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Abstract

The subject of this work is the study of LS+-perfect graphs defined as
those graphs G for which the stable set polytope STAB(G) is achieved in
one iteration of Lovász-Schrijver PSD-operator LS+, applied to its edge
relaxation ESTAB(G). In particular, we look for a polyhedral relaxation
of STAB(G) that coincides with LS+(ESTAB(G)) and STAB(G) if and
only if G is LS+-perfect. An according conjecture has been recently for-
mulated (LS+-Perfect Graph Conjecture); here we verify it for the well-
studied class of claw-free graphs.

1 Introduction

The notion of a perfect graph was introduced by Berge in the early 1960s [1].
A graph is called perfect if each of its induced subgraphs has chromatic number
equal to the size of a maximum cardinality clique in the subgraph.

Perfect graphs turned out to be an interesting and important class with a
rich structure and a nice algorithmic behavior [24] and inspired numerous very
interesting contributions to the literature for the past fifty years.

An early polyhedral characterization of perfect graphs was given by Chvátal
in [10]: G is perfect if and only if STAB(G) coincides with its corresponding
clique relaxation QSTAB(G). However, solving the Maximum Weight Stable
Set Problem (MWSSP) for a perfect graph G by maximizing a linear objective

∗This work was supported by a MATH-AmSud cooperation (PACK-COVER), PID-
CONICET 0277, and PICT-ANPCyT 0586.
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function over QSTAB(G) does not work directly, but only via a detour involving
a geometric representation of graphs [28] and the resulting semi-definite relax-
ation TH(G), the theta body of G. This is one of the main results in the seminal
paper of Grötschel, Lovász and Schrijver [23]. Later on, the same authors proved
a related result which connects a purely graph theoretic notion to polyhedrality
of a typically nonlinear convex relaxation and to the integrality and equality of
two fundamental polytopes:

Theorem 1. (Grötschel, Lovász and Schrijver [23, 24]) For every graph G, the
following are equivalent:

1. G is perfect;

2. STAB(G) = QSTAB(G);

3. TH(G) = STAB(G);

4. TH(G) = QSTAB(G);

5. TH(G) is polyhedral.

Some years later, Lovász and Schrijver [29] introduced a semidefinite re-
laxation of STAB(G) which is stronger than TH(G) and it is obtained after
applying once the LS+ lift-and-project operator (N+ in [29]) to the edge rela-
tion of STAB(G), see Section 2.3 for details.

We denote this relaxation by LS+(G). Following the same line of rea-
soning used for perfect graphs, they proved that the MWSSP can be solved
in polynomial-time for the class of graphs G for which LS+(G) = STAB(G).
Those graphs have been called LS+-perfect graphs in [5] (originally N+-perfect
in [3]). The fact that solving the MWSSP on LS+-perfect graphs can be done in
polynomial-time encourages the search of a complete description of their stable
set polytope in terms of linear inequalities.

In this context, one of our goals is to obtain a characterization of LS+-perfect
graphs similar to the one given in Theorem 1 for perfect graphs. More precisely,
we look for an appropriate polyhedral relaxation of STAB(G) playing the role
of QSTAB(G) in Theorem 1, when we replace TH(G) by LS+(G).

Also, in [29] it is proved that every valid inequality for STAB(G) having as
support a near-bipartite graph is valid for LS+(G) (a graph is near-bipartite if
the non-neighbors of every node induce a bipartite graph [37]).

This result enables the authors in [3] to establish the following:

Conjecture 2 (LS+-Perfect Graph Conjecture). For every graph G, if LS+(G) =
STAB(G) then every facet defining inequality of STAB(G) has near-bipartite
support.

According to the findings in [37], if G is a near-bipatite graph then every facet
defining inequality of STAB(G) has a complete join of antiwebs as a support
graph, see Section 2 for details. Hence, Conjecture 2 can be restated as:

Conjecture 3. If G is an LS+-perfect graph, the support graph of any facet
defining inequality of STAB(G) is a complete join of antiwebs.
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Later, in [42] Wagler defined for a given graph G the relaxation ASTAB∗(G)
described by inequalities whose support are complete joins of antiweb sub-
graphs in G. In the same context, graphs for which STAB(G) coincides with
ASTAB∗(G) are called joined a-perfect [11, 40]. Hence Conjecture 2 establishes
that ASTAB∗(G) corresponds to the relaxation we are looking for to play the
role of QSTAB(G) in Theorem 1, when we replace TH(G) by LS+(G).

Some progress has been made towards proving its validity since it was pro-
posed in [3]. Conjecture 2 has been already verified for near-perfect graphs [3],
for fs-perfect graphs [4, 5], for webs [16], for line graphs [17], and for several
graph classes defined by clique cutsets [43, 44], see Section 2.3 for details and
more precise definitions.

The aim of this contribution is to verify Conjecture 3 for a well studied graph
class containing all webs, all line graphs and the complements of near-bipartite
graphs: the class of claw-free graphs. Claw-free graphs attracted much atten-
tion due to their seemingly asymmetric behavior w.r.t. the stable set problem.
On the one hand, the first combinatorial algorithms to solve the problem in
polynomial time for claw-free graphs [30, 35] date back to 1980. Therefore, the
polynomial equivalence of optimization and separation due to [24] implies that
it is possible to optimize over the stable set polytope of a claw-free graph in
polynomial time. On the other hand, the problem of characterizing the stable
set polytope of claw-free graphs in terms of an explicit description by means of
a facet-defining system, originally posed in [24], was open for several decades.
This motivated the study of claw-free graphs and its different subclasses, that
finally answered this long-standing problem only recently (see Section 2.4 for
details).

To prove the validity of the conjecture on claw-free graphs we use two dif-
ferent approaches. On one hand, we take advantage of the known description of
the stable set polytope for quasi-line graphs. On the other hand, we character-
ize the structure of the connected LS+-perfect claw-free not quasi-line graphs
without clique cutsets.

The paper is organized as follows: In Section 2.1 we present notation and
basic results that will be used throughout the paper. In Section 2.2 we present
the different relaxations we use of the well-known stable set polytope, and also
families of graphs which are defined in terms of the facet defining inequalities
in their stable set polytope. In Section 2.3, we present the State-of-the-Art on
LS+-perfect graphs (including families of LS+-imperfect graphs needed for the
subsequent proofs) and the results concerning the facet-description of their sta-
ble set polytopes from the literature. We devote a subsection to claw-free graphs
(Section 2.4) and their relevant subclasses, presenting known valid inequalities
describing the stable set polytope of certain claw-free graphs. In Section 3, we
verify Conjecture 3 for the class of claw-free graphs. Also, in Section 4 we de-
scribe the family of minimally LS+-imperfect graphs that are claw-free. Finally,
in Section 5 we present the conclusions and future lines of research on this topic,
establishing connections with the previous results.

Parts of the here presented results appeared without proofs in [6, 7].
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2 Definitions and preliminary results

2.1 Graph theory

Throughout this work, G = (V,E) stands for a simple graph with node set
V and edge set E. When we need to emphasize the relationship between the
node set and the edge set with the graph, we may write V (G) and E(G). The
complementary graph of G is denoted by G.

Given U ⊂ V , G[U ] is the subgraph of G induced by the nodes in U . i.e.
having node set U and edge set {uv : uv ∈ E, {u, v} ⊂ U}. Given a graph G′,
if there is a subset of nodes of G inducing G′ we say that G′ is a node induced
subgraph of G and write G′ ⊂ G. Also, we denote by G − U the subgraph of
G induced by the nodes in V \ U . For simplicity, we write G − u instead of
G − {u}.

Given v ∈ V , NG(v) is the neighbourhood of v and NG[v] = NG(v) ∪ {v} is
the closed neighbourhood of v. When the graph is clear from the context, we
simply write N(v) or N [v].

A stable set in G is a subset of mutually nonadjacent nodes in G and a clique
is a subset of pairwise adjacent nodes in G. The cardinality of a stable set of
maximum cardinality in G is denoted by α(G).

A clique cutset of a connected graph G is a clique whose removal disconnects
G.

For n ∈ N, [n] will denote the additive group defined on the set {1, . . . , n},
with integer addition modulo n. Given a, b ∈ [n], let b − a be the minimum
non-negative integer t such that a + t = b mod n. We denote by [a, b]n the
circular interval defined by the set {a + s : 0 ≤ s ≤ b − a}. Similarly, (a, b]n,
[a, b)n, and (a, b)n correspond to [a, b]n \ {a}, [a, b]n \ {b}, and [a, b]n \ {a, b},
respectively.

For any positive integer number n, Cn denotes the cycle with set of nodes
[n] and such that for all i ∈ [n], i is adjacent to i + 1. Similarly, Pn denotes the
path obtained by deleting the edge n1 in Cn.

A hole in the graph G is an induced cycle in the graph. Similarly, an antihole
in G is an induced cycle in G. The hole (antihole) is odd if it has an odd number
of nodes.

Chudnosvsky et al. proved the well-known Strong Perfect Graph Theorem
[8] (previously stated as a conjecture by Berge [1]) showing that perfect graphs
are exactly those graphs having neither odd holes nor odd antiholes.

A wheel is a graph formed by a cycle and one extra node outside the cycle,
connected to every node in it.

Given integer numbers k and n such that n ≥ 2(k + 1), W k
n denotes the web

graph with set of nodes [n] and edges i (i + t) for all i ∈ [n] and t ∈ {1, . . . , k}.
Observe that, for all i ∈ [n], [i, i + k]n is a maximal clique of W k

n . We say that
a set of nodes U ⊂ [n] is a set of r ≥ 1 consecutive nodes in W k

n if there exists
i ∈ [n] such that U = [i, i+ r)n. The antiweb Ak+1

n is the complementary graph
of a web W k

n . It is easy to see that Cn = W 1
n = Ak

n and Cn = W k−1
n = A2

n with
k =

⌊

n
2

⌋

. Also, complete graphs of n nodes are the antiwebs A1
n.
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A graph is near-bipartite [37] if the non-neighbors of every node induce a
bipartite graph. Observe that antiwebs are near-bipartite graphs.

The line graph of a graph G, denoted by L(G), is obtained by turning adja-
cent edges of G into adjacent nodes of the line graph. Then we say that a graph
H is a line graph if there is a graph G such that H = L(G).

A graph is claw-free if it does not contain a claw as a node induced subgraph,
where a claw is a four node graph with one node connected to a stable set of
size three.

Let us now recall some operations on graphs that will be used in this paper.
Given two node disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) the com-

plete join of them is the graph G1 ∨ G2 having node set V1 ∪ V2 and edge set
E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. For a given graph G = (V,E) and U1, U2 ⊂ V

such that U1 ∩ U2 = ∅, we say that U1 is completely joined to U2 (in G) if
G[U1 ∪ U2] = G[U1] ∨ G[U2].

The graph G′ is obtained from G after an odd subdivision of the edge e of G

if it is obtained from G by replacing e by a path of odd length ([45]).
The stretching of a node is defined in [27]. Let v be a node of G with

neighborhood N(v) and let A1 and A2 be nonempty subsets of N(v) such that
A1 ∪ A2 = N(v), and A1 ∩ A2 = ∅. A stretching of a node v is obtained as
follows: remove v, introduce three nodes instead, called v1, v2 and u, and add
an edge between vi and every node in {u} ∪ Ai for i ∈ {1, 2}. Also, we say
that H is a stretching of G if it is obtained from G after a finite number of
node-stretching operations. It is not hard to see that an odd-subdivision of an
edge is a sequence of node stretching operations.

2.2 On the Stable Set Polytope

Given G = (V,E), the stable set polytope STAB(G) of G is defined as the convex
hull of the incidence vectors of all stable sets of G.

The support graph of a valid inequality of STAB(G) is the subgraph of G

induced by the nodes with nonzero coefficient in the inequality. A full-support
inequality has G as its support graph. A graph G is said to be facet-defining if
STAB(G) has a full-support facet-defining inequality.

The following is an immediate consequence of Theorem 4.1 in [10].

Corollary 4. If G is a facet-defining graph then G does not contain a clique
cutset.

If G′ ⊂ G, the inequality

∑

i∈V (G′)

xi ≤ α(G′)

is known as the rank constraint associated with G′ and it is clearly valid for
STAB(G).

A more general type of valid inequalities for STAB(G) is obtained from
subgraphs of G which are complete join of graphs, called joined constraints: if
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G′ ⊂ G and G′ is the complete join of Gj with j = 1, . . . , k, the constraint

k
∑

j=1

1

α(Gj)

∑

i∈V (Gj)

xi ≤ 1,

is also valid for STAB(G).
Note that the inequalities are scaled to have right hand side 1 and they

include rank constraints when k = 1. From complete joins of antiwebs, the
joined antiweb constraints are obtained.

Two canonical relaxations of STAB(G) are defined in terms of rank con-
straints: the edge relaxation

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E},

and the clique relaxation

QSTAB(G) = {x ∈ [0, 1]V :
∑

i∈Q

xi ≤ 1, Q maximal clique of G}.

We have STAB(G) ⊂ QSTAB(G) ⊂ ESTAB(G) for any graph. In addi-
tion, STAB(G) equals ESTAB(G) for bipartite graphs only, and QSTAB(G) for
perfect graphs only [10].

A graph G is called near-perfect graphs (defined in [36]) if STAB(G) is ob-
tained after adding to QSTAB(G) the rank inequality associated with the whole
graph. Moreover, G is rank-perfect ([40]) if and only if STAB(G) is described
by rank constraints only. By definition, rank-perfect graphs include all perfect
and near-perfect graphs.

As subclasses of rank-perfect graphs, the class of a-perfect graphs is intro-
duced in [41] as graphs G where STAB(G) is given by nonnegativity constraints
and rank constraints associated with antiwebs. In particular, antiwebs are a-
perfect by [37, 41].

We denote by ASTAB∗(G) the linear relaxation of STAB(G) obtained by
nonnegativity constraints and all joined antiweb constraints. By construction,
we see that

STAB(G) ⊂ ASTAB∗(G) ⊂ QSTAB(G) ⊂ ESTAB(G).

Recall that graphs G with STAB(G) = ASTAB∗(G) are called joined a-perfect.
Results from Shepherd [37] imply that all near-bipartite graphs are joined a-
perfect, and results from Wagler [43, 44] show that several graph classes defined
by clique cutsets are further subclasses of joined a-perfect graphs.

2.3 On the semidefinite relaxation LS+(G) of STAB(G)

In order to introduce the LS+-operator we denote by e0, e1, . . . , en the vectors
of the canonical basis of R

n+1 (where the first coordinate is indexed zero) and
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Sn
+ the convex cone of symmetric and positive semi-definite (n × n)-matrices

with real entries. Let K ⊂ [0, 1]n be a convex set and

cone(K) =

{(

x0

x

)

∈ R
n+1 : x = x0y; y ∈ K

}

.

Then, the convex set M+(K) is defined as:

M+(K) =
{

Y ∈ Sn+1
+ : Y e0 = diag(Y ),

Y ei ∈ cone(K),

Y (e0 − ei) ∈ cone(K), i = 1, . . . , n} ,

where diag(Y ) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.
Projecting this lifting back to the space R

n results in

LS+(K) =

{

x ∈ [0, 1]n :

(

1
x

)

= Y e0, for some Y ∈ M+(K)

}

.

In [29], Lovász and Schrijver proved that LS+(K) is a relaxation of the
convex hull of integer solutions in K and that

LSn
+(K) = conv(K ∩ {0, 1}n),

where LS0
+(K) = K and LSk

+(K) = LS+(LSk−1
+ (K)) for every k ≥ 1.

In this work we focus on the behavior of a single application of the LS+-
operator to the edge relaxation ESTAB(G) of the stable set polytope of a graph.
Recall that LS+(G) = LS+(ESTAB(G)).

If LS+(G) = STAB(G) then G is LS+-perfect, and all other graphs are LS+-
imperfect.

According to Lemma 1.5 in [29], given a graph G, every valid inequality
whose support graph is near-bipartite is also valid for LS+(G). Then, this
result and the definition of ASTAB∗(G) imply that

LS+(G) ⊆ ASTAB∗(G) (1)

and Conjecture 3 establishes that the equality in equation (1) characterizes LS+-
perfect graphs or, in other words, that LS+-perfect graphs coincide with joined
a-perfect graphs.

It is known from [5] that every subgraph of an LS+-perfect graph is also LS+-
perfect. Thus, exhibiting one LS+-imperfect subgraph G′ in a graph G certifies
the LS+-imperfection of G. This motivates the definition of minimally LS+-
imperfect graphs as the LS+-imperfect graphs whose proper induced subgraphs
are all LS+-perfect. The two smallest such graphs were found by [15] and [27]
and are called GLT and GEMN , see Figure 1.

Observe that the graph GLT is obtained after replicating a node in C5. It
is clear that odd cycles and their complements are LS+-perfect. Thus, node
replication does not preserve LS+-perfection. Moreover, we easily obtain:

7



Figure 1: The graphs GLT (on the left) and GEMN (on the right).

Figure 2: Some node-stretchings (v1, w, v2 in black) of GLT and GEMN .

Remark 5. Given a graph G = (V,E) having C5 as a node induced subgraph,
the graph obtained after replication of any node in C5 is LS+-imperfect.

Further LS+-imperfect graphs can be obtained by applying operations pre-
serving LS+-imperfection. In [27] it is shown:

Theorem 6 ([27]). The stretching of a node preserves LS+-imperfection.

Hence, all stretchings of GLT and GEMN are LS+-imperfect, see Figure 2
for some examples.

2.4 On claw-free graphs

In several respects, claw-free graphs are generalizations of line graphs. An inter-
mediate class between line graphs and claw-free graphs form quasi-line graphs,
where the neighborhood of any node can be partitioned into two cliques (i.e.,
quasi-line graphs are the complements of near-bipartite graphs).

Quasi-line graphs can be divided into two subclasses: fuzzy circular interval
graphs and semi-line graphs.

Let C be a circle, I a collection of intervals in C without proper containments
and common endpoints, and V a multiset of points in C. A fuzzy circular interval
graph G(V, I) has node set V and two nodes are adjacent if both belong to one
interval I ∈ I, where edges between different endpoints of the same interval
may be omitted.

A graph is semi-line if it is either a line graph or a quasi-line graph without
a representation as a fuzzy circular interval graph.

For fuzzy circular interval graphs it turned out ([14]) that so-called clique
family inequalities suffice to describe their stable set polytope.

More specifically, Stauffer (in [38, 39]) verified a conjecture stated in [32]
establishing that every facet-defining clique family inequality of a fuzzy circular
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interval graph G is associated with a web in G. These inequalities have the form

(p − r)
∑

i∈W

xi + (p − r − 1)
∑

i∈Wo

xi ≤ (p − r)

⌊

n

p

⌋

(2)

where G[W ] has a web subgraph W p−1
n and r = n −

⌊

n
p

⌋

p ≥ 1. Moreover,

W \V (W p−1
n ) is the set of nodes in G having at least 2p−1 consecutive neighbors

in W p−1
n . Also, a node in Wo is adjacent to exactly 2p− 2 consecutive nodes in

W p−1
n .
Chudnovsky and Seymour [9] extend results of Edmonds [12] and Edmonds

and Pulleyblank [13] to semi-line graphs. Actually, they prove that if G is
a semi-line graph then STAB(G) is given by clique constraints and rank con-
straints associated with the line graphs of 2-connected hypomatchable induced
subgraphs (a graph is called hypomatchable if removing any of its nodes results
in a graph having a perfect matching).

Then, semi-line graphs are rank-perfect with line graphs as only facet-defining
subgraphs.

However, there are claw-free graphs which are not quasi-line. Although there
are many important results on the facial structure of them [18, 19, 20, 21, 22, 26],
in order to prove the conjecture on claw-free not quasi-line graphs we take into
account their decomposition given in [9].

A node is simplicial if its neighborhood is a clique. A strip (G, a, b) is a
(not necessarily connected) graph with two designated simplicial nodes a and
b. Given two node-disjoint strips (G1, a1, b1) and (G2, a2, b2), their composition
is the union of G1 \ {a1, b1} and G2 \ {a2, b2} together with all edges between
NG1

(a1) and NG2
(a2), and between NG1

(b1) and NG2
(b2) A claw-free strip

containing a 5-wheel as induced subgraph is a 5-wheel strip.
This composition operation can be generalized to more than two strips (see

[9] for further details).
According to these definitions, in [31] it is proved that every claw-free not

quasi-line graph G with α(G) ≥ 4 admits a decomposition into strips, where at
most one strip is quasi-line and all the remaining ones are 5-wheel strips having
stability number at most 3.

There are only three “basic” types of 5-wheel strips (see Fig. 3) which can
be extended by adding nodes belonging to the neighborhood of the 5-wheels
(see [31] for details).

Note that a claw-free but not quasi-line graph G with α(G) ≥ 4 containing
a clique cutset may have a facet-defining subgraph G′ with α(G′) = 3 (inside a
5-wheel strip of type 3), see [34] for examples.

3 LS+-Perfect Graph Conjecture for claw free

graphs

In this section we verify the validity of the LS+-Perfect Graph Conjecture on
claw-free graphs by analyzing the behavior of the LS+-operator on all its rele-

9



type 1 type 2 (gear) type 3

Figure 3: The three types of basic 5-wheel strips.

vant subclasses. Additionally, we characterize minimally LS+-imperfect graphs
within these classes.

We start with those graphs having stability number two by recalling the
following result:

Theorem 7 ([5]). Let G be a graph with α(G) = 2 such that G − v is an odd
antihole for some node v. G is LS+-perfect if and only if v is completely joined
to V (G) \ {v}.

From this, we can prove:

Theorem 8. Let G be a connected imperfect graph with α(G) = 2. If G is
LS+-perfect, then G is a complete join of odd antiholes and (possible empty)
perfect graphs.

Proof. Since G is an imperfect graph and α(G) = 2, G contains an odd antihole
C. If G = C, we are done. Otherwise, if G is LS+-perfect then by Theorem 7,
G is the complete join of C and G′ = G − V (C).

If G′ is a perfect graph then the result follows. Otherwise, G′ is LS+-perfect
and α(G′) = 2 and we apply the same argument as for G.

Using Corollary 5.2 in [10] on the linear description of the stable set polytope
of complete joins of graphs, we conclude:

Corollary 9. The LS+-Perfect Graph Conjecture is true for graphs with sta-
bility number 2.

3.1 Quasi-line graphs

Recall that quasi-line graphs divide into the two subclasses of semi-line graphs
and fuzzy circular interval graphs.

As we have already mentioned, a way to attack the conjecture is from the
polyhedral point of view. Using this approach, in Lemma 7 in [17], the authors
characterized LS+-perfect line graphs by showing:

Theorem 10 ([17]). Let G be the line graph of a 2-connected hypomatchable
graph. Then, G is LS+-perfect if and only if either G is a complete graph or G

is an odd cycle.
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Additionally, Chudnovsky and Seymour [9] proved that the stable set poly-
tope of a semi-line graph is given by rank constraints associated with cliques and
the line graphs of 2-connected hypomatchable graphs. From these two results
we directly conclude:

Corollary 11. The LS+-Perfect Graph Conjecture holds for semi-line graphs.

For fuzzy circular interval graphs, we make use of Theorem 5 in [16].

Theorem 12 ([16]). If a web graph is LS+-perfect then it is either a perfect or
a minimally imperfect graph.

Using this result, we can prove:

Theorem 13. Let G be a facet-defining fuzzy circular interval graph. Then, G

is LS+-perfect if and only if it is an odd cycle or its complement.

Proof. If G is an odd cycle or its complement then clearly G is LS+-perfect. Let
us prove the converse.

Since G is facet-defining, from the results in [38, 39], we have that G is the
support graph of a clique family inequality

(p − r)
∑

i∈W

xi + (p − r − 1)
∑

i∈Wo

xi ≤ (p − r)

⌊

n

p

⌋

associated with a web subgraph W p−1
n of G[W ]. Recall that every node in

W \ V (W p−1
n ) (resp. in Wo) is adjacent to at least 2p − 1 (resp. to exactly

2p − 2) consecutive nodes of W p−1
n and r ≥ 1 (see Section 2.4).

By Theorem 12, W p−1
n is LS+-perfect if and only if it is an odd cycle or its

complement. Since G is LS+-perfect we restrict our attention to web subgraphs
of G[W ] where n = 2k + 1 and p = 2 or p = k ≥ 3. In both cases, r = 1 follows
and we have to prove that G = W p−1

n .
Observe that if p = 2, then p − r − 1 = 0 and the inequality takes the form

∑

i∈W

xi ≤ k.

Suppose that there exists v ∈ W \ V (W 1
2k+1). Then, v is connected to t ≥

2p − 1 = 3 consecutive nodes in W 1
2k+1.

If t ≥ 5 and k = 2, G has a 5-wheel as induced subgraph, contradicting
the fact that G is quasi-line. But, if t ≥ 5 and k ≥ 3, G has a claw, again a
contradiction. Then, t ≤ 4.

Now, if t = 3 (resp. t = 4) G contains an odd-subdivision of an edge of GLT

(resp. GEMN ).
Since G is LS+-perfect then W \ V (W 1

2k+1) = ∅, or equivalently, G =
W 1

2k+1 = C2k+1.
Let us now analyze the case p = k ≥ 3 and G[Wo ∪ W ] = G.
Suppose that there exists v ∈ (Wo ∪ W ) \ V (W k−1

2k+1). It holds that v is

adjacent to at least 2k − 2 consecutive nodes in W k−1
2k+1.

11



Figure 4: The gear and the 3-gear graphs.

It follows that the subgraph G′ of G induced by V (W k−1
2k+1)∪{v} has stability

number two. Since G′ is LS+-perfect, from Theorem 8, v is completely joined
to V (W k−1

2k+1), contradicting that G is quasi-line.

Then, we conclude G[Wo∪W ] = W k−1
2k+1 or, equivalently, the complementary

graph of C2k+1 and the proof is complete.

Clearly the theorem above implies that the LS+-Perfect Graph Conjecture
is true for fuzzy circular interval graphs. Since the class of quasi-line graphs
divides into semi-line graphs and fuzzy circular interval graphs, we obtain, as
direct consequence:

Corollary 14. The LS+-Perfect Graph Conjecture is true for quasi-line graphs.

3.2 Claw-free graphs that are not quasi-line

It is left to treat the case of claw-free graphs that are not quasi-line. When
α(G) ≥ 4, we study LS+-perfection by using the strip decomposition given in
[31]. Actually, we prove that in this class there is no connected LS+-perfect
graph G without clique cutset such that α(G) ≥ 4. Finally, when G has sta-
bility number 3, we obtain a decomposition of connected LS+-perfect graphs
without clique cutset that allows us to conclude that the only graphs with these
properties are the gear and the 3-gear graphs depicted in Figure 4.

In order to simplify the writing, we denote by G the class of connected claw-
free not quasi-line graphs without clique cutset.

We first prove the following:

Theorem 15. Let G ∈ G. If G is LS+-perfect then α(G) ≤ 3.

Proof. Assume that G is LS+-perfect and α(G) ≥ 4.
As we have already pointed out in Section 2.4, according to [31], G has

a decomposition into strips, where at most one strip is quasi-line and all the
remaining ones have stability number at most 3 and contain a 5-wheel each.
Since G is not quasi-line, it contains at least one 5-wheel strip G′. Also, recall
that there are only three types of 5-wheel strips, Fig. 3 shows the “basic” types,
which can be extended by adding nodes belonging to the neighborhood of the
5-wheels.

12



P even P odd

Figure 5: LS+-imperfect subgraphs if G′ is of type 1.

P even P odd

Figure 6: LS+-imperfect subgraphs if G′ is of type 2.

If G′ is of type 3, then G′ contains GLT , induced by the squared nodes
indicated in Fig. 3, contradicting the assumption that G is LS+-perfect. Let us
analyze the cases where G′ is of type 1 or 2.

Note further that G′ is a proper subgraph of G since α(G′) ≤ 3 and α(G) ≥ 4.
Then, G contains as subgraph the composition of G′ and another strip graph,
say G′′. Then, there are two nodes in G′′ playing the role of the two simplicial
nodes of G′ (the two black nodes in Fig. 3). Since G has no clique cutset, these
two nodes are connected by a path P in G′′.

If G′ is of type 1 and P has even length, G has a node stretching of GEMN

as induced subgraph. Similarly, if P is of odd length it has a node stretching of
GLT (see the squared nodes in Fig. 5).

Similarly, if G′ is of type 2 and P has even length, G has a node stretching
of GLT as induced subgraph. Finally, if P is odd G′ has a node stretching of
GEMN (see the squared nodes in Fig. 6).

Hence, in all cases we contradict the LS+-perfection of G and we conclude
that α(G) ≤ 3.

As an immediate consequence, we obtain:

Corollary 16. Every facet-defining claw-free not quasi-line graph G with α(G) ≥
4 is LS+-imperfect.

For claw-free graphs having stability number three, there is no decomposition
known yet. Hence, we start with some technical results that will allow us to
characterize LS+-perfect graphs in G with stability number three.

In what follows, given G = (V,E) and v ∈ V , we denote by Gv the subgraph
of G induced by N [v]. It is clear that there is no stable set of size 3 in N(v) for
every node v of a claw-free graph. The following remark directly follows:

13



Remark 17. Let G = (V,E) be a claw-free graph. Then, α(Gv) ≤ 2 for all
v ∈ V . Moreover, given K,L,M three mutually disjoint nonempty subsets of
V such that K ∪ L is completely joined to M , it holds that α(G[K ∪ L]) ≤ 2.
In particular, if no node of K is adjacent to any node in L, then K and L are
cliques.

In addition, if C ⊂ V (G) induces an odd antihole, we assume C = {ui : i ∈
[2k + 1]} with k ≥ 2 and, for all i ∈ [2k + 1], ui, ui+k are not adjacent in G. We
say that ui and ui+1 are consecutive (in C), for all i ∈ [2k + 1].

We have the following result:

Lemma 18. Let G = (V,E) be a connected claw-free graph and let C ⊂ V

induce an odd antihole in G. If there exists y ∈ V \ C such that N(y) ∩ C 6= ∅
and α(G[C ∪ {y}]) = 3 then k = 2. Moreover, y has exactly two neighbors in C

which are consecutive.

Proof. Let C = {ui : i ∈ [2k + 1]} for some k ≥ 2 and y ∈ V such that
N(y) ∩ C 6= ∅ and α(G[C ∪ {y}]) = 3. Then, there exists i ∈ [2k + 1] such that
S = {y, ui, ui+k} is a stable set of G.

If the nodes in S have a common neighbor z then S ∪ {z} induces a claw.
Therefore, y is not adjacent to any node in N(ui) ∩ N(ui+k).

Since C \ N(ui) = {ui, ui+k, ui+k+1}, C \ N(ui+k) = {ui, ui+k, ui+2k}, and
y is not adjacent to ui, ui+k it holds that ∅ 6= N(y) ∩ C ⊂ {ui+k+1, ui+2k}.

If N(y)∩C = {ui+2k} then {ui+2k, ui+1, y, ui+k+1} induces a claw. Similarly,
if N(y) ∩ C = {ui+k+1} then {ui+k+1, ui+1, y, ui+2k} is a set inducing a claw.
Therefore, N(y) ∩ C = {ui+k+1, ui+2k}.

Finally, if k ≥ 3, ui+k+2 6= ui+2k then we have again a claw induced by the
nodes {ui+2k, ui+1, y, ui+k+2}. Then, k = 2 implying that the two neighbors of
y in C are ui+3 and ui+4, which are consecutive.

Let us focus on graphs G ∈ G with stability number three. By Remark 17,
α(Gv) ≤ 2 for every node v. But, if there is C ⊂ N(v) inducing an odd antihole
in G it holds that α(Gv) = 2. If Gv is LS+-perfect, using Theorem 8 we obtain
the next observation that will be useful in what remains of this section.

Remark 19. Let v ∈ V (G) such that Gv is LS+-perfect. If there exists C ⊂
N(v) inducing an odd antihole in G, then C is completely joined to N [v] \ C.

The next result gives a decomposition of graphs in G with stability number
three such that every subgraph with stability number two is LS+-perfect.

Lemma 20. Let G = (V,E) be a graph such that G ∈ G, α(G) = 3, and for
all G′ ⊂ G with α(G′) = 2, G′ is LS+-perfect. Then, V can be partitioned into
the sets Q,C, Y2, Y3, Z such that C induces C5, |Y3| ≥ 2, while Q,Y2, and Z are
cliques. In addition,

(1) Q is completely joined to C and no node in Q is adjacent to any node in
V \ (C ∪ Q),

14



(2) Y2 is completely joined to C ∪ Y3,

(3) Z is completely joined to Y3 and no node in Z is adjacent to any node in
Q ∪ C,

(4) every node in Y3 has exactly two neighbors in C which are consecutive.
Moreover, if two nodes in Y3 share a neighbor in C then they are adjacent.
Also, not all nodes in Y3 have the same neighbors in C.

Proof. Since G is claw-free and not quasi-line, there exists a node v such that
N(v) cannot be partitioned into two cliques. Then, the complementary graph
of Gv \ {v} is not bipartite and it has a set of nodes C inducing an odd cycle.
Since α(Gv) ≤ 2, |C| ≥ 5. Then C induces an antihole in G and we denote
C = {ui : i ∈ [2k + 1]} for some k ≥ 2.

Let W = N(v)\C and Q = W ∪{v}. Clearly, C,Q is a partition of N [v]. By
assumption Gv is LS+-perfect. Then, Remark 19 ensures that Q is completely
joined to C. Thus, we have partially proved (1).

Since α(Gv) = 2 and α(G) = 3, V \ N [v] 6= ∅. Now, consider the partition
of V \ N [v] into the sets X,Y,Z such that:

• X = {x ∈ V \ N [v] : N(x) ∩ W 6= ∅},

• Y = {y ∈ V \ N [v] : N(y) ∩ W = ∅ and N(y) ∩ C 6= ∅}, and

• Z = {z ∈ V \ N [v] : N(z) ∩ N [v] = ∅}.

Observe that, since α(G) = 3, α(Gv) = 2, and no node in Z is connected
with any node in N [v], we have that α(G[Z]) ≤ 1 and then Z is a (possibly
empty) clique.

In order to complete the proof of (1) we need to show that X = ∅.
Let us assume that X 6= ∅.
Let x ∈ X and w ∈ N(x) ∩ W . Since C ⊂ N(w) and we assume that Gw is

LS+-perfect, Remark 19 implies that C is completely joined to N [w] \ C and,
in particular, C is completely joined to {x}. Then X is completely joined to C.
Now, by Remark 17 considering K = {v}, L = X, and M = C it holds that X

is a clique.
Since Q∪X is completely joined to C, by Remark 17 with M = C, K = X,

and L = Q we obtain that α(G[Q ∪ X]) ≤ 2. Then α(G[N [v] ∪ X]) = 2.
Since α(G) = 3, Y ∪ Z 6= ∅. If Y = ∅, X is a clique cutset, contradicting the
hypothesis. Then, Y 6= ∅.

Let y ∈ Y and u ∈ C such that y ∈ N(u). Again, considering Remark 17
with K = {v}, L = X∪{y}, and M = {u}, we have that L is a clique. Therefore
Y is completely joined to X.

So we have that C ∪ Y ⊂ N(x) for every x ∈ X and by Remark 19 (using
that Gx LS+-perfect) we get that C is completely joined to Y . Applying again
Remark 17 for K = {v}, L = X ∪ Y and M = C we obtain that X ∪ Y is a
clique and then α(N [v]∪X ∪Y ) = 2. This implies Z 6= ∅ and X ∪Y is a clique
cutset, a contradiction to the assumption on G.
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C
Q

Y3

Z

Y2

Figure 7: A scheme of a graph with a partition as in Lemma 20 (sets with bold
lines stand for complete graphs, the ⊲⊳ symbol indicates a complete join between
two sets).

Then, X = ∅ and (1) holds.
Since G is connected, (1) implies that Y 6= ∅. Moreover, |Y | ≥ 2 otherwise

Y is a clique cutset.
Let y ∈ Y and u ∈ C such that y ∈ N(u). Since C is completely joined to

Q, Remark 17 with K = Q, L = {y} and M = {u} implies that Q is a clique.
Let us show that any two nodes in Y sharing a node in U are adjacent.

Indeed, consider y1, y2 ∈ Y with y1 6= y2 such that {y1, y2} ⊂ N(u) for some
u ∈ C. It follows from Remark 17 with K = Q, L = {y1, y2} and M = {u} that
L is a clique.

Now, we split Y into the sets Yi = {y ∈ Y : α(G[{y} ∪ C]) = i} for i = 2, 3.
In this way, V is partitioned into C, Q, Y2, Y3, and Z. Recall that Q is a
nonempty clique (v ∈ Q).

In order to prove (2), observe that Theorem 8 ensures that Y2 is completely
joined to C. Since two nodes in Y sharing a neighbor in C are adjacent, it
follows that Y2 is a clique. Moreover, Y2 is completely joined to C ∪ Y3.

Suppose now that Y3 = ∅. Then α(G[N [v] ∪ Y ]) = 2 and Z 6= ∅ follows.
Thus, Y2 is a clique cutset and we arrive to a contradiction. Then, Y3 6= ∅.
If |Y3| = 1 and using (2) we have Y is a clique cutset, a contradiction. Thus,
|Y3| ≥ 2. Moreover, by Lemma 18, C induces C5 and every node in Y3 is
adjacent to two consecutive nodes in C.

To complete the proof of (3), suppose that there are y ∈ Y3 and z ∈ Z which
are not adjacent. It holds that there exists i ∈ [5] such that {y, ui, ui+2, z} is a
stable set of size 4, which is a contradiction on α(G) = 3. Then, Z is completely
joined to Y3.

Finally, not all nodes in Y3 have the same two neighbors in C, say ui, ui+1

for some i ∈ [5]. Otherwise, Y2 ∪ {ui, ui+1} is a clique cutset. This completes
the proof of (4).

It is not hard to check that the support graphs of facet-defining inequalities
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Figure 8: Subgraph induced by C5 ∪ {v, y, y′, y∗}, the bold edges indicate the
GEMN . Removing y∗ yields the gear.

of the gear and the 3-gear graphs are complete and 5-wheel graphs. Then,
the gear and the 3-gear graphs are LS+-perfect. Also, since any node of these
graphs belongs to a 5-hole (see Figure 4), by Remark 5 we have the following
observation:

Remark 21. The graph obtained after the replication of any node in the gear
or the 3-gear graph is LS+-imperfect.

Finally, we obtain:

Theorem 22. Let G ∈ G an LS+-perfect graph with α(G) ≥ 3 . Then G is the
gear or the 3-gear graph.

Proof. By Theorem 15, α(G) = 3. Since G is LS+-perfect, by the previous
lemma we can consider the partition of V (G) into the sets Q, C, Y2, Y3, and Z.

Recall that Q 6= ∅ and let v ∈ Q. Moreover, we know that |Y3| ≥ 2, not all
the nodes in Y3 have the same two consecutive neighbors in C, and two nodes
in Y3 having a common neighbor in C are adjacent. Let us now prove that
adjacent nodes in Y3 share a common neighbor in C.

Let y 6= y′ ∈ Y3 such that y is adjacent to y′ and assume that they do not
share a common neighbor in C. W.l.o.g. we can assume that N(y)∩C = {u1, u2}
and N(y′) ∩ C = {u3, u4}. Then, {v, u1, y, y′, u4, u5} induces the graph GLT

contradicting the fact that G is LS+-perfect.
Let us prove that if there is a node in C completely joined to Y3 then G is

the gear graph.
W.l.o.g. assume that u2 ∈ N(y) for all y ∈ Y3. In this case Y3 is a clique.

Then Z = ∅, otherwise, Y2 ∪ Y3 is a clique cutset. Since not all the nodes in
Y3 have the same neighbors in C, there exist y, y′ ∈ Y3 such that N(y) ∩ C =
{u1, u2} and N(y′) ∩ C = {u2, u3}.

If there is y∗ ∈ Y2 then, {v, u1, u3, y, y′, y∗} induces GEMN (see Figure 8),
again a contradiction to the fact that G is LS+-perfect. Then, Y2 = ∅.

It is easy to see that every node in Q is a replication of v in G. Due to
Remark 21, the LS+-perfection of G forbids the replications of v and then G is
the gear graph.

Let us consider the case where not all the nodes in Y3 have a common
neighbor in C. W.l.o.g. we can assume that there are two nonadjacent nodes
y, y′ in Y3 such that N(y) ∩ C = {u1, u2} and N(y′) ∩ C = {u3, u4}.
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Figure 9: A node stretching of GEMN
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u5 u1

Figure 10: The graph Ĥ. Black nodes induce a stretching of GEMN .

Observe that Y2 = Z = ∅. Indeed, if there is y∗ ∈ Y2 the set {y∗, y, y′, u5}
induces a claw. If z ∈ Z, from Lemma 20 (3), z is adjacent to every node in Y3

and then {z, y, y′} ∪ C induces a node stretching of GEMN (see Figure 9).
Then, V (G) is partitioned into Q, C and Y3. Also, {v}∪C induces a 5-wheel

for all v ∈ Q, N(y) ∩ C = {u1, u2}, and N(y′) ∩ C = {u3, u4}. Since G has
no clique cutset, there must be another node t ∈ Y3 which is not a replication
either of y or y′.

Let us first analyze the case when no node of Y3 is adjacent to {u2, u3}. In
this case, w.l.o.g. we can assume that N(t) ∩ C = {u1, u5}. Again, since G has
no clique cutset, there must exist another node y′′ which is not a replication of
any node in {y, t, y′}. Then, N(y′′) ∪ C = {u4, u5}. Figure 10 shows the graph
Ĥ induced by C ∪ {v, y, y′, t, y′′}. Observe that the black nodes in Ĥ induces a
stretching of GEMN , a contradiction to the fact that G is LS+-perfect.

It only remains to analyze the case when N(t) ∩ C = {u2, u3}.
If there is another node y′′ ∈ Y3, by Remark 21, it is not a replication of any

node in {y, t, y′} and w.l.o.g. we can assume that N(y′′) = {u1, u5}. It is easy
to see that the subgraph induced by C ∪ {v, y, y′, t, y′′} is the graph Ĥ after
relabeling its nodes (see Figure 11), a contradiction.

Then, there is no other node in Y3 and G is the graph induced by C ∪
{v, y, y′, t} which is the 3-gear graph (see Figure 12).

Since the gear and the 3-gear graphs are not facet-defining, from Theorem

18



t

y
y'

u1

u5

u4

u3
u2

y''

Figure 11: The graph Ĥ with a relabeling of its nodes.
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Figure 12: Subgraph induced by C5 ∪ {v, y, y′, t}, called a 3-gear.

22 we conclude:

Corollary 23. Every facet-defining claw-free not quasi-line graph G with α(G) ≥
3 is LS+-imperfect.

Combining corollaries 9, 14, and 23, we obtain our main contribution:

Theorem 24. The LS+-Perfect Graph Conjecture is true for claw-free graphs.

4 On minimally LS+-imperfect claw-free graphs

In this section we address our attention to minimally LS+-imperfect graphs
that are claw-free. These graphs are facet-defining and therefore the results
in Section 3 will be reused in order to describe all minimally LS+-imperfect
claw-free graphs.

There are some known results on this matter. In [2], we consider for each
k ≥ 2, a family of graphs with 2k+2 nodes, having a 2k+1-antihole as subgraph.
Theorem 4.3 in the paper, states that the only minimally LS+-imperfect graph
with stability number two in the family is the graph for which the node outside
the antihole has degree 2k. This graph is called Hk.

Lemma 25. Let G = (V,E) be a minimally LS+-imperfect graph with α(G) = 2.
Then, G is either GLT , GEMN , or Hk, for some k ≥ 3.

Proof. Since G is imperfect, minimally LS+-imperfect and α(G) = 2, G has a
(2k+1)-antihole induced by C ⊂ V and a node v ∈ V \C outside C. By Theorem
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Figure 13: The graphs H1 and H2, for k = 2, t = 1, i = 1 and j = 2, 3,
respectively.

7, v is not completely joined to C. Since G is minimally LS+-imperfect it holds
that V = C ∪ {v} and either k = 2 implying that G = GLT or G = GEMN , or
k ≥ 3 and from the discussion above we get G = Hk.

Remind that the facet-defining semi-line graphs are line graphs (of 2-connected
hypomatchable graphs). In addition, Corollary 10 in [17] establishes that the
line graph of graph H is minimally LS+-imperfect if and only if H has a partic-
ular structure that can be described as follows: H is an odd cycle C2k+1, k ≥ 2,
with a path of odd length Pt, t ≥ 1 attached to nodes i and j in C2k+1 (observe
that the path can have length one and H can have a double edge). It is not
hard to see that every such graph H is an odd-subdivision of one of the graphs
depicted in Figure 13.

Observe that the line graphs of H1 and H2 are GLT and GEMN , respectively.
From Lemma 2 in [17] we can easily see that if a graph G is an odd subdivision
of an edge e in a graph G′, L(G) can be obtained from L(G′) by stretching of
its node e.

This allows us to conclude:

Lemma 26. Let G be a minimally LS+-imperfect semi-line graph. Then G is
a stretching of GLT or a stretching of GEMN .

Let us now consider fuzzy circular interval graphs.

Theorem 27. Let G be a minimally LS+-imperfect fuzzy circular interval graph.
Then, G is either W 2

10, GLT , GEMN , G = Hk for some k ≥ 3, a stretching of
GLT , or a stretching of GEMN .

Proof. Let assume that G is neither W 2
10, GLT nor GEMN . Since G is facet-

defining, we can follow the reasoning in the proof of Theorem 13.
Remind that G is the support graph of a clique family inequality (2) associ-

ated with a web subgraph W p−1
n of G. Since G is minimally LS+-imperfect then

W p−1
n is LS+-perfect and there exists a node v of G outside the web. Again

Theorem 12 implies that the web W p−1
n in question is an odd cycle or its com-

plement and we obtain that n = 2k + 1 with k ≥ 3 and p = 2 or p = k ≥ 3. In
both cases, r = 1.

As we have already observed in the proof of Theorem 13, when p = 2 it holds
that p − r − 1 = 0 and v is connected to t ≥ 2p − 1 = 3 consecutive nodes in
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W 1
2k+1. As GLT and GEMN cannot be subgraphs of a minimally LS+-imperfect

graph then k ≥ 3 and G has an stretching of GLT or of GEMN as a subgraph.
Since the latter graphs are minimally LS+-imperfect then G is one of them.

In the case p = k ≥ 3, we have also observed that v is adjacent to at
least 2k − 2 consecutive nodes in W k−1

2k+1. Thus, the subgraph of G induced by

V (W k−1
2k+1) ∪ {v} has stability number two. Then, Lemma 25 implies that the

only possible choice is that G = Hk for some k ≥ 3.

Concerning claw-free not quasi-line graphs we have seen in Theorem 15 that
if the graph has stability number at least 4, it has a GLT or a GEMN as node
induced subgraph.

Remark 28. There is no minimally LS+-imperfect graph in the class of claw-
free not quasi-line graphs with stability number at least four.

A similar result holds when the stability number is equal to three. In this
case we make use of Theorem 22.

Theorem 29. There is no minimally LS+-imperfect graph in the class of claw-
free not quasi-line graphs with stability number three.

Proof. Let G ∈ G be a minimally LS+-imperfect graph with stability number
three. It is clear that G cannot have a minimally LS+-imperfect graph with
stability number two as induced subgraph, then we can consider the partition
Q, C, Y2, Y3, and Z of V (G) given by Lemma 20. By doing so, we can follow the
reasoning in the proof of Theorem 22 and conclude that if G is LS+-imperfect
and has stability number three, then it has a node stretching of GLT or GEMN

as a subgraph. But, since G is minimally LS+-imperfect then G is one of these
graphs itself. Then G is a line graph and we arrive to a contradiction.

From the previous results we have that minimally LS+-imperfect claw free
graphs are fuzzy circular interval graphs, that is:

Corollary 30. Let G be a minimally LS+-imperfect claw-free graph. Then,
G is W 2

10, GLT , GEMN , G = Hk for some k ≥ 3, a stretching of GLT , or a
stretching of GEMN .

5 Conclusion and future research

The context of this work was the study of LS+-perfect graphs, i.e., graphs where
a single application of the Lovász-Schrijver PSD-operator LS+ to the edge re-
laxation yields the stable set polytope. Hereby, we are particularly interested
in finding an appropriate polyhedral relaxation P (G) of STAB(G) that coin-
cides with LS+(G) and STAB(G) if and only if G is LS+-perfect. An accord-
ing conjecture has been recently formulated (LS+-Perfect Graph Conjecture);
here we verified it for the well-studied class of claw-free graphs (Theorem 24).
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Note further that, besides verifying the LS+-Perfect Graph Conjecture for claw-
free graphs, we obtained a description of all minimally LS+-imperfect claw-free
graphs (Corollary 30).

For that, it surprisingly turned out that it was not necessary to make use of
the description of STAB(G) for claw-free not quasi-line graphs G

• with α(G) = 2 (by Cook, see [36]),

• with α(G) = 3 (by Pêcher, Wagler [33]),

• with α(G) ≥ 4 (by Galluccio, Gentile, Ventura [18, 19, 20]).

From the presented results and proofs, we can draw some further conclusions.
First of all, we can determine the subclass of joined a-perfect graphs to

which all LS+-perfect claw-free graphs belong to. In [25], it is suggested to call
a graph G m-perfect if the only facets of STAB(G) are associated with cliques
and minimally imperfect graphs. According to [11], G is joined m-perfect if
its facet defined graphs are complete graphs, minimally imperfect graphs and
their complete joins. The results from Section 3 provide the complete list of all
facet-defining LS+-perfect claw-free graphs:

• complete graphs,

• odd holes and odd antiholes,

• complete joins of odd antihole(s) and a (possibly empty) complete graph.

Hence, we conclude:

Corollary 31. All LS+-perfect claw-free graphs are joined m-perfect.

Finally, the subject of the present work has parallels to the well-developed
research area of perfect graph theory also in terms of polynomial time com-
putability. In fact, it has the potential of reaching even stronger results due the
following reasons. Actually, in [29], the authors prove that calculating the value

η+(G) = max1x, x ∈ LS+(G)

can be obtained with arbitrary precision in polynomial time for every graph
G, even in the weighted case. Thus, the stable set problem can be solved in
polynomial time for a strict superset of perfect graphs, the LS+-perfect graphs,
by α(G) = η+(G). Hence, our future lines of research include to find

• new families of graphs where the conjecture holds (e.g., by characterizing
the minimally LS+-imperfect graphs within the class),

• new subclasses of LS+-perfect or joined a-perfect graphs,

• classes of graphs G where STAB(G) and LS+(G) are “close enough” to
have α(G) = ⌊η+(G)⌋.
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In particular, the class of graphs G with α(G) = ⌊η+(G)⌋ can be expected to be
large since LS+(G) is a much stronger relaxation of STAB(G) than TH(G). In
all cases, the stable set problem could be approximated with arbitrary precision
in polynomial time in these graph classes by optimizing over LS+(G). Finally,
note that LS+(P (G)) with

STAB(G) ⊆ P (G) ⊆ ESTAB(G)

clearly gives an even stronger relaxation of STAB(G) than LS+(G). However,
already approximating with arbitrary precision over LS+(QSTAB(G)) cannot
be done in polynomial time anymore for all graphs G by [29]. Hence, LS+-
perfect graphs or their generalizations satisfying α(G) = ⌊η+(G)⌋ are the most
promising cases in this context.
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