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1 Introduction

Although known since Antiquity, it was not until the XX** century that the
elementary and natural notion of a convex body began to reveal the full ex-
tent and richness of its applications in many mathematical fields as varied as
number theory, differential or integral geometry, discrete and combinatorial
geometry, optimization, functional analysis, probability, or stochastic geometry.
The Brunn-Minkowski theory, initiated in the seminal works of H. Brunn and H.
Minkowski on the turn of the XX*" century, became the classical heart of convex
geometry. It can be regarded in the Euclidean vector space R" ™! as the fruit of
the union of only two elementary notions: Minkowski addition and volume [Sc3].
In particular, the mixed volumes, which satisfy the famous Alexandrov-Fenchel
inequality which subsumes many classical geometric inequalities as special cases,
are born from this union.

1.1 Aims of the monograph

As we will see in Section 2, hedgehogs are the geometrical objects that describe
the Minkowski differences (i.e., formal differences) of arbitrary convex bodies in
R™*1. This monograph aims to summarize the core of hedgehog theory and its
main applications to other mathematical fields.

The first aim of the present monograph is to give a comprehensive and self-
contained introduction to hedgehog theory which emerges naturally when one
tries to associate a geometric object with any formal difference of convex bodies
(in other words, when we attempt to take into account the inverse operation of



the Minkowski addition by considering a wider general class of geometric objects
than that of convex bodies alone).

Classical real hedgehogs can be regarded as the geometrical realizations of
formal differences of arbitrary convex bodies in R"*!. For instance, hedgehogs
with a C2-support function on the unit sphere S™ of R"*! can be constructed
geometrically in R"*! as ‘Minkowski differences’ of convex bodies of class Ci
(i.e., the boundaries of which are C?-hypersurfaces with positive Gaussian cur-
vature): as shown in Figure 1.1, we can construct the difference of two such
convex bodies K and L by subtracting, for every v € S™, the points x and y
of their respective boundaries 0K and JL that correspond to the outer unit
normal u.

Figure 1.1. C?-hedgehogs as differences of C% convex bodies

When this is done for every u € S”, we obtain a hedgehog whose C?-support
function A is the difference k& — [ of the respective support functions, k and [, of
the two convex bodies.

The idea of considering Minkowski differences of convex bodies may be traced
back to papers by A.D. Alexandrov and H. Geppert [Ge] in the 1930’s. Many
classical notions for convex bodies extend to hedgehogs and quite a number
of classical results find their counterparts. Of course, a few adaptations can be
necessary. In particular, volumes have to be replaced by their algebraic versions.

The second aim of this monograph is to show the diversity and extent of
applications of hedgehogs (together with their generalizations) in various fields.
The notion of a hedgehog has in particular proved useful in the study of convex
bodies and to geometrize certain analytical problems by considering functions as
support functions. The usefulness of hedgehogs in the study of convex bodies is
mainly due to the fact that they may offer the possibility to provide appropriate
decompositions of the convex bodies under consideration into sums of hedgehogs.
One of the first achievements of the theory is for instance the construction of
counterexamples to an old conjectured characterization of the 2-sphere [M6] [P2]
M13]), which has important consequences in terms of Monge-Ampeére PDE’s on
the 2-sphere. The conjecture raised in the mid 1930’s by A.D. Alexandrov was
that if S in R? is a closed convex surface of class C’f_, whose principal curvatures
k1 and ko satisfy the following inequality

(kl —C) (k‘g —C) S O,



with some constant ¢, then S must be a sphere of radius 7 = 1/c. In the case S
is real analytic, this conjecture was proved by Alexandrov himself [A2] [A3], an
independent proof was given by Miinzner [Mz2] who also proved the conjecture
in the case where S is a surface of revolution [Mzl]. Koutroufiotis strengthened
this last result, proving that it suffices to assume that S has an enveloping cir-
cular cylinder [Ko]. However, in the general case the conjecture remained open
for almost 70 years. From the hedgehog point of view, the natural approach was
of course to split S into this sum S (Ogs; ) + (S — S (Ogs; 7)), and to study only
the hedgehog term (S — S (Ogs; 7)) by adapting classical techniques for convex
bodies to hedgehogs, the question then being whether or not this hedgehog term
is necessarily reduced to a single point. This approach made it possible to ob-
tain a series of counterexamples to Alexandrov’s conjecture. It also permitted
us to prove the conjecture for convex surfaces of constant with, and to give a
new proof for analytic surfaces [M6]. It is worth noticing that the question is
still under scrutiny for other classes of differentiability given its importance in
PDE’s theory [GM].

1.2 Outline of the remaining sections

The set K" of convex bodies of R"*!, equipped with Minkowski addition and
multiplication by nonnegative real numbers, forms a commutative semigroup,
having the cancellation property, with scalar operator. Of course, it does not
constitute a vector space since there is no subtraction in X"*!. Now formal
differences of convex bodies of R®*! form a vector space H™*! in which K£"+!
is a cone that spans the entire space. It is thus natural to consider the mul-

tilinear extension of the mixed volume v : (IC”‘H)n+1 — R to a symmetric
(n + 1) —linear form on H"*!1. We still denote this extension by v. We enter
in ‘hedgehog theory’ when we seek to associate a geometric realization with
each element of H"t!. We will see in Section 2 that there are different ways of
proceeding depending on the class of convex bodies which we choose to work
with. We may regard hedgehogs as envelopes parametrized by their Gauss map
(Subsect. 2.2) if the support functions are assumed to be C? (we can also define
the notion of a hedgehog with a C! support function as an envelope but such a
hedgehog does not necessarily represent a difference of two convex bodies and
can be a highly singular object: Subsect 2.5); we can also define hedgehogs as
Legendrian fronts (Subsect. 2.6) if the support functions are assumed to be
C®°; another approach is to make use of Euler Calculus (Subsect. 2.4) if we
consider polytopes or convex bodies with an analytic support function; finally,
in the most general case, when the support functions are differences of sup-
port functions of arbitrary convex bodies, we can define hedgehogs proceeding
by induction with respect to the dimension, replacing support sets by ‘support
hedgehogs’ (Subsect. 2.3).

We will of course give first examples, particular cases (such as ‘projective
hedgehogs’) properties and tools regarding these different variants of the notion
of a hedgehog. In particular, we will introduce different types of indexes of
a point with respect to a hedgehog, and present first applications, some of



which are related to orthogonal projection techniques, to the study of hedgehogs
(Subsect. 2.4, 2.8 and 2.9). The Kronecker index will, in particular, be used
to introduce the algebraic (n + 1)-dimensional volume of hedgehogs in R™*1.
We will also say a few words on projective and polarity dualities applied to
hedgehogs (Subsect. 2.7). We will use our presentation of C°°-hedgehogs as
Legendrian fronts to describe their generic singularities, and we will present a
first open problem, raised by R. Langevin, G. Levitt and H. Rosenberg (Problem
2.6.1): Does there exist a generic projective hedgehog without any swallowtail?
Partial results will be given in Subsect. 10.2.

As already mentioned in introduction, the classical Brunn-Minkowski theory
is based on the Minkowski addition of convex bodies, combined with the notion
of volume. Having already glimpsed in the first two sections some ideas for
extending this theory to hedgehogs, we will undertake a first more in-depth and
more systematic study of this extension to C?-hedgehogs in Section 3. After
briefly recalling and completing the necessary basic tools and their geometric
interpretations, we will present a partial extension of the Alexandrov-Fenchel
inequality to hedgehogs. We will then consider the extension to hedgehogs of
particular cases of the Alexandrov-Fenchel inequality (isoperimetric inequalities,
quadratic Minkowskian inequalities, Brunn-Minkowski type inequalities, etc), as
well as some of their geometric consequences. In some cases, the classical in-
equalities for convex bodies will extend without any modification to hedgehogs
by simply replacing the geometric quantities involved by their algebraic versions
(this will be for instance the case for the isoperimetric inequality in the plane).
But, of course, in most cases, an additional condition will be necessary. We will
continue Section 3 by giving a stability estimate for the Alexandrov-Fenchel in-
equality. To end Section 3, we will mention an application of hedgehogs to the
study of the Blaschke diagram. Here we have to recall that a part of the bound-
ary of the Blaschke diagram must correspond to an unknown sharp inequality
of the form V > f (S, M), where V, S and M respectively denote the volume,
surface area and integral of mean curvature of a convex body in R3.

In Section 4, we will consider a series of special convex bodies, hedgehogs,
and multihedgehogs, which are also called N-hedgehogs, (N € N*): an envelope
of a family of cooriented planes of R"*! will be called an N-hedgehog if, for
an open dense set of u € S”, it has exactly N cooriented support planes with
normal vector u. Thus, ordinary C2-hedgehogs are merely 1-hedgehogs. We will
extend to hedgehogs a series of classical notions for convex bodies. For instance,
we will start by extending the notion of width to hedgehogs. As an application
of our study, we will give an example of a noncircular algebraic curve of constant
width whose equation is relatively simple, which answers a problem raised by
S. Rabinowitz (Subsubsect. 4.1.2). In passing, we will study various concept
related to convex bodies. In particular, we will study the relationship between
planar projective hedgehogs (which are the planar hedgehogs of constant width
0) and Zindler curves (which are the planar closed curves of which all chords
that divide the curve perimeter - or area - in a half, have the same length) in
Subsubsect. 4.2.2. We will then rely on a notion of symplectic area to introduce
and study Zindler-type surfaces in R*. Subsect. 4.5 will aim to motivate the



development of a Brunn-Minkowski theory for minimal surfaces by continuing
the pioneering works by R. Langevin, G. Levitt, H. Rosenberg and E. Toubiana
([CLR} LR RTY).

This Section 4 will also be an opportunity to discover a first series of ap-
plications of hedgehog theory to analysis. In Subsect 4.3, we will consider the
cosine transform, which associates to any continuous function f : S™ — R the
map Ty : R"*1 — R defined by

7y (a) = [ w0l £ 0)do(v),

where (., .) is the standard inner product and o the spherical Lebesgue measure.
We will prove that the cosine transform, which often appears in convex geom-
etry, is a bounded linear operator from C (S™;R) to C? (S™;R). It follows that
the boundaries of zonoids (resp. generalized zonoids) whose generating measure
have a continuous density with respect to ¢ can be considered as C?-hedgehogs.
We will study such hedgehogs. Recall that zonotopes are the Minkowski sums
of line segments, and that zonoids are (necessarily centrally symmetric) convex
bodies that are the limit, in the sense of the Hausdorff metric, of a sequence
of zonotopes. Zonoids play an important role in various areas such as the the-
ory of vector measures, Banach space theory or stochastic geometry. We will
obtain a local property of zonoids whose generating measure have a contin-
uous density with respect to . We then define projection hedgehogs (resp.
mixed projection hedgehogs) and interpret their support functions in terms of
n-dimensional volume (resp. mixed volume). Finally, this study will lead us to
consider the extension of the Minkowski problem (in differential geometry, the
one of the existence, uniqueness and regularity of a closed convex hypersurface
with preassigned curvature function) to hedgehogs. The classical Minkowski
problem played an important role in the development of the theory of elliptic
Monge-Ampére equations. The study of its extension to hedgehogs will be the
subject of Section 5. In Subsect. 4.4, we will study the existence of a nontrivial
C?-hedgehog in R? that is hyperbolic (i.e., with an everywhere nonpositive cur-
vature function), in order to determine the validity of the characterization of the
2-sphere conjectured by A.D. Alexandrov. This question amounts to studying a
partial differential inequation. We will prove this Alexandrov conjecture in some
particular cases, such as the case when the surface is assumed to be of constant
width, and give a counterexample in the general case. In passing, we will con-
sider the discrete version of hyperbolic hedgehogs. After a brief presentation of
hedgehog polytopes (also called polyhedral hedgehogs) in R?, we will introduce
two notions of hyperbolicity (weak and strong hyperbolicity) for hedgehog poly-
topes of R? and give examples. Our example of a strongly hyperbolic polytope is
obtained by a discretization of our counterexample to Alexandrov’s conjecture.
In Subsect. 4.6, we will give a geometric proof of the Sturm-Hurwitz theorem
in the framework of planar mutihedgehogs. We will take the opportunity to
present a series of geometric consequences and inequalities. We will end Section
4 by a detailed study of planar general hedgehogs (i.e., Minkowski differences of



arbitrary convex bodies of RQ). Our way of introducing general hedgehogs (pro-
ceeding by induction on n and replacing support sets by ‘support hedgehogs’)
makes clear that a perfect understanding of planar hedgehogs is a prerequisite
to a study of general hedgehogs of R"*!. In particular, we will: (i) study their
length measures and solve the extension of the Christoffel-Minkowski Problem
to plane hedgehogs; (ii) characterize support functions of plane convex bodies
among support functions of plane hedgehogs and support functions of plane
hedgehogs among continuous functions; (7i7) study the mixed area of hedgehogs
in R? and give an extension of the classical Minkowski inequality (and thus of
the isoperimetric inequality) to hedgehogs.

Section 5 is entirely devoted to the extension of the Minkowski problem to
hedgehogs. We already encounter it in Subsections 4.3 and 4.4 (the existence of
hyperbolic hedgehogs is naturally a subproblem of it). The classical Minkowski
problem is a fundamental problem in the Brunn-Minkowski theory. It asks for
necessary and sufficient conditions on a nonnegative Borel measure on the unit
sphere S™ of R™*! to be the surface area measure of some convex body K in
R™*1, unique up to translation. When restricting to the class of convex bodies
of R™"*! whose surface area measures have a density with respect to spherical
Lebesgue measure on S™, the classical Minkowski problem can be formulated as
that of the existence, uniqueness and regularity of a closed convex hypersurface
with preassigned curvature function. As already mentioned, this problem, which
played an important role in the development of the theory of elliptic Monge-
Ampeére equations, has a natural extension to hedgehogs. But for non convex
hedgehogs, the problem becomes much more difficult, even for n = 2 and for
C*°-hedgehogs, since it essentially boils down to the question of solutions of
Monge-Ampére equations of mixed type on the unit sphere S”. In Subsect.
5.1, we will mainly formulate the uniqueness question and give first partial
results. In Subsect. 5.2, we will consider Gauss rigidity and Gauss infinitesimal
rigidity for hedgehogs of R? (regarded as Minkowski differences of closed convex
surfaces of R® with positive Gaussian curvature). As noticed by I. Izmestiev
[Iz1l Tz2], Gauss rigidity (Gauss infinitesimal rigidity) can be interpreted as
uniqueness (resp. « infinitesimal » uniqueness) in the Minkowski problem, that
is in the problem of prescribing the n*" surface area measure of a polytope P
of R"*! on the unit sphere S (resp. the Gaussian curvature of smooth strictly
convex closed hypersurface of R"™! as a function of the outer unit normal). The
uniqueness part of the Minkowski problem extended to hedgehogs will already
have been studied in the previous subsection. In particular, we will have already
seen different ways of constructing pairs of non-congruent hedgehogs that share
the same curvature function (i.e., inverse of the Gaussian curvature). If we
consider a l-parameter family of C?-hedgehogs (Hht)te[o,l] all having the same
curvature function, we do not know whether these hedgehogs are congruent
in R3. However, we will prove a theorem of volume preservation under preserving
curvature deformations: Under an appropriate differentiability condition of the
family with respect to the parameter, we will prove that all the hedgehogs of
the considered family have the same algebraic volume!

Like convex bodies, hedgehogs are completely determined by (and can be



identified with) their support functions. Adopting a projective viewpoint, we
will prove in Section 6 that any holomorphic function h : C* — C can be
regarded as the ‘support function’ of a ‘complex hedgehog’ H;,, which is defined
by a holomorphic parametrization xj, : C* — C"*! in the complex Euclidean
space C**1. In the same vein, we will introduce the notion of evolute of such
a hedgehog Hj, in C?, and a natural (but apparently hitherto unknown) notion
of complex curvature, which will allow us to interpret this evolute as the locus
of the centers of complex curvature. We notice that the complex linear space
of holomorphic functions defined up to a similitude on the unit disc D of C
can be endowed with a scalar product which can be interpreted as a mixed
symplectic area, and we give a sharp estimation of the (symplectic) area of
zp, (D) using the energy of the loop z;, : S = R/27Z — C2, 6 + x;, (€), in
the case where h : D — C is the sum of a power series > h, 2™ with radius of
convergence R > 1. Our hope is to spark further research giving elements of a
‘theory of mixed volumes for complex hedgehogs’ (replacing Euclidean volumes
by symplectic ones). We will next return to real hedgehogs, but in R?" endowed
with a linear complex structure J. We will introduce and study the notion of
evolute of a hedgehog with a smooth support function in (RQ”,J). We will
particularly focus on R* endowed with a linear Kihler structure determined by
the datum of a pure unit quaternion. In parallel, we will study the symplectic
area of the images of the oriented Hopf circles under hedgehog parametrizations
and introduce a quaternionic curvature function for such an image. Finally, we
will consider hedgehogs in R*" regarded as a hyperkihler vector space.

Of course, the classical hedgehog theory is not restricted to Euclidean spaces.
Section 7 will be devoted to a short introduction and study of hedgehog theory
in non-Euclidean spaces. In [FFil, F. Fillastre introduced and studied ‘T-convex
bodies’ (or, ‘Fuchsian convex bodies’ ), which are the closed convex sets of the
Lorentz-Minkowski space L"t! that are globally invariant under the action of
some Fuchsian group I'. In this paper, F. Fillastre gave a ‘reversed Alexandrov—
Fenchel inequality’ and thus a ‘reversed Brunn-Minkowski inequality’. This
work permits to introduce ‘Fuchsian hedgehogs’ whose ‘support functions’ are
differences of support functions of two I'-convex bodies (see the remark on page
314 in [FFi)). In Subsect. 7.2, we will give a detailed study of plane Lorentzian
and Fuchsian hedgehogs, including a series of Fuchsian analogues of classical
geometrical inequalities (which are also reversed as compared to classical ones).
For an application to marginally trapped surfaces, a short introduction to hedge-
hogs of .3 will be given later in Subsubsect. 8.2.1. This brief introduction of
Lorentzian hedgehogs of 3 can be easily extended to higher dimensions.

On another note, we will see that, like convexity, the notion of a hedgehog is
affine. In Subsect. 7.3, we will define the notion of a hedgehog of R"*! regarded
as an affine space over itself. Extending the Euclidean or affine space R"*! by
adding points at infinity (which we regard as corresponding to families of parallel
lines, and which together make up a hyperplane at infinity), we will see that we
can define a hedgehog of the real projective space P**! := RP"t! as a hedgehog
of R"*! regarded as the complement of any projective hyperplane of P**+!, and
thus a hedgehog of R"*! as a hedgehog of P"*!. Thus any hedgehog of P*+! =



St+l/{—1Id,Id} is contained in the complement of a projective hyperplane of
P"*1, and can therefore be regarded as a hedgehog of S**! that is contained in
an open hemisphere, say the open hemisphere with center p € S**! which we
will denote by S, Using the gnomonic projection from S onto the tangent
hyperplane p+7,S" ! to S"*1 at p, we then retrieve hedgehogs of R"*! (which
we identify with p 4+ T,S"1).

Similarly, regarding the hyperbolic space H"*! as the upper sheet of the
hyperboloid with equation (z,z); = —1 in R"*? endowed with the Lorentzian
inner product given by

n+1
(T, y) = Z TiYi — Tp42Yn+2,
i=1
for z = (z1,...,2p42) and y = (y1, .- ., Ynt2), that is,

H"! = {z e R""? |(z,2), = —1, T2 > 0},

we can make a gnomonic projection (which preserves geodesics) from H"*!
onto the interior B"*! of the (Euclidean) unit ball of R"*! (identified with
the affine hyperplane R™™' x {1} of R"*?). This gnomonic projection g :
H"+t! — B"*! sends m € H"T! to the intersection point of the linear line Rm
with R" T ~ R**! x {1}. Considering hedgehogs of R"*! that are included in
Bntt c R**! x {1}, and taking their images under the radial projection

p: Bn+1 s Hn+1 C Rn+2
x> x/\/z,z) ] ’

which is the inverse g~ of the gnomonic projection, we can then introduce
hedgehogs of H”t!. These hedgehog hypersurfaces, which are envelopes of
smooth families of cooriented (totally geodesic) hyperplanes of H"! will be
called ‘g-hedgehogs’ of H"*! where the letter g stands for indicating that
these hypersurfaces are ‘geodesically hedgehog hypersurfaces’. This change
of names (‘g-hedgehogs’ instead of ‘hedgehogs’) aims to differentiate these g-
hedgehogs from another class of hedgehogs introduced in Subsect. 7.4, namely
‘h-hedgehogs’ of H"t!. In our definition of h-hedgehogs, horospheres will play
in H"*! the role assigned to cooriented hyperplanes in R**!, and the corre-
sponding ideal points the one of the unit normal vectors. Indeed, as we will
recall, the best analogue to Euclidean hyperplanes in H**! are not actually the
totally geodesic hyperplanes of H"*!, but the horospheres. We will notice that
these two notions of hedgehogs in H" ! (g-hedgehogs and h-hedgehogs) corre-
spond to the two natural notions of convexity in hyperbolic space: geodesical
convexity and horospherical convexity, which is stronger. We will define the
signed h-width of a h-hedgehog Hj, of H*™! in direction of an arbitrary ideal
point u € ST (here, S denotes the ideal boundary sphere at infinity of H"H),
and then give a simple condition for a h-hedgehog of H"*! to be of constant
h-width.

1
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The focus of Section 8 is the study of marginally trapped surfaces. We recall
that a closed embedded spacelike 2-surface of a 4-dimensional spacetime is said
to be trapped if its mean curvature vector is everywhere timelike. Trapped sur-
faces were introduced by R. Penrose [Pe] to study singularities of spacetimes.
They appeared in a natural way earlier in the work of Blaschke, in the context
of conformal and Laguerre geometry [Bl2]. These surfaces play an extremely
important role in general relativity where they are of central importance in the
study of black holes, those regions of spacetime where everything is trapped,
and nothing can escape, even light. The limiting case of marginally trapped sur-
faces (i.e., surfaces whose mean curvature vector is everywhere lightlike) plays
the role of apparent horizons of black holes. Mathematically, marginally trapped
surfaces are regarded as spacetime analogues of minimal surfaces in Riemannian
geometry. Even though they received considerable attention both from math-
ematicians and physicists, these surfaces are still not very well understood. In
section 8, we will try to argue and to show through fundamental examples that
(a very huge class of) marginally trapped surfaces arise naturally from a ‘light-
like co-contact structure’, exactly in the same way as Legendrian fronts arise
from a contact one (by projection of a Legendrian submanifold to the base of a
Legendrian fibration), and that there is an adjunction relationship between both
notions. We especially focus our interest on marginally trapped hedgehogs and
study their relationships with Laguerre geometry and Brunn-Minkowski theory.

It is conjectured since long that any convex body in n-dimensional Euclidean
space R™ has an interior point lying on normals through 2n distinct boundary
points. This concurrent normals conjecture has been proved forn =2 and n =3
by E. Heil in [Hell, Held, [He2|. J. Pardon put forward a proof for n = 4 under
a smoothness assumption on the boundary [Par]. For n > 5, it was only known
that any convex body in R™ has an interior point lying on normals through
six distinct boundary points. However Zamfirescu has shown that, in the sense
of Baire category based on the Hausdorff distance between convex sets, most
interior points of most convex bodies lie on infinitely many normals [Za]. The
main aim of Section 9 is to present a new approach and contributions to the
study of this conjecture by making use of hedgehog theory.

In most of the papers on concurrent normals to a convex body K with a
smooth boundary 0K in R™*!, the focal of OK is regarded as the complement
of the set of points € R®™! such that the square of the distance function from
2 induces a Morse function on 0K:

dy,: 0K —R
y o=yl

where [.] : R"™* — R, is the Euclidean norm. In Section 9, we will adopt
another point of view. For any = € R"*!, we will consider the support function
of 0K with respect to z, that is h, : S* — R, u — h(u) — (z,u), where
h :S™ — R is the support function of 0K, and we will regard the focal Fyy of
OK as the complement of the set of points € R"*! such that h, : S* — R
is a Morse function. In other words, we will regard the focal of K as the
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subset Fyj, of Rt on which the number and nature of the critical points of A,
change. We will thus begin our study by a detailed study of focal hypersurfaces
of hedgehogs in Subsect. 9.1. For n € {3,4}, we will then prove that any normal
through a boundary point to any convex body K (with a smooth enough support
function) in R™ passes arbitrarily close to the set of interior points of K U L
lying on normals through at least 6 distinct points of K, where L is the body
bounded by the smallest convex parallel hypersurface to K whose unit normal
points in the opposite direction. Motivated by this work published in 2022
[M24], Grebennikov and Panina gave a proof of almost the same fact for any
n > 3 via bifurcation theory [GP]. Finally, we will prove that it is not true that
for any convex body K of R*, there are at least 8 normal lines passing through
the center of the minimal spherical shell of K.

Section 10 will be devoted to miscellaneous questions regarding hedgehogs
or making use of hedgehog techniques. Subsect. 10.1 will deal with the con-
volution of hedgehogs. The question that will be studied in Subsect. 10.2 will
be to understand what are the generic singularities that are inevitable during
an eversion of the sphere following a generic path of hedgehogs. We will see
that such a path of hedgehogs necessarily includes hedgehogs carrying positive
swallowtails. Finally, we will show through an example that hedgehogs are not
only a generalization of convex bodies, but also a way of thinking about convex
hypersurfaces in conjunction with their spherical images. Our example will con-
sist in giving a set of conditions that is necessary and sufficient for the existence
and uniqueness up to translations of a 3-dimensional polytope P in R? having
N facets with given unit outward normal vectors ny,...,ny and corresponding
facet perimeters Lq,...,Ly.
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2 Background on classical real hedgehogs

2.1 Genesis: sums and formal differences of convex bodies

In this section, we recall for the convenience of the reader the background on
real hedgehogs. The set K" of all convex bodies of (n + 1)-Euclidean vector
space R"*! is usually equipped with Minkowski addition and multiplication by
nonnegative real numbers, which are respectively defined by:

(i) Y(K,L)e (K"™)’, K+L={s+ylreKyelL};
(i) VAeR VK e K" AK={\z|re K}.

e

Figure 2.1.1. For any convex bodies K, L in R*t!,
K+ L={zx+vylze K,yec L} is still a convex body

It does not constitute a vector space since there is no subtraction in C"*1!:
not for every pair (K,L) € (IC"‘H)2 does there exist an X € K"*! such that
L+ X = K. Now, in the same way as we construct the group Z, of integers
from the monoid N of nonnegative integers, we can construct the vector space
H" L of formal differences of convex bodies from X"+!. We can then regard
K"t as a cone of H"*! that spans the entire space.

As in the convex case, we will characterize these formal differences by their
support functions. Recall that every convex body K € K"*t! is determined by
its support function hx : R"™ — R, u +— hg (u) = sup {(z,u) |z € K}, or
equivalently by its restriction to S™ [Sc3| Section 1.7]; note that for all uw € S,
hi (u) is simply the signed distance from the origin to the support hyperplane
with normal vector u. More precisely, for all convex body K € K"t the
support function hgx : R — R is sublinear (i.e., positively homogeneous
and subadditive), and conversely, for any sublinear function h : R"*! — R,
there exists a unique convex body K € K"*! with support function h (ib.).

The starting point of hedgehog theory is therefore the desire to work in
the vector space H™*! of formal differences of convex bodies from K"t!, or
equivalently in the the vector space spanned by the support functions of convex
bodies in C (S™;R). But of course, we would prefer to deal with a geometric
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notion of difference of convex bodies rather than with purely formal differences.
The object of the next subsections will be precisely to show how such geometric
differences of convex bodies can be constructed. In other words, we will see
below how to associate a geometric object, called a hedgehog, to any formal
difference of two convex bodies K — L, (K,L € IC”“), or equivalently to any
difference of two sublinear functions k,1: R"*! — R. Here is, for instance, the
hedgehog that describes the formal difference K — L of the two plane convex

bodies K, L C R? with respective support functions hx (1, z2) := |21|+ %
and hp(z1,z2) = % + |2, (21, 22) € R?):
) K-L
o -
hK(ﬂElyrz)i:lIlH% hL(x1,w2)::%+lx2\ hx_r:=hx—hr.
Figure 2.1.2.

In summary, hedgehog theory will consist essentially in:

1. considering each formal difference of convex bodies of R"™! as a geometric
object in R"™1, called a hedgehog;

2. extending the mixed volume v : (IC”H)HJr1 — R to a symmetric (n + 1)-
linear form on H"t!;

3. extending certain parts of the Brunn-Minkowski theory to H"*1.

For n < 2, it goes back to a paper by H. Geppert |[Ge] who introduced the
notion of a hedgehog under the German names stitzbare Bereiche (n = 1) and
stiitzbare Flichen (n = 2). But unfortunately, this work fell into oblivion for
half a century.

2.2 Hedgehogs with a C%-support function
2.2.1 Basics on hedgehogs with a C2-support function

Here, we will follow more or less [LLR]. As recalled above, every convex body
K C R"*! is determined by its support function hg : S* — R, where hx (u) is
defined by hg (u) = sup{{z,u) |z € K}, (u € S™), that is, as the signed distance
from the origin to the support hyperplane with normal vector w. In particular,
every closed convex hypersurface of class C’JQr (i.e., C2-hypersurface with positive
Gaussian curvature) is determined by its support function h (which must be of
class C? on S™ [Sc3l p. 111]) as the envelope Hj, of the family of hyperplanes
with equation (z,u) = h(u). This envelope Hj, is described analytically by the
following system of equations
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{ (@, u) = h(u)
(@, .) = dhy(.)

The second equation is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation, the orthogonal projection of
x onto the line spanned by w is h (u) u, and from the second one, the orthogonal
projection of x onto u™ is the gradient of h at u (see Figure 2.2.1). Therefore,
for each u € S™, z, (u) = h(uw)u+ (Vh) (u) is the unique solution of this system.

0K = Hj

h(0) = 10 + 15sin(0) + cos(3 0)

Figure 2.2.1. Envelope parametrized by its Gauss map

Now, for any C?-function h on S”, the envelope H, is in fact well-defined
(even if h is not the support function of a convex hypersurface). Its natural
parametrization xj, : S™ — Hy, u — h(u)u + (Vh) (u) can be interpreted as the
inverse of its Gauss map, in the sense that: at each regular point zp, (u) of Hp,
u is a normal vector to Hj,. We say that Hj, is the hedgehog (or C?-hedgehog)
with support function h (see Figure 2.2.2). Note that xj, depends linearly on h.
For all v € S™, we will consider that the support hyperplane with equation
(x,u) = h(u) is cooriented (transversally oriented) by its unit normal vector u.

Since the parametrization x; can be regarded as the inverse of the Gauss
map, the Gaussian curvature xj, of Hy, at z, (u) is given by kp, (u)=1/det[T,xp],
where T, x; is the tangent map of x; at u. Therefore, singularities are the
very points at which the Gaussian curvature is infinite. For every u € S",
the tangent map of xj at the point w is T,z = h(u) Idr,sn + Hp(u), where
Hj,(u) is the symmetric endomorphism associated with the Hessian (V2h)u of
h at u. Consequently, if A1 (u) < ... <\, (u) are the eigenvalues of the Hessian
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(V2h), of h at u then Ry (u) := (A +h) (u) < ... < Ry (u) := (A2 +h) (u)
can be interpreted as the principal radii of curvature of Hy, at xp, (u), and the
so-called curvature function Ry (u) := 1/kp (u) = det [T,zp] is given for all
u € S™ by

Ry, (u) = det[h(u)Idr,sn + Hp(u)]
= det [H” (u) +h (u) (5”]
=(R;...R,) (u)

where 0;; are the Kronecker symbols and (H;; (u)) the Hessian of h at u with
respect to an orthonormal frame on S™.

Figure 2.2.2. Plane hedgehog with C2-support function

Note that curvature function Ry, := 1/kj, is thus well-defined and continuous
on S". In particular, the Minkowski Problem (the problem of prescribing the
Gauss curvature) arises naturally for hedgehogs (see Subsect. 5).

Remarks. 1. In computations, it is often more convenient to replace h by its
positively 1—homogeneous extension to R\ {0}, which is given by

ola)i= el ().

for x € R" ™1\ {0}, where | .|| is the Euclidean norm on R"*!. A straightforward
computation gives:

(1) xp, is the restriction of the Euclidean gradient of ¢ to the unit sphere S™;

(#4) For all u € S™, the tangent map T,z identifies with the restriction to
S™ of the symmetric endomorphism associated with the Hessian of ¢ at u.
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2. Any hedgehog H;, with a C?-support function h : S” — R can be
regarded as the Minkowski difference K — L of two convex bodies (or
of two hypersurfaces by considering their boundaries) K, L of class Cf_ in
R™*L. Indeed, given any h € C? (S™;R), for all large enough real constants r,
the functions h + r and r are the support functions of convex hypersurfaces of
class C?, and such that h = (h+ 1) —r.

Orientation

The hedgehog H; of R**! with support function h € C?(S™;R) will be
regarded as the oriented (possibly singular) hypersurface z;, (S*) image of S,
equipped with its canonical orientation, under the map xj : S — H; C R*HL.
Note that for all w € S™ such that sy (u) > 0 (resp. &, (u) < 0), the orientation
of the tangent space T, S™ is preserved (resp. reversed) by the tangent map
Tuzp : T,S™ — Txh(u)Hh =T,S"™.

Volume and surface area

From an analytical point of view, we obtain exactly the same formulas as in
the convex case for area, volume and mixed volumes. We will come back to this
in more detail in the next subsection, but we already briefly recall how these
notions can be introduced and interpreted in the C?-hedgehog case.

Using the curvature function, we can define an (algebraic) area measure:

s(h, Q) :== /QRh (u)do (u),

(€2 C S™ Borel set), and thus an (algebraic) area:

s(h) == /"Rh (u) do (u)

which can be interpreted as the difference si (h) — s_ (h), where s(h) (resp.
s— (h)) denotes the total area of the regions of H, on which the Gauss curvature
Kp, is positive (resp. negative).

Any C?-hedgehog H;, of R"*! is a (possibly singular and self-intersecting)
parametrized hypersurface xj, : S* — H; C R""! equipped with a transverse
orientation defined as follows: at each regular point zj, (u) of Hy, the usual
transverse orientation of Hj is given by the normal vector sgn[Ry (u)]u,
where sgn (.) is the signum function and Ry, the curvature function of H; (that
is, the inverse m;l of the Gauss curvature x;, of Hy). The Kronecker index
i () of a point & € R"T1\ H;, with respect to Hj, can be defined as the degree
of the map
U : S" — S, ur—s W =T

[z (u) — x|
ip, () may be interpreted as the algebraic intersection number of an oriented
half-line with origin « with the hypersurface H;, equipped with its transverse
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orientation (number independent of the oriented half-line for an open dense set
of directions). The usual transverse orientation and the Kronecker index are
thus mutually associated. It is worth noting that if we let h(u) = —h (—u)
for all u € S, where h € C?(S";R), then the hedgehogs Hj, = zp, (S*) and
Hy, = 3 (S") are identical as hypersurfaces of R™*! except that they have
opposite transverse orientations when n + 1 is odd. Indeed

xh (—u) = xp (u) for all u € S,
but
sgn [R; (—u)] (—u) = (=)™ sgn [Rp, (w)] u,
and thus
i (x) = (=1)"" iy, (z) for all z € RN Hy,.

The Kronecker index played an important role in obtaining a counterexample
to the old uniqueness conjecture of A.D. Alexandrov that we mentioned in our
introduction. For n + 1 = 2, the Kronecker index i (z) is nothing but the
winding number of Hj around z: it counts the total number of times that
‘H;, winds around z. For instance, the index is equal to —1 at any interior
point of the hedgehog represented on Figure 2.2.2, since the curve winds once
clockwise around the point. A straightforward computation proves that, for all
r € RN\ H},, we have

1 MR (u) do (u)

in (z) = T B

Wn Jsn ||lzn (u) — =]
where Ry, is the curvature function and o the spherical Lebesgue measure on S™.

The (algebraic (n + 1)-dimensional) volume of a hedgehog H;, C R"*!
can then be defined by

vmir (h) ::/R o @@,
ntl h

where A denotes the Lebesgue measure on R**!, and it satisfies

1

S n+1 sn
where R, is the curvature function and o the spherical Lebesgue measure on S™.
For instance, in the example of Figure 2.2.2 the 2-dimensional volume (or al-
gebraic area) vo (h) of Hj, in R2, also denoted by a (h), is equal to minus the
area contained in the curve. As for convex bodies of class C’i, we introduce
the mixed curvature function R, .. j,) and the mized (algebraic (n + 1)-

nt1 (h) h(u) By, (w) do (u),

dimensional) volume v, 1(h1,...,hypt1) of a family (th, ce th+1) of
C?-hedgehogs of R"*! in such a way that
1
v (hl, ey hn+1) = r T1 thl (’U,) R(h2 ..... hng1) (U) do (’LL) ’
where R, . h..,) is the mixed curvature function of (Hpy, ..., Hn,.,) (see

Prop. 3.1.1).
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2.2.2 The example of projective hedgehogs

Concerning the spherical image of the classical models of the real projective
plane in R?, such as the Boy surface or the Steiner Roman surface, Hilbert and
Cohn-Vossen have written in Geometry and the imagination: “Unfortunately,
the way in which it is distributed over the unit sphere has not yet been studied”
(see e.g., [Ap] for a study of Boy and Steiner surfaces). A C?-hedgehog H;, of
R"™*! is said to be projective if its support function h : S* — R is odd (or
antisymmetric), that is such that h(—u) = —h (u) for all v € S™. For such a
C?-hedgehog Hj,, each pair of antipodal points —u, u on S™ correspond to one
and the same point xj, (—u) = x5, (u) on Hyp. So not too singular projective
hedgehogs H;, of R? can be regarded as models of the real projective plane
RP? whose Gauss map is a bijection from the model onto RP?. Here is, for
instance, a hedgehog version of the Steiner Roman surface: H;,, where
h(z,y,2) =z (2% — 3y?) + 223, (z,y,2) € S? C R3. This model is represented
on Figure 2.2.5. As the Steiner Roman surface (see Figure 2.2.4), which can
be parametrized by f : S? — R?, (z,y, 2) — (yz, zx, zy), it has a threefold axis
of symmetry and three lines of self-intersection whose end points are singular
points of the same topological type as Whitney umbrellas without the handle.

Recall that the Boy surface is an immersion of the real projective plane
in R? discovered by W. Boy in 1901. This model of the real projective plane
has no other singularity than lines of self-intersections and a single triple point
(see Figure 2.2.3).

Beware of plane representations of projective hedgehogs of R3. They may be
deceptive regarding singularities. For instance, as we will see later, the apparent
contour of the projective hedgehog version Hj of the Roman surface shown in
Figure 2.2.5 is entirely composed of singular points of Hj,.

Figure 2.2.3. The Boy surface
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Figure 2.2.4. The Steiner Roman surface

Figure 2.2.5. A hedgehog version of the Steiner Roman surface

We will see in Subsect. 4.1 that projective C2-hedgehogs of R"*! are nothing
but ‘C2-hedgehogs of zero constant width’ of R™*1.

2.3 Construction of general hedgehogs

Recall that any C?-hedgehog of R"*! can be regarded as the Minkowski differ-
ence K — L of two convex bodies (or of two hypersurfaces by considering their
boundaries) K, L of class C2 in R"™! (see Subsect. 2.2). In [MI1], the author
extended hedgehog theory by regarding hedgehogs of R**! as all the Minkowski
differences K — L of arbitrary convex bodies K, L € K"*!. The trick is simply
to replace ‘support sets’ by ‘support hedgehogs’, and to define hedgehogs induc-
tively as collections of lower-dimensional ‘support hedgehogs’. More precisely,
our construction of general hedgehogs is based on the following three remarks.
(7) In R, every convex body K is determined by its support function hy as the
segment [—hg (—1),hx (1)], where —hg (—1) < hg (1), so that the difference
K — L of two convex bodies K, L can be defined as an oriented segment of R:
KL=~ (hi —hz) (=1), (hx — hs) (1))-
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(i1) If K and L are two convex bodies of R"*! then for all u € S™, their support
sets with unit normal u, say K, and L,,, can be identified with convex bodies of
the linear hyperplane of R"+! that is orthogonal to u, and this linear hyperplane,
say ut, may be identified with the n-dimensional Euclidean vector space R™.
In fact [Sc3l Theorem 1.7.2], the support set K,, = {x € K |(z,u) = hy (u) } is
given by K, = {hg (v)u} + K,., where K,. is the convex body of u* with
support function by (u;v) = limy o [hx (u + tv) — hg (u)] /t.

(i74) Addition of two convex bodies K, L C R"*! corresponds to that of their
support sets with same unit normal vector: (K + L), = K, + L, for all u € S™;
therefore, the difference K — L of two convex bodies K, L C R™™! must be
defined in such a way that (K — L), = K, — L,, for all u € S™.

A natural way of defining geometrically general hedgehogs as differences
of arbitrary convex bodies is therefore to proceed by induction with respect
to the dimension by extending the notion of support set with normal vector
u to a notion of support hedgehog with normal vector u. Let H, € H" !
be an arbitrary hedgehog of R"*! (i.e., a Minkowski difference of two ar-
bitrary convex bodies K,L € K"*! such that h=hx —hr). To any u €
S", we associate the hedgehog H of u’ with support function h'(u;v) =
lim; o (h (w +tv) — h(w)) /t. The hedgehog H;, is then given by the datum
of all the support hedgehogs H} := {h (u) u} + H}, (u € S™).

The above definition makes clear that a perfect understanding of plane
hedgehogs is a prerequisite to a study of general hedgehogs of R"*1. We will
give a complete study of plane general hedgehogs in Subsect. 4.7.

In the polytopal case, hedgehogs are also known under the name of ‘virtual
polytopes’. The notion of a virtual polytope was independently introduced
by several authors (see, e.g., [MMu| or [PKh]). Let us give an example in
R2. Let K and L be the convex bodies of R? with support function hx (z) =
[{(z,e1)| + [{x,e2)| and hp, (z) = |(z,e3)| + |{z, eq4)|, where (.,.) is the standard
inner product on R2, (e, e3) the canonical basis of R? and e3, e4 € R? the unit
vectors given by e3 = % (e1 +e2) and eq = % (e1 — e2). These convex bodies
are two squares whose formal difference K — L can be realized geometrically as
the hedgehog with support function h = hx — hy, which is a regular octagram
constructed by connecting every third consecutive vertex of a regular octogon
(i.e., a regular star polygon with Schlifli symbol {8/3}): see Figure 2.3.1.

r "

. J,%
o | — WL
28

Figure 2.3.1. Octagram obtained as the difference of two squares
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R. Schneider showed in [Sch] how in the typical case (in the sense of Baire
category) general hedgehogs that are differences of strictly convex bodies are
highly singular objects.

2.4 Construction of hedgehogs via Euler calculus

There is a close relationship between Minkowski addition of convex bodies and
convolution of their characteristic functions with respect to the Euler charac-
teristic [Grol [Schl [Vir]: If A and B are compact convex subsets of R"*1 then

]-A*]-B = 1A+B7

where * denotes the convolution product with respect to the Euler characteristic
and A + B the usual Minkowski sum of A and B. Introducing the convolution
inverse of the characteristic function for certain classes of convex bodies (such
that polytopes or convex bodies with an analytic support function), we are led
to a new mode of geometrically conceiving formal differences of convex bodies:
the hedgehog H;, representing the formal difference K — L can then be conceived
from its ‘Euler index’, which is given by

1y = 1g * (1) " = ()" (1K * 1_2) :

where —2 is the reflection of the interior E through the origin Ogn+1 [M15].
The relationship between Minkowski addition and convolution of characteristic
or indexes functions can then be extended to certain classes of hedgehogs (ib.)

The present subsubsection is thus devoted to this approach of hedgehogs.
We have chosen the framework of hedgehogs with analytic support functions
(we will refer to them as ‘analytic hedgehogs’ or ‘C“-hedgehogs’) even if
some of our results still hold with a few adaptations under weaker assumptions.

The subsection is organized as follows. For the convenience of the reader
Subsubsect. 2.4.1 briefly summarizes basic notions and results from Euler’s
integral calculus. Subsubsect. 2.4.2 presents the main results and Subsubsect.
2.4.3 the proofs. Unless explicitly states otherwise, the results of this subsection
are essentially taken from [M15].

2.4.1 Euler calculus

Euler calculus is an integration theory built with the Euler characteristic y
as a finitely additive measure. Born in the sheaf theory, it has applications
to algebraic topology, to stratified Morse theory, for reconstructing objects in
integral geometry and for enumeration problems in computational geometry and
sensor networks [CGR]. The short survey papers by P. Schapira [Sch] and O.
Viro [Vir] played an important role in the development of this theory.

Now we thus briefly summarize very basic notions and results from Euler
calculus. We refer the reader to [CGR] for the proofs and more information on
Euler calculus and its applications.
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Tame sets. In Euler calculus, the measurable sets are the tame sets in some
fixed 0-minimal structure. We will not recall here the definition of tame subsets
in a fixed 0-minimal structure. It can be found in the classical surveys on Euler
calculus, e.g., in [vdD]. Classical examples include polyconvex sets, semialge-
braic sets and subanalytic sets. Here, we will only need to know some basic
facts that we will summarize below. In particular, we will need to know that
the union and intersection of two tame sets are again tame.

Euler characteristic. Fix an 0-minimal structure O on a topological space X.
Definable functions between two spaces are those whose graphs are in @. The
Euler characteristic x : O — Z admits the following combinatorial definition:

Any tame set A € O is definably homeomorphic to a finite disjoint union of
open simplices [[, o; and we set:

x(A) =) (-

Algebraic topology asserts that this quantity is well-defined, that is, independent
of the decomposition into open simplices. This combinatorial Euler characteris-
tic is a topological invariant. It is also a homotopy invariant for compact finite
cell complexes (but not for non-compact spaces).

Examples. 1. Euler characteristic can be regarded as a generalization of
cardinality. For a finite discrete tame set A, x (A) is the cardinality of A:

X (A) = #4;
2. A closed orientable 2-manifold S has Euler characteristic 2 — 2g, where g
denotes the genus of S;
3. If A is a compact contractible tame set, then x (A) = 1;
4. Any open n-ball of R™ has Euler characteristic (—1)";
5. The n-dimensional sphere S has Euler characteristic 1+ (—1)";
6. The Euler characteristic of any odd-dimensional compact manifold is equal
to zero (see [MLR] for an elementary proof).
Remarks. 1. Euler calculus relies on the following additivity property:

Proposition 2.4.1. For any pair {A, B} of tame subsets of X, we have:

X(AUB)=x(A4)+x(B)—x(ANB).

2. Euler characteristic is multiplicative under cross products:

Proposition 2.4.2. For any pair {E, F} of tame sets, we have:

X(ExF)=x(E).x(F).
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Note that these additivity and multiplicativity properties generalize the ones
of cardinality of sets.

Euler integral. The above additivity property suggests to define a measure
over tame sets via:

/1,4 (2) dx = x (4)
X

where 1 4 is the characteristic function over a tame subset A of X. A function
f+ X — Z is said to be constructible if it has finite range and if all its level
sets f~1 ({s}) are tame subsets of X. Let CF (X) denote the Z-module of all
Z-valued constructible functions on X. The Euler integral is defined to be the
homomorphism [, : CF (X) — Z given by:

—+oo

/dex = sy [ ({sh)].

§=—00

Alternately, writing f € CF(X) as f = >, ¢;1l,,, where X =[], o0y is a
decomposition of X into a finite disjoint union of open cells and where ¢; € Z,
we have:

/deX = ZZ cix (oi) = Zz ¢ (—l)dim("i) .

Convolution. On a finite-dimensional real vector space V', a convolution op-
erator with respect to Euler characteristic is defined as follows:

v(f.9) € CF (V)?, (f*g)(m)=/vf(y)g(w—y)dy-

Convolution is a commutative, associative operator providing C'F (V') with
the structure of an algebra.

Proposition 2.4.3. (CF (V),+,#) is a commutative ring with multiplicative
identity element 1yq,;.

Relationship with Minkowski addition. There is a well-known relationship
between Minkowski addition and convolution with respect to the Euler charac-
teristic [Gro, [Schl [Vir]:

Groemer’s theorem [Gro|. Let A and B be two compact conver subsets of
R, We have
1yx1p =148,

where x denotes the convolution product with respect to the Euler characteristic
and A+ B the usual Minkowski sum of A and B.
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This relationship will be our starting point for constructing hedgehogs via
Euler calculus.

2.4.2 Minkowski inversion with respect to xy and Euler index

In this section, given a convex body K in R"*!, we will often need IO( and 0K
to be tame subsets of R"*1. It is why we will restrict ourselves to analytic
hedgehogs (resp. convex bodies).

The following result can be regarded as a Minkowski inversion theorem since
l{ORn+1} is the multiplicative identity of (CF (R™*1), +, x):

Theorem 2.4.1. Let K in R*™! be a convex body of class CY. We have
n+1 _
(_]-) (1K*1_Io{)_1{01§"+1}7

o o
where —K denotes the reflection of K through the origin Ogn+1. In other words,
the convolution inverse of the characteristic function of K is given by:

1) ' =" ..

Remarks. 1. Of course, if K is a convex body reduced to a point a of R"*1,
then the convolution inverse of the characteristic function of K is given by:

(1) ' =1 4.

2. In [PKh], Pukhlikov and Khovanskii gave a similar Minkowski inversion the-
orem in the polytopal case: for every convex polytope K in R"*!, we have

dim K
(71) m (]-K * ]-—relintK) = 1{0R71+1}’

where relintK is the relative interior of K, that is, the interior of K in the
smallest affine subspace that contains K.

Euler index

Definition 2.4.1. Let Hj be a C¥-hedgehog of R"*L, and let K, L in R*H!
be convex bodies of class C% such that Hy is representing the formal difference
K — L. Define the Euler index of Hy, by

1, = 1g * (1) " = (—1)"H! (1K « 172) :

o o
where —L denotes the reflection of L through the origin Ogn+1.
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Remarks. 1. Using Groemer’s theorem, which we have recalled above, and
the fact that the convolution product * is commutative, associative and admits
1 {0gnia} 38 unity, it is easy to check that 1;, is independent of the choice of the
RT
pair (K, L) of convex bodies of class C% such that Hj is representing K — L.
2. Given any C“-hedgehog H; of R*"*! for every large enough r > 0,
k:=h+r and [ := r are the respective support functions of two convex bodies
K and L such that Hj is representing the formal difference K — L. Indeed,
h = k — [ and if r is large enough then, for all u € S", the principal radii

of curvature of Hj at x (u), which are the eigenvalues of the tangent map
Tz = Tyxn + rldr,sn, are all positive.

Furthermore, Groemer’s theorem admits the following extension to analytic
hedgehogs:

Theorem 2.4.2. Let Hy and H, be two analytic hedgehogs of R™*1. We have

lf*].g = 1f+g-

This can easily be deduced from Groemer’s theorem by using the above
Minkowski inversion theorem. We will leave it to the reader to write down the
details.

Relationship with Kronecker index

Theorem 2.4.3. Let Hj;, be a C*-hedgehog of R™"*, and let K, L in R*H!
be convex bodies of class CY such that Hy is representing the formal difference
K — L.

For any x € R\ H},, the Euler index 1, (v) := (—1)”"r1 (1K * 172) (x)
of Hp at = is equal to iy (), that is, to the degree of the map
xp(u) —x

LS - S S
Uy : 87 = 5% = o ) —a]

In other words, the Kronecker index iy is nothing but the restriction of the Euler
index to R" I\ Hj,.
Expressions for the Kronecker index

We then give new expressions for the Kronecker index resorting only to the
support functions and the Euler characteristic.

Theorem 2.4.4. Let H; C R*"! be a C¥-hedgehog. Fiz x € R*I\ H}, and
let hy : S™ — R be the support function of Hp with respect to x:

he (w) == (zp(u) —z,u) = h (u) — (x,u).
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The Kronecker index iy, (x) is given by
in (@) =1+ (=)™ g (@) = X3 (@) + (=)™,

where x;, (x) ==X (he) " (J—00,0])| and X (%) = x (he) " (J0, +00[)|.
Corollary 2.4.1. Under the assumptions of the previous theorem, we have:

1— 5x5 (z) if n+ 1 1is even
Vo € R"™N\Hp, i (z) =
(i () = x5 (x)) if n+ 1 is odd,

where X, () := x| (ha) " ({01)] X (@) = x [(h) ™" (1=20,0D | and X} () :=
x [ (ha) ™ (0, +o0])|.

Remarks. 1. From these results, if n + 1 is even then, for any z € R* T\ H},
the knowledge of one of the four integers x,, (z), x;, (%), X; () and iy, () implies
that of the three others.

2. For n+ 1 = 2, Corollary 2.4.1 gives

in(x)=1- %nh (2),

where ny, (z) denotes the number of cooriented support lines of Hj, through z,
that is, the number of zeros of h, : St — R, u +— h(u) — (z,u) (remind that the
Euler characteristic is a generalization of cardinality). In Subsect. 2.8, we will
extend this formula to any C2-hedgehog (Theorem 2.8.1).

3. For n+1 = 3, we will also prove in Subsect. 2.8 that if H}, is a C?-hedgehog
in R? then, for every x € R®\ H},, we have (see Theorem 2.8.2):

in (z) =y () =7y, (),
where 7;, (z) @esp. 7j ()) denotes the number of connected components of
5% — b1 ({0}) on which h,(u) := h(u) — (x,u) is negative (resp. positive).

Euler index at a point of H,

We are now going to consider the case when z is a point of Hj. We begin
by the case n +1 = 2.

Theorem 2.4.5. Let Hj be a C*-hedgehog of R%. At a simple regqular point
x = xp (u) of Hp, the Euler index 1, (x) is equal to the value taken by the
Kronecker index i), on the connected component of R*\Hy, towards which the
unit normal vector —u is pointing to. At a simple cusp point ¢ of Hy, the
Euler index 15, (¢) is equal to the value taken by the Kronecker index i, on the
connected component of R*\Hj, that lies, in a neighborhood Q of c, on the
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same side of Hp, as the evolute of Hp N Q.

Remarks. 1. Generic singularities of plane C*°-hedgehogs are cusp points (see
Subsubsect. 2.6.3).

2. This result can be extended to hedgehogs Hj, of R? that are Minkowski
differences K — L of two convex polygons K and L. For instance, if we start
again with the example of the octagram H;, = K — L of two squares presented

in Figure 2.3.1, the FEuler index of Hj, is such that (IK x 1 z) =1y.

Figure 2.4.1 is describing this relation by means of representations in R2. As
can be seen on this figure, where the red arrows are representing unit normal
vectors u, at a simple non-angular point = of Hj,, the Euler index 1, (x) is equal
to the value taken by the Kronecker index i, on the connected component of
R2\ H}, towards which the normal vector —u is pointing to. The blue arrows
just indicates the orientation of Hy.

AN X IR

Figure 2.4.1. Euler index of a Minkowski difference of two squares

In higher dimensions, the question is more complicated at the singular points.
However, the result remains true at the simple regular points.

Theorem 2.4.6. Let H; C R"™! be a C%-hedgehog. At a simple reqular point
x = xp (u) of Hp, the Euler index 1p (x) is equal to the value taken by the
Kronecker index i, on the connected component of R"T™N\'H;, towards which
the unit normal vector —u is pointing to.

2.4.3 Proof of the results

Proof of Theorem 2.4.1. By the definition of the convolution product, we
have

(lK * 1_;{) () := /Rn+1 1x (v) 1 o (x —y)dx (y) forxz e R"™

Fix z € R""!. The range of F, : R""! — R, y — 1k (y) 1o (z—y)is
included in {0,1} and
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Yy € R Fx(y)1®y6K0<I%+{x}>.

By the definition of Euler integral, we thus obtain

(1 )@= [ Rma=x|xn (k@)

If = Ogn+1 then KN <[0( + {:1:}> — K and hence (lK * 1_;{) (z) = (—1)"™!

o
since K is homeomorphic to an open (n + 1)-ball.

Assume z # Ogn+1. If KN (IO{ + {x}) = O then x {K N <I% + {x})} =0.

Hence, we may assume that KN | K + {z} | # @. In this case, KN <K + {x})
is homeomorphic to an open (n + 1)-ball and its boundary is the disjoint union

of 0K N <IO(+ {x}) and K N0 (K + {z}), where the boundary of a convex
body L is denoted by OL. Therefore, K N <I% + {z} ) is then the disjoint union

of KN K+ {z}) and K N (K + {x}), which is homeomorphic to an open
n-ball, so that

X[}(rw(i}4—{x})] :;X[i%rw<i%—+{x}>} +—x{81(rw(i34—{x})]
= ()" 4 ()"
=0,
which achieves the proof. [

Before we prove Theorems 2.4.3 and 2.4.4, we need to state and prove some
intermediate results and properties.

Proposition 2.4.4. Under assumptions of Theorem 2.4.3, we have:

in (r) =0 if v ¢ K+ (—L)
1, (z) =
" ()" (1= x[(K +{—2z})NOL]) ifze (K+ (=L))\Hp.

Proof. We have

1K* 175 = 1K* (17L — 1,3[/) = (1[( *1,[,) - (1K*178L);
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where —L (resp. —0L) denotes the reflection of L (resp. L) through the origin.
Now, we have 1x * 11 = 1 (_r) by Groemer’s theorem, so that
]-K * ]__E = 1K+(—L) — (]-K * 1—8L) .
Let x € R"*!. The range of F, : R"™! - R, y +—— 1x (y)1_or (x —y) is
included in {0,1} and
Yy e R"™ F(y)=1&ye KN(IL+ {z}).
By the definition of Euler integral, we thus obtain

(1 # 1oop) (&) = / F, (y) dx (y) = x [K N (0L + {2})].

Rn+1

Using the translation y — y — =, we deduce that

(1x *1pr) (2) = X [(K +{—2}) N IL].

First assume 2 ¢ K +(—L). Then 1x, () (z) =0and (1x *1_51) (z) =0
since (K + {—z}) N OL # @ would imply z € K + (—0L). Consequently

1, (x) = (~1)"! (1K * 1,Z> (z)

= (_1)n+1 (1K+(—L) () = (1x *1_p1) (x))

=0.

Since zp, (S™) C K + (—L), we also have i, () = 0 and thus 1p (z) = ip, (2).
Now assume z € (K + (—L)) \'Hp. Then we obtain

1y (z) = (1" (1= x [(K + {-2}) N OL]).
|

Recall that we say that two submanifolds S; and S of a manifold M are
transverse, and we write Sy th Ss, if T,,M =T,,51 + T,,5> for all m € S1 N S>.

Proposition 2.4.5. Let Hj, be a C¥-hedgehog of R™™* and let K, L in R™H!
be two convex bodies of class C% such that Hy, is representing the formal dif-
ference K — L. For every x € R"™ such that (K +{-z})NL # @ and
0 (K + {—x}) h OL, the following properties hold:

(4) (hw)fll({o}) ~ 0 (K +{—z})NoL;
(1) (he) ™" (00,00 = O (K +{~a}) N L
(iii) (hz)” " ([0, +o0]) ~ (K + {—2}) N OL;
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where = is the homeomorphism relation and (hy) (u) :== h(u) — (x,u), (u € S™).

Proof. (i) It follows from the assumptions that (K + {—x}) N L is a strictly
convex body with interior points, and thus that its support function

f: " —R
ursup{(p,u)|p € (K +{-z})NL}

is continuously differentiable [Scll Theorem 2.2.4]. Denote by k and [ the
respective support functions of K and L and let k, (u) := k (u) — (z,u) for all
u € S™. Notice that the zeros of h, = k, —[ are the points u € S™ such that the
support hyperplanes with exterior normal vector u of K 4+ {—x} and L coincide.
Note that such an u € (h,)”" ({0}) cannot be a regular point of z. So, we can
consider the continuous map

¢: (he)” ({0}) = O (K +{-a})noL
uwr—zs (u) = (Vf) (u) + f (u)u

To check that it defines a homeomorphism from the compact (he)~' ({0}) to
0 (K 4+ {—z})NOL, it suffices to prove that it is a bijection.

Let p € O(K +{—x})NIL. Since 0 (K + {—=z}) M JL, there exists a pair
of non-antipodal points v and w on S™, such that

p=uxp, (v) =z (w).

Let v denote the shortest arc between v and w on S™. Since we have clearly
hy (v) < 0 and hy (w) > 0, there exists some u € 7 such that hy (u) = 0.
It remains to prove that such an u € v is unique and such that ¢ (u) = p.
For £ € S", let Hy, (¢) and H;(§) (resp. H, (£) and H; (€)) denote the
respective support hyperplanes (resp. halfspaces) with exterior normal vector £
of K + {—z} and L. Note that: (a) The segment with endpoints xj, (u) and
z; (u), say o (u), is passing through the complementary of H, (v)UH; (w); (8)
Hy, (u) = H; (u) = (zg, (v) 2 (v)+ (v-Nwh), where £+ is the vector subspace
orthogonal to £ € S™ and (xy, (u) z; (u)) the line through z, (u) and x; (u).

Let w1, us € v N (hy) " ({0}). From (a) and (8) with v = uy and u = uy, it
follows that the support hyperplanes Hy, (u1) = H; (uy) and Hy, (u2) = H (u2)
of the convex hull of (K + {—x}) U L must coincide (in order that all the end-
points of the segments o (u1) and o (ug) lie in each of the support halfspaces
H,” (u1) and H; (u2), see Figure 2.4.2). Therefore, there exists a unique u €
such that h, (u) = 0 and it satisfies ¢ (u) = p.
To complete the proof it is sufficient to observe that any crossing of (hy) ™' ({0})
on S" from (k)" (]—00,0]) to (hy)~" ([0, +00[) corresponds to a crossing of

(K +{—2})NOL on 0 (K + {—=x}) (resp. IL) from 0 (K + {—=z}) N 2 to
(K +{-2}) n (R*™\L) (resp from. (R"™\ (K +{—z})) N 9L to

0
(K + {—x}) N 0L, which results from the proof of (7). |
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The following corollary is immediate.

Corollary 2.4.2. Under the assumptions of the previous proposition, we have:
X [0 (K +{—z}) NOL] = x, (x)
X [0(K +{-z})NL]=x,; (x) +x ()
X (K + {=2}) NOL] = x;, (z) + x5y (x)
where x, () = x [(h) ™ ({OD)], x5 (@) = x [(ha) ™" (J=00,0D] and x{ (x) ==
x [(h) ™" (10, +00D].

R™! — (Hg W) U H7(w))

p=x (V) = x;(W)

Figure 2.4.2. projection view onto the plane (Rv + Rw)J‘

Lemma 2.4.1. Let Hyj, be a C“-hedgehog of R"™ and let K, L in R"! be

two convex bodies of class CY such that Hy, is representing the formal difference
K — L. For any € R"™\'H},, we have:

Ly (z) =i (z) =1 = (=1)"x; (x) =0

if 0(K +{—=z}) and OL are externally tangent (that is, if they intersect in ex-
actly one point and the intersection of their interior is empty).
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Proof. Let a = b — x be the point of tangency of 9 (K + {—z}) and JL, where
(a,b) € K x L. By Proposition 2.4.4, we have
Ly (@) = (=1)"" (1= x (K + {-2}) n L))
Since (K + {—z}) N 0L = {a}, this implies 1, () = 0.
Let uw be the point of S™ such that a = zy, (u) = z; (—u). For all ¢ > 0,
ze = x + eu is such that (K + {—z.}) N L = @ and hence z. ¢ K + (—L).

Therefore, ip, (x.) = 0 for all € > 0 and hence i, (z) = 0.
Finally, by noticing that x, (z) is constant on each connected component

of R"*! —H,, and that (h,) " (]—o0,0[) is homeomorphic to an open n-ball B,,
when the Euclidean norm of x is sufficiently large, we see that

which achieves the proof. |

Lemma 2.4.2. Let H;, C R"! be an analytic hedgehog. For every = €
RN Hy,, the index 1p, (z) is given by

1, (z) = 14 (=)™t x; (),
where X7 (@) = x [ (ha) ™" (=00, 0])].
Proof. From Proposition 2.4.4 and Lemma 2.4.1, we can assume without loss

of generality that € (K + (—=L))\Hp and 0 (K + {—=z}) h L. Then, by
Proposition 2.4.4 and Corollary 2.4.2, we have:

But

so that

Proof of Theorems 2.4.3 and 2.4.4. Let H; C R™*! be the hedgehog with
support function h (—u) = —h (u), (u € S"). Note that H;, and H; have:

- the same geometric realization since z (—u) = x, (u) for all u € S";
- the same transverse orientation (resp. opposite transverse orientations) at
each point z; (—u) = zp, (u) if n 4 1 is even (resp. odd).
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Therefore i; = (—1)”+1 ip, on R"™N\ H;,. Thus if we prove that, under as-
sumptions of Theorem 2.4.3, i, (z) = x} () + (=)™ for all z € R\ H,,
then

inle) = (1" (@)
= (=" (¢ (@) + ()"
=1+ (=)™ ¥ (@)

=1+ (—1)""_1 x;, (z)  for all x € R"MN\ Hy,

and hence i;, = 1; on R"T\ X}, by Lemma 2.4.2. So it remains only to prove
that:

Vo e RN Hy, in () = X (2) + (=1)" 1.

Since i, (z) is equal to 0 and (h,) " (]0,+00[) homeomorphic to an open n-
ball when the distance of x from the origin is sufficiently large, it suffices to

prove that the map x +— i), (z) — (X;zr (z) + (_1)n+1> is constant on R*1 —H,,.

Since the maps z +— ip, (z) and z — X (z) are constant on each connected
component of R"** — H,,, we only need to prove that i), (z) — x; (z) remains
constant whenever x crosses Hj, transversally at a regular point.

Recall that, at a regular point z, (u) of Hy, the transverse orientation of Hj,
is given by sgn [Ry, (u)] u, where sgn is the sign function and Ry, the curvature
function of Hp. Therefore, the Kronecker index iy (z) decreases by one unit
whenever x crosses Hy, transversally at a simple regular point xp, (u) in the di-
rection of sgn [Ry, (u)] u. Thus it is sufficient to prove that x; (z) also decreases
by one unit whenever z crosses H;, transversally at a simple regular point x;, (u)
in the direction of sgn [Ry (u)] u.

Let xp, (u) be a simple regular point of Hy,. As the point xj, (u) is regular, the
curvature function of Hj, is nonzero at u: Ry, (u) # 0. Recall that Ry, (u) is the
product of the principal radii of curvature R} (u), ..., R} (u) of Hy, at u, which
are defined as the eigenvalues of zj, at u. Denote by p (resp. ¢) the number
of principal radii of curvature of H;, at w that are positive (resp. negative),
((p,q) € N? and p+ ¢ = n).

Let us consider the variation of x; (z) when x, moving on the normal line
to Hy, at xp, (u), crosses Hy, at xp, (u) in the direction of transverse orientation
(that is, in the direction of (—1)?u). We first consider the case where the sec-
tional curvature o, () of Hy at xp, (u) is positive (i.e., (p,q) = (n,0) or (0,n)).
In the sequel of the proof, B™ will denote an open n-ball. If ¢ = 0, then the
effect of the crossing on x} (z) is to add x (B™) — x (S"), that is —1, to x} (z).
If ¢ = n, then the effect of the crossing on x; () is to add (=)™ x (B™), that
is —1, to x; (). Thus, in both cases, the effect of this crossing in the direction
of transverse orientation is that x;  (z) decreases by one unit.
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We now turn to the case where p and ¢ are nonzero. If we consider (h,) ™" ({0}),
which is a (not necessarily connected) smooth orientable hypersurface of S for
any z € R""! — H,, (since Vh, (u) # 0 whenever h, (u) = 0), the effect of
the crossing in the direction of transverse orientation can then be viewed as a
surgery performed on the hypersurface. If ¢ is even (resp. odd), the “surgery”
consists in cutting out a piece of hypersurface homeomorphic to S?~1' x DP
(resp. D17 x S”_l) and replacing it by a piece of hypersurface homeomorphic
to D7 x SP7! (resp. S77! x DP), where D™ is the closed m-ball bounded by
S™, (m € N). Recall that such a surgery is possible by the fact that SP~1 x S9-1
can be regarded as the boundary of S9=! x DP or as the boundary of D? x SP~1.
When we consider (hy)~" ([0,400]), the effect of the "surgery" is to remove
(resp. to add) a cell complex that is homeomorphic to DP x B? if ¢ is even
(resp. odd). Since Euler characteristic is multiplicative under cross products,
the effect of the crossing on x; (z) is thus to add (=1)7"! x (BY), that is -1. W

Proof of Corollary 2.4.1. By Theorem 2.4.4, if n + 1 is even, for every
z € RN Hy,, we have ip, (z) = 1+ x;, (z) = xj (z) + 1, and hence i), () =
1+ 5 (X (2) + x5 (2)). Since x;, (@) + x5 (@) + x5, (2) = x (8") =1+ (=1)",
it follows that iy (z) =1 — 3x,, ().

Now, if n + 1 is odd then, for every x € R\ Hy, iy (z) = 1 — x;, (z) =
X} (z) — 1 and hence i, (z) = § (x (z) — x;, (z)). |

Proof of Theorem 2.4.5. We will give later a proof valid in any dimension
n+ 1, (n € N*), (cf. proof of Theorem 2.4.6). However, in order to deal with
the special case of cusp points, we present here a slightly different proof in the
plane.

Let K, L in R? be convex bodies of class C% such that H;, is representing
the formal difference K — L in R%2. We will denote by k and [ their respective
support functions. Following the proof of Proposition 2.4.4 for n +1 = 2, we
obtain

1p () =1 = x[(K +{-z})ndL],

since x 1= xp, (u) = zk (u) + (—z; (v)) € K + (—=L).

Note that 0 (K + {—z}) and OL are internally tangent at the point x; (u)
since x; (u) = x, (u), where k; (u) := k (u) — (z,u), (u € S'). Here ‘internally’
means that the two convex curves lie in the same side of their common tangent.
Since x := xj, (u) is assumed to be a regular point of Hj, we have Ry (u) # 0
and thus Ry, (u) # Ry (u).

If Ry, (u) > 0, then Ry, (u) > R;(u), so that, in a neighborhood of the
tangent point, (OL)\ {z; (u)} lie in the interior of K + {—z}. It follows that

1

X[(K +{=2}) NOL] = 5 (x [0 (K + {-2}) N OL] = 1) = omj, (2),

1
2
where nj, (z) = x ({v € S' — {u} |hy (v) =0}). Thus 1, (z) is then equal to
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1- %n}l (x), which is the value taken by i; on the connected component of
R2\ H}, towards which the unit normal vector —u is pointing to.

If Ry (u) < 0, then Ry, (u) < R;(u), so that, in a neighborhood of the
tangent point, (0 (K + {—x})) \ {z: (u)} lie in the interior of L. It follows that

XKK*F{ﬂﬂ)ﬂaL%=%(XW(K?F{ﬂG)ﬂ5L¥+1)Z%HL@)+1,

where n}, (z) = x ({v € S' — {u} |hy (v) =0}). Thus 1, (z) is then equal to
—lnﬁb (z), which is the value taken by zh on the connected component of R\ H,
towards which the unit normal vector —u is pointing to.

Following the same approach for a simple cusp point ¢ := xj, (v) and noticing

that R;, = Ry, — R; changes sign at v, we obtain

1
M@F”*g%@%
where nj, (¢) = x ({v € S' — {v} |hs (v) = 0}), which is the required value for
]—h (C) |

Proof of Theorem 2.4.6. Let K, L in R™*! be convex bodies of class C% such
that Hj, is representing the formal difference K — L in R**!. Denote by k and [
their respective support functions. Following the proof of Proposition 2.4.4, we
obtain

Ly (2) = (=" (1= x (K + {—2})naL)),

since x := xp, (u) = g (u) + (—z; (uv)) € K + (—L). Note that 0 (K + {—=x})
and JL are internally tangent at the point x; (u) since z; (u) = zy, (u), where
ky (u) :=k(u) — (z,u), (u € S").

The result is the consequence of the following four observations:
(2) The proof of Proposition 2.4.4 can be adapted to obtain x [(K + {—z}) N OL]
Xn (z) + X/ (z) in the present case;
(i) x5, (@) + x5 () + x50 (@) = x (§") =1+ (1)
(iii) At © =z, (u), x5, : R"™ = Z, p— x (hp)_1 (]—oo,O[)} takes the same
value as the one it takes on the connected component of R*T™\ H;, towards
which —u is pointing to;
(iv) On this connected component, iy, (p) = 1 + (—=1)""" X, (p) by Theorem
2.4.4. |

2.4.4 Further remarks

Euler characteristic of an analytic hedgehog Let H; in R*t! be an
analytic hedgehog. Define its Euler characteristic by:

ﬂmmzéwgumww»
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Proposition 2.4.6. Any analytic hedgehog of R"*! has Euler characteristic 1.
Proof. Let Hj;, be a C¥-hedgehog of R"™! and let K, L C R™t! be convex

bodies of class C¢ such that H, is representing the formal difference K — L. By
the definitions of x (Hz) and 1j, we have:

X (Hp) == /}R”+1 (—1)"H! (1K 1

Convolution is a commutative, associative operator providing CF (R”“)
with the structure of an algebra and by reversing the order of integration, we
get immediately [CGR), Lemma 19.1, p. 36]:

/ (fxg)dx = (/ fdx) (/ gdx) for all f,ge CF (R”H) .
Rrt1 R+ R+l

Thus

) =0 ([ @a) ([ 1 @aw).

that is, x (M) = (=1)""" x (K) x (—E) = (=)™ (D) x (ﬁ) = 1, where
D is the closed (n + 1)-ball bounded by S™ in R"™!, (n € N). |

o) (@) dx ().

Mixed volume of analytic hedgehogs As a consequence of Theorems 2.4.2
and 2.4.3, we have:

Given hedgehogs with support functions hy, ..., h,11 € C¥ (S™*;R), the real
function P : R"*! — R given by

n+1

P(at,. ., Qpe1) i= Upt1 (Z akhk> = / (1a1h1 % ...k 1%+1hn+1) (z)dA (z),
R'n+1

k=1

where A denotes the Lebesgue measure on R”*!, is a homogeneous polynomial
the coefficients of which are the mixed volumes of Hy,, ..., Hn up to a con-
stant factor.

n+1

For some other consequences of the results of this subsection, we refer the
reader to [M15].
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2.5 Hedgehogs with a C'-support function

This subsection can be omitted in a first reading. In Subsect. 2.2, we intro-
duced the notion of a hedgehog H;, with a C2-support function h : S* — R, and
we saw that its natural parametrization zp, : S* — Hp,u — h(uw)u + (Vh) (uv)
can be interpreted as the inverse of its Gauss map. It is worth noting that if
h :S™ — R is only C', the envelope Hj, is still well defined and parametrized
by zp : S* — Hp,u — h(w)u + (Vh) (u). Now, in this case, the hedgehog Hp,
may not correspond to some Minkowski difference of two convex bodies. For
instance, we know that a plane hedgehog that can be regarded as the Minkowski
difference of two planar convex bodies is necessarily a rectifiable curve [M11]
(see Subsect. 4.7), which is not the case for any hedgehog with a C'-support
function. In fact, as we will see, such a hedgehog can even be a nowhere dif-
ferentiable fractal curve of infinite length. The results of this subsection are
essentially taken from [MT7].

In 1872, K. Weierstrass astounded the mathematical world by giving an ex-
ample of a family of real functions that are continuous on the whole real line
without being differentiable at any point. In this subsection, we use such a
Weierstrass’ function to construct an example of a fractal (projective) hedgehog
with a C'-support function.

Theorem 2.5.1 (K. Weierstrass, 1872). Let f be a real function of the form

flz) = Z a"™ cos (b"mx)

where a €]0,1[, b is an odd natural number and ab > 1+ 37” The function f is
continuous everywhere and differentiable nowhere.
Corollary 2.5.1. Let h be a real function of the form

—+o0

h(6) = (1/a")sin(8"6),

n=1

where B is an odd natural number and « is a real number such that a > (8
and % > « (1 + 37”) The function h is of class C* on R but its derivative is
nowhere differentiable.

Proof. By the Weierstrass M-test, the series

> (1/am)sin(8"0) and > (B/a)" cos(B"0)

converge uniformly on R since 0 < 1/a < 1 and 0 < 8/a < 1. Consequently, as
un(0) = (1/a)" sin (8"0) is a function of class C! on R the derivative of which
is ul, (0) = (8/a)" cos (8"0), the function h is of class C* on R and
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—+oo

W (0) =Y (B/a)" cos(8"0) forall  €R.

n=1

Now, given the conditions imposed on « and 3, this derivative h’ is nowhere
differentiable by Theorem 2.5.1. |

Theorem 2.5.2 There exists a fractal projective hedgehog Hj, in R2. More
precisely, if h:S!' =R/27Z — R, 0 — h(0) is a Mébius function of the form

+oo

h(6) =7 (1/a")sin(5"6),

n=1

where B is an odd natural number, and « is a real number such that o > 3 and
8% > a (1 + 377'), then the hedgehog Hj, satisfies the following properties:

() the curve Hy, is continuous but nowhere differentiable;

(7) the curve Hy has infinite length.

Proof. From the previous corollary, the Mobius function h is of class C* but its
derivative b’ is nowhere differentiable. It follows immediately that the natural
parametrization of Hjy, namely

xp: I =[0,27] — H; C R?
0 — (3,(0),27(0)) = h(0)u(9) + h'(0)u'(0)

where u(0) = (cos 8, sin 6), is continuous everywhere but nowhere differentiable.
Now, the length of Hj, namely

n
L(h) =sup Y _ [[za(0k) — zn(0k—1)l,
7 k=1
where the supremum is taken over all partitions o = (6o, ..., 0,) of I, is finite if
and only if both components of z; = (x,lz, xi) are of bounded variation on 1.
But in this case, the functions z} and z% are almost everywhere differentiable

on I, in contradiction with the fact that x;, = (:c}lL, x,%) is nowhere differentiable.
|

Moreover, the partial sums of the series Y (1/a™)sin (5"0), where n > 1,
define a sequence (Hp, ), ~, of projective hedgehogs the natural parametriza-
tions of which converge uniformly to that of Hj. So, a fair approximation of
Hp is given by Hp,, for a large enough n. Taking only n = 5, we obtain the
following representation of Hj, for « =8 and g =T7.

For a generalization of Theorem 2.5.2 and other examples of fractal hedge-
hogs, we refer the reader to [RK].
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Figure 2.5.1. A fractal projective hedgehog

In a sense, this construction looks like that of the Koch curve (see e.g.,[PJS]):
each step introduces new singular points as indicated in Figure 2.5.2. But in
the present case, it also appears self-intersections.

/"—_—_—_\ ——y A
Figure 2.5.2. Introduction of new singular points

2.6 (*°-hedgehogs as Legendrian fronts

This subsection can be omitted in a first reading. In this subsection, we will see
that C°°-hedgehogs (that is, hedgehogs with a C*°-smooth support function)
are wavefronts in the sense of contact geometry. Therefore, C>°-hedgehogs only
have Legendrian singularities.

2.6.1 Contact manifolds and metric contact manifolds

A contact structure on an oriented (2n + 1)-dimensional C*°-manifold M is
the datum of a smooth field V' of tangent hyperplanes on M, called contact
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hyperplanes, satisfying the following condition of maximal non-integrability:
any (and hence every) 1-form « defining V' (i.e., such that V = Ker («)) satisfies
aA(da)™ # 0 everywhere on M. Any 1-form « defining such a maximally non-
integrable hyperplane field V on M is called a contact form on M. Given
such a contact structure (or a contact form « defining it), the pair (M, V) (or
the pair (M, «) if we want to fix the contact form defining V) is then called a
contact manifold. On (M,«a), the Reeb vector field £, associated to the
contact form « is defined to be the unique smooth vector field satisfying

alE,)=1 and ¢, € Ker (da) .

A submanifold L of a contact manifold (M, V) is said to be integral if T,,,L C
Vin for all m € L. A Legendrian submanifold of (M,V) is an integral
submanifold of (M, V) with maximal dimension n = (dim M — 1) /2. A fibration
of a contact manifold is said to be Legendrian if all its fibers are Legendrian
submanifolds.

Let i : L — FE be an immersed Legendrian submanifold L in the total space
of a Legendrian fibration 7 : E — B. The restriction x = woi: L — Bofwto L
is called a Legendrian map, and its image x (L) in B is called its Legendrian
front or wavefront.

Example. Unit tangent bundles of Riemannian manifolds are among the
most classical examples of contact manifolds. Let us recall briefly how this is
done. Let(M, g) be a Riemannian manifold and let

UTM ={ueTM|g(u,u)=1}

be its unit tangent bundle with canonical projection 7 : UT M — M ; the metric
g induces a contact form « (and thus a contact structure V') on UT' M as follows:
for any u € UTM and v € T, (UTM), we let

ay (v) = g (u, Tym (v))

where T, 7 (v) = 7, (v) is the pushforward along 7 of the vector v. Moreover,
m:UTM — M is an example of a Legendrian fibration.
In particular, if we let

n+1
Qg = (U, dz) = Z u;dw;
i=0

for all (z,u) € UR" ! = R x S" where (z1, -+ ,Tpi1;U1,  + ,Uni1) are the
canonical coordinate functions on UR™*! = R+ x S* ¢ R?"*+2, we obtain a
contact manifold (UR™"1; a).

A contactomorphism from a contact manifold (M7, V1) to a contact man-
ifold (Ms,V2) is a diffeomorphism f : My — My that preserves the contact
structure, i.e., such that Tf (V1) = Va, where T'f : TM; — TMs denotes the
tangent map of f. If V; = Ker («;), (i = 1,2), this is equivalent to the existence
of a nowhere zero function A : My — Ms such that f*as = Aag.
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Example. Another example of a contact manifold is defined as follows: on
the manifold T'S™ x R, where the tangent bundle T'S™ is identified with

{(wp) e @) |u| =1 and (up)=0}

(Il and {.,.) denoting respectively the Euclidean norm and scalar product in

R™*1), we define a contact form B by puttin := dz — pdu for all
y & P(up,2)

(u,p, z) € TS™ x R. Moreover

f: URMI =R xS - TS" xR
(z,u) — (u,z — (z,u) u, (z,u))
is a diffeomorphism such that f*5 = «, and hence a contactomorphism from
(UR", a) to (T'S™ x R, B).

A metric contact manifold is defined to be a tuple (M, g, a, J), where
(M, g) is a Riemannian manifold, & a smooth 1-form on M and J a section of the
endomorphism bundle End (T'M) which satisfy the following three conditions:

(1) a(&,) = 1, where &, is the metric dual of «;

(#7) da(X,Y) = g(JX,Y) for any vector fields X, Y on M;

(iii) J?°X = =X + a (X) &, for any vector field X on M.

Then (M, Ker (a)) is a contact manifold (i.e., a A (da)” # 0 on M), &, is the
Reeb vector field associated to o, J¢, = 0 and ¢ is determined by o and J
through the equality ¢ (X,Y) = a(X) a(Y) 4+ da (X, JY), (see e.g., [Sta]).

Example. In the case of hedgehogs of R"*!, we will consider the metric

contact manifold (U R g, a,J ), where g is the Riemannian product metric on
UR" ! =R x S" and J : TUR"! — TUR" ! (X,Q) — (Q,(X,q) g — X).

2.6.2 (C°°-hedgehogs as Legendrian fronts

Let us consider first the case where (M, g) = (R"‘*‘l,gcan), where gean = (., .)
is the canonical Euclidean metric. Let H}, be a hedgehog of R™t! with support
function h € C*° (S™;R). Let us recall that its natural parametrization xj, :
S" — R" w i x5, (u) = h(u)u+ (Vh) (u) can be interpreted as the inverse of
its Gauss map. Thus it appears that

i S* — URrH = R+ x S»
w i (zp (1), u)
is the immersion of a Legendrian submanifold in UR™*! of which H;, is the
Legendrian front in R**! and x;, = 7 o i the corresponding Legendrian map.

Recall that on UR"™*!, the contact form and the associated Reeb vector field
are respectively given by

n+1
A(g,u) = <’LL, d$> = Z u;d; and f(xv U’) = (U, OTuS") )
=0
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for all (z,u) € UR"" where (21, -+ ,Tpy1;U1, ,Uns1) are the canonical
coordinate functions on UR™*! = R*+! x §* ¢ R2"+2,

Thus, hedgehogs of R"*! are the Legendrian fronts of those Legendrian
submanifolds of (U R+, a) whose Legendrian maps can be interpreted as the
inverse of the Gauss map of their image (i.e., of the Legendrian front).

i
S* — i, (S") C (UR™, Ker (a))

Th "\ lr

H;, C R,

2.6.3 Generic singularities of smooth hedgehogs

As we have just seen, C*°-hedgehogs of R"*! can be regarded as Legendrian
fronts. Therefore they have only Legendre singularities. Since their natural
parametrizations z; : S® — R form an open dense set among all Legendrian
maps of the Legendrian fibration 7 : (UR™ ™, Ker (o)) — R"™, (z,u) > x [MI],
Arnold’s works can be used to classify their generic singularities for n < 5 [Ar(].

(a) A cusp point (b) A plane hedgehog with 5 cusp points

Figure 2.6.1. Singularities of generic plane hedgehogs are cusp points

In particular, generic singularities of C°°-hedgehogs are cusp points in R?,
cuspidal edges and swallowtails in R3. Swallowtails are the cusp points of
cuspidal edges. Elliptic and hyperbolic regions, which are defined by the sign of
the Gauss curvature k;, = 1/ Ry, are separated by cuspidal edges on which the
curvature function Ry is equal to 0 (or, loosely speaking, on which the Gauss
curvature kp is infinite): see Figure 2.6.2 (a). Note that we can distinguish
two types of swallowtails (negative or positive) according to the sign of the
Gaussian curvature on the tail: see Figure 2.6.2 (b) and (c¢). More precisely,
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there exists an open dense subset U of C*° (82; R) in the C*-topology such that:
for all h € U, the singularities of H, are all equivalent to one of the three models
of singularities represented in Figure 2.6.2.

[a]

Figure 2.6.2. Singularities of generic hedgehogs of R?

Moreover, for such a hedgehog, R. Langevin, G. Levitt and H. Rosenberg
proved the following counting formula on S? [LLR]:

Proposition 2.6.1. Given H;, a generic C*®-hedgehog of R3, we have

+ g
- =114 (2.6.1)
where q~ (resp. q") is the number of negative (resp. positive) swallowtails of

Hp, and v~ (resp. r+) the number of its hyperbolic (resp. elliptic) regions.

Proof of proposition 2.6.1. The authors proceeded by 3 steps in order to
establish this result:

e First, they considered the following path of hedgehogs

i [0,1] = Hs
t— Hh+t7‘7

where Hj is the linear space of C*°-hedgehogs defined up to a translation in R3,
and r € R is large enough to ensure that Hj, is the boundary of a convex
body of class C?°;

e Then, they noted that this path of hedgehogs can be made generic so that
when ¢ varies, the qualitative changes in the singularities of Hj, ¢, are all of one

of the 5 types of generic wave front metamorphoses described by Arnold (see
Figure 2.6.3);

e Finally, they checked that no one of theses metamorphoses changes the
quantity vt —r~ — (¢* —q7) /2. [ |

In order to conclude this subsection, let us mention the following unsolved
problem raised by R. Langevin, G. Levitt and H. Rosenberg in [LLR]:
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Problem 2.6.1. Does there exist a generic projective hedgehog without any
swallowtail?

[ sa

_._‘*@..4 +' >

Figure 2.6.3. The 5 types of wavefront metamorphoses
occuring in generic 1-parameter families (extracted from [Arl])

In [MP], G. Panina and the author discussed the discrete (i.e., the piecewise
linear) counterpart of the same problem. More precisely, G. Panina and the
author defined swallowtails and cuspidal edges for the discrete case, derived an
analogous counting formula, and presented a discussion on the open problem of
existence of a generic projective hedgehog without swallowtails in this setting
of polyhedral hedgehogs. In Subsect. 10.2, we will present a partial answer to
Problem 2.6.1 by proving that in every generic path of hedgehogs performing
the eversion of the sphere in R3, there exists a hedgehog that have positive
swallowtails We will see that it is easy to check that there is also a hedgehog
that have negative swallowtails by considering the generic metamorphoses of
Figure 2.6.3.

2.7 A few words on duality

To conclude this background section, let us say a word on duality for hedgehogs,
which will be useful in many circumstances. In the setting of convex bodies of
(n + 1)-Euclidean vector space R"*! we can distinguish two main notions of
duality which are closely related: projective duality and polarity duality with
respect to the origin o. Let us briefly recall these notions and consider how they
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can be extended and interpreted in the setting of C'?-hedgehogs.
Projective duality

Let P be the projective space P (E), where E = R"*2. Recall that each
point [z] of P is of the form

[] = {A(21,...,Tnt2) A £ 0 and (x1,...,2n42) € EN {0} },

and that [z1,...,2,42] are called homogeneous coordinates. We say that a
subset K of P is a convex body of P if, for any hyperplane H in PN\ K, K is a
convex body of R"*! = P\ H. Let K be such a convex body of P. Recall that
projective duality yields a bijection between P* = P (E*) and the set H (E) of
hyperplanes of P, by assigning to each point {Af |\ # 0} of P*, f being a nonnull
linear form f € E*, the projective hyperplane P (Kerf). Thus we can identify
P* with H (E). The dual convex body of K, say K*, can thus be defined
in P* = H (E) to be the closure of the set of all hyperplanes disjoint from K.
We can then check that K* is a convex body, and if K is smooth and strictly
convex, then so is K*. The projective Legendre transform Ly : 0K — 0K*
is then the bijection given by L () = T, (0K), where 0K and 0K* denote
the respective boundaries of K and K*, and T, (0K) the support hyperplane
of 0K at x. Since we have a canonical isomorphism between E and its bidual
E**, which allows us to identify E and E**, we can see K** as a convex body
of P, and check that K** = K.

Let us adapt this definition to C%-hedgehogs of (n + 1)-Euclidean vector
space R"*1. Let H; be such a hedgehog. We can see Hj, in P by adding the
hyperplane at infinity to R”t!. More precisely, we imbed E = R**! in P by

x=(x1,...,Tpnt1) € E— [T1,...,Zpy1,1] €P,

so that R"*! is identified with the set of [z] € P whose last homogeneous
coordinate is nonzero.

The family of support hyperplanes (Hj, (1)), cs» With equation (z,u) = h (u)
then defines the dual hypersurface, say H} in P* = H (E), that is parametrized
by the map assigning to each v € S™ the hyperplane with homogeneous linear
equation (x,u)—h (u) T,42 = 0, where z = (21, ...,2Z,41). Equipping E = R"*+2
with the standard Euclidean structure, we can then see H; as the hypersurface
of P that is parametrized by

xS C R S Pow = (ug, . Ungr) = UL, U, —h (0]
In the case where the support function h does not vanish on S™, we can thus
regard H; as the starlike hypersurface of R"*! that is parametrized by

u

h(u)

z}:S" = R s —
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Polarity duality with respect to the origin

In order to define a duality for convex bodies in (n + 1)-Euclidean vector
space R"! itself, we have to counterbalance the removal of the hyperplane at
infinity by the selection of a distinguished point in R™*!, say the origin o of
R, Let K2! denote the set of all convex bodies of R"*! with the origin o
as an interior point. For every K € K7"! the polar (dual) body of K (with
respect to 0) can be defined by

K° = {m* € (R”“)* |z (y) <1forally e K},

or by

K°={zeR"" [(z,y) <lforallye K}

by using the isomorphism the isomorphism between V = R**! and V* induced
by the scalar product to identify both spaces. One can then easily check that
K° € K'*!) and prove that the polarity correspondence p, : K2+ — K+t
K — K¢ is a duality, that is:
VK € Kt K= (K°)° = K.
For every K € K21, the radial function of the polar body K° is defined by

Pro (u) :=max{\ € Ry |\u e K°} for all u € S”,
and related to the support function hx of K by

pK":h

Now we can extend the notion of polar to C?-hedgehogs whose support
function does not vanish on S™. For such a hedgehog, we may indeed define the
polar of Hj, (with respect to o) to be the starlike hypersurface H{, parametrized
by

U
x9S — Ry Aok

We then notice that polarity (with respect to o) coincides up to a sign with
projective duality in the case that K € K?*! (resp. the support function of
the hedgehog does not vanish on S™). For this reason, it will sometimes happen
that we confuse both notions and simply speak of the dual hypersurface of Hj,
(with h non-vanishing on S™) to be the starlike hypersurface H} parametrized
by

h(u)’

Note that for all uw € S™, «} (u) (resp. % (u)) is a normal vector to Hj, at
zp, (u), and zp, (u) is a normal vector to H;, (resp. HY) at x} (u) (resp. z% (u)).

z} :S" — R g
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It is also worth to note that the polarity correspondence Hj; +— Hj can be
regarded as the composition Z o P, where Z denotes the inversion with respect
to the unit sphere, defined by Z (z) = 2/ ||z||* for all  # 0, and P the map that
assigns to each hedgehog H;, (with non-vanishing support function), its pedal
hypersurface (with respect to the origin) P (H},) that is obtained by assigning
to each zp, (u) € Hy, the foot h (u) u of the perpendicular from the origin to the
support hyperplane of Hy, at =, (u):

Hp, 25 P (Hp) — HS = (ToP) (Hy)
zp (u) — h(u)u — zj (u) = u/h (uv)

with 1ﬁ12$§1?1::$gn function ltS pedal ItS dual a Star bOdy
P(Ha) .
Ay ’ l Hn
u
u— xp(u) ur— h(u)u U hlw)

Figure 2 7.1. A plane C? hedgehog, its pedal, and its dual

Let us recall that in the planar case, cusp points of H} correspond to in-
flection points of Hj, and multiple points of H}, correspond to multiple tangent
lines to Hj;, that is, to lines that are tangent to H; at more than one points.

A few words about the generic case in R?. We have recalled above that
there exists an open dense subset U of C'**° (SQ; ]R) in the C*-topology such that:
for all h € U, the singularities of H}, are all equivalent to one of the three models
of singularities represented in Figure 2.6.2, that is to a cuspidal edge or a (nega-
tive or positive) swallowtail. The singularities of the Gauss map of a surface dual
to such a generic hedgehog H, are parabolic curves (i.e., curves along which the
Gaussian curvature vanishes), and (elliptic or hyperbolic) cusps of the Gauss
map (which are also called godrons). Of course, parabolic curves are separating
elliptic and hyperbolic regions of Hj}. Recall that the parabolic curves consist
of the points where there is a unique (but double) asymptotic direction, and
that godrons are the parabolic points at which the unique asymptotic direction
is tangent to the parabolic curve. For a generic hedgehog H},, parabolic curves
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of Hj correspond to swallowtails of Hp, and (elliptic or hyperbolic) godrons
to (negative or positive) swallowtails. Of course, the self-intersection curves of
swallowtails of H}, then correspond to planes doubly tangent to Hj. Recall that
a godron is said to be elliptic or positive (resp. hyperbolic or negative) if, when
we tend towards the godron on the parabolic line, the half-asymptotic curves
directed to the hyperbolic region point towards (resp. away from) the godron.

Remind that an asymptotic direction at a point m of a smooth surface M?
in R? is a direction in which M? has zero sectional curvature. An asymptotic
curve on M? is a curve whose direction at every point is an asymptotic direction.
The asymptotic curves form a pair of transverse foliations on the hyperbolic
regions of M? and a family of cusps on a parabolic curve, except at godrons, at
which the unique asymptotic direction is tangent to the parabolic curve. For a
generic immersion x : M? — R3 of a smooth surface M? in R3, there are three
topologically distinct types of configurations of the asymptotic curves near a
godron (see Figure 2.7.2), and godrons of M? are characterized on parabolic
curves of M? by the property of being in the closure of the set of geodesic
inflections of asymptotic curves (which is is generically a smooth curve of points,
the so-called flecnodal curve). One of the three types of configurations of
asymptotic curves near a godron (Figure 2.7.2 (a)) occurs at hyperbolic cusps,
and the other two (Figure 2.7.2 (b) and (c)) at elliptic cusps. Similarly, there
exists an open dense subset ¢ of C*° (S%;R) in the C*-topology such that: for
all h € U, the foliations induced on S? by the asymptotic curves of H;, have the
same three topological types of singularities near (the spherical representation
of) a swallowtail, and at the source S?, swallowtails of Hj, are characterized on
cuspidal edges of H}, by the property of being in the closure of the set of inflection
points of asymptotic curves. One of the three types of configurations of (the
spherical representation of ) asymptotic curves near (the spherical representation
of) a swallowtail (Figure 2.7.2 (a)) occurs for positive swallowtails, and the other
two (Figure 2.7.2 (b) and (c)) for negative swallowtails [M1].

(a) (b) (e)

Figure 2.7.2. The three distinct topological types of configurations
of asymptotic curves near a Gaussian cusp (extracted from [BGC])
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This duality can for instance be explained by the fact that if we associate
to every point u of the northern hemisphere Si of §2, the point (a,b,c) of R?
such that axz + by + z = ¢ be an equation of the plane through zj (u) that is
orthogonal to u, then we obtain a smooth surface M? of which the parabolic
points (which are the singularities of the Gauss map of M 2) exactly correspond
to the singular points of xj (Si), the godrons to the swallowtails of xj, (Si),
and the asymptotic curves to those of zj, (Si) For more details and proofs
see [BGC| IRM], [M1] and the references herein. Note that the three types of
configurations shown in Figure 2.7.2 are obtained by projection as indicated in
Figure 2.7.3.

PE®

(a) (b) (©

Figure 2.7.3. The three types of configurations of Figure 2.7.2
are obtained by projection (figure extracted from [BGC])

Later on, we will make use of these duality notions on different occasions.
We will also see how we may adapt the concept of duality to the context of
complex hedgehogs or that of a non-Euclidean space.

2.8 Kronecker index: locus of zeros and projections

We will discover in the first subsection how the Kronecker index 4y, () is closely
related to the geometry of the set of zeros of h, : S* — R, u — h(u) — (z,u),
which is the support function of the hedgehog H;,, = Hp — {x}. We will see in
the secund subsection that C2-hedgehogs of R"*! behave well under projections.
More precisely, we will see how we can deduce information on a C?-hedgehog
by considering its images under orthogonal projections onto hyperplanes.
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2.8.1 Kronecker index and locus of zeros of the support function

The Kronecker index iy, (z) of a point x € R\ H,;, with respect to Hj, in
R+ is closely related to the locus of zeros of h, : S* — R, u +— h(u) — (x,u),
which is the support function of Hy,, = Hp — {z}. It is important to recall
here that the study of the Kronecker index together with orthogonal projection
techniques adapted to hedgehogs (Theorem 2.8.3) will be the main ingredient
in the resolution of the uniqueness conjecture of A.D. Alexandrov (see Subsect.
4.4). For n 4+ 1 =2, we have the following simple relationship.

Theorem 2.8.1 [M4] Let Hy, be a C*-hedgehog of R%. For every x € R2\ H,,
the Kronecker index ip, (x) (that is, the winding number of Hjp around x) is
given by

. 1
in(z)=1- inh (z),

where nyp, (x) denotes the number of cooriented support lines of Hy, through z,
that is, the number of zeros of hy : St — R, u s h(u) — (z,u).

Figure 2.8.1 illustrates this result using the example of the hedgehog Hj,
with support function h () := cos (26), (6 € R/27Z).

Proof of Theorem 2.8.1. Let (x1,73) be the standard coordinates in R2.
Since Hj, is obtained from Hj, by the translation of vector z, we may assume
that  is the origin Ogz = (0,0) of R*\ 'H;, even if that means replacing H;, by
Hp, . If Ogz = (0,0) € R%, we obtain

2
. h(8)(h+h")(6)
in (Op2) = 5= L, (h2(+h’72)()0) do

g R .
where h (0) = h(cos6,sin@). In other words, we have
) 1
in (Ogz) =1+ 7 Fhw,
where T'j, is the oriented curve of R? that is parametrized by
Vi 10,20] — R?, 0 — (h(0) 1 (6)),
and w the 1-differential form given by

$1d£€2 — xdel
w(.Tl,IQ) =5 35

x] + x% fOr a‘ll (1,'1,1'2) # (0,0) in R2.

Now the integral of w/27m around I'; is the winding number of 'y, around the
origin Ogz, which measures the total algebraic number of turns of I'j, around Og:.
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(i.e., that 7, (#) makes around Ogz as 6 varies from 0 to 27). This number is
a positive if T';, turns counterclockwise, and negative if I'j, turns clockwise.
Since the z1-coordinate of 7, strictly increases (resp. decreases) when the zo-
coordinate of +,, is positive (resp. negative), this number must be equal to the
opposite of nj, (Og2), and so we have well i), (Ogz) = 1 — 1ny (Oge). |

Definition 2.8.1. Let H; be a C?-hedgehog of R"1.  The ij-interior, or
simply interior, of Hy, (resp. the in-exterior, or simply the exterior, of Hp)

in R™1 is defined to be the subset of R? given by:

I, = {2z e RPN\ Hy |in (z) #0}

(resp. E; (Hp) or E(Hy) = {z € R*\Hy|in (z) =0}).

Figure 2.8.1. Evaluating iy, (z) by considering nj, (x)
Corollary 2.8.1 [M4]. For every C*-hedgehog Hj, of R2?,

Cpi={ 2z € R\ Hylin(z) =1},

is a convex subset (possibly empty) of R%. We call C}, the convex interior of
Hp,.

Proof of Corollary 2.8.1. We can assume without loss of generality that the
integral of h over S! is nonnegative since Cj, = C},, where h(u) = —h(—u),
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(u € Sl). From Theorem 2.8.1, C}, is the set of x € R? such that the function
u + hy (u) — (x,u) does not vanish on S!. It can of course be empty. If x € Cy,
then h, : S' — R must remain positive on S* by continuity of h, (the integral
of h, over S! is equal to the one of h, and thus nonnegative). Cj can thus be
written

Co= [ Py (w),

u€eSt

where P, (u) is the open half-plane with inequation (x,u) < h(u). Therefore,
C}, is a convex of R? as an intersection of convex subsets of R2. [ |

Theorem 2.8.1 teach us, in particular, that any C2-hedgehog of R? with
empty convex interior turns its convexity outwards (see the proof of Proposi-
tion 1 in [M4] for more details).

Corollary 2.8.2 [M4)]. Let Hy, be a C?-hedgehog of R? with empty convex in-
terior: Cy, = @. If u € S is a regular point of xj : S' — R2, then the support
line with equation (x,u) = h (u) does not meet the exterior of Hy, in the vicinity

of zp (u).

An immediate consequence of Corollary 2.8.2 is that any such hedgehog Hj,
(for instance a projective hedgehog Hj, or a hedgehog Hy, of zero algebraic length
or, equivalently, of zero mean width: see Sections 3 and 4) is contained in the
convex hull of its singularities and such that z;, : S' — R? admits at least 4
singular points. From this last remark, we can deduce by duality the following
particular case of the tennis ball theorem, which states that any closed simple
smooth curve on S? dividing the sphere into two parts of equal area must have
at least four inflection points [Ar2].

Corollary 2.8.3 [M4]. Let C be a closed simple smooth curve of S? that is
everywhere tranverse to the meridians. If C has at most 3 inflection points,
then C is contained in an open hemisphere of S®. In particular, if C divides S*
into two parts of equal area, then C has at least four inflection points.

Here, an inflection point is simply a zero of the geodesic curvature, that is,
a point of at least second order tangency of the curve with a great circle of S2.

Proof of Corollary 2.8.3. By virtue of assumptions, C admits a parametriza-
tion of the form

Yh: S'T—STCcR?2xR

u +—— \/ﬁ(u, h(u)),

where h : S' — R is the support function of a C? hedgehog Hj, of R%2. The
curves C and Hj, can be regarded as two dual curves: the section of S? (resp.
R? x {—1}) by the linear plane that is orthogonal to (zj, (u), —1) (resp. 7, (u))
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is the great circle of S? that is tangent to C at v, (u) (resp. is the support line
with unit normal vector (u, —1) of the plane hedgehog Hj, x {—1} C R? x {—1}).
Therefore, inflection points of C exactly correspond to singular points of xj :
S — R. This can be confirmed by the direct calculation of the geodesic curva-

ture of C:
%
1+ h?
Ky=|——=5| Rn
L+ |lznll

Now assume that C has at most 3 inflection points. It then results that
xp, : S' — R? has at most 3 singular points, and it follows from Corollary 2.8.2
that Hp has a nonempty convex interior. Let z € Cj. From Theorem 2.8.1, no
support line of Hj, passes through z. It follows that the section of S? by the
linear plane orthogonal to (z, —1) is a great circle that does not meet C. Indeed,
if this great circle contained a point 7y, (u) of C then (z,—1) would belong to
the support line of Hy, that is the section of R? x {—1} by the linear plane that
is orthogonal to 7;, (u). Therefore, C is contained in one of the two hemispheres
separated by the linear plane that is orthogonal to (x, —1). |

The following corollary is also an immediate consequence of Theorem 2.8.1.
Corollary 2.8.4 [M4]. Let Hj be a C*-hedgehog of R? such that h(—u) =

—h (u) for some u € S* (i.e., a plane C*-hedgehog two of the support lines of
which are coincident). Then Cy = &, and thus

v (h) 1= / in (z)d\ (z) < 0,
R2\Hp,
where \ denotes the Lebesque measure on R2.

In particular, if H;, is a C2-hedgehog of R? that is projective (i.e., such that
h is odd), or such that

2m 2
/ h(0) df = 0 or, equivalently, / (h(@+m)+h(0)dd=0
0 0

(i.e., of zero algebraic length or, equivalently, of zero mean width: see Sections
3 and 4), then vs (h) < 0.

As a consequence, we can deduce that the map h +— /—wvy (h) is a norm
associated with a scalar product on the linear space of projective C?-hedgehogs
(resp. of C%-hedgehogs of zero mean width) defined up to a translation in R2.
This last result will be generalized in Section 3.

The dimension 3 case
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Recall that the Kronecker index iy, (z) of a point & € R¥\ H;, with respect
to Hy can be defined as the degree of the map

xp(u) —

. Q2 2 .
u(h,fb) S _)S ,’U/’—> ||117h(u) 7:1:” )

ip () may be interpreted as the algebraic intersection number of an oriented
half-line with origin = with the hypersurface H; equipped with its transverse
orientation (number independent of the oriented half-line for an open dense set
of directions). Note that for any C2-hedgehog Hj, of R3, and any z € R3\ Hy,,
the set h; ' ({0}) consists of a finite number of disjoint simple smooth closed
curves of S? on which h, changes sign cleanly.

Theorem 2.8.2 [M13]. Let Hy, be a C?-hedgehog of R3. For every x € R3\ Hy,,
the Kronecker index iy, (z) is given by

in (z) =7y (2) =7, (2),
where 1, (x) (resp. T (x)) denotes the number of connected components of
S\t ({0}) on which hy(u) := h(u) — (x,u) is negative (resp. positive).

Proof of Theorem 2.8.2. For the convenience of the reader, we recall the
main steps of the proof. For all z € R3\ 'H},, we have V (h,) (u) # 0 whenever
hy (u) =0, (u € S?). Therefore, for all € R¥\H,,, the set k' ({0}) consists
of a finite number, say ¢ (), of disjoint simple smooth closed spherical curves
on which h, changes sign cleanly. Note that cj, (z) =r; (z)+7r} (z) — 1. Then,
the proof relies on the following two lemmas.

Lemma 1. The map x +— in(x) — (rif (z) —r}, (z)) is constant on R\ Hy,.

[Proof. The first step consists in noticing that « — r, (z), z — r} (z) and

thus « +— ¢ (x) are constant on each connected component of R3\ H;,. The
second one, consists in proving that = +— i, (z) — (rjf (z) — 7}, (z)) remains
constant as x transversally crosses an elliptic (resp. hyperbolic) region of Hj,.
As x transversally crosses a simple elliptic region of Hj, at zp, (u) from locally
convex to locally concave side, we must distinguish two cases: (¢) If u is pointing
towards the locally concave side, then ij, (x) decreases by one unit whereas r, (x)
increases by one unit, and r; (x) remains constant; (i) If u is pointing towards
the locally convex side, then ij, (z) and 7, (z) increases by one unit whereas
r, (z) remains constant. As x transversally crosses a simple hyperbolic region
of Hy, at zj, (u) in the direction of —u, which is the unit normal at z;, (u) since
xp, (u) is hyperbolic, then i}, (x) decreases by one unit and there are exactly two
possibilities: (i) If ¢;, () increases by one unit then r, () increases by one unit
and 7} (z) remains constant; (ii) If ¢j, (z) decreases by one unit then r} ()

decreases by one unit and r, (x) remains constant].

Lemma 2. If ||z| is sufficiently large, then cp (z) = 1.

[Proof. This second lemma essentially follows from the fact that xy, : S? —H,,
can be interpreted as the inverse of the Gauss map].
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Lemma 2 implies that r; (z) = rjf (z) = 1 when ||z is sufficiently large,

and thus the theorem follows from Lemma 1. [ |

2.8.2 Orthogonal projection techniques

Let H;, be a C%-hedgehog of R**!. It is possible to deduce information on Hj,
by considering its images under orthogonal projections onto hyperplanes. We
proceed as follows. For any { € S™ we consider the restriction he of h to the
great sphere S?fl =85"nN fl, where £L is the linear subspace orthogonal to &.
Note that he is the support function of the hedgehog Hj, that is the image of

T (S?_l) under the orthogonal projection onto fL:

Hpe = e [xh (Sgﬂ)] ’

where ¢ is the orthogonal projection onto the hyperplane § L. In order to illus-
trate our point, consider the case where n + 1 = 2. Then, the index of a point
reet— Hpe with respect to Hp, (i.e., the winding number of Hj, around x)
gives us information on the curvature of Hy, on the line {z} + R{. For every
£ e S?, P will denote the oriented plane vector of R3 with unit normal vector
£, and Sgr the half unit sphere given by (u,£) > 0, (u € Sz).

Theorem 2.8.3. Let Hy, be a C%-hedgehog of R3, and let = be a regular value
of the map x; = mgoxy : S? — Pe. The index of = € PeN\Hp, with respect to
Hp, is given by

ing (x) = mj, (2)" = mj, (1),

where ni ()" (resp. ni (x)™) is the number of u € Sg‘ such that xp (u) is an

elliptic (resp. a hyperbolic) point of Hy, lying on the line {x} + RE.

Proof of Theorem 2.8.3. Let ni () be the algebraic number of intersection
of the oriented line passing through z and directed by &, say D, (§), with the
surface (Sg) equipped with its transverse orientation: ni (z) is given by

mj, (@) = mj, (2)" =i (2)

where ni (z)" (resp. ni (2)7) is the number of u € S} such that z, (u) is an
elliptic (resp. a hyperbolic) point of H}, lying on the line {z} + R¢. Indeed, the
tangent map Tz, : T,,S? — Tg,ch(u)S2 = T, S? retains or reverses the orientation
depending on whether Ry, (u) = det [T}, 2] is > 0 or < 0, (u € S?). It therefore
suffices to prove that

ine (T) = ni (x).

Let (w1, 72, 73) be the standard coordinates in R3. Without loss of general-
ity, we can identify Pr to the plane with equation x3 = 0 (and thus with the
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Euclidean vector plane R2), and assume that z is its origin Ogz. The index
ine () is then the winding number of Hj,, around x € P\ Hp,, and

. 1
ine (2) = Py /H w,
he

where w the 1-differential form given by

xldl'g — $2d£ﬂ1
w((L’l,.’KQ) =5 5

22 + 23 for all  (z1,32) # (0,0) in R

This index i, (z) can also be regarded as the winding number of zy, (Sg)

around the oriented line D, (§), passing through x and directed by &. In other
words, ip, (x) is given by

=g /zh<sz> }

which can be checked by an easy calculation. So we have

, 1
ihe (¥) = %/aswv

where S denotes the surface xj, (Sg) equipped with its transverse orientation.
Since z is a regular value of the map xi = meoxy : S — P, there exists a

small closed disc, say D, centered at x in P whose inverse image under xfl is

empty or admits a partition of the form

()" 0= Ui
k=1

where xi = mgomxy is a C'-diffeomorphism from Dj onto D for all k €
{1,..., N}. By the Stokes’s formula, we have

SRS
-— w = -— w,
2 a8 el 2 9Sk

where Sy, denotes the surface xj (Dy) equipped with its transverse orientation.
Now the oriented boundary S}, of Sj turns exactly once around the oriented line
D, (§) and this turn is counted positively or negatively depending on whether
the curvature function Ry is > 0 or < 0 on S%. Therefore, it comes

ine (z) = %/ w:ni (x)+—ni($)_.

57



Hy, = a4(S?)

() (S N )]
II

¢t Hilgoe

Figure 2.8.2. Illustration of Theorem 2.8.3

Remark. The following is a classical question in geometric tomography: What
can we say about an object given some information about its projections? In
Subsect. 4.4., we will make use of Theorem 2.8.3 to give a counter-example to
an old conjectured characterization of the sphere. S. Myroshnychenko proved
that two hedgehogs in dimension n + 1 > 3 coincide up to a translation and
a reflection in the origin, if their projections on any two-dimensional plane are
directly congruent and have no rigid motion symmetries (his proof relies on a
nice general result on continuous functions on S™) [My].

Theorem 2.8.4 [M4]. Every C? projective hedgehog of R"*! lies in the conver
hull of its singularities.

Proof of Theorem 2.8.4. The proof proceeds by induction with respect to
the dimension n 4+ 1. For n 4+ 1 = 2, the result is a consequence of Corollary
2.8.2. Make the induction assumption that the assertion is true for every C?
projective hedgehog of R™ (n > 2). Suppose there exists some C? projective
hedgehog Hj, in R™*! that does not lie in the convex hull of its singularities.
Then there exists a support hyperplane of this convex hull that does not contain
any singularity of H},. Note that Hj, is strictly convex at any point xj (u) that
lies on a such a hyperplane (i.e., all the principal radii of curvature of H;, are
nonzero and have the same sign at z, (u)). Now let H be any linear hyperplane
that is perpendicular to such a support hyperplane of Hy. The restriction of h
to the unit sphere S N H of H is the support function of a projective hedgehog
of H that is the orthogonal projection of xj (S N H) onto H. This projective
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hedgehog of H does not lie in the convex hull of its singularities in contradiction
with the induction assumption since H can be identified with R™. |

Projected algebraic area

Let H;, be a C%-hedgehog of R3. For all £ € S?, let

)= 5 [ 18] R do ().

By translation invariance of the algebraic volume of C?-hedgehogs in R?, we
have

02/82 (u,§>Rh(u)da(u)=/S€+|<u,§)|Rh(u)da(u)—/S£|<u,§>|Rh(u)da(u)7

where Sg' (resp. S¢ ) is the half unit sphere given by (u, &) > 0 (resp. (u,§) <0),
(u € Sz). Therefore

0= [ w8 B () do @) = [ (6] Ra () dor ().
¢ 3
As we will see in Section 3, Ry, (u) udo (u) is the vector algebraic area element
around zp, (u) € Hy, corresponding to the spherical area element do (u) around
u €S2 So, vg (h) can be interpreted as the projected algebraic area of Hy, onto
the plane Pe := §L. This projected algebraic area can obviously be written

Ughz nixd)\x
<>Aw (2) dA ()

where Q¢ (h) is the set of the regular values of the restriction of ¢ oz, to S,

and )\ the Lebesgue measure on Py := §l.
As an immediate consequence of Theorem 2.8.3, we then obtain the following.

Corollary 2.8.5 [M4] Let Hy, be a C?-hedgehog of R3. For every £ € S?, the
projected algebraic area vg (h) is equal to the algebraic area of the plane hedgehog
Hne of Pe, where he is the restriction of h to the great circle S% =$?nN P,

that is:

vs (h) = vz (he) .

This corollary could also have been established by reducing to the convex
case or by using the Stokes formula. We will say that Hp, is the projected

hedgehog of ‘Hj, onto P; := ¢t
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Consequences for projective hedgehogs

Since projective hedgehogs have an empty convex interior, another immedi-
ate consequence of Theorem 2.8.3 is the following.

Corollary 2.8.6 [M4] Let H;, be a C?-hedgehog of R? that is projective (i.e.,
such that h is odd). If a line cuts Hy, transversely then it must encounter a
hyperbolic region of Hp,.

As we have 0 < —ip,, (z) = ni ()" — n;’i (x)* < nfL (x)” for all z € Q¢ (h),
we also deduce the following.

Corollary 2.8.7 [M4] Let Hj, be a C?-projective hedgehog of R3. For every
£es?,

02 (he) < 55— (h),

where va (he) is the area of the plane hedgehog whose support function is the
T;striction of h to S% =S?N P, and s_ (h) the total area of hyperbolic regions
0 H}L.

2.9 More about indexes and the locus of zeros
2.9.1 New index and transverse orientation

In [M13], the author introduced a new notion of index of a point x € R3\ H,
with respect to Hy,. This index, denoted by jj (2), is defined by:

g () =1 —cp (),

where ¢, (z) denotes the number of connected components of (h,) "' ({0}) on
S2, that is, the number of closed spherical curves formed by points u € S? such
that = belongs to the support hyperplane of Hy, at xj (u). In certain respects,
this jp-index can play in R3 the same role as the Kronecker index does in R?
(compare the definition of jj, (x) with the relationship between the Kronecker
index of = with respect to the plane hedgehog Hj; and the number of zeros
of the function hy (u) = h(u) — (z,u), (u € S')). From the proof of Theorem
2.8.3, the index jj : ¢ — jj, (z) remains constant on each connected component
of R3\H;. In particular, j, is equal to 0 on the unbounded component of
R3\ Hj,. It is worth noting that the value of jj, (z) must obviously decreases
as x transversally crosses Hj, at a simple elliptic point from locally convex to
locally concave side. Thus, if H}, is the boundary of a convex body K of which x

is an interior point, we must have jj, (x) = 1, whereas i (z) = —1 or ip, (x) = 1
depending on whether u points inward or outward from K at xj, (u) € Hy, = 0K,
(u € SQ).

Now, the jj-index corresponds to the transverse orientation of Hj that is
such that whenever xj, (u) is a simple regular point of Hj,, then the normal
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line to Hy, at xp, (u), is oriented in the direction that jj, decreases by one unit.
Contrary to the usual transverse orientation of Hp, it is clear from its defin-
ition that this transverse orientation of H; does not depend on the choice of
the orientation of normal lines to z;, (S?) = z; (S?) . We call it the absolute
transverse orientation of Hj;. From the above, this absolute transverse ori-
entation cannot change on an elliptic region (i.e., a region on which the Gauss
curvature of Hj remains positive): indeed, the absolute transverse orientation
is then simply given by the direction of convexity. On the other hand, it is
worth noting that the absolute transverse orientation of a C2~hedgehog H}, can
be reversed along certain self-intersection curves of Hj, (see paragraph below).
From the above such a reversal of the absolute transverse orientation can only
occur along self-intersection curves that are made of double hyperbolic points
of Hy,. However, and this is a crucial point, such a reversal will not necessarily
occur on any curve of hyperbolic double points of Hy, but only on certain of them.

The ¢, function on S?

The g, function on S? is a function with values in {—1,0,1} whose sign
at any regular point u of xj, : S? — R3 indicates if the usual (i.e., relative)
transverse orientation of Hj, and its absolute one coincide or not at xp (u). At
such a point u € S?, we define ¢, (u) € {—1, 1} so that the unit vector

v (u) :=ep (u) sgn [Rp (u)] u

direct the normal line of Hj, at x, (u) when H;, is equipped with its absolute
transverse orientation. Recall that Rj denotes the curvature function of Hj,. If
xp, (u) is not a simple regular point of H},, then we put g5, (u) = 0.

As noticed above, when zj (u) is an elliptic point of M, (that is, when
R}, (u) > 0), the normal vector v}, (u) points at xp (u) to the side of Hj, in which
the tangent plane to Hj, at xj, (u) is located in the vicinity of xj (u). Therefore,
the sign of €, (u) does not change on the spherical image 2 of an elliptic region
xp, () of Hy. In the case of the spherical image 2 of a hyperbolic region xp, (€2)
of Hj, the situation may be quite different. Indeed, in this second case, the sign
of e, (u) is likely to be reversed when we cross the spherical image of a curve of
hyperbolic double points as proved by the example of a hedgehog version of the
Steiner Roman surface with support function h (z,y,z) := z (2? — 3y?) + 223,
(2,9,2) € S C R3, which has been shown in Figure 2.2.5. Recall that this
hedgehog is projective. In this example, where the points of xj (Sz) appearing
as double are in fact quadruple, the index jj (x) is equal to —2 for any z of
a bounded component of R3*\ H;,, and naturally equal to zero for any = of
the unbounded connected component of R3\ H},. Therefore, in this example,
the sign of ¢j is reversed whenever we cross the spherical image of any of the
hyperbolic double point curves.

Analogously to what we did in the plane, we can introduce a notion of con-
vex interior for the hedgehogs of R3.
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Proposition 2.9.1. For every C?-hedgehog of R3,

Cn = {33 € RS\Hh ‘.]h(x) = 1} :

is a convex subset of R®. We call Cj, the convex interior of Hj,.

Proof of Proposition 2.9.1. We can assume without loss of generality that
the integral of h over S? is nonnegative since C}, = C7,, where h (u) = —h (—u),
(u € SQ). From the very definition of j;, Cj, is the set of x € R? such that the
function u ~— h, (u) — (x,u) does not vanish on S2. It can of course be empty.
If z € Cy, then h, : S> — R must remain positive on S? by continuity of h, on
S? (the integral of h, over S? is equal to the one of h, and thus nonnegative).
('}, can thus be written

Ch = ﬂ Efj(“):

u€S?

where E, (u) is the open halfspace with inequation (z,u) < h(u). Therefore,
C), is a convex of R3 as an intersection of convex subsets of R3. |

Definition 2.9.1. Let Hj, be a C*-hedgehog of R?. We define the jj-interior
(resp. jn-exterior) of Hy in R? to be the subset of R? given by:

Jn = {z € RO\ Hy |jin (z) # 0}

(resp. E; (Hp) := {x € R™N\Hy, |jn (z) = O}) .

For all z € R3\ Hp, jn(z) = 1—cp(x) = 0 implies iy (z) = r)f (z)—7r; () = 0.
Therefore I, C Jp. This inclusion may be strict as shown by the example of
non-trivial projective hedgehogs of R?: indeed, for such a hedgehog H3, we have
I, =0 and Jy # 0.

Remark. We have already seen in Subsections 2.3 and 2.4 that we can define
hedgehog polytopes, also called polyhedral hedgehogs or virtual polytopes, which
represent formal differences of polytopes in R®*!. We can naturally extend the
two notions of indexes previously studied to certain classes hedgehogs of R?
whose support function is not of class C? on S?, and in particular to hedgehog
polytopes of R? A large part of the notions and results related to these indexes
can be extended to this polyhedral framework. In particular, the conclusion of
Theorem 2.8.2 and the notions of interiors and exteriors corresponding to these
indexes extend to hedgehog polytopes, and we still have I, C Jp for such of
hedgehog H;, of R3.

2.9.2 New notion of volume and geometrical applications

Of course, this new notion of index also implies a new notion of (algebraic)
volume in R3. The volume of H}, relative to our new index is defined by:

62



ver () 1= /R L, n@) i),

where A denotes the Lebesgue measure on R3. We call it the geometric volume
of Hy, in R3.

Theorem 2.9.1 [M13]. Let Hy, be a C? projective hedgehog of R3. Then the
following four properties hold:

(i) For every x € R¥*\Hp, jn(x) = 1 — ¢ (x) < 0. Therefore, the geometric
volume of Hy, is non-positive: vg (h) < 0;

(it) Let xp (u) be a simple elliptic point of Hp adherent to the jj-exterior
E; (Hy). Then Hyp turns its convexity towards Jy at xp (u) (in other words,
there exists a neighbourhood of xy, (u) in R3 in which the support plane with
equation (x,u) = h(u) does not intersect E; (Hp));

(#it) The geometric volume of Hy is negative if Hy, is not reduced to a single
point.

Proof of Theorem 2.9.1. (). Since h, is odd (and not identically equal to
zero) on S?, it must change sign on S?, so that ¢ (x) > 1.

(i7). From (i), as x crosses H, transversally at xj (u) in the direction of
E; (Hp), jn (z) must decrease from 0 to —2 (knowing that the jj-index of a
projective hedgehog Hj, C R3 takes its values in 2Z since the parametrization xy,
describes the surface twice). In other words, x is then crossing H;, transversally
at zp, (u) from locally convex to locally concave side..

(ii7). A nontrivial projective hedgehog Hj, of R3 must have elliptic points
(see Subsect. 4.4) so that its jp-index cannot be identically equal to 0 on
R3N\ Hp,.

|

Remarks. 1. It is not difficult to check that properties (i) — (¢4¢) still hold for
any hedgehog H;, of R? whose support function h satisfies

h(u) do(u) =0,

S2

where o denotes the spherical Lebesgue measure on S2.

2. Let Hp be such a hedgehog and assume that all its singularities are
generic, (h € C* (S%;R)). Then no negative swallowtail of H;, can be seen
from E; (Hy). In other words, if a point zj, (u) is a negative swallowtail of Hj,
belonging to the closure of E; (H}) then, near this point, the hyperbolic region
to which it corresponds must lie in the complement of E; (Hp,).

3. Properties (i) — (4i7) have of course to be compared with the correspond-
ing properties of plane projective hedgehogs (for which, of course, the usual
index 4, replaces jp,).

63



Application to the Minkowski problem extended to hedgehogs

Let us see an immediate consequence that might be useful for studying the
extension to C?-hedgehogs of the classical Minkowski problem of prescribing the
Gauss curvature of closed convex hypersurfaces. We will study this generalized
Minkowski problem in the next sections, and in particular in Section 5 which
will be entirely devoted to it. Minkowski’s existence and uniqueness theorem is
based on the following integral condition which is both necessary and sufficient
for a positive continuous function R : S — R to be the curvature function of a
convex hypersurface of class Ci unique up to a translation:

R(u)udo(u) =0,
SQ

where o is the spherical Lebesgue measure on S™ Note that R = 1/k, where &
denotes the Gauss curvature of the convex hypersurface regarded as a function
of the outer unit normal. As we will see later, the above integral condition,
which can be seen as expressing the translation invariance of the volume, is
still necessary for a continuous function R to be the curvature function of some
C?-hedgehog, but it is no longer sufficient at all. Now, in the 3-dimensional
case, we can consider the translation invariance of the geometric volume of C?-
hedgehogs. The geometric volume of a C%-hedgehog Hj, of R? can be given
by

u

Kp(u)

do(u)

ver () 1= /Szeh (u) b ()

where ¢ is the spherical Lebesgue measure on S? and kj, the Gauss curvature
of Hj,. By the translation invariance of the geometric volume, we obtain the
following.

Proposition 2.9.2. Let H;, be a C? hedgehog of R3. Then we have

/S n (w) ——do(u) =0,

ki (u)
where o is the spherical Lebesgque measure on S* and kj, the Gauss curvature.
Proof of Proposition 2.9.2. For every & € R3, consider the hedgehog with
support function hy (v) := h(u) — (z,u), (u€S?). For all z € R3, we have
xp, (u) = zp (u) —z and in particular Hy, = Hp, — {z}. Therefore, we have:
Kh, = Kh, €h, =€p and  vg (hy) =va (h).
Using these three equalities for every = € R3, we obtain immediately:

u

Kn(u)

vz € R?, /S? (x,u)en (u) do(u) =0,
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that is,

which achieves the proof. |
We will see in Section 5 that a study of multiplicity of solutions in the

Minkowski problem for hedgehogs should probably take into account these e
functions.

65



3 Volumes and mixed volumes

As already noticed in the introduction, the notion of mixed volumes, which
forms the central part of the classical Brunn-Minkowski theory of convex bod-
ies, arises naturally when one combines the two elementary notions of Minkowski
addition and volume [Sc3]. This notion is more precisely based on the following
result in which v,,41 stands for the (n + 1)-dimensional volume and s,, for the
surface area measure (i.e., the surface area measure of order n):

Theorem (see e.g., [Sc3, Theorem 5.1.7]). There is a nonnegative symmetric
function v : (lC"“)"Jrl — R such that, for all m € N,

Up+1 (/\1K1+"~+)\me): Z )‘il"'/\in+1U(Ki1""’Kin+1)

i1,0ing1=1

for arbitrary convex bodies K1, ..., K, € K" and numbers A\i,..., A\, € Ry
Further, there is a symmetric map s from (IC”H)n into the space of finite
Borel measures on S™, such that, for all m € N,

Sn()\lK1++)\mea): Z )\il"')\ins(Kil,"'7Kin)(')a

T1y0eyin=1

where we write s(Ky,,...,K; ,.) = s(Ki,...,K;,)(.), for arbitrary convex
bodies K1, ..., K, € K" and numbers \1,..., \m € R,.
The equality
1

U(Kly"'aK’n-‘,—l) = m o hKn+1

is the support function of K, 1, holds for Ky,..., K, 1 € K"

(u) s (Kq,...,Ky) (do(u)),

where hg,,

The symmetric maps v : (IC"‘H)"Jrl — R and s are respectively called the
the mized volume and the mized area measure. The set K" ™! of convex
bodies of R"*!, equipped with Minkowski addition and multiplication by non-
negative real numbers, forms a commutative semigroup, having the cancellation
property, with scalar operator. But as we recalled earlier, it does not consti-
tute a vector space since there is no subtraction in £"*1. Now hedgehogs (or
equivalently formal differences of convex bodies) of R"*! form a vector space
H"+1 in which K"t! is a cone that spans the entire space. It is thus natural
to consider the multilinear extension of the mixed volume v : (IC"“)nJrl — R
to a symmetric (n + 1) —linear form on H"*. We still denote this extension
by v. The notion of mixed volumes can thus be extended to hedgehogs with a
few adaptations. In particular, areas and volumes have to be replaced by their
algebraic versions, which can take negative values. Let us see how these notions
can be introduced and interpreted for C?-hedgehogs.
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3.1 Volume and surface area

In this Section 3, we are mainly interested in volumes and mixed volumes of
hedgehogs in Euclidean vector space R**1. In the following sections, we will be
also interested in various volumetric questions related to different types of par-
ticular hedgehogs or convex bodies in R™*!, but also in questions about various
extensions to geometric objects related or attached to hedgehogs (hedgehogs
modelled only on a part of the unit sphere, multihedgehogs, focal hypersurfaces
of hedgehogs, etc). In the following sections, we will also consider volumetric
questions arising in other frameworks (complex hedgehogs, marginally trapped
surfaces, hedgehogs of non-Euclidean spaces, etc) as well as symplectic areas
and volumes.

3.1.1 Surface area measure and mixed area

Surface area measure

Let H;, be a C?-hedgehog in R"*!. We have seen above that its so-called
curvature function Ry := 1/kp, is given by Ry (u) = det [T,xp] for all u € S™.
Therefore, for all u € S", |Ry, (u)| do (u) is the area element around zj, (u) on
the hedgehog hypersurface H;, = x, (S™) that corresponds to the area element
do (u) around u on the sphere S, where o is the spherical Lebesgue measure.
For a C?-hedgehog, it is more convenient to drop the absolute value and to
consider instead Ry, (u) do (u), which is thus seen as the algebraic area element
around xj, (u) € Hy, that corresponds to the area element do (u) around u € S™.

Naturally, we call the signed Borel measure defined by

s(h,Q) = /Rh (u)do (u), for any Borel set Q C S™
Q

the (algebraic surface) area measure of Hy,, and hence the real number

s(h) = [ Ry (u)do(u)
STL

the (algebraic surface) area of Hj. Note that s(h) can be interpreted as the
difference sy (h) — s_ (h), where sy (h) (resp. s_ (h)) denotes the total area
of the smooth regions of Hj; on which the Gauss curvature is positive (resp.
negative).

Mixed curvature function and mixed area

Proposition 3.1.1. Let H, 1 be the linear space of C?-hedgehogs defined up
to a translation in R™' and identified with their support function. Then the
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symmetric map
R: H} , — C(S"R)

(flv R fn) — R(fly--~7fn) =

et fiy)

3‘»4
I
—
S~—

3

+

ol
=
=
+

is such that

m

R()\1h1++)\mhm) = Z )\il "'AinR(hilwughin)7

015y i =1

for all hi, ..., hm € Hui1 and all M, ..., Am € R.

Proof. Following the definition of the mixed curvature function for convex
bodies [Sc3, p. 124], we obtain the existence of a symmetric map R : H) | —
C(S™R), (fi,--+s fu) = R(4,.,..., ) such that

m
R bt oo t2mbm) = Z iy oo Ny B b))

B1y0eey in=1

for all hy, ..., hyy € Hyqq and all Aq, ..., A, € R. Next, we check that R is
given by

1 S n+k
R(hl,...,hn) = E Z(_l) * Z R(hil—i- o thiy )
T k=1 1< <ig

following the reasoning used in [Sc3|] to express the mixed volume of strongly
isomorphic polytopes in terms of Minkowski sums ([Sc3l Lemma 5.1.4, p. 277]).
|

Definition. This symmetric map R : H)' , — C(S™;R) is called the
mized curvature function, and the n-linear form s: H}' , — R given by

S(hh sy hn) = /S R(hl,“.,hn)(p)da(p)7

where o is the spherical Lebesque measure, is called the mixed (algebraic)

area.
Of course, if hi,...,h, are the respective support functions of n convex

bodies Ki,...,K, of R"™! then s(hy,...,h,) is nothing else but the mixed
surface area s (Ki,...,K,) of K1,....K,.
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3.1.2 Kronecker index, volume and mixed volume

Given a C?—hedgehog Hj, in R**!, the Kronecker index of x € R* 1\ H,, with
respect to Hy, say iy, (z), is defined to be the degree of the map

xp(u) —x

Uz : S" — " T
(h,CE) - ? U — ||1'h(u) 71.” )

and interpreted as the algebraic intersection number of an oriented half-line
with origin « with the hypersurface H;, equipped with its transverse orientation
(number independent of the oriented half-line for an open dense set of direc-
tions). We have already mentioned that, for all z € R\ H},, we have

in () = 1 h (u) (x,gith (w) do (u),
Wn Jsn ||lzp (u) — =]

where R}, is the curvature function and o the spherical Lebesgue measure on S™.

For n+1 = 2, the Kronecker index iy, (z) is nothing but the winding number
of Hj, around z: it counts the total number of times that H; winds around z.
For instance, the index is equal to —1 at any interior point of the hedgehog
represented on Figure 2.2.2, since the curve winds once clockwise around the
point. The (algebraic (n + 1)-dimensional) volume of a hedgehog H;, C R*+!
can be defined by

i (1) = [ oy M@ D),

where A denotes the Lebesgue measure on R*+! and it satisfies

1
n+1Jsn
just as in the particular case where h is the support function of a convex body
K and vy,41 (h) is the n-dimensional volume of K.

For instance, in the example of Figure 2.2.2, the 2-dimensional volume (or
algebraic area) vy (h) of Hj, in R? is equal to minus the area of the interior
of the curve. Recall that this algebraic area vs (h) is also denoted by a (h).
As for convex bodies of class C%, we introduce the mixed (algebraic (n + 1)-
dimensional) volume for C2-hedgehogs to be the symmetric map v : Hﬁill — R,
(h1,.. hngr) = v(ha, ... hypyr) given by

Unt1 (h) =

h(uw) Ry, (u) do (u) ,

v (h17 R hn-‘rl) = m S"hl (u) R(hmm, hant1) (u) do (u) ’
where R, . h,.,) is the mixed curvature function of Hy,, ..., Hp,,,. Here
again, if hq, ..., h,41 are the respective support functions of n+1 convex bodies

Ki,...,Kpy1 of class C%, then v (hq, ..., hy41) is nothing else but the mixed
volume v (K1, ..., K,11) of Ky,... . Ky11.
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3.2 Geometric inequalities

3.2.1 A partial extension of the Alexandrov-Fenchel inequality to
hedgehogs and some general applications

The classical Alexandrov-Fenchel inequality

U(H, Kv L3a ey Ln+1)2 > U(Ha Ha L37 ~~'7Ln+1) U(K, Kv L3a ey Ln+1) (321)

is a central result in the theory of mixed volumes. Here, H, K, Ls, ..., L1 are
convex bodies in (n + 1)-dimensional real Euclidean vector space R"™! and, v
denotes the mixed volume. Many geometric inequalities for convex bodies are
consequences of B.21)) (see, e.g., [Sc3, Chapter 7]). Connections with algebraic
geometry have been discovered, which have led to new proofs of B2 via
the Hodge index theorem [Khl [Tei]. Equality holds in 8221 if K and L are
homothetic. But this is not the only equality case and until now the equality
problem remains unsolved (see [Sc3l, Section 7.6] for a discussion). However, if
Ls, ..., L,11 are convex bodies of class C’?H then this is the only equality case
[Sc3l Theorem 7.6.8].

In which follows, we will identify convex bodies and hedgehogs of R**! with
their respective support functions regarded as functions on the unit sphere S™.
Thus the classical Alexandrov-Fenchel inequality (32.1]) will be rewritten

v(h, k;1)> > v (h,h; ) v (k, k; 1),

where h, k, 3, ..., 1,11 denote the respective support functions of H, K, L3, ..., Ly 41,
I="(s,...,0lns1) and v (f, ;1) :=v ([, 9,13, oy lpns1)-

Recall that any real function h of class C? on S™ is the support function of
some hedgehog Hj, in R"T!. Let H, ,; denote the linear space of C?-hedgehogs
defined up to a translation in R®*! and identified with their support function.
Given I3, ..., 1,1 the support functions of n — 1 convex bodies of class C2, we
consider the quadratic form

q:Hpt1 = R h—v(hhyl) :i=v(h ks, lng1),

and we denote by b its associated bilinear form

b : H72L+1 HR? (f7g) Hv(fagvl) ::U(f7g7137-~-7ln+1)-

In [M3], the author gave the following partial extension of the Alexandrov-
Fenchel inequality to hedgehogs under the assumption that I3, ..., [, are the
support functions of n — 1 convex bodies of class C’JQF, (n>1).

Theorem 3.2.1. Let o € Hp41 be such that q (o) = v (e, ;1) > 0. Then

b(e, B)? > q(a)q(B), that is v (a,B;0)* > v (e, ;1) v (B, 5;1),
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for any B € H,y1 and, the equality holds if and only if there exists (A p) €
R? ~ {(0,0)} such that Ao+ pB =0g,, ;-

By convenience, we will say that “H, and Hg are homothetic” if and only
if “there exists (\, ) € R?\ {(0,0)} such that Ao+ pB = 0g,,,”. We start by
establishing the following lemma.

n+1

Lemma 3.2.1 Let F be the linear subspace of C? (S™;R) given by

F={feH,[b(f,1)=0}.
If he F~ {0}, then q(h) =wv (h,h;1) <O.

Proof of Lemma 3.2.1. Reasoning by absurd, we assume that ¢ (h) > 0. Then
the quadratic form ¢ is positive on the vector plane, say V},, that is spanned by
the functions 1 and h, so that

b(a,B) < q(a)q(B) forall (a,f) € Vi

by the Cauchy-Schwarz inequality. Now, for all small enough € > 0, a = 1 and
B = 1+ eh are the support functions of two non-homothetic convex bodies of
class C%, so that

b(a, B) > q(a)q(p)

by virtue of the Alexandrov-Fenchel inequality and its equality case if I3, ..., [ 11
are the support functions of n — 1 convex bodies of class C2, which is clearly
absurd. [

Proof of Theorem 3.2.1. Let A(t) be the second-degree polynomial given
by:

A(t) :=q(B+ta) =q(B) +2tb(a,B) + t’q(a).

From the assumption ¢ () > 0, we obviously deduce that A (¢) > 0 for any
large enough t. By this same assumption and Lemma 3.2.1, we also deduce
that b(«a,1) # 0. Now for t = —b(5,1)/b(c, 1), we check by bilinearity of b
that 8+ ta € F and hence A(t) < 0 unless § + ta = Op,,,,. Therefore the

reduced discriminant of A (that is, A = b (o, 8)> — ¢ (a)q (6)) is positive unless
B+ ta =0g,,,. To conclude, let us notice that if H, and Hg are homothetic,
then we obviously have b (a, 8)* = ¢ (@) q (8). |

In this theorem, we have assumed that I3, ...,l,4+1 are support functions of
convex bodies of R"*1. We will see later that this condition is indeed necessary.

The following corollary is a straightforward consequence of Theorem 3.2.1.

Corollary 3.2.1. Let k € Hy,41 be such that q(k) > 0, and let

71



Fk:{fEHn+1|b(f7k>:0}

The map /—q : Fr, — Ry, h — /—q(h) is a norm associated with a
scalar product on Fy. In particular, for all (g,h) € sz, we have the following
inequalities:

(D) V=alg+h) <v=qlg)+V—q(h),
., 2
(i) blg,h)” < q(g) q(h)
where equalities hold if and only if Hy and Hy are homothetic.

Another immediate consequence of Theorem 3.2.1. is the following:

Proposition 3.2.1. Let (f,g,h) € H3,, be such that ¢ (f) > 0. Then

2b(g, 1) b(f,h) b(h,g) > q(9) b(h, [)* +q(h) b(g, f)°,
where equality holds if, and only if, Hy and Hjy, are homothetic.

Proof. Indeed, the hedgehog e = b(h, f) g — b(g, f) h is such that b(e, f) =0
and the inequality stated above can be rewritten as g(e) < 0. Moreover, by
Corollary 3.2.1, the equality ¢ (e) = 0 holds if and only if e = Op, , that is, if
and only if H, and H}, are homothetic. |

Thanks to this proposition, we can prove a Brunn-Minkowski type inequality
for two hedgehogs associated with 7 — 1 convex bodies in R**1.

Proposition 3.2.2. Let f € H, 1 be such that q(f) > 0, and consider the
following subset of Hy, 41

H, (f) = {k € Hopa| bk, f) > 0 and g(k) > 0}

For all (g,h) € By, (f)°, g+ h € Hf,, (f) and

Valg+h) >Valg) +a(h),

where equality holds if, and only if, Hy and Hj, are homothetic.

Proof. Indeed, we have b(g,h) > 0 from Proposition 3.2.1, and it then follows
from Theorem 3.2.1 that

2o +h)=a(o) +a()+2b(0.h) > (Val@) + Vah) .

where equality holds if, and only if, H, and H;, are homothetic. ]

This inequality admits a linear refinement under appropriate assumptions:
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Proposition 3.2.3. Under assumptions of Proposition 3.2.2, if Hy and Hj,
are non-homothetic, then the inequality

Valg+h)>+alg) +Va(h),

admits the refinement
2b(g,h) > q(9) +q(h),
if, and only if, there exists k € H, 11 such that q(k) > 0 and b(k,g9) = b(k,h).

Proof. If the refinement holds (that is, if § = g — h is such that ¢ (6) < 0),
then k =b(6,9) h—b(d,h) g € Hy41 is such that b (k,g) = b (k,h), and q (k) =
(q(g) q(h) — b(g, h)?) q(8) > 0 by Theorem 3.2.1.

Conversely, if there exists k € H,41 such that ¢ (k) > 0 and b(k,g) =
b(k,h), then § = g — h is such that b(k,d) = 0. By Proposition 3.2.1, we have
then:

0=2b(5,1) b(1,k) b(k,8) > q(6) b(k,1)*+q(k) b(5,1)%.
)

Now since ¢ (k) > 0 we have b(k,1)? > q(k) q(1) > 0 by Theorem 3.2.1. More-
over, the case (¢(0) =0 and b(4,1) = 0) is excluded by Lemma 3.2.1 since H,
and Hj, are assumed to be non-homothetic. Consequently, ¢ (6) < 0. |

>q
>q

3.2.2 The 2 and 3-dimensional cases

The 2-dimensional case

For n+1 = 2, the quadratic form ¢ : Hy — R, h — vy (h) := v (h, h) is given
by

1

27 2m
q(h) = 5/0 R (6)(h + h")(6)d8 = 5/0 (n2 = (0)?)(0)a0, (0 € S'=R/2r7Z),

and can be interpreted as the signed (or algebraic) area a (h) := va (h) of Hp,.
Its polar bilinear form b: H2 — R, (f,g) — v (f,g) is given by

bam =5 [ a@ )@ =3 [ ah-gn)0) o,

and can be thus be interpreted as the mixed signed (or algebraic) area of H,
and Hj,. By Theorem 3.2.1, we have:

Corollary 3.2.2. Let (g,h) € H3 be such that a(g) > 0 or a(h) > 0. Then,
we have

a(g,h)’ >al(g) a(h),
with equality if and only if H, and Hyp, are homothetic.
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Isoperimetric inequality

This corollary gives an extension to hedgehogs of the classical isoperimetric
inequality 4mA < L2, where A and L are respectively the area and perimeter of
a plane convex body K. Indeed, by setting g = 1, we immediately deduce the
following result.

Corollary 3.2.3. For any hedgehog h € Hy, we have

1 2
a(h) < 1),

where

L(h) ;:/OW<x;(9),u’(9)>(9)d9:/0ﬂ(h”+h)(9)de:/0ﬂh(a)da

is interpreted as the algebraic length of Hy. FEquality holds if, and only if,
‘Hy, is a circle or a point.

A refined isoperimetric inequality

The following refinement gives an upper bound of the isoperimetric deficit
of plane C3-hedgehogs in terms of signed area of their evolute:

Proposition 3.2.4. For every h € C3 (Sl;R), we have

0 < 1(h)* —4ma (h) < —4ma (dh),

where a (Oh) is the algebraic area of the evolute of Hp, which is the hedgehog
with support function Oh : S' =R/27Z — R, 6 — b’ (9 — %) In each of above
inequalities, equality holds if, and only if, Hy is a circle or a point.

Proof. Recall that the evolute of a plane curve is the locus of all its centers
of curvature or, equivalently, the envelope of its normal lines. In particular, the
evolute of a plane hedgehog H;, C R? with support function h € C3 (Sl;R)
is the locus of all its centers of curvature cp, (0) := xp (0) — Ry, () u (0), where
Ry (0) := det [Tygyn] = (h+h")(0) is the curvature function of Hj, and
u () := (cosf,sinf), (0 € S' =R/2nZ). Equivalently, the evolute of H), can be
defined as the envelope of its ‘normal lines’ with equations (x,u' (6)) = h' (0),
that is, as the hedgehog Hp, with support function (0h)(0) := h' (6 —3).
Indeed, we have:

cn (6) = W 00! (0) + " ()" (0) =z, (0+ 7).

Now, by virtue of the Cauchy-Schwarz inequality, we have
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1(h)? = (/0 i (h+ K" (0) d9) < 27r/0 i (h+R") () db = 47 (a (h) — a (),

which completes the proof since a (h') = a (Oh). |
Remark. If we assume h to be of class C*, then we can also write that

0 <1(h)? —4ra(h) < —4ma (k) = —47wa (h,0%h),

where 92h = —h" can be seen as the support function of the second evolute
Hozp, of Hy, and a (h, 82h) as the mixed signed area of Hj, and Hyzj,. Here, we
have to recall that for all h € C? (S™;R), the hedgehogs with support functions
h and h(u) = —h (—u), (u € S"), have the same geometrical realizations since
zj (—u) = zp, (u) for all w € S". Thus here, § — h" (6 — ) and 0 — —h" () can
both be seen as support functions of the second evolute of Hj, regarded itself as
a hedgehog of R2.

The 3-dimensional case

Let us start with an immediate consequence of Corollary 3.2.1. First note
that for n4+1=3and I3 =1, g (h) = v (h, h,1) is equal to one-third of

s(h):/ Rydo,
S2

where Ry, (u) = det [Tyxp] = (R}LR,QL) (u) is the curvature function of Hy, R} (u)
and R? (u) denoting the principal radii of curvature of Hy, at zj, (u), (u € S?).
As shown in Subsect. 3.1, this integral s (h) can be can be interpreted as the
difference s4 (h) — s— (h), where sy (h) (resp. s_ (h)) denotes the total area
of the smooth regions of Hj; on which the Gauss curvature is positive (resp.
negative). Now choosing k = 1, we can note that
/ hdo = O} ,
SQ

/ R(lyh)da = 0} = {h € Hj
s2

where Ry ) (u) = str[Tuzn] = 3 (Rh + R2) (u) = (h+42) (u) denotes the
mean radius of curvature of Hj, so that F} consists of all h € Hsz whose
‘tntegral mean curvature’, say m(h), is equal to zero. Indeed, we have
R pydo = HdA, where H is the mean curvature of H;, and dA = Rpdo the
(signed) area element around zj, (u) on Hj,. Therefore:

F = {hEHg,

If the integral mean curvature of a C?-hedgehog Hy, of R? is equal to zero,
then its signed area s (h) = s4 (h) — s— (h) is negative unless Hy, is reduced to
a single point.
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Quadratic Minkowskian inequalities

Besides, note that Theorem 3.2.1 gives an extension to C2-hedgehogs of
the quadratic Minkowski inequality 47S < M?, where S := v (k,k,1) and
M := v (k,1,1) are respectively the surface area and integral mean curvature
of a 3-dimensional convex body with support function k& in R?. Indeed, taking
a=1I3=1and g =hfor n+1=2in Theorem 3.2.1 yields the following result.

Proposition 3.2.5. For every h € C? (S*;R), we have 47s (h) <m (h)?, where
equality holds if, and only if, Hy, is a sphere or a point.

On the other hand, the quadratic Minkowski inequality 3MV < S2%, where V,
S and M are the volume, area and integral of mean curvature of a 3-dimensional
convex body K in R3, does not extend to arbitrary C?-hedgehogs of R®. For
instance, the calculation shows that the hedgehog of R? with support function
given by

h(u)—1+\/§(2x2—y2—zz) for all u = (z,y,2) € S* C R?

is such that s (h) = 0, m (h) > 0, v (h) > 0 and hence 3m (h) v (h) > s (h)>. By
taking hedgehogs with support function of the form f = h+r, where r € R is
small enough, we can then deduce examples of hedgehogs such that

m(f)>0,s(f)>0,v(f)>0and 3m(f)v(f)>s(f)°.

Now the Minkowskian inequality 3MV < S?, which holds true for any 3-
dimensional convex body with support function k in R3, is a particular case of
the Alexandrov-Fenchel inequality since it can be rewritten

v(1,1,k) v (k k k) <v(lk k).
Therefore, in the statement of Theorem 3.2.1, it is necessary to assume that
I3, ..., ln41 are support functions of convex bodies of R"*1,
3.2.3 A stability estimate for the Alexandrov-Fenchel inequality

For k € C? (S";R), we will write k € C% (S";R) to mean that k : S — R is the
support function of a convex body the boundary of which is a hypersurface with
positive Gauss curvature in R"*!. Theorem 3.2.1 gives a partial extension of the
Alexandrov-Fenchel inequality to hedgehogs that can be reformulated as follows.

Theorem 3.2.1. Let | = (I3,...,ln41), where l3,..., 1,41 € C1(S™;R), and
let f:S™ — R be a C?-function such that v (f, f;1) > 0. Then

v(f, 00 =0 (f, f;1) v (g.930)
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for any g € C? (S™;R), and the equality holds if and only if there exists (\, ) €
R2\{(0,0)} such that \f + ug be the support function of a point.

For v € S", define o, (u) := % |(u,v)| for u € S™: 7, is the support function
of the unit segment U (v) parallel to v and centered at the origin. In [MI8],
the author proved the following stability estimate for the Alexandrov-Fenchel

inequality.

Theorem 3.2.2. For h € C? (S";R), k € C (S";R) and | = (I3,...,ln41) €
C2 (SR,

2 v (k, ks 1)? >
v (h7 k, l) —v (h, h, l) v (k, k; l) > ? (M(h,k;l) — m(hJc;l)) 5
— U(h,(f”;l) L U(h,CTl,;l)
where M, k1) = 52181711 P T— (b ouil) and M, k) = II}Ié%}é oD e ovil)

Remark. Given v € S, denote by v+ the vector subspace orthogonal to v. For
any f € C?(S™;R), we have

(n+1)v(f7au;l37~-~vln+1):vl/J— (fy;lilﬂlv"'ulryL+1)7

where v,1 is the n-dimensional mized volume in v and f*,1§,...,1% | the
respective restrictions of f,l3,...,lps1 to S, = S" Nvt (see later in Subsect.
4.3).

Remind that if f € C? (S";R) is the support function of a convex body K,
then f“ € C? (S,;R) is the support function of the image of K under orthogonal
projection to v*. The notion of mixed projection body extends to hedgehogs
(see Subsect. 4.3) and, if we denote by II4,;) the mixed projection hedgehog of
the hedgehogs with support functions f,ls,...,l,+1 and by hn ., its support
function, then the inequality of Theorem 3.2.2 can be rewritten in the form

ke kD)2 (g, \©
(k50 = (o b kst = 8 (e )
4 hri(es)

where D <hn(“>) is the diameter of the image of S™ under M
hri(esn) hri(ks)

The proof is based on the study of equality cases in the extension of Theorem
3.2.1 to the case where f € C? (S*;R)®Ro,. It is inspired by the work of G. Bol
[Bol] who proved the result for n = 2 and I3 = 1. Unfortunately, Bol’s work has
apparently felt into oblivion. This is perhaps due to the fact that Bol’s proof
contains a series of errors that make it difficult to understand. But fortunately
it can be corrected and the approach can be adapted to this more general setting.
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Auxiliary results. First, we fix v € S and then we extend Theorem 3.2.1 by
replacing C? (S*;R) by the real vector space, say V (v), spanned by C? (S*;R)
and o, in C (S™;R).

Theorem 3.2.3. Let f be a function in V (v) such that v (f, f;1) > 0. Then

v (f,9:0° > v (f, ;1) v (g,950) (3.2.2)

for all g € V (v) and, the equality holds if and only if there exists (A, ) € R%\
{(0,0)} such that A\f + ug is the support function of a point.

Proof of Theorem 3.2.3. Let ¢ : V (v) — R be the quadratic form given
by ¢ (h) := wv(h,h;l). Denote by b its polar form: b(h,k) := v (h,k;l) for
(h,k) € V (v)*. We start with an observation concerning the restriction of ¢ to
the linear subspace F' (v) of V (v) with equation b(1,h) = 0.

Lemma 3.2.2. If hisin F (v) and is not the support function of a point, then
q(h) :=v(h,h;1) <O0.

Proof of Lemma 3.2.2. Such a function i can be decomposed as h = v+ Ao,
where v € C? (S";R) and A € R. From Theorem 3.2.1, we may assume that
A # 0. Replacing h by —h if necessary, we may assume that A > 0. Choose
a number ¢ > 0 small enough so that 1 + eh is the support function of a
convex body. Such a number exists by Theorems 1.5.13 and 1.7.1 from [Sc3].
Now, by Theorem 7.6.8 from [Sc3], we know that equality holds in the classical
Alexandrov-Fenchel inequality

U(Ha K7 L3a ) L'n+1)2 > U(Hv H7 L3a ) LTL-’rl) U(Ka K7 L37 ) Ln+1)

if and only if H and K are homothetic provided that Lg, ..., L,11 are smooth
convex bodies. So, with our choice of €, we must have b (1,1 +eh)” > g (1) g (h).

If ¢ (h) was nonnegative, then the quadratic form g would be positive semi-
definite on the linear subspace Vj, of V' (v) spanned by 1 and h so that we should
have

b(a,8)’ < qla)q(B) forall (a,f)€ V2
by the Cauchy-Schwarz inequality, which is contradictory. |

End of the proof of Theorem 3.2.3. Let P be the degree 2 polynomial
function given by

P(t):=q(g+tf) =q(g) +2tb(f,9) +t?q(f) for t e R.

t)
Since ¢ (f) > 0, P(t) > 0 for all large enough ¢. Furthermore, the lemma
ensures that b (1, f) # 0 so that we may define
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S

_b(Lyg

b(L, f
and consider g + 7f, which belongs to F'(v). Thus, by the lemma, P (1) < 0
unless g+ 7 f is the support function of a point. By considering the discriminant
of P, we deduce that b (f, g)2 > q(f)q(g) unless g+ 7f is the support function
of a point. Finally, note that if there exists (A, ) € R? \.{(0,0)} such that
Af + pg is the support function of a point, then b (f, g)2 =q(f)q(g)- [ |

~—

T =

~—

Next, we deduce the following.

Corollary 3.2.4. Let f be a function in V (v) such that v (f, f;1) > 0. If ¢
is any function in V (v) such that v (f,g;1) = v(g,9;1) = 0, then the hedgehog
Hy is reduced to a point.

In other words:

Corollary 3.2.5. Let f € V (v). If there exists a hedgehog not reduced to a
point with support function g € V (v) such that v (f,g;1) = v (g,g;1) =0, then
v (f, f;) <0.

Proof of Corollary 3.2.4. It follows from assumptions that we are in an
equality case of B.20]). So, by Theorem 3.2.3, there exists (\, u) € RZ~{(0,0)}
such that Af 4 pg is the support function of a point. Since H 4,4 is a point,
v(Af 4+ pg, \f + pg;l) = 0. Developing by multilinearity and using assump-
tions, we deduce that Ao (f, f;1) = 0. Since v (f, f;1) > 0, A = 0 and hence
H,,q is reduced to a point. Now p # 0 since (A, 1) # (0,0). Therefore, H, is
reduced to a point. |

Proof of Theorem 3.2.2. Finally, we apply Corollary 3.2.5 to

PRI CR%D)
T wv(k,ou0)
Let us check that all the assumptions of Corollary 3.2.5 are then satisfied. Of

course, Hy is not reduced to a point since it is a unit segment U (v). Since
n+1

g: =0, and f:=h— Ak, where

the mixed volume v : V (v) — R is linear in each of its arguments, we have
v(f,g;0) =v(h,o,;1) — M (k,0,;1) = 0. Applying formula (5.77) from [Sc3, p.
302], we obtain

(n+Dv(oy,0u;l) =v,1 (U (v)", L%, ...,L;’H_l) ,

where v,1 denotes the n-dimensional mixed volume in the linear subspace or-
thogonal to v and, U (v)”, LY, ..., L%, the respective images of U (v), L, ...,
L,,+1 under orthogonal projection to this subspace, and thus v (g, g;1) = 0 since
U (v)” ={0}.
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Hence by Corollary 3.2.5, we have

v (h— Ak, h— ;1) < 0.

After replacing A by its value and rearranging, we obtain

v (h ks 1) — v (b, by D) (K, k1) > (U (h k1) — mv(k,k;1)>2.

(a — b)* with a := v (h, k; 1) =m@ gayv (k, k; 1)

; : o o2 p2 s 1
Using the inequality a*+b 5
k; 1), we deduce that

>
and b:= v (h, k;1) — M, kv (k,

v (k, k;1)?

T (M) =mgui)”

v (h,kil)* = v (h,hs ) v (k, k1) >
| |

For the study of several particular cases and a comparison with a stability
result by R. Schneider, and independently by P.R. Goodey and H. Groemer, we
refer the reader to [M18].

3.2.4 A remark on the missing boundary of the Blaschke diagram

In this subsubsection, we briefly mention without proof an application of our
results to the missing boundary of the Blaschke diagram. The interested reader
will find details and proofs in [M3]. The Blaschke diagram is the image of
the set of convex bodies of R? that are not reduced to a single point under the
map associating to each such convex body K the point (z,y) € Ri given by

_ 4nS 4872V
=35 o7 7
where V', S and M respectively denote the 3-dimensional volume, the surface
area, and the integral of the mean curvature of K. We know from the following
Minkowskian inequalities

X

ArS < M?, 3MV < S? and 4872V < M3,

that © < 1, y < 1 and y < 22, but a part of the boundary of the Blaschke
diagram must correspond to an unknown inequality of the form V' > f (S, M).
This problem raised by Blaschke [BI1] still today remains unsolved. The reader
may refer to the studies of this problem presented by Hadwiger [Hal, Bieri [Bi]
and Sangwine-Yager [SY]. Using the solution of the Christoffel problem pro-
vided by Firey [Fir], we prove the following proposition.
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Proposition 3.2.6 [M3]. Let g € C? (82; R) be the support function of a convex
body of R3. There exists a C*-hedgehog Hy, which is unique up to translation,
such that Ry 5y = Ry.

We will say that this unique C3-hedgehog H; is associated to the convex
hedgehog H,.

Theorem 3.2.4 [M3|. Let g € C? (SQ;R) be the support function of a con-
vex body of R® such that the associated hedgehog of H, satisfies the condition
s(f) > 0. Then we have

; 5(g)?
)2 S n(g) + /mlgP —dms(g))

and the equality holds if, and only if, H, is a sphere.

In other words, the convex body with support function ¢ is then such that

2 SM irS
V> =2y 1- 250
3(M + VMZ —4rS) 127 M

that is,

2

vz el Vit o).
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4 Special convex bodies, hedgehogs and multi-
hedgehogs

This section is devoted to a series of special convex bodies, hedgehogs, and
multihedgehogs, which are also called N-hedgehogs, (N € N*): an envelope of a
family of cooriented planes of R**! will be called an N-hedgehog if, for an open
dense set of w € S™, it has exactly N cooriented support planes with normal
vector u. Thus, ordinary C2-hedgehogs are merely 1-hedgehogs. We will extend
to hedgehogs a series of classical notions for convex bodies. For instance, we
will start by extending the notion of width to hedgehogs. As an application of
our study, we will give an example of a noncircular algebraic curve of constant
width whose equation is relatively simple, which answers a problem raised by
S. Rabinowitz (Subsubsect. 4.1.2). In passing, we will study various concept
related to convex bodies. In particular, we will study the relationship between
planar projective hedgehogs (which are the planar hedgehogs of constant width
0) and Zindler curves (which are those planar closed curves such that all chords
that divide the curve perimeter - or area - in a half, have the same length)
in Subsubsect. 4.2.2. We will then rely on a notion of symplectic area to
introduce and study Zindler-type surfaces in R%.  Subsect. 4.5 will aim to
motivate the development of a Brunn-Minkowski theory for minimal hedgehogs
or multihedgehogs by continuing the pioneering works by R. Langevin, G. Levitt,
H. Rosenberg and E. Toubiana [LLR] [LR] [RT].

Figure 4.0.0. A plane 2-hedgehog

This will also be an opportunity to discover a first series of applications
of hedgehog theory to analysis. In Subsect 4.3, we will consider the cosine
transform, which associates to any continuous function f : S® — R the map
Ty : R"* — R defined by
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7y (2) = [ Jwo)lf ) do (o),

where (.,.) is the standard inner product and o the spherical Lebesgue measure.
We will prove that the cosine transform, which often appears in convex geom-
etry, is a bounded linear operator from C (S™;R) to C? (S*;R). It follows that
the boundaries of zonoids (resp. generalized zonoids) whose generating measure
have a continuous density with respect to o can be considered as C?-hedgehogs.
We will study such hedgehogs. Recall that zonotopes are the Minkowski sums
of line segments, and that zonoids are (necessarily centrally symmetric) convex
bodies that are the limit, in the sense of the Hausdorff metric, of a sequence
of zonotopes. Zonoids play an important role in various areas such as the the-
ory of vector measures, Banach space theory or stochastic geometry. We will
obtain a local property of zonoids whose generating measure have a contin-
uous density with respect to . We then define projection hedgehogs (resp.
mixed projection hedgehogs) and interpret their support functions in terms of
n-dimensional volume (resp. mixed volume). Finally, this study will lead us to
consider the extension of the Minkowski problem (in differential geometry, the
one of the existence, uniqueness and regularity of a closed convex hypersurface
with preassigned curvature function) to hedgehogs. The classical Minkowski
problem played an important role in the development of the theory of elliptic
Monge-Ampére equations. The study of its extension to hedgehogs will be the
subject of Section 5. In Subsect. 4.4, we will study the existence of a nontrivial
C?-hedgehog in R? that is hyperbolic (i.e., with an everywhere nonpositive cur-
vature function), in order to determine the validity of the characterization of the
2-sphere conjectured by A.D. Alexandrov. This question amounts to studying a
partial differential inequation. We will prove this Alexandrov conjecture in some
particular cases, such as the case when the surface is assumed to be of constant
width, and give a counterexample in the general case. In passing, we will con-
sider the discrete version of hyperbolic hedgehogs. After a brief presentation of
hedgehog polytopes (also called polyhedral hedgehogs) in R3, we will introduce
two notions of hyperbolicity (weak and strong hyperbolicity) for hedgehog poly-
topes of R? and give examples. Our example of a strongly hyperbolic polytope is
obtained by a discretization of our counterexample to Alexandrov’s conjecture.
In Subsect. 4.6, we will give a geometric proof of the Sturm-Hurwitz theorem
in the framework of planar multihedgehogs. We will take this opportunity to
present a series of geometric consequences and inequalities. We will end Section
4 by a detailed study of planar general hedgehogs (i.e., Minkowski differences of
arbitrary convex bodies of RQ). Our way of introducing general hedgehogs (pro-
ceeding by induction on n and replacing support sets by ‘support hedgehogs’)
makes clear that a perfect understanding of planar hedgehogs is a prerequisite
to a study of general hedgehogs of R"*1. In particular, we will: (i) study their
length measures and solve the extension of the Christoffel-Minkowski Problem
to plane hedgehogs; (i7) characterize support functions of plane convex bodies
among support functions of plane hedgehogs and support functions of plane
hedgehogs among continuous functions; (7i¢) study the mixed area of hedgehogs
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in R? and give an extension of the classical Minkowski inequality (and thus of
the isoperimetric inequality) to hedgehogs.

4.1 Convex bodies and hedgehogs of constant width

In this subsection, we introduce and study the notion of a hedgehog of constant
width in R™*!. In Section 7, we will consider this notion for non-Euclidean
hedgehogs, and in particular for hedgehogs of the hyperbolic space H"*!.

4.1.1 Introduction

Let K be a convex body of (n + 1)-Euclidean vector space R"! that is, let
K € K"*L. The width function wg : S™ — R of K is defined by

wg (u) = hg (u) + hg (—u)  for all u € S™,

where hyi : S — R is the support function of K. For all € S", the number
wg (u) is called the width of K in the direction u: wg (u) is simply the distance
between the two support hyperplanes of K orthogonal to w. The width of
a closed convex hypersurface of R**! is defined to be the width of the body
that it bounds. Of course, when wy is constant the convex body K and its
boundary 0K are said to be of constant width. Obvious bodies of constant
width are FEuclidean balls, but there are many others. In fact, every convex
body K of R*"*! whose support function hg is of the form f 4 r, where f is
an odd function on S” and r a constant, is a convex body of constant width.
Besides, focusing on boundaries of convex bodies, we can state that any Ci—
closed convex hypersurface of constant width 2r, say Hi,, in R"*! can be
regarded as the parallel hypersurface at distance r to its ‘projective part’ Hy,
which is a projective hedgehog. Indeed, we have;

Vu e S", zpiy (u) = xp (u) + ru.

The theory of bodies of constant width is a popular and fascinating topic,
which has benefited from the works of a large number of scientists and mathe-
maticians. It is now a well-established field of classical convex geometry. Various
other names can be found in the literature to refer to convex bodies of constant
width. For instance, these bodies are also called orbiforms in dimension 2, or
spheroforms in dimension 3. For a recent book on bodies of constant width
and their relations with various parts of mathematics, we refer the reader to
[MMO].

The notion of being of constant width extends naturally to hedgehogs. A
hedgehog Hj, of R"*! is said to be of constant width if the signed distance
wp, (u) := h(u) + h (—u) between the two cooriented support hyperplanes or-
thogonal to u € S™ does not depend on the direction u.
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Figure 4.1.0. A plane hedgehog of constant width:
Hp, where h (8) = 2 + cos (36)

In particular, projective hedgehogs of R"*! (that is, hedgehogs H; C R"*!
with an odd support function h : S* — R) are exactly the hedgehogs of R™*1
that are of zero constant width. Of course, projective hedgehogs owe their name
to the fact that the natural parametrization x;, : S* — R of a C%-hedgehog can
be defined on the projective space RP™ = S§™/(antipodal map). Indeed, for all
f € C?(S™;R), we have:

(Hp is projective) <= (Vu € S, h(—u) = —h(u))
— (Vu e S", zp, (—u) =z, (u)) .

Recall that we have already briefly touched on the concept of a projective
hedgehog, first in Subsubsect. 2.2.2 when we were interested in hedgehog ver-
sions of the classical models of the projective plane in R? in response to a ques-
tion raised by Hilbert and Cohn-Vossen, then in Subsect. 2.5 when we gave an
example of a fractal projective hedgehog with a C'-support function, and finally
in Subsections 2.8 and 2.9 by presenting some of their geometric properties.

In this subsection, we will not review the classical results of the general
theory of bodies of constant width, for which we refer the reader to [MMO]. We
will restrict ourselves to parts of the theory that extend to hedgehogs as well as
to the new results that hedgehogs have made it possible to discover.
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Figure 4.1.1. A hedgehog is projective if, and only if, it
has 0 constant width

4.1.2 Noncircular algebraic curves of constant width: an answer to
Rabinowitz

A disc has the property that it can be rotated between two fixed parallel lines
without losing contact with either line. It has been known for a long time that
there are many other plane convex bodies with the same property. Such plane
convex bodies are called plane convex bodies ‘of constant width’ or ‘orbiforms’.
Their boundaries are of course called ‘plane convex curves of constant width’.
A classical noncircular example is the famous Reuleaux triangle [Wk1] which is
made of three circular arcs. But a noncircular plane convex curve of constant
width can be smooth, and not having any circular arc in its boundary. As we
just saw above, the notion of a convex body of constant width extends to higher
dimension.

In this subsubsection, we are essentially interested in noncircular algebraic
curves of constant width. Rabinowitz [Ra] found that the zero set of the fol-
lowing polynomial P € R[X,Y] forms a noncircular algebraic curve of constant
width in R2:

Plaw)i= (47 =45 (22 +4)" — 40283 (o + )
7950960 (22 + 12) + 16 (22 — 3y?)° + 48 (a2 + 4?) (22 — 3y2)*

+x (2?2 — 3y?) (16 (22 +y?)* — 5544 (22 + 2) + 266382) — 7203
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Then, he raised the following open questions: “The polynomial curve found is
pretty complicated. Can it be put in simpler form? Our polynomial is of degree
8. Is there one with lower degree? What is the lowest degree polynomial whose
graph is a noncircular curve of constant width?”. A couple of years ago, Bardet
and Bayen [Bb, Cor. 2.1] proved that the degree of P, that is 8, is the minimum
possible degree for a noncircular plane convex curve of constant width. Here,
we emphasize the convexity assumption because it is implicit in the statement
of Corollary 2.1 in [BD]. In this subsubsection taken from [M23], we provide
additional answers to Rabinowitz’s open questions. First, we recall the
notion of a plane hedgehog curve of constant width, and we notice that in this
setting, we can find algebraic curves of constant width much simpler. Second,
we give an example of a noncircular algebraic curve of constant width whose
equation is simpler than the one of Rabinowitz. Finally, we notice that we can
deduce from it (relatively) simple examples in higher dimensions.

For a presentation of the main results intended for the general public with
additional illustrations and animations, we refer the reader to [M22].

Plane algebraic hedgehogs of constant width
Here, we will follow more or less [M2].

Definition 4.1.2 For any smooth function h : S' = R\27Z — R,0 — h (),
we let Hy, denote the envelope of the family of lines given by

zcosb + ysinf = h(0), (4.1.1)

where (xz,y) are the coordinates in the canonical basis of the FEuclidean vector
space R%. We say that Hj, is the plane hedgehog with support function h, and
that Hy, is projective if h(0 +m) = —h(0) for all € S*.

Partial differentiation of ([@I.T) yields

—xsinf + ycosf = h'(0). (4.1.2)
From (£I11)) and (£1.2)), the parametric equations for H;, are

x = h(0)cosd — h'(0)sind
y = h(0)sinf + h'(0) cosb.

The family of lines (D (6))gcg:, of which Hj, is the envelope, is the family of
‘support lines’ of Hp. Suppose that Hj has a well-defined tangent line at the
point (x,y), say T. Then T is the support line with equation [@IT]): the unit
vector u(f) = (cos@,sin@) is normal to T" and h(f) may be interpreted as the
signed distance from the origin to 7T'.

A plane hedgehog is thus simply a plane envelope that has exactly one ori-
ented support line in each direction. A singularity-free plane hedgehog is simply
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a convex curve. A plane hedgehog is projective if it has exactly one nonoriented
support line in each direction

Now, we can define the width, say wjy, (8), of such a plane hedgehog H; in
the direction u (0) to be the signed distance between the two support lines of
‘Hy, that are orthogonal to u (), that is,

wp(0) =h(0)+h(0+m).

Thus plane projective hedgehogs are hedgehogs of constant width 0, and
the condition that a plane hedgehog Hj, is of constant width 2r is simply that
its support function h has the form f + r, where f is the support function
of a projective hedgehog. Here are three examples of plane hedgehogs: (a) a
convex hedgehog of constant width; (b) a hedgehog with four cusps; (¢) a plane
projective hedgehog which is a hypocycloid with three cusps.

(a) (0) (c)
h(0) =10+ cos (30) h(9) = cos (20) h(6) = sin 360

Figure 4.1.2
Proposition 4.1.2. The plane projective hedgehog Hy with support function

h:S* — R, 0 sin (30) is a noncircular algebraic curve of constant width 0
with equation

(a:2 + y2)2 + 18 (m2 + y2) — 8y (y2 — 33:2) = 27.

Proof. We already know that Hj, is a noncircular curve of constant width 0.
From the parametric equations for Hj, we deduce that

2?92 = h(0)* + b (0)® = sin? (30) + 9 cos? (30) = 5 + 4 cos (60) .

Now, h : S — R, 6 — sin (30) is the restriction of the polynomial —y (y2 — 3352)
to the unit circle S, and the linearization of —y (y2 — 33:2) as a trigonometric
function of 6 gives
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—y (y* — 32%) = —12 — 14 cos (66) — cos (120) = —11 — 14 cos (66) — 2 cos® (66) .
From the above two equations, we deduce easily that

(2 + y2)2 +18 (z® +y?) — 8y (y* — 32?) =27,
|

A noncircular algebraic curve of constant width whose equation is
relatively simple

Any hedgehog whose support function h : S — R is of the form h (0) =
r — sin (360), for some constant r, is a hedgehog of constant width 2r. Such a
function h : S' — R is the support function of a convex body if and only if
(h+h")(0) =7 —8sin(30) > 0 for all § € S!, that is if and only if r > 8. We
choose r = 8 in order to be ‘as closed as possible’ to the previous example.

Theorem 4.1.2. The plane hedgehog Hj, with support function h : S' — R,
0 — 8 —sin (30) = 4sin®0 — 3sin @ + 8 is a noncircular convex algebraic curve
of constant width 16 with equation

((w2 + y2)2 + 8y (y2 — 33:2))2 + 432y (y2 — 3ac2) (351 —10 (mQ + y2))

= 567% + 28 (2 + y?)” + 486 (2 + y?) (67 (22 +y2) — 567 x 18).
(4.1.3)

Proof. The parametric equations for Hj, are equivalent to:

{ z = —8 (sin® () — 1) cos (0)
y = —2cos (20) — cos (46) + 8sin (0) .

Expanding = and y in terms of ¢ = cos§ and s = sin #, we obtain after simplifi-
cation:

m=—8(s3—1)c
y=—-3+4s(2+3s—2s%).

Squaring the first equation and substituting in ¢ = 1 — s? gives us the following
system of equations in the three unknowns z, y, and s:

64(1—32) (83—1)2—.’132:0
—3+4s(2+38—233)—y:0.

We then eliminate s by computing the resultant of the polynomials

A(s)=64(1- s (33—1)2—x2 and B(s)=-3+4s(2+3s—2s%) —y
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with Mathematica, and find after simplification that:

((332 + y2)2 + 8y (y2 — 3.%'2))2 + 432y (y2 — 3x2) (351 —10 (332 + yg))
— 5673 + 28 (22 + y2)° + 486 (22 + y2) (67 (2% + y2) — 567 x 18) .

Here, it is important to note that our example has another advantage over
Stanley Rabinowitz’s. The coordinates of the points of the Rabinowitz curve
are indeed such that P (z,y) = 0. But they are not the only ones! The set of
points of the plane whose coordinates are such that P (x,y) = 0 also contains
isolated points that are not on the curve with equation P (z,y) = 0 [PW]. Now,

in our example, we are lucky that the points that correspond to these isolated
points are also located on our curve [PW].

Figure 4.1.3. The noncircular convex curve of
constant width 16 with equation ([ I3])

)

Higher dimension

As we already mentioned, the notion of a hedgehog of constant width can
of course be extended to higher dimension. Each of the above two examples
of algebraic curves of constant width admits an axis of symmetry in R2. By
rotating it around such an axis, we deduce immediately an example of alge-

braic surface of revolution that is of constant width in R3. More precisely, the
algebraic surface with equation
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(m2+y2+22)2 +18 (2® +y? 4+ 2%) — 82 (2> =3 (2* + ¢?)) =27

is a ‘projective hedgehog’ of revolution and a surface of constant width 0 in R?
(see Figure 3, left), and the algebraic surface with equation

2
(3:2 +92 4+ 22)2 + 8z (22 -3 (922 + yz))
+4322 (22 — 3 (22 + y?)) (351 — 10 (22 + y2 + 2%))
— 5673 + 28 (22 + 2 + 22)°
+486 (22 + y2 + 2%) (67 (2 + y* + 2%) — 567 x 18)

is a convex surface of constant width 16 in R? (see Figure 4.1.4, right).

Figure 4.1.4. Our two algebraic surfaces of constant width

There are several methods to explicitly find algebraic constant width bodies,
even without being of revolution (see, e.g., [MMO] Section 8.5]).

4.1.3 Hedgehogs of constant relative width

More generally, given an arbitrary norm ||.|| on R**!, we may define the (signed)
width of a C? hedgehog Hj, of R"*! relative to the centered (i.e., O-symmetric)
convex body K = {z € R""!|||z| <1}, also called the K-width of Hy, in
the direction u to be the (signed) K-distance (i.e., the distance relative to ||.||)
between the two cooriented support hyperplanes orthogonal to u, that is, by

wp(w)

wg (h,u) = Qth W)’

where hg : S™ — R is the support function of K.
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The following proposition relates plane C? hedgehogs of zero relative mean
width to the subspaces Fj, considered in Corollary 3.2.1 in the case n + 1 = 2,
that is, to the subspaces Fj := {h € Hzl|a(h,k) =0}, where a denotes the
mixed area, and k € Hy has positive area.

Proposition 4.1.3. Let ||.| be an arbitrary norm on R?, and let K :=
{z e R?|||lz|| < 1}. There exists a plane convex C* hedgehog Hy such that
the subspace Fy that is a-orthogonal to k is the subspace of Hs constituted by
all plane C? hedgehogs Hy, of zero mean K-width, that is, by all C? hedgehogs
satisfying the condition

T h(0)

df = 0.
hi (0)

27
/ wg (h,0)d0 =0  or, equivalently, /
0 0

Proof of Proposition 4.1.3. Since K is a plane centered convex body of R?,
its support function hx : S* = R\27Z — R is 7-periodic, so that the general
solution k of the differential equation y + y” = 1/hk, namely

k(0) = ( / hczs(g) de) sin @ — ( / ;;n(z) d6> cos ),

is a 27m-periodic C?-function that defines (up to a translation) a hedgehog Hj,
that is convex because Ry := k + k" = 1/hx > 0. Moreover, for any h € Ho,
we have

27
a(h,k):§/0 h(a)(kJrk”)(H)dG:%/O

27
h(0)
do,
hi ()
so that

27
a(h,k) =0 if, and only if, / wgk (h,0)dd = 0.
0

4.2 Concepts related to constant width
4.2.1 Equichordal points

Let K be a convex body in (n + 1)-dimensional Euclidean space R"*! and let S
be its boundary 0K . An interior point o of K is called an equichordal point
of S if all chords of S passing through o have the same length. In 1916, Fujiwara
proved that a plane convex curve cannot have more than two equichordal points,
and raised the problem of whether there exists a plane convex curve with exactly
two equichordal points [Fu3]. Independently, Blaschke, Rothe and Weitzenbock
posed the same equichordal point problem a year later [Brw]. Wirsing proved
(assuming its existence) that such a curve must be analytic [Wr]. Petty and
Crotty proved the existence of Minkowski spaces of arbitrary dimension in which
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there are convex hypersurfaces with exactly two equichordal points [PC]. But,
despite its elementary formulation, the equichordal point problem remained
unsolved for a long time. Indeed, it was only in 1996 that Rychlik managed to
solve this difficult problem in the negative in a long article using methods of
advanced complex analysis and algebraic geometry [Ry].

In Subsect. 2.7, we recalled the notion of pedal hypersurface (with respect
to the origin o) of any C2-hedgehog of R"*! with non-vanishing support func-
tion. If the C?-hedgehog is of constant width, then we see immediately that
its pedal hypersurface P (H},) has o as an equichordal point, but P (Hy) is not
necessarily convex. Conversely, we have the following:

Proposition 4.2.1. If S is a closed convex hypersurface (that is, the boundary
of a convex body K) of class Ci in R™"t! with an equichordal point o, then
S is the pedal hypersurface (with respect to o) of a hedgehog of constant width
P~1(S). We will then say that this hedgehog P~ (S) is the negative pedal of S
(with respect to o).

Proof. Let us assume without loss of generality that o is the origin. From the
assumptions, the hypersurface S is starlike and admits a parametrization of the
form

X:S" = S,ur— p(u) u,

where p > 0 denotes its radial function with respect to the origin. Since p is
equal to 1/g where g is the support function of the polar body K°, which is
also of class C? (see Subsect. 2.5 Higher regularity and curvature in [Sc3]),
this radial function p is of class C? on S". Now the condition that S have the
origin as an equichordal point is simply that p be of the form h+ 7, where r is a
constant and h is an odd C2-function on S™ (that is, the support function of a
projective hedgehog). Since we have zp4, (u) = p (u) u+(Vh) (u) for all u € S™,
we see that S is the pedal hypersurface of Hy 1, with respect to o. Furthermore,
this hedgehog Hj, . is of constant width 2r. |

Proposition 4.2.2. If S is a closed convex hypersurface (that is the bound-
ary of a convex body) of class C’_Qi_ in R*! with an equichordal point o, then
P~1(S), the negative pedal of S (with respect to o), is convex if and only if the
hypersurface obtained from S by inversion with respect to S™ is conver.

Proof. We can of course assume without loss of generality that o is the origin.
Let ¥ and ¥* denote respectively the negative pedal hypersurface P~!(S) and
the hypersurface obtained from S by inversion with respect to S™. By polarity,
we know that if ¥ or X* is convex, then ¥ and ¥* are the boundaries of two
respective polar bodies K and K° (see Subsect. 2.7). This achieves the proof.
|

See Figure 4.2.1 for an illustration of the proof.
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Figure 4.2.1. Tlustration for the proof of Prop. 4.2.2

Proposition 4.2.3. Let H;, in R"™ be a C%-hedgehog of constant width whose
support function h does not vanish on S™. Then the pedal hedgehog of Hp, with
respect to the origin o is a smooth hypersurface with the origin as an equichordal
point. Furthermore, P (Hy) is convex if and only if 1/h is the support function
of a convex body.

Proof. The pedal hedgehog P (H}p,) can be parametrized by

X:S" = S ur— h(u) u,

and has the origin as an equichordal point since u +— h(u) 4+ h(—u) is con-
stant. Furthermore, we have P (Hp) = (Z o P) ('Hl/h), where 7 denotes the
inversion with respect to S™ and P the map that assigns to each hedgehog (with
non-vanishing support function), its pedal surface with respect to o. Therefore,
if P (Hn) or Hyp, is convex, then P (Hj) and H;;, are the boundaries of two
polar bodies. This achieves the proof. |

Note that these questions are also related to equireciprocal points of convex
bodies (e.g., see [KI]).

4.2.2 Zindler curves in R? and Zindler-type hypersurfaces in R*

Introduction. It has been a century ago when K. Zindler published a paper
[Zi] where he studied a special kind of planar curves today known by his name.
Zindler curves are those closed curves such that all chords that divide the
curve perimeter (or area) in a half, have the same length. These curves are also
the boundaries of figures of constant density that float in water in equilibrium
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in any position [Bmo] and serve as solutions to other famous problems, such as
the ambiguous tire-track problem or the motion of an electron in a parabolic
magnetic field (see, e.g., [Blp], [Ta] and [BMS]).

There are several known generalizations of these curves in the literature. For
instance, some works studied Zindler curves in non-Euclidean geometries, such
as in isotropic geometry [Ta] or together with some spherical motions [Pt2].
Other works on Zindler curves in normed planes are also available ([MWTI],
MW,

Zindler curves are closely related to curves of constant width. In fact, Zindler
curves can be generated by rotating double-normals of a closed plane curve of
constant width a right angle about their midpoint (see [MMO], [G1] or [Ro]). A
visualization of this construction is presented in Figure 4.2.2.

Figure 4.2.2. A Zindler curve Zj, , constructed by rotating
double-normals of a constant width curve Hj,,, the midpoint
travels along the projective hedgehog Hy, (h(6) = sin(30), r = 8).

The same idea led to other generalizations of Zindler curves. On the one
hand, Hoschek extended in [Hol] and [Ho2] Zindler curves to R? using double-
normals of a closed transnormal space curve of constant width. The resulting
curve has analogous properties as the planar one. Wegner generalized the result
to R™ in [Wg2]. On the other hand, Wunderlich constructed Zindler curves
without using spatial curves of constant width in [Wu| based on the family of
tangent lines of the midpoint curve. From this, Pottmann generalized these

95



results in [Ptl], as the midpoints of the constant length chords lied on the
striction curve of the ruled surface that is generated by these directions.

The generalization of constant width curves to hypersurfaces of constant
width has been widely studied (see [MMO] and references therein). The general-
ization to hedgehog hypersurfaces of constant width in R"*! has been developed
as well, see Subsect. 4.1, including the notion of a projective hedgehog as those
hypersurfaces of constant width 0. Nevertheless, as far as we know, nobody has
provided a generalization of Zindler curves as surfaces in R3 or, more generally,
as hypersurfaces in R"+!,

The present subsubsection is based on a recent joint work of the author with
D. Rochera [MRI]. Its main aim is to present the definition of a Zindler-type
hypersurface in R*, which constitutes a generalization of planar Zindler curves
and that satisfies analogous properties. Our method, which is quite natural,
requires the structure of a symplectic manifold and therefore an even dimension.
Thus, the same technique cannot be used to find Zindler-type surfaces in R3,
which remains an open problem.

Some properties of planar Zindler curves. Now we are going to describe
some properties of planar Zindler curves, some of which will be generalized later
on to Zindler hypersurfaces.

The middle hedgehog of any convex curve of constant width (i.e., the locus
of midpoints of all the diameters) is a projective hedgehog. From it we can easily
construct an associated Zindler curve. But notice that not every Zindler curve
is generated from a middle hedgehog (see e.g., the example by Mampel in [Ma]).
In this subsubsection we will focus on Zindler curves which are associated with
a convex curve of constant width and, thus, which can be generated from a
projective hedgehog.

In general, the midpoint curve is the envelope of the halving chords. This is
a consequence of the following property (see [D1] and [D2]).

Proposition 4.2.4. Let z be a C'-regular parametric curve, and let c be a
vector defining its halving chords at each point following the parameterization
z. Let m be the curve generated by the midpoints of the halving chords. The
curve z is a Zindler curve if and only if ¢ (t) is orthogonal to m' (t) for each
value of the parameter t.

In the generalization of Zindler curves to space curves in R™ proposed by
Pottmann in [Pt1], this condition is imposed in the definition.

Recall that any convex curve is a hedgehog. In particular, convex curves of
constant width 2r > 0 have support functions f such that f () + f (0 + ) =
2r. Curves of constant width 0 are said to be projective hedgehogs. Here, we
will only consider C?-hedgehogs. Auerbach [Au]) was the first that noticed a
relationship between Zindler curves and curves of constant width. In particular,
he proved that Zindler curves have associated curves with the same area. The
reverse is true as well [Ma]: curves of constant width have associated Zindler
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curves with the same area.
A simple proof of this can be given using Holditch’s theorem (for an intro-
duction to Holditch’s theorem see e.g., [PS2] or [MR]).

Proposition 4.2.5. Pairs of associated curves, a conver curve of constant
width and a Zindler curve, have the same area.

Proof. Let H;, be a projective C?-hedgehog of R2. Now, let 7 > 0 be such that
Thyr : S'=R/27Z — R? and z, : S'=R/27Z — R%, 0 — z3, (0) + rv/ (0) =
h(0)u(0) 4+ (R (0) +r)u (0) are a convex curve of constant width 2r and its
associated Zindler curve, respectively, for chords of length 2r. Recall that for
f € C*(SYR), a(f) denotes the area of H;. By Holditch’s theorem, we have
that a (h+7) — a(h) = nr? and a (Z,.) — a (k) = 7r?, where a (Z,,,) denotes
the area of the Zindler curve 2}, , 1= zp (Sl). Therefore a (Z1,,) =a(h+r) A

Note that this can also be seen as a particular case of swept-out areas by
bicycle tire-track curves (see e.g., [FLT]).

Proposition 4.2.6. Zindler curves generated from a C?-projective hedgehog
are regular.

Proof. Let H; be a projective C%-hedgehog of R2. Given r € R%, the
corresponding Zindler curve Zj, , can be parametrized by:

2yt SP=R/27Z — R% 0+ 2y, (0) +ru’ (0) = h () u (0) + (B (0) +7)u’ (6),
where u (0) := (cos 6, sin ). Since

2, (0) = (h+h")(0)u (0) —ru(f) forall§ €S,

we have that

15, @] = \/(h+ ) (8 +72>0 forall S,
so that zp , is regular. | |

There is a well-known result about the angle that the halving chords of a
Zindler curve make with the tangents at their endpoints. It can be stated as
follows (see e.g., [Wul).

Proposition 4.2.7. The halving chords of a Zindler curve form the same angle
with both tangent vectors to the curve at the corresponding endpoints.

Proof. For all § € S, the endpoints 27 (§) and 25 (§) of the halving chord
[21(0),22 (9)] of a Zindler curve Zj, = zp,, (Sl) can be described from the
middle hedgehog Hj, := xp, (Sl) by
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21 (0) = zp (0) — ru’ ()

29 (0) = zp, (0) +ru/ (0)

where u (0) := (cosf,sinf). Thus, since we have

21 (0) = (h+h") (0) ' (0) +ru(0)

2 (0) = (h+h") (0) u' (0) — ru (6)

for all § € S, we also have tha