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Abstract.

Test cases III.1, I11.2, II1.4 have been solved with a preliminary version of
the computer code NS3GR developed at Aerospatiale Les Mureaux. We describe the
present version of the computer code (Section 1), the generation of the mesh
(Section 2) and the numerical results (Section 3).

I.  Description of the Navier-Stokes Solver NS3GR.

The computer code NS3GR (Navier Stokes Non Structuré Tridimensionnel
incluant des effets de Gaz Réel) is under study at the Technical Direction of the
Space and Strategic Systems Division of Aerospatiale since 1988. It is an extension
of the Euler solver CEL3GR presented at the previous INRIA-GAMNI-SMAI
hypersonic workshop in 1990 (Dubois-Michaux [1992]). It is based on the finite
volume MUSCL scheme (Van Leer [1979]) and the use of finite element type
unstructured meshes. In the present version only the particular case of a polytropic
perfect gas on two-dimensional geometries with structured meshes is studied.

This contribution has been published in Hypersonic Flows for Reentry Problems, Vol-
ume 3, Proceedings of the INRIA-GAMNI/SMAI Workshop on Hypersonic Flows for
Reentry Problems, Part II, Antibes, France, 15-19 April 1991, Editors Rémi Abgrall,
Jean-Antoine Désidéri, Roland Glowinski, Michel Mallet, Jacques Périaux, Springer Ver-
lag, pages 258-269, 1993. Edition January 2024.
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Abstract.

Test cases II1.1, II1.2, II.4 have been solved with a preliminary version of
the computer code NS3GR developed at Aerospatiale Les Mureaux. We describe the
present version of the computer code (Section 1), the generation of the mesh
(Section 2) and the numerical results (Section 3).

1. Description of the Navier-Stokes Solver NS3GR.

The computer code NS3GR (Navier Stokes Non Structuré Tridimensionnel
incluant des effets de Gaz Réel) is under study at the Technical Direction of the
Space and Strategic Systems Division of Aerospatiale since 1988. It is an extension
of the Euler solver CEL.3GR presented at the previous INRIA-GAMNI-SMAI
hypersonic workshop in 1990 (Dubois-Michaux [1992]). It is based on the finite
volume MUSCL scheme (Van Leer [1979]) and the use of finite element type
unstructured meshes. In the present version only the particular case of a polytropic
perfect gas on two-dimensional geometries with structured meshes is studied.

The conservation laws of mass, momentum and energy are integrated in
space in each finite volume denoted by K. In this way a system of ordinary
differential equations for the mean values of the conservative variables Uk is
derived :

(1) K %K+ > Ifl (®E@) + V(@) = 0

fe dK

where 0K denotes the boundary of K, f a generic face of 0K and | £]
(respectively IK| ) its surface (respectively the volume of the cell K). The Euler
flux ¢E(f) is computed according to the second order accurate in space
MUSCL approach. We refer to Dubois-Michaux [1992] for a precise description of
this numerical scheme. We focus here on the fact that in the CEL3GR / NS3GR
code numerical scheme for the computation of gradients and slope limitation steps
are truly multidimensional ; the step of approximating the solution of a 1D Riemann




problem remains the only monodimensional step : the waves issued from the corners
and the edges of dK are neglected and only the waves generated by the two-
dimensional interfaces are taken into consideration for the upwinding associated
with the numerical scheme. For a precise treatment of contact discontinuities we
have replaced the Sanders-Prendergast flux splitting by the approximate Riemann
solver proposed by Osher [1981].

For a Newtonian fluid satisfying the Stokes hypothesis, the viscous flux
oV(f) has a classical expression which is not detailed here (see e.g. Landau-Lifchitz
[1953]). We remark that ¢V(f) is a simple algebraic function of the mean values
and the gradients of velocity u and temperature T on the face f. We detail in the
following the choices that have been done for computing the gradient of a typical
scalar field. We remark simply that derivation is a linear and local operator.
Therefore in NS3GR computer code the numerical approximation of the gradient of,
saying, temperature on the face f, is supposed to be a linear functional of the degrees
of freedom o(T) lying in the vicinity V(f) of this face :

(2) VT (f) = Y a(f,o) o(T) .
o e V()

Assuming that even though our code is three-dimensional, for the sake of simplicity,
we shall describe our method in the two-dimensional case with a structured mesh. In
this case, the family V(f) is composed by the six elements lying on each side and
on the top and bottom of the face f. The coefficients o(f,0) coupling the face f and

the six elements of V(f) are evaluated as follows : the relation (2) is supposed to be
exact for temperature fields T(x) lying in the six-dimensional linear space LS(f)

3 LS() = Pi(n(f)) ® Pa(1(f))

where P1(n(f)) (respectively P2(t(f))) is the set of polynomials of degree 1

(respectively degree 2) relatively to the normal component xsn(f) (respectively
x+1(f)) of point x. In the particular case of a uniform mesh, we recover the classical

finite-difference centered scheme (derived e.g. in Hollanders-Lerat-Peyret [1985]) :

1
4 VT is12,j = E(T i+1,j — Ty ) nd

1
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For boundary faces, the vicinity V(f) consits of 9 degrees of freedom to assure
consistency for regular meshes, as detailed in Dubois [1992]. These degrees of
freedom are associated with cell centers as previously or with degrees of freedom on
boundary faces to take into account the boundary condition : Dirichlet for a rigid
wall or homogeneous Neumann for a symmetry plane.

The differential system (1) is integrated in time with a second order
accurate explicit scheme of Heun (Runge-Kutta of order 2). The present Navier
Stokes version of the code NS3GR has been developed in 1990 on the Cray XMP

of Aerospatiale Les Mureaux.

II. Description of the Mesh Generation.

The quality of a Navier-Stokes numerical solution is strongly affected both
by the numerical scheme and the choice of the mesh. Note that we easily solve this
2-D problem with our 3-D solver by introducing two walls in the third direction, and
just one cell between the two walls. We describe in this part the so-called fine mesh
that has been chosen for test case III.2. Along the flat plate of lengh L =0.126 a
total number of 91 faces are equally distributed. Moreover, 8 extra faces are added
for —0.0111 < x < 0 in front of the flat plate in order to capture the shock wave
induced by the leading edge of the plate ; for those faces a boundary condition of
symmetry is used. Along the ramp region (0.126 <x < 0.197) 56 faces are
equally distributed and followed by 20 extra faces (for 0.197 < x £0.223) in
order to minimize the error induced in the subsonic boundary layer by the outflow
numerical boundary conditions (homogeneous Neumann for both velocity and
temperature). We have used a Dirichlet boundary condition for velocity (u = 0) and
temperature (T = 290 K) for all the 175 faces along the plate, the ramp and the added
faces. In this way we construct 175 vertices along the flow direction. The mesh
consists of straight lines parallel to the y-direction issued from these 176 vertices. At
the inflow (x = —0.0109) a constant value of Ay = 1.35 10-4 is used and 66 grid
points are generated for 0 <y < 8.8 10-3. The external boundary is a straight line
with an angle o0 =10 ° relatively to the x-axis. For each column x = x; of vertices
the first mesh point inside the domain satisfies y» — y1 = 1.35 104 and the other
mesh points are generated in order to obtain a geometric sequence whose ratio is
evaluated with a Newton's algorithm.The aspect ratio for the cells along the flat plate
is constant and we have Ax /Ay =10. The fine mesh contains a total of

176 x 66 vertices and 11 375 control volumes ans is represented on Figure 1. A



coarse mesh with 84 x 30 vertices (4 faces before the plate, 46 along the plate, 30
along the ramp and 4 in the continuation of the ramp) has also been generated in
order to obtain preliminary results on the plate and for the entire configuration.

For problem II1.4, the same type of strategy for mesh generation have been
used. The fine mesh contains 20 cells before the beginning of the plate, 114 on the
plate (of lengh L =0.442), 60 on the ramp (of lengh 0.2692) and 15 in the
prolongation of the ramp. In the y direction, 65 cells are equally spaced for x = 0
(Ay = 8.3 10-5) and form a geometric sequence for the other abscissae. The mesh
contains a total of 13 585 elements (210 x 66 vertices). A coarse mesh containing
only 117 x 30 vertices has been first used in order to compute a preliminary

numerical solution.

III Presentation of the results.

The first case is problem IIL.1. The upstream Mach number is 10, the
Reynolds number 143 800 per meter, the temperature at infinity 52 K, the wall
temperature is 290 K and the ramp angle 3 = 15°. According to the requirements of
Desideri-Periaux [1990], a modified Sutherland's law is used for the definition of
viscosity W(T) and a constant Prandtl number (Pr = 0.72) is assumed for the
thermal conductivity coefficient. In this case, no recirculating zone appears (Figure
2) and our results are as well converged relatively to the mesh parameter.

The second test case (problem IIL.2) is analogous to the previous one except
that the value of the ramp angle is now 3 = 20°. A recirculating bubble is observed
(Figure 3). We have compared on Figures 4 and 5 the wall values of Cp coefficient
and Stanton number for both problems III.1 and III.2. The recirculating zone
appears clearly for problem IIL.2 on the Cf distribution (Figure 6) and is located for
abscissae satisfying 0.116 £ x £0.156. We observe also a small overshoot in the
Cf curve, correlated to the corner point at x = (.126.

Our third test case is problem IIL.4. It corresponds to experiments presented
by Holden [1978]. The viscosity law and Prandtl number are analogous to the
previous test cases. The upstream Mach number and Reynolds number per meter are
equal to 11.68 and 558 000 respectively, the temperatures at infinity and on the

body are respectively equal to 64.4 and 297.2 Kelvins. The angle of the ramp is
only B = 15°. The iso-value contours of density p /peo are presented on Figure 7.



The wall values of Cp coefficient, Stanton number Ch and skin friction Cf are
displayed on Figures 10, 11, 12. We observe a good prediction of the recirculating
zone on two different meshes (cf curve on Figure 12) in agreement with Holden's
data.

Conclusion.

In the test cases on two-dimensional ramp flows the computer code NS3GR
developed at Aerospatiale DSSS (Les Mureaux) has proved its capability to solve the
Navier Stokes equations of gas dynamics in hypersonic situations. Extensions to
unstructured meshes in three-dimensional geometries and the modelization of real
gas effects are under study.
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Figure 1. General view of the mesh for hypersonic ramps. (Problem I11.2)
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Figure 2. Problem 1l.1 {(Mach = 10, Re = 143 000/m, beta=15).
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Figure 3. Problem IIl.2 (Mach = 10, Re = 143 000/m, beta = 20 ).
Streamlines.
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Figure 4. Problems lll.1 and 1l.2. Pressure coefficient Cp.
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Figure 5. Problems Ill.1 and I1l.2. Stanton coefficient St.
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Figure 6. Problems lil.1 and I1l.2. Skin friction coefficient Cf.
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Figure 7. Problem lil.4 (Mach = 11.68, Re = 558 000/m, beta = 15).
Density isovalue contours.
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Figure 8. Problem lIL.4 (Mach = 11.68, Re = 558 000/m, beta = 15 ).
Pressure coefficient isovalue contours.

Figure 9. Problem 111.4 (Mach = 11.68, Re = 558 000/m, beta = 15).
Detailed view of streamlines.
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Figure 10. Problem lil.4. Pressure coefficient Cp.
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Figure 11. Problem lll.4. Stanton coefficient St.
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Figure 12. Problem ll1.4. Skin friction coefficient.
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