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ABSTRACT

The aim of few-shot learning (FSL) is to learn how to recog-
nize image categories from a small number of training exam-
ples. A central challenge is that the available training exam-
ples are normally insufficient to determine which visual fea-
tures are most characteristic of the considered categories. To
address this challenge, we organise these visual features into
facets, which intuitively group features of the same kind (e.g.
features that are relevant to shape, color, or texture). This is
motivated from the assumption that (i) the importance of each
facet differs from category to category and (ii) it is possible to
predict facet importance from a pre-trained embedding of the
category names. In particular, we propose an adaptive simi-
larity measure, relying on predicted facet importance weights
for a given set of categories. This measure can be used in
combination with a wide array of existing metric-based meth-
ods. Experiments on miniImageNet and CUB show that our
approach improves the state-of-the-art in metric-based FSL.

Index Terms— Few-shot learning, multi-facet represen-
tations, metric-based learning, BERT

1. INTRODUCTION

Few-shot learning aims to recognize new image categories
given only a few labeled examples. Most existing methods
either fall into the meta-learning based [1, 2, 3] or the metric-
based [4, 5, 6, 7] paradigms. In this paper, we focus in partic-
ular on metric-based few-shot learning methods, which have
received a lot of attention due to their simplicity, flexibility
and effectiveness. These methods aim to learn an embedding
space in which the similarity of images can be evaluated using
a pre-defined metric, such as Euclidean distance.

Early work on one-shot learning used Siamese networks
[8] to learn appropriate embedding spaces. Beyond one-shot
learning, [7] introduced an episode-based training strategy
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and proposed Matching Network, an FSL model which com-
bines a weighted nearest-neighbor classifier with an atten-
tion mechanism. ProtoNet [5] first constructs a prototype for
each category, by taking the mean of all the corresponding
training examples, and then classifies test images based on
the nearest prototype. Instead of fixing a pre-defined metric,
Relation Network [4] learns a deep distance metric to com-
pare each query-support image pair. The recently introduced
FEAT model [6] applies a transformer [9] to contextualize the
image features relative to the support set in a given task.

The aforementioned methods only rely on visual features.
However, in addition to the training examples, we usually
also have access to the names of the image categories to be
learned. AM3 [10] uses a pre-trained embedding of these cat-
egory names, using the GloVe word embedding model [11],
to predict visual prototypes. TRAML [12] also uses GloVe
vectors, but instead uses them to get prior information about
which categories may be most difficult to separate. More pre-
cisely, TRAML uses the word vectors to implement an adap-
tive margin-based model.

In this paper, we propose a third way in which word vec-
tors may be used to improve metric based FSL models. Our
starting point is that we can intuitively think of the visual
features as capturing different facets, such as shape, texture,
color, etc. The relative importance of these facets moreover
strongly depends on the considered image categories. For ex-
ample, color-related facets are likely to be important to clas-
sify image from the ‘desert’ category, whereas shape-related
facets may be more important for images from the ‘cat’ cat-
egory. Therefore, we propose a method to predict the impor-
tance of the different facets for a given category, based on
a pre-trained embedding of the category name. In addition
to using GloVe vectors for representing the category names,
we also experiment with embeddings that are obtained using
the BERT language model [13]. The facets themselves are
generated by clustering the coordinates of the visual feature
vectors, using a similarity metric that is based on which visual
classes can be discriminated well by the different coordinates.



2. BACKGROUND ON FSL

We briefly recall the few-shot learning (FSL) setting. Let a
set of base classes Cbase and a disjoint set of novel classes
Cnovel be given. These two sets differ in the number of avail-
able training images: whereas a sufficiently large number of
training examples is given for the classes from Cbase, only a
few training examples are available for the classes in Cnovel.
The goal of FSL is to obtain a classifier that performs well for
the novel classes in Cnovel. Usually, an N -way K-shot setting
is assumed, where there are N novel classes and K train-
ing examples per class, where typically K ∈ {1, 5}. Rather
than using a fixed training-test split, FSL models are typically
evaluated using so-called episodes. Specifically, in each test
episode, N classes from Cnovel are sampled, and K labelled
examples from each class are made available for training. The
remaining images from the N sampled classes are then used
as test examples. The support set of an episode is the set of
sampled training examples. We write it as S = {(xsi , ysi )}

ns

i=1,
where ns = N × K, xsi are the sampled training exam-
ples and ysi are the corresponding class labels. Similarly, the
query set contains the sampled test examples and is written
as Q = {(xqi , y

q
i )}

nq

i=1. To train FSL models, we also adopt
an episode-based approach, as proposed by [7]. The model is
thus trained by repeatedly sampling N -way K-shot episodes
from Cbase, rather than by using Cbase directly.

In our proposed method, we will rely on ProtoNet [5],
which is one of the most popular metric-based FSL meth-
ods. Throughout the paper, we assume that the visual features
fθ(x) ∈ Rnv of an image x are extracted by a CNN model
such as ResNet [14]. Following ProtoNet, we construct a vi-
sual prototype vc of a class c by averaging the visual features
of all training images from this class, in a given episode p:

vc =
1

K

∑
{fθ(xsi ) | (xsi , c) ∈ Sp} (1)

where Sp = {(xsi , ysi )}
ns

i=1 is the support set of episode p.

3. METHOD

In Section 3.1, we first explain how the BERT language
model can be used to obtain pre-trained embeddings of visual
classes, based on their names. Subsequently, in Section 3.2
we explain the visual features can be decomposed into mean-
ingful facets, without introducing additional parameters into
the overall model, which is an important requirement in the
context of few-shot learning. Finally, Section 3.3 introduces
our facet-weighted similarity computation, and explains how
this adaptive similarity measure can be used in combination
with metric-based models such as ProtoNet.

3.1. Class Name Embeddings

We now explain how we use BERT [13] to get vector repre-
sentations of class names. BERT represents sentences as se-

quences of so-called word-pieces. These correspond to words
and sub-word tokens, where the latter are used to encode rare
words. Each word-piece is represented by a static input vec-
tor. BERT maps a sequence of input vectors (corresponding
to the word-pieces from a given sentence) onto a sequence of
output vectors, which intuitively represent the meaning of the
word-pieces within the context of the sentence. When rep-
resenting the input, we can also replace words or phrases by
a special [MASK] symbol. The corresponding output vec-
tor then captures what the sentence reveals about the missing
word or phrase. We follow this approach to obtain class name
embeddings. Specifically, let C be the set of classes for which
we want to learn an embedding. For each class c ∈ C, we
collect a number of sentences S(c) = s1, ..., sm that men-
tion the name of this class. In particular, for our experiments
we sampled m = 1000 such sentences from the May 2016
English Wikipedia dump. In each of the sampled sentences,
we replace the name of the class by [MASK] and compute
the corresponding output vector. The final embedding of the
class name is obtained by averaging the resulting m output
vectors. In practice, the classes often correspond to WordNet
synsets. For each class, we may then have several synony-
mous names. In such cases, we first get a vector for each
name from the synset, in the aforementioned way, and then
average the resulting vectors.

3.2. Facet Identification

Our aim is to group the coordinates of the visual feature
vectors fθ(x), such that coordinates from the same group
intuitively refer to similar aspects. Formally, we want to
find a partition X1, ..., XF of the set of coordinate indices
{1, ..., nv}. We write f iθ(x) for the restriction of fθ(x) to the
indices in Xi. For each image x we thus have F different
vectors, f1θ (X), ..., fFθ (X), each of which intuitively focuses
on a different facet. A key problem is that we want to identify
these facets, i.e. the partition classes Xi, without introducing
(too many) additional parameters, to prevent overfitting. For
this reason, we will treat the problem of finding the facets
X1, ..., XF as a clustering problem. To this end, we need
a similarity measure between coordinates, capturing how
closely related the corresponding visual feature are.

Before explaining how we measure the similarity between
different coordinates, we first introduce a measure of coordi-
nate (or feature) importance. In particular, for a given training
episode p, we determine how important coordinate i is in dif-
ferentiating the classes that were sampled. After computing
the prototypes for each class, according to Eq. 1, we take into
account how often the ith coordinate of a training example is
closer to the ith coordinate of the prototype of its own class
than to the ith coordinate of the prototypes of the other N − 1
classes. For a vector a, we write a[i] to denote its ith coordi-
nate. The importance of the ith coordinate, for the class c, is



then computed as follows:

aic=
∑
(xj ,c)

RELU

(∑
d∈Cp\{c} ‖fθ(xj)[i]− vd[i]‖22
(N − 1) ‖fθ(xj)[i]− vc[i]‖22

− 1

)

where Cp is the set of classes from the current episode p and
|Cp| = N . The outer summation is taken over all the avail-
able labelled examples (xj , c) of class c (i.e. covering both
the support and query set). Note that the argument of RELU
is positive if fθ(xj)[i] is closer to the ith coordinate of the pro-
totype of c is than to the ith coordinate of the prototypes of the
other classes, on average. We then define ai = 1

N

∑
c∈Cp

aic.
In other words, the importance ai of coordinate i, for a given
episode, is defined as the average of its importance for the
different classes. We repeat this computation for m different
episodes, where each time N classes are sampled from Cbase.
We then construct an m×nv matrix A, where the element on
the jth row and ith column is the importance score ai that was
found for the jth episode.

To determine how closely (the visual features correspond-
ing to) two coordinates i and j are related, we measure how
strongly their importance scores ai and aj are correlated. To
this end, we compute the Kendall τ statistic between the ith

and jth column of A. Let us write eij ∈ [−1, 1] for the re-
sulting value. Note that eij is close to 1 if the coordinates i
and j are important for the same episodes, whereas a value
close to -1 would mean that whenever i is important, j tends
to be unimportant, and vice versa. Then, we use average-
link agglomerative hierarchical clustering to partition the set
{1, ..., nv} into the facetsX1, ..., XF , where the values e(i, j)
are used to measure similarity. The number of facets F is
treated as a hyper-parameter.

3.3. Similarity Computation

When computing the similarity between a query image and
a class prototype, in a metric-based FSL model such as Pro-
toNet, we now want to take into account the relative impor-
tance of different facets. In particular, for a given test episode,
we first predict the importance of each facet using the embed-
dings nc that we obtained using BERT, as explained in Sec-
tion 3.1. To this end, we introduce a facet-importance gen-
eration network ge, which maps nc onto an F -dimensional
vector, intuitively capturing the importance of each of the F
facets for class c:

bc = ge(n
c) (2)

where bc ∈ RF . We obtain the final facet importance weights
by applying a softmax layer to bc as follows:

(η1c , ..., η
F
c ) = SOFTMAX(bc) (3)

Finally, we write ηi for the average of the facet-importance
scores across the set of classes Cp from the given test episode,

i.e.
ηi =

1

N

∑
c∈Cp

ηic

Given these importance scores, we can measure the distance
between a query image q and the prototype of class c as a
weighted sum of facet-specific distances, as follows:

fdist(q, c) =
F∑
i=1

ηi ‖f iθ(q)− vic‖22 (4)

Rather than using fdist(q, c) directly, we combine fdist(q, c)
with the standard Euclidean distance, as used in ProtoNet, as
follows:

dist(q, c) = ‖fθ(q)− vc‖22 + λ fdist(q, c) (5)

where λ ≥ 0 is a hyper-parameter to control the contribution
of the facet-weighted similarity computation. Note in partic-
ular that for λ = 0 we recover the original ProtoNet model.
In the same way, we can also combine fdist(q,c) with the dis-
tance metrics from other metric-based FSL models, such as
FEAT.

4. EXPERIMENTS

In this section, we evaluate whether standard FSL methods
can be improved by incorporating our proposed facet-specific
distance measure.

4.1. Dataset

We conduct experiments on two benchmark datasets: mini-
ImageNet [7] and CUB [15]. The miniImageNet dataset is a
subset of ImageNet [16]. It consists of 100 classes. For each
of these classes, 600 labeled images of size 84 × 84 are pro-
vided. We adopt the common setup introduced by [1], which
defines a split of 64, 16 and 20 classes for training, valida-
tion and testing respectively. The CUB dataset contains 200
classes and 11 788 images in total. We used the splits from
[17], where 100 classes are used for training, 50 for valida-
tion, and 50 for testing.

4.2. Training details

We evaluate our method on 5-way 1-shot and 5-way 5-
shot settings. Following the standard training strategy, we
train 60 000 episodes in total for miniImageNet and 40 000
episodes for CUB. We use m = 5000 episodes to com-
pute the Kendall τ statistics. During the test phase, 600
test episodes are generated. We report the average accuracy
as well as the corresponding 95% confidence interval over
these 600 episodes. To obtain the BERT-based vectors, we
use the BERT-large-uncased model, which yields 1024 di-
mensional vectors. As the backbone network for producing



Table 1. The 5-way 5-shot accuracies (%) with a 95% confi-
dence interval on the miniImageNet dataset.

Method Backbone Word Embeddings 5-way 5-shot

ProtoNet ResNet-10 None 73.24 ± 0.63
Ours(ProtoNet) ResNet-10 GloVe 74.10 ± 0.61
Ours(ProteNet) ResNet-10 BERT 75.24 ± 0.76

Table 2. The mean accuracies (%) with a 95% confidence
interval on the miniImageNet dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [2] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Reptile [18] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [19] WRN-28 61.76 ± 0.08 77.59 ± 0.12
MTL [20] ResNet-12 61.20 ± 1.80 75.50 ± 0.80
MetaOptNet-SVM [21] ResNet-12 62.64 ± 0.61 78.63 ± 0.46

Matching Net [7] Conv-64 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [5] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [4] Conv-64 50.44 ± 0.82 65.32 ± 0.70
ProtoNet [5] ResNet-12 56.52 ± 0.45 74.28 ± 0.20
TADAM [22] ResNet-12 58.50 ± 0.30 76.70 ± 0.38
AM3(ProtoNet, BERT) ResNet-12 62.11 ± 0.39 74.72 ± 0.64
AM3(ProtoNet, GloVe) ResNet-12 62.43 ± 0.80 74.87 ± 0.65
AM3(ProtoNet++) [10] ResNet-12 65.21 ± 0.49 75.20 ± 0.36
TRAML(ProtoNet) [12] ResNet-12 60.31 ± 0.48 77.94 ± 0.57
DSN-MR [23] ResNet-12 64.60 ± 0.48 79.51 ± 0.50
DeepEMD [24] ResNet-12 65.91 ± 0.82 82.41 ± 0.56
FEAT [6] ResNet-12 66.78 82.05

Ours(ProtoNet) ResNet-12 63.21 ± 0.37 77.84 ± 0.64
Ours(FEAT) ResNet-12 67.24 ± 0.58 82.51 ± 0.66

the visual feature embeddings, we consider ResNet-10 [14]
for ablation study, ResNet-12 and Conv-64 [5] for miniIma-
geNet and CUB respectively for fair comparison with other
methods. The remaining parameters were selected based on
the validation set. This resulted in a choice of λ = 10 for
miniImageNet and λ = 8 for CUB, while F was set to 7 for
miniImageNet and 5 for CUB.

4.3. Ablation Study

Our main hypothesis in this paper is that meaningful facet-
importance scores can be predicted from class name embed-
dings. In Table 1 we directly test this hypothesis by compar-
ing (i) the standard ProtoNet model, (ii) a variant of our model
in which GloVe vectors are used instead and (iii) the proposed
model based on BERT. As can be seen, both variants of the
facet-guided method outperform the ProtoNet baseline, with
the BERT-based vectors outperforming GloVe vectors.

4.4. Comparison with State-of-the-art

Tables 2 and 3 compare our method against state-of-the-art
methods on miniImageNet and CUB respectively. As can
be seen in Table 2, when using ProtoNet as the base model,
our method significantly outperforms the standard ProtoNet
model, both in the 1-shot and 5-shot settings, with the differ-
ence being most pronounced in the 1-shot case. When FEAT

Table 3. The mean accuracies (%) with a 95% confidence
interval on the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net Conv-64 61.16 ± 0.89 72.86 ± 0.70
ProtoNet Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [25] Conv-64 69.35 ± 0.22 81.37 ± 0.15
DN4 [26] Conv-64 53.15 ± 0.84 81.90 ± 0.60

Ours(ProtoNet) Conv-64 69.52 ± 0.76 82.34 ± 0.66

is used as the base model, we again see a consistent improve-
ment compared to the standard FEAT model. This version of
our model also achieves the best results overall. The AM3 and
TRAML models are of particular interest, because they also
incorporate word vectors. For the case of AM3, in addition to
the standard variant, which uses GloVe, we also obtained re-
sults with our BERT based class embeddings. This shows that
the improvements we obtain over AM3 are not only due to the
change from GloVe to BERT. In fact, in the case of AM3, the
BERT based vectors actually underperform the GloVe vec-
tors, presumably as as result of their much higher dimension-
ality. For TRAML, we only report the published results, as
we did not have access to the implementation of this model.
For the results on CUB in Table 3, we can see that our method
improves on the standard ProtoNet model in a very substantial
way, and our model again achieves the best results overall.

5. CONCLUSION

We have proposed a method to improve the performance of
metric-based approaches for few-shot image classification by
taking embeddings of class names into account. Different
from existing methods, we use these class name embed-
dings to predict the performance of different facets, and
then measure the distance between images and prototypes
as a weighted sum of facet-specific distances. The resulting
facet-based distance can then be combined with a standard
distance, e.g. the Euclidean distance in the case of ProtoNet.
Experiments on two standard datasets showed consistent im-
provements compared to state-of-the-art methods. We also
found that class name embeddings obtained from the BERT
language model yielded better results than GloVe vectors,
despite the ongoing popularity of the latter in FSL models.
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