip. We will consider in this section the regime of weak
exploitation in which ∆tφF (G) ≪ 1. A continuous-time description of eq.(i) can then be given:

d

dt
P (G, t) = µ

∑

i<j

[P (MijG, t)− P (G, t)] + φ[F (G)− ⟨F ⟩t]P (G, t) , (iv)

where we have used e±x ∼ 1 ± x for x ≪ 1. Eq.(iv) allows to compute the dynamic of the expected value of any
graph-observable O(G) : G → R. In fact:

d

dt
⟨O⟩t =

d

dt

∑

G

O(G)P (G, t) =
∑

G

O(G)
d

dt
P (G, t) , (v)

where we have introduced the shorthand
∑

G =
∑

σ11=±1

∑
σ12=±1 · · ·

∑
σLL=±1. Let us now examine some simple

cases that are analytically tractable.
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A. No exploitation

In the trivial case in which F = const (no exploitation), the dynamic of the system is a random walk in the graph
space, whose speed is tuned by the rate µ. We can easily compute the expected value of any spin variable as:

d

dt
⟨σij⟩t =

∑

G

σij µ
∑

k<l

[P (MklG, t)− P (G, t)] = µ
[∑

G

σijP (MijG, t)−
∑

G

σijP (G, t)
]
= −2µ⟨σij⟩t , (vi)

where in the last step we have used
∑

G σijP (MijG, t) =
∑

G −σijP (G, t). Eq.(vi) is the differential equation of
an exponential decay with characteristic time (2µ)−1, yielding the solution ⟨σij⟩t = e−2µt⟨σij⟩t0 . In words, after a
sufficiently long time, any memory of the initial condition is lost. Each local spin variable converges to a state that
is statistically analogous to the outcome of a fair coin toss. Since the dynamics of each variable σij are independent,
the magnetization follows the same exponential decay mt = e−2µtmt0 . In terms of graph density, this implies that
starting from any initial condition, the average state of the system melts down in an Erdős-Rényi random graph where
each edge exists with probability p = 1/2.

B. Edge penalty

A simple exploitation scheme is the one in which the only graph sufficient statistic is the number of edges and each
existing edge results in a fixed penalty, i.e.,

F (G) = − 1

L

∑

i<j

aij , (vii)

where L = N(N − 1)/2. The case of a fixed benefit per edge is equivalent to eq.(vii), modulo a minus sign. Using
eq.(ii), we can express the exploitation component of eq.(iv) in term of spin variables as

[F (G)− ⟨F ⟩t]P (G, t) = − 1

2L

[∑

i<j

(σij − ⟨σij⟩t)
]
P (G, t) , (viii)

and again compute the dynamic of the expected value for any spin variable as

d

dt
⟨σij⟩t = −2µ⟨σij⟩t −

φ

2L

∑

k<l

[
⟨σijσkl⟩t − ⟨σij⟩t⟨σkl⟩t

]
(ix)

Differently from the previous case, the dynamics of the average spin variables are now coupled by the sum of covariances
Cij;kl = ⟨σijσkl⟩ − ⟨σij⟩⟨σkl⟩ in the last term. The calculation simplifies if we restrict to the case in which the spin-
covariance matrix has approximately a diagonal form, i.e., Cij;ij = 1 − ⟨σij⟩2 ∼ O(1) and Cij;kl ∼ O(ϵ) for ij ̸= kl
(decoupling approximation). Eq.(ix) becomes

d

dt
⟨σij⟩t ∼ −2µ⟨σij⟩t −

φ

2L

[
1− ⟨σij⟩2t

]
, (x)

valid as long as Lϵ ≪ 1, where ϵ is the order of magnitude of the off-diagonal spin covariances. In practice, this means
either small graph sizes (small L) or mild functional pressures ρ = φ/µ, for which the dynamic approaches that of
the previous case of no exploitation (small ϵ). Under the decoupling approximation the same exact equation as eq.(x)
can be written for the magnetization mt and integrated explicitly by partial fractions, yielding the solution:

mt = m2

[
1 +

m1/m2 − 1

1 + m1−m0

m0−m2
e2µt

√
1+(2L/ρ)−2

]
, (xi)

where m0 = mt0 and m1/2 = 2L/ρ ±
√
1 + (2L/ρ)2 are the fixed points of the dynamic. Eq.(xi) is an exponential

relaxation dynamic to the stable fixed point m2, hence mt → m2 for t → ∞. The magnitude of the asymptotic value
m2 depends exclusively on the ratio between the number of dyads L and the functional pressure ρ. For fixed ρ, the
rapidity of the approach to it additionally depends on the specific value of the mutation rate µ, fig.(I). The edge
count being the only sufficient statistic of this problem, eq.(xi) completely determines the dynamic. We note that for
ρ → 0 we have m2 → 0 similarly to the previous section, while for ρ → ∞ we have m2 → −1, corresponding to an
empty graph. For any ρ < ∞ the asymptotic value m2 strikes a balance between the strengths of the exploration and
exploitation mechanisms.
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FIG. I. Analytical solution of the exploration-exploitation dynamic based on eq.(ix), decoupling approximation. Here N = 10
(L = 45), µ̄ = 1/L, ρ̄ = 2 × 102, d0 = 0.9. Inset: plot of ṁ = f(m), where f is specified by eq.(x). The dynamic has two
fixed points, corresponding to the solutions of f(m) = 0, labelled as m1 (red, unstable) and m2 (green, stable). Shaded area
corresponds to the inaccessible regions for m ∈ [−1, 1]. The initial condition m0 (white diamond) and the one-dimensional
vector field (green arrows) are indicated. Main: dynamic of the average graph density dt as obtained from eq.(xi) using eq.(iii).
The value of the asymptotic state d2 solely depends on L, ρ̄ (held fixed) while the rapidity of the approach to it additionally
depends on the exploration rate µ.

C. Edge covariate

A straightforward generalization of the case discussed in this section is that to the case in which the F is the sum
of an edge covariate, i.e.,

F (G) =
1

L

∑

i<j

aijγij , (xii)

where Γ = {γij} is a N × N real-valued matrix. Each entry of Γ contributes to the F metric only when the
corresponding edge exists. For instance, in the case of spatially embedded graphs, the Γ matrix can represent the
distance between each possible pair of nodes. A matrix Γ can also quantify homophily effects between nodal attributes,
such as the membership to the same community. Following the same steps as above, we get an equivalent expression
to eq.(x):

d

dt
⟨σij⟩t ∼ −2µ⟨σij⟩t +

φ

2L
γij
[
1− ⟨σij⟩2t

]
, (xiii)

A solution of the same form as eq.(xi) can be written for each spin average ⟨σij⟩. However, each eq.(xiii) depends
now on the dyad-specific value γij , by consequence the same is true for the fixed points of the dyad dynamics.

D. Distance-like F

We finally discuss an exploitation scheme driven by a distance-like F metric. In this case, an optimal state is
explicitly encoded as the global maximum of F , which corresponds to a zero distance between a set of graph statistics
x(G) and the target statistics x∗, i.e.,

F (G) ∝ −∥x(G)− x∗∥22 , (xiv)

where ∥·∥2 indicates an l2-norm. In particular, we consider the simple such case in which the x(G) =
∑

ij aij is

one-dimensional and corresponds to the edge count of a graph, the optimal (target) number being E∗:

F (G) = − 1

L2

(∑

i<j

aij − E∗
)2

, (xv)
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where 0 < E∗ < L. We can follow the same steps as in sec. II B. The expression analogous to eq.(ix) is

d

dt
⟨σij⟩t = −2µ⟨σij⟩t −

φ

L2

[(
L

2
− E∗

)∑

k<l

(
⟨σijσkl⟩t − ⟨σij⟩t⟨σkl⟩t

)
+

+
1

4

∑

k<l,m<n
(kl) ̸=(mn)

(⟨σijσklσmn⟩t − ⟨σij⟩t⟨σklσmn⟩t)
]
.

(xvi)

We generalize the decoupling approximation in sec. II B and define it as the regime in which all moments factorize:

⟨σ(1)σ(2) . . . σ(k)⟩ ∼ ⟨σ(1)⟩⟨σ(2)⟩ . . . ⟨σ(k)⟩ , (xvii)

where the left-hand side of the equation contains no repeated spin variables. Eq.(xvi) becomes:

d

dt
⟨σij⟩t = −2µ⟨σij⟩t −

φ

L2

[
1− ⟨σij⟩2t

](
L

2
− E∗ +

1

2

∑

k<l
(kl)̸=(ij)

⟨σkl⟩t
)

, (xviii)

valid again for Lϵ ≪ 1, where ϵ is the order of magnitude of the spin-covariances. Finally, under the hypothesis of
using the same initial condition for the dynamics of all dyads, then we can approximate the last sum ∼ (L− 1)⟨σij⟩t.
All dynamical equations are then completely decoupled and an equation of the same form as eq.(xvi) can be written
for the magnetization mt

ṁt = −2µmt −
φ

L2
(1−m2

t )

[
L− 1

2
mt +

L

2
− E∗

]
. (xix)

The integration of the above expression with boundary condition mt0 = m0 completely solves the one-dimensional
system dynamic and can be done numerically, fig.(II). We find the same qualitative behaviour as in sec. II B, with
the solution approaching an asymptotic value that strikes a balance between the influx of mutations - driving the
system towards d = 1/2 - and the strength of the exploitation - steering the system towards E∗/L. The rapidity of
the approach to the asymptotic density value d∞ depends on µ.

FIG. II. Analytical solution of the exploration-
exploitation dynamic based on eq.(xix), decoupling ap-
proximation. Here N = 10 (L = 45), µ̄ = 1/L, ρ̄ =
5 × 102, d0 = 0.9, E∗ = 3. Inset: plot of ṁ = f(m),
where f is specified by eq.(xix). The dynamic has in this
case 3 fixed points, labelled as m1,m3 (red, unstable)
and m2 (green, stable), found by solving numerically the
equation f(m) = 0. Main: dynamic of the average graph
density dt (numerical solution). Similarly to the case dis-
cussed in sec. II B, the value of the asymptotic state d2
solely depends on L, ρ̄ (held fixed) while the rapidity of
the approach to it depends on the exploration rate µ.
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FIG. III. A simulation step of population-based simulations for eq.(i). A population P(t) at time t consists of matrix G(t)
with dimensions Mc(t) × L and a vector n(t) of length Mc(t) (top left). Each row of G(t) corresponds to a unique graph
configuration, and in particular to the vectorized lower triangular matrix of the corresponding adjacency matrix (top right).
First, the population undergoes mutations, with rate µ per each dyad (green, bottom right), here bit-flips. Consequently, both
the matrix G and the counts n change. As new configurations are found, the number of clones Mc increases. Second, selection
is implemented, tuned by the parameter φ (violet, bottom left). Selection only affects the vector of counts n, those graphs that
end up with n = 0 are removed from G before the next time-step. The total number of individuals M and time interval ∆t
are free internal parameters of the simulations.

III. POPULATION-BASED SIMULATIONS

We further exploit the analogy with evolutionary models mentioned in sec. I to design population-based simulations
for eq.(i) [29, 30]. The current implementation has been coded in Python 3.9.7 and is available on Github [48].

In this study, we consider graphs that are unweighted (aij = 0, 1), undirected (aij = aji), with no self-loops (aii = 0).
Therefore, if N is the (fixed) number of nodes, each graph can be represented by a string of L = N(N − 1)/2 binary
values 0100 . . . 01 and the configuration space is the L-dimensional hypercube {0, 1}L. Instead of tracking the dynamic
of a single instance of the system (individual) in the configuration space, we design a population-based framework
where we track simultaneously the evolution of many samples of the probability distribution. More specifically, if
G ∈ G is a graph configuration and n ∈ N is the number of times G is observed in the population, we call the couple
(G,n) a clone. At any time t, a population P(t) = (G(t),n(t)) is defined as the set of existing clones. The total
number of individuals

∑
α nα(t) = M is held fixed while the total number of clones Mc(t) ≤ M fluctuates. At each

simulation step ∆t the population undergoes the processes of mutations (exploration) and selection (exploitation) as
follows:

• Exploration. Each possible dyad of each existing graph in the population mutates with probability 1− e−∆tµ ∼
∆tµ for ∆tµ ≪ 1. The mutation (exploration) rate is uniform across dyads. Using spin-variables eq.(ii), in the

7



case of bit-flip mutations we have σij → −σij . If edges are only allowed to appear, σij → |σij | = 1.

• Exploitation. Prior to selection, the F metric of all existing graph configurations Gα is computed. The counts n
are then updated by performing M independent draws from a multinomial distribution where each Gα is chosen
with probability

pα = nαe
∆tφF (Gα)/

∑

β

nβe
∆tφF (Gβ) , α ∈ 1, . . . ,Mc(t) . (xx)

An illustration of the workflow of a simulation step can be found in fig.(III). A pseudo-code for the simulations is
the following:

P(0) = (G(0),n(0))
t = 0
while t < T do

Exploration: σij → −σij with probability ∆tµ ∀(i, j), ∀Gα

update P∗ = (G∗,n∗)
compute Fα = F (G∗

α) ∀ G∗
α ∈ G∗

Exploitation: M draws ∼ multinom. distrib. with pα = n∗
αe

∆tφF (G∗
α)/
∑

β n
∗
βe

∆tφF (G∗
β) ⇒ new counts n∗∗

set P(t) = (G∗,n∗∗)
t = t+∆t

end while

Such a simulation framework has hence two internal free parameters: the total number of samples M and the
simulation step ∆t (or, equivalently, its inverse ν = ∆t−1). Tab.(??) summarizes all the parameters needed for a
single run. A distinction is made between (i) the structural (struct) parameters N,T , which set the dimension of
the configuration space and the length of the time window (ii) internal simulation (sim) parameters M,ν, mentioned
above and (iii) the dynamical (dyn) parameters µ, ρ, which tune the system dynamic.

TABLE II. Parameters of simulations for EE graph dynamics. Our computational framework has six degrees pf freedom, which
we group by color: structural parameters (top), internal degrees of freedom (middle) and parameters of the dynamics (bottom).

Parameter Description

N number of nodes
T time window span

M population size
ν inverse time step ∆t−1

µ exploration rate
ρ functional pressure φ/µ

The simulation time has an obvious linear scaling with the inverse time interval ν, since one run of simulation
involves repeating the above steps a number νT of times, where T is the final time. In fig.(IVa) we show that a there
is a liner dependence from the number of individuals in a population M , too. Each simulation steps in fact involves
mutating M individuals independently and (in the worst case) evaluating the F metric of M different individuals. In
fig.(IVb) we show that, in the limit of large M , a linear dependence is also found on L. This latter result however
is strongly dependent on the choice of the F metric, which represents the potential bottleneck of the simulation
framework here presented. Additional details can be found in the documentation available at [48].

A. Distance-like F , simulated

Let us briefly re-consider the distance-like F metric eq.(xv), discussed in sec. IID. We can set-up the corresponding
simulations, use them to showcase the essential features of a single simulation run and compare it to the analytical
approximation eq.(xviii).

At each given point in time t, we can use the graph population P(t) = (G(t),n(t)) to approximate the distribution
of any any observable O : G → R by

P (O, t) =
1

M

Mc(t)∑

α=1

nα(t) δ[O −O(Gα(t)] , (xxi)
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FIG. IV. Simulation time as a function of the number of individuals M and L = N(N − 1)/2, where N is the number
of nodes. Each dot is the average value obtained from 10 simulation runs, error bar are indicated (when visible). Here
T = 100, ν = 1, µ = 1.0 × 10−4, ρ = 5, an F metric as in sec. II B is used. (a) The simulation time is linearly dependent on
the number of individuals M . Dotted lines are the result of a linear fit with the curve y = a ∗M , where a is a parameter. A
log-log scale has been used. (b) The simulation time for this problem has a mild exponential dependence on L. Dotted lines
are the result of a fit with the curve y = a ∗ Lb, where a, b are parameters. In the limit of large M , we find β ∼ 1, indicating
an approximately linear dependence on L. The dependence on L (N) however, strongly depends on the complexity of the F
metric.

where δ is the Dirac-delta function (
∫
dO δ(O) = 1). By consequence, the expected value of O at time t is

⟨O⟩t ∼
1

M

Mc(t)∑

α=1

nα(t) O(Gα(t)) . (xxii)

Fig.(Va) illustrates the EE dynamic in the space of the F values. At any given time t the F -distribution eq.(xxi)
is subject to two opposing forces. On the one hand, the influx of random dyadic mutations drives the distribution
towards the F of the maximally random state, an Erdős-Rényi random graph with p = 0.5 [31]. On the other hand,
the exploitation term increases(decreases) the probability of those F which are above(below) ⟨F ⟩t, resulting in a net
movement of the distribution towards higher F values. This is analogous to a mechanism of adaptation in evolutionary
dynamics.

In fig.(Vb) we show the resulting simulated dynamic of dt = ⟨x⟩t/L and the corresponding confidence interval
– whose calculations are based on eq.(xxii). A stationary value is reached where the strengths of the exploration-
exploitation drivers are balanced. The value of this stationary point and the speed at which it is approached depend
on the functional pressure ρ, fig.(Vc). In particular, the higher ρ the closer will be the asymptotic solution to the
optimal value, fig.(Vd). Finally, in fig.(IIe) we compare the asymptotic values d∞ resulting from simulations with the
corresponding values ddec∞ obtained numerically under decoupling approximation, eq.(xviii). We show evidence that
ddec∞ (decoupling approximation) always lies closer to the target value E∗/L than d∞, the difference between the two
vanishing for increasing exploitation strength φ. We conclude that, for fixed N , the decoupling approximation agrees
qualitatively everywhere in the parameter space with simulations, see fig.(Vb), quantitatively for large φ.

IV. EXPONENTIAL RANDOM GRAPH (ERG) MODELS IN A NUTSHELL

Exponential random graph (ERG) models in this work serve the purpose of providing a parsimonious characteriza-
tion of a given graph G∗. They belong to broad class of maximum entropy (maxent) inference methods [32], and are
designed for graph data. We here briefly illustrate the essential features of the method, further details can be found
in [16, 17] and references therein.
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(a)

(b)

(c)

(e)(d)

FIG. V. Exploration-exploitation (EE) dynamic as defined by eq.(i, xv), N = 10, µ̄ = 1/L, ρ̄ = 5 × 103 (φ̄ = ρ̄µ̄), T = 50,
∆t = 1/ν = 10−2, E∗ = 3, ∆t = 1, M = 4096. (a) Distribution of F values at different t, the corresponding ⟨F ⟩t are indicated.
At each t, exploitation increases the probability of those graphs with higher F than the ensemble average (violet arrows). As
a result, the distribution moves towards higher F values, until the max is reached (red dotted line). (b) The average graph
density ⟨x⟩/L evolves towards the target density E∗/L, until a stationary value ⟨x⟩∞/L is reached - shaded area indicates
the 95% confidence interval, black dashed line indicates the analytical solution from eq.(xix). (c) The value ⟨x⟩∞/L and the
rapidity of the approach to it depends on the functional pressure ρ, it approaches E∗/L for increasing exploitation rate φ
and decreasing exploration rate µ. (d) The distance from the target increases for increasing exploration rate µ and decreasing
selection rate φ. (e) Difference between d∞ as in (d) and the corresponding value ddec∞ decoupling approximation eq.(xviii).
The ddec∞ is always closer to the target than d∞, the difference between the two vanishing for increasing φ (where both approach
E∗/L), as expected.

Let G∗ ∈ G be a single realization of the system under investigation. Suppose the existence of r sufficient statistics
x : G → Rr for G∗, i.e., that characterize it. According to the maximum entropy principle (MEP), the most unbiased
probability density function P (G) consistent with the available information x(G∗) is obtained by maximizing the
Shannon information entropy S

S[P ] = −
∑

G∈G
P (G) logP (G) (xxiii)
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while at the same time imposing the normalization
∑

G∈G P (G) = 1 and the soft constrains:

∑

G∈G
x(G)P (G) = x(G∗) . (xxiv)

This maximization problem is easily solved by introducing a set of Lagrange multipliers θ ∈ Rr, and the result is the
ERG probability distribution:

P (G|θ) = eθ·x(G)

∑
G̃∈G eθ·x(G̃)

, (xxv)

where the θ are set so to satisfy eq.(xxiv). The parameters θ can be interpreted by quantifying their effect on the
likelihood that an edge exists between any pair of nodes i, j in the graph. Let P (aij = 1|G\ij ,θ∗) be the probability
of an edge within the dyad (i, j), given the rest of the graph G\ij . We have

log
P (aij = 1|G\ij ,θ∗)

P (aij = 0|G\ij ,θ∗)
= θ∗ ·∆x(Gij) , (xxvi)

where ∆x(Gij) is the vector of change statistics. Defining G+ij = {aij = 1, G\ij} and G−ij = {aij = 0, G\ij}, the
α-th element of the change statistics is ∆xα(Gij) = xα(G+ij) − xα(G−ij). The dyadic interpretation (xxvi) of the
parameter θα is the change in the log probability of a graph, resulting from switching from G−ij to G+ij (i) per
unit increase of the corresponding statistic ∆xα(Gij) = 1, and (ii) holding fixed the cumulative effect of the other
statistics

∑
β ̸=α θβ∆xβ(Gij). The interpretation of the ERG parameters is therefore based on a characterisation of

the ensamble distribution P (G|θ∗). This because, by construction eq.(xxiv), the properties of the latter reflect those
of the original graph. Large positive (negative) values of the parameter θα indicate an over- (under-) representation
in the original graph of the corresponding xα, with respect to the null expectation – i.e., ⟨xα⟩ of an ERG model with
θα = 0 and unaltered θ\α [3, 16].

Given a graph G∗, the parameters θ of an ERG model can be inferred from data. In theory, this is achieved by
maximizing the log-likelihood

θ∗ = argmax
θ

logP (G∗|θ) . (xxvii)

In practice, the latter computation is hampered by the evaluation of the partition function, i.e., the denominator
of eq.(xxv). Nevertheless, the inference problem can be solved numerically by resorting to standard approximation
schemes for exponential probability distributions. In particular, Markov chain Monte Carlo maximimum likelihood
estimation (MCMC-MLE) iteratively explores the parameter space Rr looking for the set of parameters θ∗ that solves
the maximization problem eq.(xxvii). This is done by exploiting eq.(xxvi) to sample graphs from eq.(xxv) with MCMC
routines and bypassing the computation of the partition function, an idea dating back to the 90s [33]. A number of
packages have been developed in recent years to perform such inference task, the implementation used in this work
is the ergm package of the statnet suite [34], written in R language. The inferred parameters θ serve the purpose of
assigning weights to each statistic and quantifying their contribution towards the generation of the observed graph.

A. ERG statistics

The starting point of an ERG model – as well as of all maxent inferential methods – is the choice of statistics, which
is up to the modeller. Choosing a set of statistics entails making an hypothesis about the effects that are relevant for
the system. For a given choice of the statistics, the ensemble eq.(xxv) - whose parameters are inferred from data -
defines a minimal model in which only the information represented by x is accounted for, and is otherwise maximally
unbiased. A huge variety of statistics x : G → R has been proposed and might be included [34]. In this work, we have
used in particular two kind of statistics. The first, edge covariates, have already been introduced in eq.(xii). We here
briefly describe the second, the so-called curved statistics, fig.(VIa).

Let us consider for instance the geometrically weighted degree gwd. It is based on the graph degree distribution
and is able to account, e.g., for an over/under representation of hubs in a graph, while at the same time avoiding the
so-called degeneracy problem of simplistic ERG models [35]. Formally,

xgwd(G|τ) = eτ
N−1∑

k=1

{
1−

(
1− e−τ

)k}
x
(k)
d (G) , (xxviii)
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FIG. VI. Geometrically weighted statistics. (a) An illustration of the gwd and gwesp statistics, as defined in eq.(xxviii-xxxi).

Both have the structure of a linear combination of a distribution (degrees, edgewise shared partners), the weights w
(k)
τ are

defined in eq.(xxix). (b) Weights w
(k)
τ (solid lines) and geometric decaying factors (dashed lines), as they appear in eq.(xxx).

Consider as an example the case of xgwesp, in the case θgwesp > 0. Adding a new partner to a pair of connected nodes k → k+1
always leads to an increase in the probability associated to the graph, eq.(xxx), since eq.(xxix) is a monotonically increasing
function of k. However, this increase diminishes and eventually vanishes for increasing k.

where τ > 0 is a decay parameter and x
(k)
d (G) is the number of nodes in the graph G with degree k. It is a linear

combination of the degree distribution, where the linear coefficients

w(k)
τ = eτ

{
1−

(
1− e−τ

)k}
(xxix)

are based on the geometric series (1− e−τ )k. In order to interpret the effect accounted by eq.(xxviii), we can reason
as follows [16, 36]. Let us consider a single edge between the nodes i, j. As a consequence of this addition, the degrees
of both the incident nodes increase, let us focus on one such increase k → k + 1, using eq.(xxv) one finds:

log
P (aij = 1|G\ij ,θ∗)

P (aij = 0|G\ij ,θ∗)
∝ θgwd(1− e−τ )k . (xxx)

The role of the ERG parameter θgwd is the same as described in eq.(xxvi). Let us consider the case θgwd > 0, which
corresponds to the scenario we found in MS. Eq.(xxx) implies that the relative advantage in adding an edge to a node
with degree k decreases geometrically with k, fig.(VIb). The rapidity of the decay is controlled by τ , a large τ resulting
in a slow decay. It should be noted that, without the geometric decay, an MCMC dynamic based on eq.(xxx) would
end up in a fully connected graph (degeneracy), making the estimation impossible. Therefore, for θgwd > 0, a bias
towards high-degree nodes is present, but thanks to the geometric weights it attenuates and eventually disappears for

increasing k - where w
(k)
τ reaches a plateau and (1 − e−τ )k ∼ 0. Thus, the system is not steered into an unrealistic

fully-connected graph state.
In addition to the gwd, we also introduce the geometrically weighted shared partner distribution:

xgwesp(G|τ) = eτ
N−2∑

k=1

{
1−

(
1− e−τ

)k}
x(k)
esp(G) , (xxxi)

where x
(k)
esp(G) is the number of pairs of connected nodes that share exactly k neighbors. The latter statistic is

employed to capture an over/under representation of triads in the network, for θgwesp ≷ 0. As in the previous case
the use of geometric weights helps to prevent this tendency from implying an unrealistic fully connected graph.
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V. C.ELEGANS CONNECTOME(S)

A. Overview

The C. elegans connectome - i.e., the wiring diagram of neural connections within the worm nervous system -, has
garnered significant attention within the field of neuroscience, due to its complete mapping and simplicity [12, 37].
It provides valuable insights into the relationship between neural networks and behavior, making it an ideal model
system for understanding fundamental principles of brain organization and function.

The nervous system of an adult, hermaphrodite C. elegans was first described in the 1986 by White et al. [10] and
consists of only 302 cells (neurons), classified into different types based on their morphology, function, and connectivity.
These include sensory neurons that detect various environmental cues, interneurons that relay information within the
nervous system, motor neurons that control muscle movement and modulatory neurons that release neuromodulators,
playing a crucial role in modulating behavior and neural activity. The neurons of the C. elegans are spatially
arranged in a stereotypical fashion, the adult body length being ∼ 1 mm [38]. A high bilateral symmetry is found,
most of the neurons occurring in pairs located along the left and right sides of the body. Neurons communicate
through different types of cellular junctions. Gap junctions are specialized channels that connect the cytoplasm of
adjacent cells, facilitating the rapid exchange of ions, molecules, and electrical signals. Chemical synapses serve as
specialised junctions that enable the unidirectional transmission of chemical signals, known as neurotransmitters, from
a presynaptic neuron to a postsynaptic neuron or target cell.

This work focused specifically on the maturation of the C. elegans brain [5, 14, 39]. By this, we refer to the process
by which the nervous system develops and matures over the worm’s life cycle – the latter includes one embryonic
stage (before hatching), four larval stages and one adult stage. At a molecular scale, it involves intricate cellular
and molecular events that occur during embryonic and post-embryonic stages. In MS, we developed a model for
synaptogenesis, i.e., the process by which synapses are formed and established in the developing nervous system. It
involves the growth and differentiation of neuronal processes, such as axons and dendrites, and the precise alignment
and interaction of presynaptic and postsynaptic components.

A number of online resources are available that provide comprehensive information and tools for studying the C.
elegans nervous system, e.g., Wormatlas.

B. Dataset and pre-processing

In MS, we modelled the data recently published by Witvliet et al. (2021) [5]. In the latter, serial-section electron
microscopy was used to reconstruct the brains of eight isogenic C. elegans (wild-type N2, hermaphrodites), imaged
at different ages and during different post-embryonic stages, see fig.(VII). The estimation of the age was based on
the cell division pattern of the worms at the moment they are selected for imaging. The reconstructed brains,
consisting of the nerve ring and ventral ganglion, include 161 of the total 222 neurons at birth and 180 of the total 302
neurons in adulthood, each cell was unambiguously identified by a code and classified as either sensory, modulatory, or
interneuron, tab.(III). Chemical synapses and gap junctions were manually annotated. The former were fully mapped
while the latter were mapped only partially and, for this reason, they were not considered in our analysis. A directed
synaptic connection was defined as a pair of neurons (presynaptic, postsynaptic) connected by at least one chemical
synapse. The eight networks of directed synaptic connections were the starting point of our analysis, fig.(VII).

In MS, we used an ERG model, sec. IV, to infer the parameters of an F -landscape, fig.(1). This required formulating
the F metric in terms of graph motifs. In doing this, a natural starting point is looking at the subnetwork distributions
of simple motifs, as they are the building block of higher order structures. Previous graph analyses of the adult C.
elegans network of synapses [11, 12] studied the triad census, i.e., the counts of all directed connection patterns
involving three nodes - there exist 16 possible motifs, see fig.(VIII). These investigations found that the patterns
involving the same number of empty dyads have similar statistical properties, i.e., they are under- or over-represented
with respect to randomized null models. For instance, the triplets of nodes with connections between each pair
(regardless of the directions) occur with greater frequency than it would be expected by chance - this is true for the
motifs 030T, 120D, 120U, 120C, 210, 300 while 030C represents an exception. Based on this evidence, we simplified
the analysis by considering the network of undirected synaptic connections of the C. elegans, fig.(VIII). As a coarse-
graining procedure, this implies a loss of information. However, it allows to formulate an F metric eq.(5) in terms
of only a few sufficient statistics, avoiding the combinatorial proliferation of possible patterns for higher-order motifs
in directed networks. This should be regarded as a first step towards more complex models of the C. elegans brain
maturation, which will account for the directed nature of the information flow.

In tab.(IV), we provide a comprehensive summary of the properties exhibited by the eight undirected graphs
analyzed in this study. We observe an increased neuronal connectivity over time, which is further reflected in the
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FIG. VII. C. elegans brain networks at different developmental ages. The embryonic stage (E, dotted line) terminates with the
hatching (birth, 0 h, white circle). The post-embryonic stages include four larval ages (L1 −L4, dashed line) and ends with the
onset of adulthood (red circle). The adult stage (A, solid line) lasts about 2 − 3 days. The dataset Witvliet et al. (2021) [5]
consists of eight snapshots (microscope icons), including one at birth 0 h, three L1 ∼ 5 h, 8 h and 16 h, one L2 ∼ 23 h, one L3

∼ 27 h and two adults, both ∼ 45 h. In each network, nodes are individual neuron cells, colored by cell-type: interneurons in
red, modulatory in yellow, motor in blue, sensory in pink – see tab.(III) for a complete list. A directed edge (connection) is
placed between two neurons if at least one synapse exists between them.

growth of the number of simple motifs such as 2-paths and triangles. The rise in the clustering coefficient is consistent
with the increasing formation and consolidation of functional circuits or modules [5]. It further suggests the deployment
of a biological strategy for increasing the system’s redundancy, thereby bolstering the resilience against potential
failures. Moreover, we observe a notable increase in efficiency alongside a reduction in the shortest path lengths. This
observation aligns well with the documented emergence of highly connected hubs [5], leading to a more tightly woven
neural network.

C. The EE dynamics as brain wiring dynamics: an interpretation

In this section, we illustrate how the EE dynamics eq.(1-2) could be interpreted from the point of view of the
individual developing system. In so doing, we aim to show how the EE dynamic is consistent with the view of brain
wiring dynamics proposed in [4], as essentially driven by a set of (genetically encoded) rules that allow neurons to
make local decisions about whom to connect with. Note that we take the network representation of the brain as
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TABLE III. List of the 180 neurons of the adult C. elegans brain (hermaphrodite, N2), as reported in [5]. Interneurons in red,
modulatory in yellow, motor in blue, sensory in pink. We have marked with an asterisk∗ those neurons that were not present
at birth. Each neuron in the worm nervous system is uniquely identified by a code, which consists in two or three letters (or,
occasionally, numbers), followed by the position in worm’s body D/V (dorsal/ventral), R/L (right/left) [10]. The left-right
symmetry increases over time and reaches the ∼ 90% in the adult brain.

ADAL ADAR AIAL AIAR AIBL AIBR AINL AINR AIYL AIYR AIZL AIZR AVAL AVAR

AVBL AVBR AVDL AVDR AVEL AVER AVJL AVJR BDUL BDUR PVCL PVCR PVPL PVPR

PVR PVT RIAL RIAR RIBL RIBR RIFL RIFR RIGL RIGR RIH RIML RIMR RIPL

RIPR RIR ADEL ADER AIML AIMR ALA AVFL∗ AVFR∗ AVHL AVHR AVKL AVKR AVL∗

CEPDL CEPDR CEPVL CEPVR DVC HSNL∗ HSNR∗ PVNL∗ PVNR∗ PVQL PVQR RICL RICR RID

RIS RMGL RMGR IL1DL IL1DR IL1L IL1R IL1VL IL1VR RIVL RIVR RMDDL RMDDR RMDL

RMDR RMDVL RMDVR RMED RMEL RMER RMEV RMFL∗ RMFR∗ RMHL∗ RMHR∗ SIADL SIADR SIAVL

SIAVR SIBDL SIBDR SIBVL SIBVR SMBDL SMBDR SMBVL SMBVR SMDDL SMDDR SMDVL SMDVR URADL

URADR URAVL URAVR ADFL ADFR ADLL ADLR AFDL AFDR ALML ALMR ALNL∗ ALNR∗ AQR∗

ASEL ASER ASGL ASGR ASHL ASHR ASIL ASIR ASJL ASJR ASKL ASKR AUAL AUAR

AVM∗ AWAL AWAR AWBL AWBR AWCL AWCR BAGL BAGR DVA FLPL FLPR IL2DL IL2DR

IL2L IL2R IL2VL IL2VR OLLL OLLR OLQDL OLQDR OLQVL OLQVR PLNL∗ PLNR∗ SAADL SAADR

SAAVL SAAVR SDQL∗ SDQR∗ URBL URBR URXL URXR URYDL URYDR URYVL URYVR

003 012 102 021D

021U 012C 111D 111U

201 030T 030C 120D

120U 120C 210 300

FIG. VIII. Triad census. Left: In a directed graph,
there are 16 distinctive connectivity patterns be-
tween three nodes. Each pattern is denoted by a
three-digit code, with each digit representing the
count of mutual links (↔), single links (→), and
non-existent links, respectively. Additionally, a let-
ter may be appended to indicate if the pattern rep-
resents a cycle (C), a transitive (T), an upward
(U), or a downward (D) connection. We have high-
lighted in bold red the codes of those patterns that
are over-represented in the adult C.elegans network
(directed) of chemical synapses [11, 12]. Right:
In an undirected graph, 4 unique connectivity pat-
terns are possible among three nodes. We have em-
ployed a color-coding system to illustrate the corre-
spondence between patterns when approximating a
directed graph with an undirected one.

TABLE IV. Properties of the C. elegans networks of undirected synaptic connections. Each row corresponds to a graph, the
first (birth) and the last two (adulthood) are highlighted. We compute the number of nodes, edges, two-star – or connected
triples –, triangles, the average shortest path (av.sh.path) – or average geodesic distance – , the global efficiency (glob.eff.)
and the average clustering coefficient (clust.coeff.). See also sec. VIC for the definitions.

t[h] nodes edges two-star triangles av.sh.path glob.eff. clust.coeff.

0 161 617 5976 346 2.993 0.380 0.208
5 162 782 9273 601 2.712 0.416 0.232
8 162 788 9299 614 2.712 0.416 0.245
16 168 907 11838 830 2.617 0.428 0.246
23 173 1166 18449 1406 2.430 0.459 0.262
27 174 1175 18866 1433 2.429 0.458 0.274
45 180 1633 34124 2889 2.217 0.498 0.286
45 180 1669 35677 3003 2.206 0.501 0.292

correct and focus on its growth (edge addition) during development. Therefore, a model of the brain wiring process
at the molecular level (axon guidance, growth factors, etc.) is neither possible nor desired here.

The biological process we consider in this work - i.e., the formation of neuronal circuits - entails a multitude of
complex molecular and cellular events, not fully understood [40]. In the case of the C. elegans, synapses are mainly
found between physically proximal neuronal processes - the latter term generally refers to any projection from the cell
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FIG. IX. Individual-based interpretation of the EE dynamic. (a) Establishment of a synapse, schematics. Presynaptic sites,
presented as en passant swellings (black circles), appear on the axon shaft (thick black line) of a presynaptic neuron (gray
circle). Postsynaptic neuronal processes - namely, dendrites (black lines) and their spine-like protrusions (thin black lines) -
sprout from a postsynaptic neuron (white circle). Occasionally, they establish synaptic connections with physically proximal
presynaptic sites (red dashed lines). The presynaptic processes of the postsynaptic neuron and the postsynaptic processes
of the presynaptic neuron have not been depicted. (b) A simple scenario. One presynaptic neuron A and four postsynaptic
neurons B,C,D,E are represented. The thick black line represent the axon elongating from A. At time t a synaptic connection
exists between the nodes AB (black line connecting B to the axon shaft). Additional connections exist between the neurons
BC and DE (summarized by gray dashed line). After a time interval ∆t, postsynaptic neuronal processes extend from the
neurons C,D towards the axon, that might develop into new connections (red dotted lines). On the contrary, neuron E does
not exhibit the emergence of any such postsynaptic process. (c) Graph representation of the scenario in (b). We hypothesise
an F metric that simply counts the number of triangles in the undirected graph representation of the neural system. The two
potential connections between AD and AC at time t + ∆t can be represented as two different graph configurations, G1, G2,
associated to different F values. G2, by virtue of its higher F , will be observed with higher probability. (d) Example of two
time steps of the EE dynamic (∆t = 1 for simplicity). Each square represents a graph. In blue, we indicate the F values.
In black, the unconditioned probabilities computed at each time as exp[F (Gi)]/

∑
j exp[F (Gj)] where the sum runs over all

graphs at that time (column). In brown, the probabilities conditioned on the previous time-point. They can be computed
either as above, restraining the sum to those graphs that come from the same parent graph at the previous time, as done in
eq.(xxxii), or starting from the unconditioned probabilities and using P (Gi, t+ 1|Gj , t) = P (Gi, t+ 1 ∩Gj , t)/P (Gj , t), where
P (Gj , t) =

∑
k P (Gk, t+ 1 ∩Gj , t). In bold-red we highlight the most likely developmental pattern.

body: dendrites, postsynaptic or axons, presynaptic. More in detail, most of the neurons have a simple morphology,
their processes (one or two per each neuron) run in parallel bundles along the worm’s body [10]. Across development,
they extend under the influence of molecular guidance cues. Presynaptic sites appear as en passant swellings along
the axon shaft. Postsynaptic neuronal processes are either dendrites or spine-like protrusions that grow out from
dendrites [5]. Occasionally, dendrites or protrusions establish new synaptic connections, fig.(IXa).

To demonstrate how the synapse formation process could be encompassed by the EE dynamics, let us take into
account the simple scenario illustrated in fig.(IXb). Let us suppose that, at a given time t, synaptic connections exist
between neurons AB, DE, and BC. In the time interval ∆t, postsynaptic neuronal processes from both neurons
C and D emerge (or extend sufficiently), potentially leading to the formation of new synaptic connections with A.
Contrarily, no such process appears on the neuron E, which therefore has no chance of establishing a connection with
A. Provided that ∆t is sufficiently small, only one of the two possible synaptic connections AC or AD is likely to
be observed. Although the choice is inherently stochastic, a connection offering a higher functional advantage will
be associated to a higher probability. Under the hypothesis that the notion of biological function is represented by
the number of triangles in the undirected graph representation of the system, fig.(IXc), we anticipate the preferential
formation of the AC connection, as it implies the formation of the ABC triangle. In this sense, the ”less functional”
mutation AD is penalised.

In this interpretation, a mutation event does not correspond to the establishment of a physical connection, but
to its precondition (formation/elongation of neuronal process), therefore to a potential connection – note that this
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marks a difference with respect to the evolutionary dynamics where different genetic mutations correspond to different
physical individuals. The exploitation on the other hand acts on configurations that have been allowed by mutations.
If G is the graph configuration at time t and G̃ are the potential configurations allowed by mutations at time t+∆t,
then

P (Gi, t+∆t|G, t) = e∆tF (Gi)/
∑

Gj∈G̃

e∆tF (Gj) , (xxxii)

where we have taken φ = 1 for simplicity. Note that the above probabilities are conditioned on the configuration G
observed at time t.

The one above illustrated is an EE dynamic of a single, developing system. From the standpoint of the individual
neuron, the process of synaptogenesis consists of a series of stochastic decisions about which other neuron to connect
with. These decisions are biased towards those connections that lead to higher functional gains, which in turn are
evaluated based on the information available to the neuron at any given time. Note that for this interpretation to be
possible, it is essential to define the biological function F in terms of local network structures – e.g., the triangles in
the previous example – because neurons only have knowledge of their neighbourhood, not of global system properties.

The EE dynamic contains a comprehensive information about the possible dynamical trajectories, being defined
for the probability distribution rather than for a single evolving system. In particular, it allows to compute the (un-
conditioned) probability of all possible configuration that might have appeared at time t, including those that might
have taken very unlikely developmental paths. The difference is illustrated in fig.(IXd). This provides a justification
for employing an EE dynamics to encapsulate the inter-individual variations observed in brain wiring.

VI. C. ELEGANS MODEL FIT

The model of the C. elegansbrain growth illustrated in MS has only six parameters, four describe the F -landscape,
two the EE dynamics. Their values must be deduced from the data, as detailed in sec. VIA-VIB. Only the birth
and adult snapshots of the C. elegans brain are employed for this purpose. The assessment of how well a model’s
predicted outcomes aligns with the actual observed data is discussed in sec. VIC .

A. F -landscape

The inference of the F -landscape was carried out through exponential random graph (ERG) models, sec. IV, using
the two adult snapshots of the C. elegans network of chemical synapses. The ERG inference is defined for a single
graph, let us call G∗

T,i a generic adult snapshot. The model described in eq.(3, 5) can be summarized in the following
ERG Hamiltonian H:

−H(G∗
T,i) = θgwd eτd

N−1∑

k=1

{
1−

(
1− e−τd

)k}
x
(k)
d (G∗

T,i) + θgwesp eτesp
N−2∑

k=1

{
1−

(
1− e−τesp

)k}
x(k)
esp(G

∗
T,i) , (xxxiii)

where we have used the explicit formulation of the statistics gwd eq.(xxviii) and gwesp eq.(xxxi). The above expression
has four parameters, namely θgwd, θgwesp and τd, τesp. Note that from a theoretical point of view, they are fundamen-
tally different. The former are the linear weights of the Hamiltonian that originate from the maxent origin of the ERG
probability distribution, sec. IV. Conversely, the latter dictate the formal definition of the graph statistics, therefore
they can be ascribed to the problem of model selection. In practice, however, they can be estimated simultaneously
by the ergm package [34]. We used the following specification:

# ERGM formula
fit <- ergm(formula = G ~ gwdegree(fixed=F)+gwesp(fixed=F),

constraints = ~ edges ,
control=snctrl(init = c(1,1,1,1))
)

Listing 1. Specifying an ERG model based on the Hamiltonian eq.(xxxiii) using the ergm package. G is the graph to be used
for inference, fixed=F implies that the decay parameters of the curved statistics are to be estimated. The model is constrained
to graphs that have the same number of edges as the G. As initial guess of the four parameters to be estimated, we provide
(1,1,1,1). For the estimation, we have used Rstudio v2022.12.0.353, R v4.0.4 and ergm v4.3.2. The scripts ara available
in the Github folder [48].
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Note that in the specification of the formula, we constrained the space of graphs explored by the ergm numerical
routines to those graphs that have the same number of nodes as the input graph. The reason for this is that the
number of edges of the graphs in the EE dynamics is controlled by the exploration rate and therefore it is not a degree
of freedom at the disposal of the ERG inference. The results of the estimations are summarized in tab.(V).

θ∗gwd λ∗
gwd θ∗gwesp λ∗

gwesp

G∗
T,1 0.45± 0.20 1.91± 0.46 0.626± 0.056 1.432± 0.067

G∗
T,2 0.43± 0.20 1.97± 0.48 0.529± 0.048 1.542± 0.075

ERG 0.44± 0.14 1.94± 0.33 0.578± 0.037 1.487± 0.050

TABLE V. Estimated parameters of the ERG model eq.(xxxiii) from the two adult C. elegans (undirected) networks of chemical
synapses. The maxent parameters θ∗ are both significant and positive for all networks. The parameters λ∗ controlling for the
geometric decays of the model statistics are significant – and positive by construction. The third row represents the mean-ERG,
final parameter estimations for the EE dynamic are boldfaced.

An output procedure is needed to combine the estimations from the group of adult individuals in our dataset.
Considered that each individual yields independent estimation of the ERG parameters, a simple choice is to take the
average estimations, i.e.,

θ∗gwd = 0.44, τ∗d = 1.94, θ∗gwesp = 0.578, τ∗esp = 1.487 (xxxiv)

In the ERG literature, this procedure is referred as mean-ERG [16]. Here, we are essentially limited by the availability
of only two individual connectomes.

B. Developmental trajectory

The theoretical picture of the C. elegans brain wiring dynamics discussed in MS is that of a stochastic, state-
dependent dynamics in the functional landscape F (G) as in eq.(5), with parameters eq.(xxxiv). The long-term
dynamics of this model is quite simple: if we waited long enough, we would end up with (almost) full graphs,
independently of our starting point. However, we do not wait long enough. Instead, the edge formation is controlled
by the exploration rate µ, and set to reach the appropriate number of edges at adulthood. Therefore, although the
maximisation of the F metric learned in the adult stage drives the dynamics, the adult stage itself is not intended to
be a maximum of the F landscape.

In MS, we have already discussed the choice of the boundary conditions and the inference of the exploration rate
µ∗ (growth only). This leaves us with only one degree of freedom, the functional pressure ρ, which we discuss in
sec. VIB.2. Running a single simulation of the developmental trajectory of the C. elegans requires a few additional
specifications.

1. A single run

If the theory is completely specified by the above parameters, the simulations described in sec. III have two
additional degrees of freedom.

The first one, M is the number of samples drawn from the graph probability distribution at each simulation step.
Small number of samples will result in high level of noise for the statistics computed as in eq.(xxii). Conversely, a
tangible constraint arises from the computational load, which scales linearly with M . In the simulations described
in this section, we employed M = 1024 and empirically verified that the outcomes are not significantly altered when
simulations are run with M = 2048,M = 4096. The second internal degree of freedom is the inverse time-step
ν = ∆t−1. We fixed it by requiring that in one simulation step a single edge addition was to be observed in each
graph within our population. This means choosing ∆t = (Lµ∗)−1 ∼ 4.34 × 10−2 h, hence ν ∼ 23. Once again, the
computational time scales linearly with ν.

Our EE simulations currently do not support a node dynamic (appearance/disappearance). Consequently, to set the
initial conditions, we embedded the birth connectome, consisting of 161 nodes, within a larger network that matched
the adult connectome’s node count of 180.

A single simulation with the configuration here presented takes approximately 1.5 hours. The scripts are available
in the Github folder [48].
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2. Optimal functional pressure

In MS, we proposed to fix the degree of freedom of the functional pressure ρ by requiring that our simulations
optimally reproduce the experimental graph statistics at the adult age. The EE simulated dynamics allows to compute
at each time t a whole distribution of graph statistics, while experimental data consists of one or two isolated point
per each t. A natural generalization of the Euclidean distance to the distance between a multivariate distribution Q
on Rr and point y∗ ∈ Rr is the Mahalanobis distance δmah

Q [19], defined as

δmah
Q =

√
(⟨y⟩Q − y∗)⊤Σ−1

Q (⟨y⟩Q − y∗) (xxxv)

where ⟨y⟩Q and ΣQ are the mean and covariance matrix of Q. δmah
T used in MS to find the optimal ρ∗ corresponds

to eq.(xxxv) where Q is the two-dimensional distribution of graph statistics eq.(3) at the adult age T = 45 h (we
use the time T to label the distribution), ⟨y⟩Q = ⟨x⟩T and ΣQ = ΣT are the ensemble average and covariance
matrix, while y∗ = x̄(G∗

T ) are the experimental graph statistics, averaged over the two adult connectomes, i.e.,
y∗i = [xi(G

∗
T,1) + xi(G

∗
T,2)]/2.

The Mahalanobis distance, as defined in eq.(xxxv), has two intriguing characteristics that render it particularly
appropriate for the task at hand.

(i) It takes into account the covariance structure of the multivariate distribution. This is crucial, since the statistics
eq.(3) are clearly not independent, fig.(Xa). In particular, let us consider the whitening transformation [41]

y → z = Σ
− 1

2

Q y ∀y ∈ Rr (xxxvi)

where Σ
− 1

2

Q is the inverse principal square root of the covariance matrix ΣQ. It is easy to show that (a)

the transformed variables have unit diagonal (white) covariance matrix and (b) eq.(xxxv) corresponds to the
Euclidean distance of the transformed variables. In words, the Mahalanobis distance accounts for covariance
structure by computing the Euclidean distance of the whitened (standardized) data.

(ii) It is scale invariant, i.e., it is invariant under affine transformations y → Ay + b ∀y ∈ Rr, where A is an r × r
matrix and b ∈ Rr. For instance, it would not change if we scaled the statistics by their corresponding ERG
model parameter. Therefore, eq.(xxxv) provides a common ground for comparing models defined by different
sets of θ – note that the same is not be true if instead we consider a distance function based on the F metric.

In order determine an optimal functional pressure, we started by scanning uniformly possible values of ρ – 100
runs for each. We computed δmah

T for each simulation, averages and standard deviations are depicted in fig.(2a).
As expected, for mild functional pressures, the simulations do not attain the desired value at adulthood, hence the
Mahalanobis distance increases for low values of ρ. Furthermore, it also increases for too high values of ρ, implying
an overestimation of the functional constraints deployed by the biological system.

We fitted the data with a quadratic curve δ̃mah
T (ρ) = aρ2 + bρ+ c and took the position of the minimum −b/2a as

optimal functional pressure ρ∗. This last methodological step brought the inference process to completion. Finally,
in order to showcase the results of a single simulation of the C. elegans brain maturation in fig.(2c-2d), we ran 500
simulations with the inferred parameters µ∗, ρ∗ and again selected as best simulation the one that minimized δmah

T .

Similarly to eq.(xxxv), one can compute the distance δmah
t of the simulated distribution of statistics from the

corresponding experimental values at all observed time points t∗ = 5h, 8 h, 16 h, 23 h, 27 h and 45 h. Note that
by assumption δmah

t=0 = 0 and that, except for the adult age, only one experimental graph is available, therefore
y∗ = x(G∗

t ). The total error over the whole (observed) time series can be simply defined by

δmah
t∗ =

∑

t∈t∗, t>0

δmah
t . (xxxvii)

Using the latter, we repeated the same steps described in the previous paragraph. The minimum of the quadratic fit
of δ̃mah

t∗ (ρ) was found to be located at ρ∗∗ = 7.001 × 102. In fig.(2a), we plotted δ̃mah
T (ρ∗∗), i.e., the average value

of the Mahalanobis distance defined using the adult age exclusively that we would have obtained if we had chosen
ρ∗∗. This value fell within one error bar from δ̃mah

T (ρ∗). In fig.(Xb), we corroborate this result by showing the plot
complementary to fig.(2a), for eq.(xxxvii).
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FIG. X. (a) Population-based simulations, in the space of model statistics eq.(3). At any given time t our simulation allow to
extract a two-dimensional distribution in the space gwd-gwesp. We show those corresponding to four of the seven experimental
time-stamps. Note that the statistics are (anti-)correlated, in computing a distance from the distribution, the covariance
structure must be taken into account. Here we used the same simulation as in fig.(2b-c) – these are the underlying distributions
of the average values plotted in fig.(2b). (b) We run 100 simulations ∀ρ ∈ {200 + 20 i, 0 ≤ i ≤ 60}. For each ρ, we compute
the mean and standard deviation of δmah

t∗ (blue line and shaded area, respectively). The data are fitted with a parabolic curve

δ̃mah
t∗ (R2 = .99) and its minimum ρ∗∗ is highlighted (blue diamond). On the same curve, we show the position of δ̃mah

t∗ (ρ∗),
the value of the all-time Mahalanobis distance that corresponds to the functional pressure ρ∗ we selected in MS, based on the
adult stage exclusively (orange diamond). The two overlap within the error bars. This plot is complementary to fig.(2a) in MS.

C. Feature generalization

By feature generalization, we refer to the ability of a model to reproduce other features of the data than those
included in the model formulation. We here briefly provide definitions of the metrics used in this work to this
purpose, see also [20] for a general reference. The package NetworkX v2.6.3 with Python 3.9.7 has been used, the
scripts are available in the Github folder [48].

Let us consider an unweighted, undirected graph G with N nodes, and adjacency matrix A = {aij}. Let ki =
∑

j aij
be the degree of the the i-th node.

• Clustering. A first family of graph metrics aims at computing the extent to which nodes in a graph tend to
cluster together. The most straightforward manifestation of clustering is a higher-than-random probability that
two nodes that are connected to a common node are also connected to each other. Such a behaviour can be
quantified by the following two metrics:

◦ Transitivity, fig.(XIa). It evaluates the ratio between the number of existing triangles – triples (i, j, k) with
aij = ajk = aik = 1 – and the number of connected triples, i.e., the triples (i, j, k) with aij = ajk = 1. The
symmetry factor accounts for the fact that each triangles has 3 connected triples. Formally,

T =
3×# triangles(G)

# connected triples(G)
=

tr(A3)∑
i ̸=j(A

2)ij
. (xxxviii)

◦ Average clustering coefficient, fig.(2d). It is defined as:

C =
1

N

N∑

i=1

Ci , Ci =
# connected pairs of neighbors of i

# pairs of neighbors of i
=

∑
j,l aijajlail

ki(ki − 1)
. (xxxix)
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FIG. XI. Feature generalization assessment of the EE dynamics. (a) Transitivity (brown) and local efficiency (yellow). Given
a statistic y, at each experimental time point t ∈ t∗ we compute its experimental value y(G∗

t ) (circles), the average ⟨y(G)⟩t
(diamonds) based on our population-based simulations eq.(xxii), and the same average with simulations based on a null growth
model with ρ = 0 (squares). In both cases our simulations closely track the experimental values. (b) Cumulative degree
distributions at adulthood, T = 45h. Those corresponding to the two adult C. elegans brain graphs are represented as green
solid lines. Dashed orange line for the simulated cumulative degree distribution, bin-wise average over the distribution of graphs
we obtain from simulations. The Kolmogorov-Smirnov statistics between the latter and the two empirical distributions are
DKS = 0.08, 0.10, respectively. Gray dashed line for the corresponding values from a null model with ρ = 0, DKS = 0.24, 0.18.
Inset: zoom in the high-degree tail, loglog plot. The black line is a linear fit of the simulated high-degree tail of the distribution.

where ki =
∑

j aij is the degree of the node i. In words, C is the average of the local clustering coefficient
Ci. The latter is computed by considering the subnetwork induced by the node i and its first neighbors
and quantifies the relative number of neighbors of i that are also themselves neighbors.

Albeit both T and C take values in the interval [0, 1] and reach 1 in the case of perfect transitivity, they are
not equivalent. The clustering coefficient is more influenced by low-degree nodes (since it averages over all
nodes), while transitivity is more influenced by high-degree nodes (since it considers all possible triangles in
the network). Therefore, transitivity might be more representative of the overall network structure, while the
clustering coefficient could provide more insight into local structures or subnetworks within the network.

• Efficiency. A second family of metrics aims at quantifying the effectiveness of information or resource exchange
over the network. As a general idea, the closer are two nodes in the graph, the more efficiently information will
be exchanged among them.

◦ Global efficiency, fig.(2d). A convenient way to quantify a graph’s efficiency is to compute the harmonic
mean of geodesic lengths. More in detail, let D be the matrix whose elements dij represent the shortest
path (geodesic) from the node i to j – by definition; dij = ∞ for disconnected nodes. The global efficiency
Eg is defined as

Eg =
1

N(N − 1)

∑

i ̸=j

1

dij
. (xl)

A network with high global efficiency is typically characterized by short paths between any given pair of
nodes, meaning information or resources can be disseminated rapidly across the network. This property is
often observed in random or in ’small-world’ networks.

◦ Local efficiency, fig.(XIa) . A complementary definition of efficiency can be given by averaging over all
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nodes a local notion of efficiency. The local efficiency El can be defined as

El =
1

N

∑

i

E(i)
g , (xli)

where E
(i)
g is the global efficiency of the subgraph induced by the node i and its neighbors. By looking

at the efficiency of each node’s immediate subnetwork, local efficiency provides insight into the network’s
robustness or resilience to failures or attacks. If a network has high local efficiency, the removal of a node
would not significantly disrupt communication between its neighboring nodes.

• Node degrees. The degree distribution of a network is a critical aspect to consider when studying network
structures, as it encapsulates fundamental information about the network’s structure, robustness to failures,
and information spreading dynamics, fig.(XIb).

Given a network, one may look directly at its degree distribution Pdeg(k) = nk/N where nk is the number of
nodes with degree k, or its cumulative distribution

P
(c)
deg(k) = Pdeg(j ≥ k) =

1

N

∑

j≥k

nj , nj = # nodes with degree j . (xlii)

Cumulative degree distributions are frequently employed in network analysis, especially for networks with heavy-
tailed degree distributions typical of many real-world systems. In fact, they offer an enhanced visualization of the
degree structure, reducing noise in the distribution’s tail and facilitating the identification of long-tail or power-
law behaviors indicative of scale-free networks. The distance between two cumulative distributions P (c), P̃ (c)

can be quantified e.g. by computing the Kolmogorov–Smirnov statistic:

DKS = sup
k

|P (c)(k)− P̃ (c)(k)| . (xliii)

VII. A ROADMAP

In this section, we point more in detail at relevant lines of development of our work.

A. More detailed models of a worm brain

The EE model of the C. elegans brain wiring dynamics designed in MS lends itself to a number of extensions for
achieving more detailed depictions of the underlying process. To start with, when formulating the biological function
F , simplicity can be traded for realism in several ways.

In the first place, the system’s representation. For instance, a natural extension of our approach would be to take
into account the directed nature of chemical synapses, by considering directed dyads (i → j), hence directed graphs.
From a technical point of view, this would entail storing 2L = N(N − 1) bits per graph – i.e., twice the memory L
needed for an undirected graph. The statistics eq.(3) in MS admit generalisations to the directed case, which however
require non-trivial modelling choices, see [34]. Directed graphs would allow modelling the existence of a feedforward
bias for synaptogenesis that increases with time, i.e. new synaptic connections mainly appear in the direction: sensory
neurons → (modulatory neurons →) interneurons → motor neurons [5]. As usual, this should be specified by including
a suitable term in the formulation of F .

A general and useful ERG-like term to model effects is the edge covariate:

x(G) =
1

2L

∑

i ̸=j

aijγij , (xliv)

here in the case of directed graphs, cf eq.(xii). The latter is a sum over all existing (directed) edges of the edge-
attribute γij . The latter can be used to specify a number of different effects. For this to be possible, the information
about γij of each possible dyad must be available. Three examples are the following.

◦ Feedworward bias. We define γij = 1 if the synaptic connections goes from sensory to motor neurons, γij = −1
if it goes in the opposite direction, γij = 0 if it connects neurons of the same time. Then, eq.(xliv) quantifies
the feedforward bias.
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◦ Homophilies. This refers to the fact that neurons in the worm’s brain are more likely to form a connection if
they share common attribute, see [14] for an overview. For example, there is a bilaterally symmetric pairing
homophily, i.e., neurons are more likely to be connected if they belong to a bilaterally symmetric pair, tab. III.
To account for such effect, we could use eq.(xliv) with γij = δ(αi, αj), where δ is the Kroenecker delta, and
αi = L,R if the i-th neuron belongs to the left or right part of the worm body, respectively.

◦ Spatial embedding. The worm brain network is embedded in the physical space [18]. Long connections are
anticipated to incur higher penalties due to increased wiring costs. The simplest way to take this into account
would be to use eq.(xliv) with γij corresponding to the euclidean distance between the cell bodies of each pair
of neurons.

Furthermore, the biological function F can be endowed with additional terms that can account for the presence
of stable neuronal circuits in the wiring [5]. For example, suppose that the (directed) triangle i → j → k → i is
of particular biological importance to the worm’s nervous system and is therefore expected to be disproportionately
conserved across individuals. A term of the form x(G) = 1− aijajkaki could be added to F . In the case of a negative
associated parameter θ, this term would reduce the likelihood of those graphs that do not have the above circuit.

According to the spirit of the approach here illustrated, the idea would be to include these effects (some, all, more)
in the formulation of the F metric and let the ERG estimation ”judge” which are the most relevant, as quantified by
the associated parameter θ. Large magnitudes would indicated relevancy, while θ ∼ 0 would indicate marginal or no
contributions to the observed network. More detailed models will allow for reproducing more detailed features of the
data. A systematic exploration of the space of possible models along the lines outlined above would holds considerable
interest and we envision this as a promising avenue for future investigations.

Zooming out to the EE framework, several possible refinements could improve the model realism. A straightforward
extension would implement the appearance of new neurons at different stages during the developmental dynamics,
as mentioned in sec. VIB 1. A less straightforward generalisation would be to abandon the hypothesis of time
homogeneity of the process. For instance, this would mean to use time dependent EE parameters µ(t), ρ(t), or even
a time dependent functional landscape – or, functional seascape – F (G, t). Here we are currently limited by the
availability of only a few snapshots of the worm brain, which limits the complexity of the hypotheses that can be
meaningfully made and tested. However, given the rapid advances in experimental imaging techniques, this family of
generalisations of the current approach may be within reach in the near future.

Finally, if and when data will be available, our model could be readily extended to different kinds of brain connec-
tivity, as for example the network of gap junctions within the C. elegans brain, or its functional connectivity [24].
Also, an exciting line of investigations would entail developing a similar model for different natural brains, whose
reconstruction are currently at different levels of completion: larval zebrafish, Drosophila, mouse (...) [21, 42, 43]

B. Beyond the brain wiring problem

The EE dynamics arise from the interplay between a stochastic exploration of the configuration space and a state-
dependent exploitation of the more functional states, regardless of the data representation. It encodes the interplay
between randomness and functional robustness of the dynamics. The brain wiring dynamics, we have argued, fits this
theoretical picture. However, EE dynamics can be used to describe also other types of dynamics, that can be placed
within the same conceptual framework. In the following, we anticipate some concrete possible examples (biological
and non-biological) that could be studied under the EE lens.

◦ Human brain diseases. Within connectomics applications, different questions can be asked, at different scales
of neuronal organisation. EE dynamics could be used to understand how the human brain – as reconstructed
from electrophysiological or neuroimaging experiments – longitudinally reorganises after a traumatic event. For
example, during the recovery from stroke, the brain tends to spontaneously explore local rewiring strategies
to reestablish functional connections both within the affected hemisphere and with the unaffected hemisphere
[44, 45]. Although at a different scale of neural organisation - here nodes are brain regions, edges measure
structural or functional connectivity – a similar approach to that developed in MS could be used to model
individual recovery/reorganisation dynamics, with the same rationale.

◦ Social contacts. Social bonds between individuals are essential for many living organisms. Modeling the result-
ing network formation is therefore crucial to understand, predict, and eventually influence the overall system
behavior. For example, the formation of a social network on digital platforms such as Twitter occurs when
users are exposed to various potential connections, often through suggested posts in their feeds or recommended
profiles. Some lead to the establishment of new social bonds, typically in the form of ’follow’ relationships.
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The probability of this process is influenced by several factors, including the degree of homophily among users
and the presence of mutual acquaintances [46]. When representing the social network as collections of nodes
(users) and directed edges (indicating ’follow’ relationships), these dynamics can be conceptualized as resulting
from two key drivers: (1) a non-uniform, stochastic exploration of the graph space and (2) a state-dependent
exploitation process driven by a ERG-like F accounting for homophilies (edge covariates) and graph-topological
effects – e.g., the presence of hub nodes (popular individuals) and clustering (well-connected communities).

◦ Spatial navigation. Beyond the network representation, the EE paradigm could be used also to study the problem
of spatial navigation in complex environments. For example, the slime mold Physarum polycephalum uses a form
of reactive navigation to explore its environment. In the presence of attractants like food, its cytoplasm flows
stochastically toward the food source, while repellents like light or salts push it away. Moreover, as the slime mold
forages, it leaves behind a trail of nonliving extracellular slime, which it later avoids. This simple, noneuronal
organism is able to solve complex navigation tasks, such as the U-shaped trap problem [47]. In terms of an EE
dynamics, this can be modeled as (i) a stochastic exploration of the physical space, and (ii) a state-dependent
exploitation driven by a F metric which enforces hard constraints (physical barrier and previous path), soft
constraints (repellents) and favors those displacements that minimise the distance from the food source.

24


