
HAL Id: hal-04404193
https://hal.science/hal-04404193

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient algorithm for virtual network function
scaling

Omar Houidi, Oussama Soualah, Wajdi Louati, Marouen Mechtri, Djamal
Zeghlache, Farouk Kamoun

To cite this version:
Omar Houidi, Oussama Soualah, Wajdi Louati, Marouen Mechtri, Djamal Zeghlache, et al.. An
efficient algorithm for virtual network function scaling. 2017 IEEE Global Communications Conference
(GLOBECOM 2017), Dec 2017, Singapore, France. pp.1-7, �10.1109/GLOCOM.2017.8254727�. �hal-
04404193�

https://hal.science/hal-04404193
https://hal.archives-ouvertes.fr

An Efficient Algorithm for
Virtual Network Function Scaling

Omar Houidi∗†, Oussama Soualah∗, Wajdi Louati‡, Marouen Mechtri§, Djamal Zeghlache∗ and Farouk Kamoun†
∗Telecom SudParis, Samovar-UMR 5157 CNRS, University of Paris-Saclay, France

§Orange Labs, Paris, France
‡ReDCAD Lab, University of Sfax, Tunisia

†CRISTAL Lab, National School of Computer Sciences, University of Manouba, Tunisia

Email: {omar.houidi, oussama.soualah, djamal.zeghlache}@telecom-sudparis.eu,

wajdi.louati@redcad.org, marouane.mechteri@orange.com, frk.kamoun@planet.tn

Abstract—Network Functions Virtualization (NFV) has been
revolutionizing and improving the way networking services are
deployed but also requires the dynamic scaling of resources
during the lifecycle management of Virtual Network Functions
(VNFs) with increasing service demand. We propose an Integer
Linear Programming (ILP) approach and a Greedy heuristic to
address this NP-Hard scaling problem. Both horizontal (scale
out/in) and vertical (scale up/down) scaling are considered and
the scalability of the ILP is addressed by reducing the number
of candidate hosts in the search space. Extensive simulations
evaluate the performance of the algorithms in successful scalings
and VNF migrations and highlight the importance of using the
algorithms to tidy up the infrastructure to accept more users. The
results show that the ILP can outperform the Greedy heuristic
if appropriate actions are selected.

Keywords: Network Functions Virtualization, VNF Scaling,
Migration.

I. INTRODUCTION

Network Functions Virtualization (NFV) has emerged as
an innovative concept to reduce cost, improve flexibility and
accelerate service deployment for network providers by de-
coupling functions (such as NATs, firewalls, load balancers,
DNS...) from dedicated hardware and moving them to virtual
servers. The SNS Telecom report [1] estimates that service
provider SDN and NFV investments will grow at a Compound
Annual Growth Rate (CAGR) of 46% between 2016 and 2020.
As service providers seek to reduce costs and virtualize their
networks, these investments will eventually account for over
$18 Billion in revenue by the end of 2020.

In NFV based environment, one of the most important
challenges for providers is to efficiently allocate hosting
resources to dynamic virtualized network services demands
while increasing revenue. Elastic mechanisms and scaling
algorithms are essential to improve adaptation and deployment
of Virtual Network Functions (VNFs) in NFV infrastructures
to support increasing traffic load and customer demands.

As introduced in [2] and [3], Virtual Network Function
scaling is triggered by new client requirements and/or rising
traffic load due, for example, to an increase in the user plane
traffic or the need of allocating more resources to a VNF to
avoid service interruption.

To enhance initial VNF placement with dynamic adaptation,
three scaling mechanisms are defined in [3] and [4]: i) Hori-
zontal scaling (scale out/in): Add/remove virtualized resources
(e.g., VNF Components (VNFCs)), ii) Vertical scaling (scale
up/down): Reconfigure the capacity/size of existing virtualized
resources and iii) VNF migration.

To address this NP-Hard elasticity problem [5], we propose
an exact algorithm and a Greedy heuristic. An Integer Linear
Programming (ILP) formulation with a search space reduc-
tion is adopted to improve scalability. A Greedy algorithm
searching for a scaling solution in the neighborhood of initial
placement is also presented. Comparisons between the two
approaches show that an adequately tuned and devised ILP
can outperform Greedy solutions in terms of proportion of
successful scalings.

Section II of this paper presents the related work. The
system model is described in Section III. The proposals are
introduced in Section IV. Section V reports the performance
evaluation results.

II. RELATED WORK

We review the VNF scaling problem with emphasis on
the dynamic expansion and adaptation of Virtualized Net-
work Function-Forwarding Graphs (VNF-FGs). A VNF-FG
corresponds to a set of networked VNFs providing chained
network services with specified traffic steering and flow paths.
The review covers consequently the related work on VNF-FG
placement and related work on VNF adaptation and config-
uration through scaling and migration. Prior work on Virtual
Network Embedding (VNE) adaptation using migration and
scaling is also included in the presentation for completeness.

VNF-FG placement and chaining was formulated and solved
as a Integer Linear Programming in [6], [7], [8], and [9]. These
methods are efficient in finding exact solutions but are subject
to combinatorial explosion and do not scale with problem
size. Heuristic algorithms are typically proposed to scale
better with problem size. A baseline Greedy algorithm [10],
using a bipartite graph construction and matching techniques,
for VNF-FG placement and chaining, solves the problem in
two steps: first mapping VNFs on physical hosts and second
steering inter-VNF traffic across the hosts. In all these previous
works, VNF scaling and migration are not considered to
address increasing requirements and load on network functions
and hosting resources.

Migration has been used in the VNE context. Several
dynamic algorithms using reconfiguration optimize substrate
resources for virtual networks. Authors of [11] propose a path
migration algorithm for reconfiguring and rerouting virtual
links, unfortunately do not consider adaptation of the vir-
tual nodes and thus find suboptimal solutions. An iterative
algorithm, called Virtual Network Reconfiguration (VNRe), is
presented in [12] to ensure load balancing among substrate

nodes and reduce the rejection rate caused by congested
substrate links. In [13], the authors propose an adaptive
optimization algorithm which selects only critical VN requests
for reconfigurations. Despite this selection of most critical VN
requests, computational cost and service disruptions remain
important at large scale. The more important body of work
on scaling and migrating services in VNE is not directly
applicable to the VNF-FG placement problem. VNE and VNF
graph placement are distinct and have different characteristics
[9], [8], [14]. VNE requests are modeled by simple undirected
graphs while VNF chains are more complex and contain both
the VNFs to place and the traffic flows to steer between the
VNF-FG end points.

Few works address virtual network function scaling and
migration to ensure dynamic VNF chain placement for rising
demand and traffic load. Authors of [3] propose a consolida-
tion algorithm called Simple Lazy Facility Location (SLFL)
that optimizes the placement of the VNF instances in response
to on-demand workload. SLFL chooses the VNF instances to
be migrated on the basis of the instantaneous reconfiguration
but does not assess the impact (induced benefits or penalties)
of these decisions on future instants.

Bandwidth guaranteed VNF placement and scaling in Data-
center is considered in [15]. Leveraging the tree-like topology
of Datacenter networks, this work proposes an on-line heuristic
algorithm that achieves a near optimal allocation. Note that
these two cited approaches do not take into account migration
cost. In [5], authors proposed an Integer Linear Programming
(ILP) model to solve the network function migration problem.
In the rest of the paper, we denote this competitor algorithm by
(ILP C) that proposes a migration cost model and a heuristic
algorithm to decrease the migration cost. Note that these
algorithms do not consider scaling and elasticity to optimize
resource utilization.

We address in this paper, through an ILP solution, the
tradeoff between cost and performance when using VNF
instances scaling and migration to adapt virtualized network
functions graphs to increasing demand and workload.

III. PROBLEM FORMULATION

This section models the VNFs and the VNF-FG scaling
problem and derives an ILP solution that ensures placement
and scaling for increasing demands with minimal cost and
service interruptions.

A. Substrate and virtual networks models

The physical network (commonly known as substrate and
physical infrastructure and use interchangeably), as defined
by the ETSI NFV Infrastructure (NFV-I) [16], is modeled as
an undirected weighted graph, denoted by 𝐺𝑝 = (𝑁𝑝, 𝐸𝑝)
where 𝐸𝑝 is the set of physical links and 𝑁𝑝 is the set of
physical nodes. Each substrate node, 𝑘 ∈ 𝑁𝑝, is characterized
by its i) available processing power (i.e., CPU) denoted by
𝐶𝑃𝑈𝑘, and ii) type 𝑇𝑘: switch, server or Physical Network
Function (PNF) [17], where PNFs are the traditional physical
middleboxes offering network functions. A PNF is a dedicated
hardware that implements a network function. Each virtual link
(i.e., 𝑒 ∈ 𝐸𝑝) is characterized by its available bandwidth 𝐵𝑊𝑒.

A client request (i.e., requested service function chain) is
modeled as a directed graph 𝐺𝑣 = (𝑁𝑣, 𝐸𝑣) where 𝑁𝑣 is the
set of virtual nodes and 𝐸𝑣 is the set virtual links in the graph.
Each virtual node, 𝑖 ∈ 𝑁𝑣 , is characterized by its i) required

processing power 𝑐𝑝𝑢𝑖 and ii) its type 𝑡𝑖: VNF or switch (i.e.,
ingress or egress). Each virtual link (𝑖𝑗) ∈ 𝐸𝑣 is described
by its required bandwidth 𝑏𝑤𝑖𝑗 . Note that the VNFs can be
hosted only into server or PNFs having the same type. The
ingress and egress nodes can be hosted only into switches.

B. Scaling Problem

Fig. 1: VNF scaling [2]

Before the expiration of a tenant or user VNF-FG lifetime,
the resources requirements of the VNFs in the forwarding
graph can increase with rising demand. This will entail the
spawning of new VNF instances, the allocation of additional
hosting resources and possible the migration of the VNFs to
other more capable physical hosts. For example, a firewall
may need to install more filtering and control rules or handle
more applications and users. Figure 1 depicts examples some
of these scaling actions to respond to rising requirements and
demand. ETSI [2] defines the type of scalings as follows:

1) When a VNF is scaled out, new VNF components
(VNFCs) are instantiated and added to the VNF. Under
such circumstances, the VNF may need a mechanism to
distribute the load or traffic among the VNFCs (newly
instantiated and existing VNFCs). This distribution can
be accomplished through the use of load balancers (see
figure 1(a)).

2) When a VNF is scaled in, one or more VNFCs of a
VNF are terminated.

3) When a VNF is scaled up, it is assigned additional
NFVI resources such as compute cores, memory, stor-
age, or network resources (see figure 1(b)).

4) When a VNF is scaled down, NFVI resources that have
been previously allocated to the VNF are de-allocated.

From the point of view of physical resource consumption,
scaling out and scaling up can be treated the same way (i.e.,
increasing VNF scale is accomplished by scaling out or scaling
up [2]) despite technical deployment differences. Both actions
require additional resources and result in increased physical

resources consumption. Scaling out and up are taken into
account in our proposed model and optimization algorithms.

IV. PROPOSALS

We propose an Integer Linear Programming solution and
a Greedy algorithm to address the VNF scaling problem. We
assume that the scaling concerns the 𝑖𝑡ℎ VNF in the VNF-FG.
Hence, 𝑖 is fixed (i.e., not variable) for each scaling request.

A. ILP Solution

We now formulate the ILP model for virtual network func-
tion scaling. Table I summarizes the parameters and the used
variables. The model includes integrity constraints associated
to the objective function used to achieve optimal scaling.

Node re-mapping constraint: Each scaled VNF 𝑖 is re-
mapped to exactly one physical candidate node 𝑘. A VNF
(i.e., its components (VNFCs)) can not be split into (distributed
across) many physical nodes. This is expressed by:

∑

𝑘∈𝒞

𝑥𝑖𝑘 = 1 (IV.1)

where:

𝑥𝑖𝑘 =

{

1, if the VNF 𝑖 is re-mapped to physical node 𝑘;

0, otherwise.

(IV.2)
Capacity constraint: This constraint ensures that the resid-

ual capacity in a physical node 𝑘 satisfies the required capacity
by VNF 𝑖. This leads to the following inequality:

𝑐𝑝𝑢𝑖 × 𝑥𝑖𝑘 ≤ 𝐶𝑃𝑈𝑘, ∀𝑘 ∈ 𝒞 (IV.3)

Link re-mapping constraint: Each virtual link (𝑖𝑗) will
be re-mapped to exactly one physical path 𝑃𝑘,𝑚(𝑗) where

𝑘 is a physical candidate for the 𝑖𝑡ℎ VNF and 𝑚(𝑗) is the
initial mapping location of the 𝑗𝑡ℎ VNF. Note that 𝑖 and 𝑗 are
neighbors in the VNF-FG request.

∑

𝑘∈𝒞

𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
= 1, ∀(𝑖𝑗) ∈ 𝐸𝑁 (𝑖) (IV.4)

where:

𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
=

⎧

⎨

⎩

1, if the virtual link (𝑖𝑗) is re-mapped

to physical path 𝑃𝑘,𝑚(𝑗);

0, otherwise.
(IV.5)

Bandwidth constraint: Obviously the residual bandwidth
in a physical path 𝑃𝑘,𝑚(𝑗) has to satisfy the bandwidth require-
ment of virtual link (𝑖𝑗). We should not violate the remaining
bandwidth of each physical link 𝑒 ∈ 𝐸𝑝 on the physical path
𝑃𝑘,𝑚(𝑗). This condition can be formally expressed as:

∑

(𝑖𝑗)∈𝐸𝑁 (𝑖)

𝑏𝑤𝑖𝑗 × 𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
× 𝛿𝑒𝑝 ≤ 𝐵𝑊𝑒,

∀𝑒 ∈ 𝑃𝑘,𝑚(𝑗), ∀𝑃𝑘,𝑚(𝑗) ∈ 𝒫

(IV.6)

Node and link re-mapping constraint: When a VNF 𝑖 is
re-mapped to a physical candidate node 𝑘, each virtual link
(𝑖𝑗), starting from VNF i, has to be re-mapped to a physical
path 𝑃𝑘,𝑚(𝑗) having 𝑘 as one of its endpoint or extremity. The
other endpoint is 𝑚(𝑗) (i.e., where 𝑗 is a neighbor of 𝑖 in
VNF-FG).

𝑥𝑖𝑘 = 𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
, ∀(𝑖𝑗) ∈ 𝐸𝑁 (𝑖), ∀𝑘 ∈ 𝒞 (IV.7)

TABLE I: Main notations

Notation Description

𝐶𝑃𝑈𝑘 Residual capacity in a physical node 𝑘

𝑚(𝑗) Initial mapping location of VNF 𝑗

𝑃𝑘,𝑚(𝑗) Physical path interconnecting physical nodes 𝑘

and 𝑚(𝑗)

𝐵𝑊𝑃𝑘,𝑚(𝑗)
Residual bandwidth in a physical path 𝑃𝑘,𝑚(𝑗)

𝒞 Set of physical node candidate

𝒫 Set of physical path candidate

𝑚𝑖𝑛𝐶𝑃𝑈 The minimum capacity in 𝒞

𝐵𝑊𝑒 Residual bandwidth in one physical link 𝑒

𝛿𝑒𝑝 A binary coefficient determining whether physical

link 𝑒 ∈ 𝐸𝑝 belongs to path 𝑃𝑘,𝑚(𝑗) ∈ 𝒫 :

𝛿𝑒𝑝 = 1 ⇔ 𝑒 ∈ 𝑃𝑘,𝑚(𝑗)

𝐸𝑁 (𝑖) Set of virtual links (𝑖𝑗) where 𝑗 is a virtual neighbor

of 𝑖

𝑐𝑝𝑢𝑖 Required capacity by virtual node 𝑖

𝑏𝑤𝑖𝑗 Required bandwidth between virtual nodes 𝑖 and 𝑗

𝑥𝑖𝑘 A boolean variable indicating whether VNF 𝑖

is re-mapped to physical node 𝑘

𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
A boolean variable indicating whether virtual link

(𝑖𝑗) is re-mapped to physical path 𝑃𝑘,𝑚(𝑗)

Δ𝑡𝑟 Remaining time of request before departure

𝛿𝑡 Required time to migrate one capacity unit

𝑅𝑒𝑣𝑢 Revenue unit

𝑃𝑒𝑛𝑢 Penalty unit

Objective function: We are interested in minimizing the
service interruption time caused by scaling and favor for this
reason new physical hosts with the most available resources.
This should also maximize the revenue of the providers that
can maintain services and tidy up their infrastructures to accept
more users.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍

Where:

𝑍 = (Δ𝑡𝑟 × 𝑐𝑝𝑢𝑖 ×𝑅𝑒𝑣𝑢)×
∑

𝑘∈𝒞
𝐶𝑃𝑈𝑘

𝑚𝑖𝑛𝐶𝑃𝑈
× 𝑥𝑖𝑘

− (𝛿𝑡 × 𝑐𝑝𝑢𝑖 × 𝑃𝑒𝑛𝑢)×
∑

𝑘∈𝒞∖{𝑚(𝑖)} 𝑥𝑖𝑘

(IV.8)

The addressed VNF scaling problem is summarized by
lumping the objective function and the constraints:

maximize 𝑍

subject to:
∑

𝑘∈𝒞 𝑥𝑖𝑘 = 1

𝑐𝑝𝑢𝑖 × 𝑥𝑖𝑘 ≤ 𝐶𝑃𝑈𝑘, ∀𝑘 ∈ 𝒞
∑

𝑘∈𝒞 𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
= 1, ∀(𝑖𝑗) ∈ 𝐸𝑁 (𝑖)

∑

(𝑖𝑗)∈𝐸𝑁 (𝑖) 𝑏𝑤𝑖𝑗 × 𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
× 𝛿𝑒𝑝 ≤ 𝐵𝑊𝑒,

∀𝑒 ∈ 𝑃𝑘,𝑚(𝑗), ∀𝑃𝑘,𝑚(𝑗) ∈ 𝒫

𝑥𝑖𝑘 = 𝑦𝑖𝑗,𝑃𝑘,𝑚(𝑗)
, ∀(𝑖𝑗) ∈ 𝐸𝑁 (𝑖), ∀𝑘 ∈ 𝒞

Problem 1: VNF scaling optimization summary

B. Heuristic Algorithm

We also propose a Greedy algorithm for VNF scaling and
re-mapping to compare with our ILP and gain some insight
on achievable performance, benefits and strengths of the exact
modeling approach. The proposed Greedy algorithm operates
using the following 5 steps:

1) check initial mapping 𝑚(𝑖) capacity: if the remaining
resource in node 𝑚(𝑖) can satisfy the new required

capacity by VNF 𝑖, scaling occurs in the same physical
node 𝑚(𝑖) (i.e., without migration). Else, use migration
to scale;

2) find a set of neighboring physical candidate nodes 𝒞
related to m(i);

3) check candidate node re-mapping: if node 𝑘 capacity
and type constraints are met, move to links capacities
checking;

4) compute the shortest path between candidate 𝑘 and all
physical nodes 𝑚(𝑗) (where 𝑗 is a virtual neighbor of 𝑖)
using Dijkstra’s algorithm based on available bandwidth.
In fact, this corresponds to computing the best paths
that maximize the minimum bandwidth along their route
between 𝑘 and 𝑚(𝑗);

5) check link re-mapping: if links capacities are respected,
confirm candidate 𝑘 as re-mapping solution.

Algorithm 1: Scaling Greedy pseudo-code

1 Inputs: 𝐺𝑝, VNF 𝑖, 𝑐𝑝𝑢𝑖

2 Output: VNF 𝑖 scaled
3 𝑚(𝑖) ← GetInitialMapping(VNF 𝑖)
4 if 𝐶𝑃𝑈𝑚(𝑖) ≥ 𝑐𝑝𝑢𝑖 then

5 return Mapping(VNF 𝑖, 𝑐𝑝𝑢𝑖, 𝑚(𝑖))

6 else

7 𝒞 ← ComputeNeighborCandidate(𝑚(𝑖), 𝑐𝑝𝑢𝑖)
8 𝑠𝑡𝑎𝑐𝑘 ← Sort(𝒞)
9 while stack ∕= ∅ and 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = False do

10 𝑘 ← Top(𝑠𝑡𝑎𝑐𝑘)
11 if 𝐶𝑃𝑈𝑘 ≥ 𝑐𝑝𝑢𝑖 and

12 ComputeLinkMapping(𝑘, 𝑚(𝑗)) = True then

13 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← True

14 return Mapping(VNF 𝑖, 𝑐𝑝𝑢𝑖, 𝑘)

Our Greedy algorithm has a complexity of 𝑂(∣𝒞∣× ∣𝑁𝑝∣
2×

∣𝐸𝑁 (𝑖)∣). The algorithm requires in step 9 ∣𝒞∣ iterations in
the worst case and a complexity ∣𝑁𝑝∣

2 in step 12 since the
Dijkstra’s algorithm is used to compute the shortest path
needed to map a virtual link (𝑖𝑗) crossing the scaled VNF 𝑖.
The Dijkstra algorithm is called ∣𝐸𝑁 (𝑖)∣ times and this leads
to the 𝑂(∣𝒞∣ × ∣𝑁𝑝∣

2 × ∣𝐸𝑁 (𝑖)∣) overall complexity.

V. PERFORMANCE EVALUATION

The performance of our proposed ILP based is assessed
through extensive simulations. Simulator settings and perfor-
mance evaluation metrics used for evaluation and comparison
purposes are presented. The ILP is compared to the Greedy
heuristic. The evaluation focuses on the gains reconfiguration
(just to tidy up the network) and scaling (during rising de-
mands) provide to the stakeholders by analyzing the proportion
of rejected (failed) adaptation attempts.

A. Simulation Environment

Our simulations are based on a realistic topology as well
as extensive simulations for which it is possible to evaluate
in depth the scalability of the algorithms using larger infras-
tructures and request sizes. A 2.50 GHz Quad Core server
with 6 GBytes of available RAM is used for the performance
evaluation and comparison of the proposed algorithms.

For the realistic topology and the extensive simulations, the
VNF-FG requests are generated using a Poisson process with
an average arrival rate of 5 requests per 100 time units. The
lifetime of each request follows an exponential distribution
with a mean of 1000 time units.

The Germany50 network topology [18] is used for the
first assessment since it corresponds to the largest publicly
available network topology (with 50 nodes). This topology
is defined by the German National Research and Education
Network (DFN). The capacity of physical nodes and links
capacities are generated randomly in the [50, 100] intreval.
The size of the VNF-FG requests is set to 5 nodes. The
GT-ITM [19] tool is used to generate the requested VNF-
FG topologies. The initial VNF-FG computing and bandwidth
requirements are set to 10. Scaling in CPU is fixed to 20 with
one scaling request at a time per VNF-FG.

To assess the scalability of our proposed algorithms, we
generate using the GT-ITM tool a network topology with
100 nodes and a connectivity of 0.2 (or 20%). The physical
resources capacities (i.e., CPU and bandwidth) are also drawn
randomly in the [50, 100] interval. The VNF-FG requests size
varies between 3 and 15 nodes. The required CPU for each
VNF in the VNF-FG is set to 10 units. The required bandwidth
between two VNFs, to ensure communication between them,
is set also to 10 units. The connectivity between nodes in the
VNF-FG is set to 0.3.

The ILP algorithm is evaluated for three values of the
migration penalty 𝑃𝑒𝑛𝑢 from 10 to 1000 units in order to
tune the penalty according to needs and provider priority as
well as measure its effect on performance. The migration
penalty (𝑃𝑒𝑛𝑢 in the second term of the objective function in
equation VI.8) is used to control the re-mapping process and to
especially trade-off “in node scaling” with “migration to other
hosts”. The migration penalties in the performance evaluation
correspond to the reported ILP10, ILP100 and ILP1000 results.
The performance of the ILP for these penalty values (10,
100 and 1000) are also compared to the Greedy algorithm, to
assess the effectiveness and usability of this migration. For the
realistic topology and the simulation, 1000 VNF-FG requests
are generated and a scaling request is triggered for each and
every generated request. Since, we are focussing on scaling
and adaptation of already embedded VNF-FGs, we used the
heuristic approach of [10] to generate the initial VNF-FG
mapping and initialize the assessment runs.

B. Performance Metrics

The metrics used for the performance evaluation are de-
scribed in this section that reports also the results obtained
using both the realistic topology and the extensive simulations
for the extended performance assessment.

1) Successful scalings: represents the number of VNF
scaling requests that have been accomplished. Indeed, due to
physical resources limitation the algorithm may reject some
scaling requests. From the provider point of view, this number
should be maximized in order to improve the global revenue.

2) Scaling ratio: is the ratio of successful scalings defined
by the ratio of successful scalings to the accepted VNF-FG
requests. The number of accepted VNF-FG requests depends
on the initial provisioning and on how the scaling algorithm
deals with scaling requests. Since we use as initial mapping
the same basis for all algorithms, the scaling ratio reflects their
relative efficiency and enables their comparison.

3) Number of migrated VNFs: is the number of the scaled
VNFs through migration. Migration involves a temporary
service interruption until the concerned VNF is activated in
the new physical host.

4) The ratio of migrated VNFs: is the ratio of the number
of migrated VNFs to the number of successful scalings. This
metric measures the proportion of adaptations accomplished
through migration that providers prefer to minimize to avoid or
limit the service interruptions due to migrations. Minimizing
this measure reduces disruptions to applications.

5) Execution time: is a decisive measure in order to assess
the scalability of the algorithms. Service providers prefer
efficient and rapid algorithms in order to quickly serve clients.

C. Simulation Results

(a) Successful scalings

(b) Scalings ratio

Fig. 2: Germany50 topology results: Scalings

1) Scenario 1: We use the Germany50 topology as a NFV-
I (i.e., physical network) to conduct the first performance
assessment. Figure 2(a) shows that the ILP algorithm, using
the three migration penalty values, outperforms the Greedy
solution. This is accomplished despite the fact that the ILP
does not consider all possible candidates but just a subset for

scalability reasons. The ILP satisfies in addition more scaling
demands as confirmed by figure 2(b) where the scaling ratio
exceeds 90% for the ILP variants and ILP C. This proportion
is only about 55% for the Greedy strategy.

Figure 3(a) depicts the number of the migrated VNFs. The
ILP with a migration penalty of 10 performs more migrations
than ILP1000 for which a higher migration penalty forces the
scaling to occur within the nodes in priority. At the first glance,
one could conclude that the Greedy algorithm and ILP C
use less migrations than the ILP1000 but figure 3(b) shows
that the migration ratio of the Greedy strategy (about 90%)
is higher than ILP1000 (roughly 87%) and ILP C (84, 3%).
If we analyze only the three ILP configurations, we observe
as expected that ILP10 migrates almost all VNFs (more than
98%) to find more hosting resources while ILP100 migrates
about 94% of the requests.

(a) VNF migration

(b) Migration ratio

Fig. 3: Germany50 topology results: Migration

2) Scenario 2: To analyze the behavior of the algorithms
and their scalability with problem size, we use larger NFV-
Is (with 100 nodes) and initial VNF-FG request sizes with a
number of VNFs in the [3, 15] interval. Figure 4(a) reports the
number of successful scalings. The ILP algorithm outperforms

the Greedy heuristic by satisfying more scaling demands.
Figure 4 (b) confirms this with scaling ratios exceeding 97%
for the ILP variants and ILP C. The Greedy strategy achieves
ratios only between 84% and 94%.

(a) Successful scalings

(b) Scalings ratio

Fig. 4: Large scale scenarios: Scalings

Figure 5(a) illustrates the number of the migrated VNFs.
ILP10 performs more migration than the ILP1000. ILP10 and
ILP100 perform more migrations than the Greedy and ILP C.
ILP10 roughly migrates the totality (exactly 100% if VNF-FG
sizes exceed 10) of the scaled VNFs compared to ILP100 that
migrates 98, 4%. Figure 5(b) shows that the migration ratio of
the Greedy strategy (varies between 90% and 95%) is higher
than ILP1000 and ILP C (between 80% and 90%). Clearly the
ILP can be tuned to outperform other algorithms as well as
tradeoff migrations with in node scaling to fulfill the provider
preferences and business interests and policies.

3) Importance of reconfiguration: In this subsection we
focus on the gain that the reconfiguration process may pro-
vide. The provider can perform re-mapping of some VNFs
re-mapping to tidy-up their physical networks and prevent
bottlenecks and degradations in the NFV-I and in addition
can host more client requests. Figure 6 depicts the rejection

(a) VNF migration

(b) Migration ratio

Fig. 5: Large scale scenarios: Migration

ratio, based on the initial embedding, of the ILP algorithm,
the Greedy heuristic and the baseline solution (i.e., dealing
with only the initial mapping). In this scenario there is no
extra CPU demand but only the concerned VNF will be
reconfigured. The baseline algorithm (i.e., without reconfig-
uration) rejects more requests (about 14%) compared to the
Greedy heuristic and ILP C (9%) and the ILP solution (7%).
This result can be explained by the dynamics in the requests
arrivals and departures that are exploited more efficiently and
especially when departures occur and resources are released.
The reconfiguration opportunistically tidies up the network and
make room for new requests that would be otherwise rejected
because of suboptimal use of the infrastructure.

TABLE II: Execution time (𝑚𝑠)

∣𝒞∣=5 ∣𝒞∣=10 ∣𝒞∣=15 ∣𝒞∣=20

𝐺𝑟𝑒𝑒𝑑𝑦 11, 65 12, 07 14, 64 15, 43

𝐼𝐿𝑃 23, 04 38, 21 43, 74 44, 62

𝐼𝐿𝑃 𝐶 26, 81 41, 87 45, 62 46, 12

4) Average time resolution (Execution time): Table II re-
ports the execution time performance of the algorithms to gain

Fig. 6: Rejection Ratio

insight on their scalability and complexity with problem size.
In order, to evaluate this metric, the substrate graph size is
fixed at 100 nodes. We generate 1000 VNF-FG requests and
vary the set of potential candidates size from 5 to 20. These
results indicate that the Greedy algorithm has significantly
better execution time when compared to our ILP algorithm and
ILP C execution times. However, the faster execution times of
the Greedy algorithms are accomplished at the expense of the
number of accepted scaling requests. Indeed, the ILP achieves
918 scalings and ILP C 909 while the Greedy accepts only
815. The extra time taken by the ILP is due to the ability of
the ILP to find more solutions and hence accept more scaling
requests.

VI. CONCLUSION

Our work addresses the problem of virtual network function
reconfiguration with the main objective of reducing the rejec-
tion of VNF scaling requests when faced with rising demand
and traffic load. We proposed an ILP solution and a new
Greedy reconfiguration algorithm for the purpose and show
that the solutions can efficiently scale virtualized network
functions and forwarding graphs with good execution time and
scaling requests acceptation performance over distributed and
dynamically varying cloud environments.

REFERENCES

[1] “SNS Telecom, The SDN, NFV & Network Virtualization Ecosystem:
2016 - 2030 - Opportunities, Challenges, Strategies & Forecasts,” Tech.
Rep., 2016. [Online]. Available: http://www.snstelecom.com/sdn-nfv

[2] ETSI GS NFV-TST 001: ”Network Functions Virtualisation (NFV); Pre-
deployment Testing; Report on Validation of NFV Environments and
Services”.

[3] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed,
and R. Boutaba, “Elastic virtual network function placement,”
in IEEE CloudNet, 2015, pp. 255–260. [Online]. Available:
http://dx.doi.org/10.1109/CloudNet.2015.7335318

[4] G. Galante and L. C. E. D. Bona, “A survey on cloud
computing elasticity,” in IEEE Fifth International Conference on
Utility and Cloud Computing, UCC 2012, Chicago, IL, USA,
November 5-8, 2012, 2012, pp. 263–270. [Online]. Available:
http://dx.doi.org/10.1109/UCC.2012.30

[5] J. Xia, Z. Cai, and M. Xu, “Optimized virtual network functions
migration for NFV,” in 22nd IEEE International Conference on
Parallel and Distributed Systems, ICPADS 2016, Wuhan, China,
December 13-16, 2016, 2016, pp. 340–346. [Online]. Available:
http://dx.doi.org/10.1109/ICPADS.2016.0053

[6] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions in NFV,” CoRR, vol. abs/1503.06377,
2015. [Online]. Available: http://arxiv.org/abs/1503.06377

[7] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[8] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), Nov 2014, pp. 418–423.

[9] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on, Oct 2014, pp. 7–13.

[10] M. Mechtri, C. Ghribi, and D. Zeghlache, “Vnf placement and chaining
in distributed cloud,” in the 9th IEEE International Conference on Cloud
Computing, June 27 - July 2, 2016, San Francisco, USA.

[11] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, pp. 17–29, 2008.

[12] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNR Algo-
rithm: A Greedy Approach For Virtual Networks Reconfigurations,” in
GLOBECOM. IEEE, 2011, pp. 1–6.

[13] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” IEEE INFOCOM, pp. 1–12,
2006.

[14] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “A novel approach to virtual networks
embedding for SDN management and orchestration,” in 2014 IEEE
Network Operations and Management Symposium, NOMS 2014,
Krakow, Poland, May 5-9, 2014, 2014, pp. 1–7. [Online]. Available:
http://dx.doi.org/10.1109/NOMS.2014.6838244

[15] F. Wang, R. Ling, J. Zhu, and D. Li, “Bandwidth guaranteed
virtual network function placement and scaling in datacenter
networks,” in 34th IEEE International Performance Computing
and Communications Conference, IPCCC 2015, Nanjing, China,
December 14-16, 2015, 2015, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/PCCC.2015.7410276

[16] ETSI GS NFV 001: ”Network Functions Virtualisation (NFV); Use
Cases”.

[17] ETSI GS NFV 003: ”Network Functions Virtualisation (NFV); Termi-
nology for Main Concepts in NFV”.

[18] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0–Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007, http://sndlib.zib.de.

[19] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” Proceedings of IEEE INFOCOM, pp. 594–602, 1996.

