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Universidad Nacional de Rosario, Rosario, Argentina

email: {garua,sbianchi,lucarini}@fceia.unr.edu.ar

bLaboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
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Abstract

The problems of determining locating-dominating, open locating-dominating or lo-
cating total-dominating sets of minimum cardinality in a graph G are variations of
the classical minimum dominating set problem in G and are all known to be hard
for general graphs. A typical line of attack is therefore to determine the cardinality
of minimum such sets in special graphs.

In this work we study the three problems from a polyhedral point of view. We
provide the according linear relaxations, discuss their combinatorial structure, and
demonstrate how the associated polyhedra can be entirely described or polyhedral
arguments can be applied to find minimum such sets for special graphs.

Key words: locating-dominating set problem, open locating-dominating set
problem, locating total-dominating set problem, polyhedral approach

1 Introduction

Surveillance problems for facilities where detection devices have to be placed
in rooms to locate an intruder (like a fire, a thief or a saboteur) lead to different
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location-domination problems in the graph modeling the facility. Depending
on the features of the detection devices (to detect an intruder only if it is
present in the room where the detector is installed and/or also in any neigh-
bored room), different dominating sets can be used to determine the optimal
distribution of the detection devices in the facility. In the following, we study
four problems arising in this context which all have been actively studied
during the last decade, see e.g. the bibliography maintained by Lobstein [20].

Let G = (V,E) be a graph. The open neighborhood of a node i is the set
N(i) of all nodes of G adjacent to i, and N [i] = {i} ∪ N(i) is the closed
neighborhood of i. A subset C ⊆ V is dominating (resp. total-dominating) if
N [i]∩C (resp. N(i)∩C) are non-empty sets for all i ∈ V . A subset C ⊆ V is

• an identifying code (ID-set) if it is a dominating set and N [i]∩C 6= N [j]∩C,
for distinct i, j ∈ V [19];
• a locating-dominating set (LD-set) if it is a dominating set and N(i)∩C 6=
N(j) ∩ C, for i, j ∈ V − C [26].
• an open locating-dominating set (OLD-set) if it is a total-dominating set

and N(i) ∩ C 6= N(j) ∩ C, for distinct i, j ∈ V [25];
• a locating total-dominating set (LTD-set) if it is a total-dominating set and
N(i) ∩ C 6= N(j) ∩ C, for distinct i, j ∈ V − C [17].

Figure 1 illustrates the four concepts.

(a) (b) (c)

Fig. 1. A graph where the black nodes form a minimum (a) ID-set, (b) OLD-set,
(c) LD-set and LTD-set.

Note that a graph G admits an ID-set (or is identifiable) only if there are
no true twins in G, i.e., there is no pair of distinct nodes i, j ∈ V such that
N [i] = N [j], see [19]. Analogously, a graph G without isolated nodes admits
an OLD-set if there are no false twins in G, i.e., there is no pair of distinct
nodes i, j ∈ V such that N(i) = N(j), see [25].

Given a graph G, for X ∈ {ID,LD,OLD,LTD}, the X-problem on G is the
problem of finding an X-set of minimum size in G. The size of such a set is
called the X-number of G and is denoted by γX(G). From the definitions, the
following relations hold for any graph G (admitting an X-set):

γLD(G) ≤ γLTD(G) ≤ γOLD(G), (1)

and

γLD(G) ≤ γID(G), (2)
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whereas γID(G) and γOLD(G) are not comparable in general as the examples
in Figure 2 show.

Fig. 2. (a, b) γID(P4) = 3 < 4 = γOLD(P4); (c, d) γID(G) = 4 > 3 = γOLD(G)

It has been shown that determining γX(G) is in general NP-hard for all
X ∈ {ID,LD,LTD,OLD}. Determining γID(G) is in general NP-hard [11]
and even remains hard for several graph classes where other in general hard
problems are easy to solve, including bipartite graphs [11], and two classes
of chordal graphs, namely split graphs and interval graphs [14]. Determining
γLD(G) is also in general NP-hard [12] and remains hard for bipartite graphs
[11]. This result is extended to planar bipartite unit disk graphs in [21] and to
interval and intersection graphs in [15]. Also determining γOLD(G) is in general
NP-hard [25] and remains NP-hard for perfect elimination bipartite graphs and
APX-complete for chordal graphs with maximum degree 4 [23]. Concerning
the LTD-problem we observe that it is as hard as the OLD-problem by just
using the same arguments as in [25].

Typical lines of attack are therefore to determine minimum X-sets of special
graphs. Closed formulas for the exact value of γID(G) have been found so far
only for restricted graph families (e.g. for paths and cycles by [10], for stars
by [16], and for complete multipartite graphs, some suns and split graphs by
[2,4,5,7]). Closed formulas for the exact value of γLD(G) have been found so
far for e.g. paths [26] and cycles [10]. Closed formulas for the exact value of
γOLD(G) have been found so far only for cliques and paths [25], some algo-
rithmic aspects are discussed in [23]. Bounds for the LTD-number of trees
are given in [17,18], whereas the LTD-number in special families of graphs,
including cubic graphs and grid graphs, is investigated in [18]. We refer the
reader to the bibliography maintained by Lobstein [20] for further results.

As polyhedral methods have been already proved to be successful for several
other NP-hard combinatorial optimization problems, it was suggested in [2] to
apply such techniques to the ID-problem. For that, the following reformulation
as set covering problem has been proposed.

For a 0/1-matrix M with n columns, the set covering polyhedron is Q∗(M) =

conv
{
x ∈ Zn

+ : Mx ≥ 1
}

and Q(M) =
{
x ∈ Rn

+ : Mx ≥ 1
}

is its linear relax-

ation. A cover of M is a 0/1-vector x such that Mx ≥ 1, and the covering
number τ(M) equals min 1Tx,x ∈ Q∗(M).
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We obtain such a constraint system Mx ≥ 1 for the ID-problem as follows.
Consider a graph G = (V,E). Domination clearly requires that any ID-set C
intersects the closed neighborhood N [i] of each node i ∈ V ; separation means
that no two intersections C∩N [i] and C∩N [j] are equal. The latter condition
can be reformulated that C intersects each symmetric difference N [i]4 N [j]
for distinct nodes i, j ∈ V . It was shown in [2] that only symmetric differences
matter if the nodes i, j ∈ V have distance dist(i, j) = 1 (i.e., are adjacent) or
distance dist(i, j) = 2 (i.e., are non-adjacent but have a common neighbor).

Hence, determining a minimum ID-set in a graph G = (V,E) can be formu-
lated as set covering problem min 1Tx,MID(G)x ≥ 1,x ∈ {0, 1}|V | by:

min 1Tx

x(N [j]) =
∑

i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j]4N [k]) =
∑

i∈N [j]4N [k] xi ≥ 1 ∀j, k ∈ V, j 6= k (separation)

x ∈ {0, 1}|V |

By [2], the matrix MID(G) encoding row-wise the closed neighborhoods of the
nodes and their symmetric differences is called the identifying code matrix of
G, and the identifying code polyhedron of G is defined as

PID(G) = Q∗(MID) = conv{x ∈ Z|V |+ : MID(G) x ≥ 1}.

It is clear by construction that a graph is identifiable if and only if none of
the symmetric differences results in a zero-row of MID(G), and that γID(G)
equals the covering number τ(MID(G)).

It turned out that studying the ID-problem from a polyhedral point of view
can lead to interesting results, see e.g. [2,4,5,7]. The aim of this paper is to ap-
ply the polyhedral approach to minimum X-sets for X ∈ {LD,LTD,OLD}.

In Section 2, we give the according definitions of the matrices MX(G) for
X ∈ {LD,LTD,OLD} and of the associated polyhedra, provide some basic
properties of the polyhedra PX(G) for X ∈ {LD,LTD,OLD} and intro-
duce their canonical linear relaxations. Afterwards, we discuss several lines to
apply polyhedral techniques. In Section 3, we present cases where MLD(G),
MOLD(G) or MLTD(G) are composed of matrices for which the set covering
polyhedron is known and we, thus, immediately can obtain a complete de-
scription of PLD(G), POLD(G) or PLTD(G) and the exact value of γLD(G),
γOLD(G) or γLTD(G). This demonstrates how polyhedral techniques can be
applied in this context. We close with a discussion on future lines of research,
including how the here obtained results can be extended to other classes of
graphs.

Parts of the here presented results appreared without proofs in [3,6].
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2 Polyhedra associated to LD-, OLD- and LTD-sets

In order to apply the polyhedral approach to the three studied X-problems,
we first give according reformulations as set covering problem.

Theorem 1 Let G = (V,E) be a graph.

(a) C ⊆ V is an LD-set if and only if C has a non-empty intersection with
(LD1): N [i] for all i ∈ V ,
(LD2): N(i)4N(j) for all distinct i, j ∈ V with dist(i, j) = 1,
(LD3): N [i]4N [j] for all distinct i, j ∈ V with dist(i, j) = 2.

(b) Let G have neither isolated nodes nor false twins. C ⊆ V is an OLD-set
if and only if C has a non-empty intersection with

(OLD1): N(i) for all i ∈ V ,
(OLD2): N(i)4N(j) for all distinct i, j ∈ V with dist(i, j) ∈ {1, 2}.

(c) C ⊆ V is an LTD-set if and only if C has a non-empty intersection with
(LTD1): N(i) for all i ∈ V ,
(LTD2): N(i)4N(j) for all distinct i, j ∈ V with dist(i, j) = 1,
(LTD3): N [i]4N [j] for all distinct i, j ∈ V with dist(i, j) = 2.

Proof. Let G = (V,E) be a graph without isolated nodes. We notice that
if dist(i, j) = 1 for i, j ∈ V then N(i)∆N(j) = {i, j} ∪ (N [i]∆N [j]). If
dist(i, j) = 2 for i, j ∈ V then N [i]∆N [j] = {i, j} ∪ (N(i)∆N(j)).

(a) Let C be an LD-set of G. It is immediate to see that (LD1) holds for
all i ∈ V . Concerning the symmetric differences, we have N(i)4 N(j) =
N(i)∪N(j) if dist(i, j) ≥ 3. So, for the remaining conditions we have to take
into account nodes i, j ∈ V with dist(i, j) ≤ 2. Now, given i, j ∈ V −C, from
the definition, we have (N(i)4N(j)) ∩ C 6= ∅. If i ∈ C or j ∈ C, we have
(N(i)4N(j))∩C 6= ∅ when dist(i, j) = 1 and (N [i]4N [j])∩C 6= ∅ when
dist(i, j) = 2. Then conditions (LD2) and (LD3) hold for every i, j ∈ V .

Conversely, let C ⊆ V such that its nodes satisfy conditions (LD1), (LD2)
and (LD3). From (LD1), C is a dominating set of G. Let i, j ∈ V − C. If
dist(i, j) = 1, from (LD2), (N(i)4N(j))∩C 6= ∅. If dist(i, j) = 2, we have
that (N [i]4N [j])∩C = (N(i)4N(j))∩C. Hence, from (LD3) we get that
(N(i)4N(j)) ∩ C 6= ∅. Thus, C is an LD-set of G.

(b) Let G = (V,E) be a graph without isolated nodes and false twins.
Let C be an OLD-set of G. As G has no isolated nodes, every node in V

is total-dominated by C, and condition (OLD1) holds. Now, given i, j ∈ V ,
from the definition, we have (N(i)4N(j)) ∩ C 6= ∅ for every pair i, j ∈ V
such that dist(i, j) = 1 or dist(i, j) = 2, and condition (OLD2) holds.

Conversely, let C ⊆ V satisfy (OLD1) and (OLD2). From (OLD1), it
follows that C is a total-dominating set of G. Let i, j ∈ V such that
dist(i, j) = 1 or dist(i, j) = 2. As condition (OLD2) holds we have that
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(N(i)4N(j))∩C 6= ∅. Besides, if dist(i, j) ≥ 3, N(i)4N(j) = N(i)∪N(j).
As G has no false twins, all these sets are different, and C is an OLD-set
of G.

(c) Let C be an LTD-set of G = (V,E). As every node in V is total-dominated
by C, condition (LTD1) holds. The same arguments as used for LD-sets
show that conditions (LTD2) and (LTD3) hold for every i, j ∈ V .

Conversely, let C ⊆ V such that its nodes satisfy conditions (LTD1),
(LTD2) and (LTD3). From (LTD1), C is a total-dominating set of G. The
same arguments as used for LD-sets show that (LTD2) and (LTD3) imply
that C is an LTD-set of G.

This shows that the above conditions properly encode the studied X-sets. 2

The matrices MX(G) encoding row-wise the closed or open neighborhoods and
their respective symmetric differences read, therefore, as

MLD(G) =


N [G]

41(G)

42[G]

 , MOLD(G) =


N(G)

41(G)

42(G)

 , MLTD(G) =


N(G)

41(G)

42[G]


where every row in N [G] (resp. N(G)) is the characteristic vector of a closed
(resp. an open) neighborhood of a node in G and 4k(G) (resp. 4k[G]) is
composed of the characteristic vectors of the symmetric difference of open
(resp. closed) neighborhoods of nodes at distance k in G. We define by

PX(G) = Q∗(MX(G)) = conv{x ∈ Z|V |+ : MX(G) x ≥ 1}

the X-polyhedron for X ∈ {LD,OLD,LTD}. We first address the dimen-
sion of the three polyhedra. It is known from Balas and Ng [9] that a set
covering polyhedron Q∗(M) is full-dimensional if and only if the matrix M
has at least two ones per row. From the submatrix N [G] encoding the closed
neighborhoods, we see that

VN [G] = {k ∈ V : {k} = N [k], k ∈ V },

i.e., isolated nodes are the cases that result in a row with only one 1-entry.
From the submatrix N(G) encoding the open neighborhoods, we see that

VN(G) = {k ∈ V : {k} = N(i), i ∈ V }

are the cases that result in a row with only one 1-entry. From the submatrix
41(G), every row has at least two 1-entries (namely i and j for N(i)4N(j)).
From the submatrix 42(G), we see that

V2(G) = {k ∈ V : {k} = N(i)4N(j), i, j ∈ V }
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are the cases that result in a row with only one 1-entry, whereas every row
from the submatrix 42[G] has at least two 1-entries (namely i and j for
N [i]4N [j]). Moreover, if {k} = N(i) and dist(i, j) = 2, then k ∈ N(j). Thus
V2(G) ∩ VN(G) = ∅ follows. We conclude:

Corollary 1 Let G = (V,E) be a graph.

(a) We have dim(PLD(G)) = |V − VN [G]|.
(b) Let G have neither isolated nodes nor false twins. We have dim(POLD(G)) =
|V − VN(G)− V2(G)|.

(c) We have dim(PLTD(G)) = |V − VN(G)|.

In addition, the matrices MX(G) may contain redundant rows, where we say
that y is redundant if x and y are two rows of M and x ≤ y. As the covering
number of a matrix does not change after removing redundant rows, we define
the corresponding clutter matrices CLD(G), COLD(G) and CLTD(G), obtained
by removing redundant rows from MLD(G), MOLD(G) and MLTD(G), respec-
tively. We clearly have

PX(G) = Q∗(CX(G)) = conv{x ∈ Z|V |+ : CX(G) x ≥ 1}

for X ∈ {LD,OLD,LTD}. Moreover, also in [9] it is proved that the only
facet-defining inequalities of a set covering polyhedron Q∗(M) with integer
coefficients and right hand side equal to 1 are those of the system Mx ≥ 1.
Hence we have:

Corollary 2 All constraints from CX(G) x ≥ 1 define facets of PX(G) for
X ∈ {LD,OLD,LTD}.

We obtain the corresponding linear relaxations, the fractional X-polyhedron
QX(G), by considering all vectors satisfying the above inequalities:

QX(G) = Q(CX(G)) =
{
x ∈ R|V |+ : CX(G) x ≥ 1

}
for X ∈ {LD,OLD,LTD}. To study the three problems from a polyhedral
point of view, we propose to firstly determine the clutter matrices CX(G) and
then to determine which further constraints have to be added to the linear
relaxation QX(G) in order to obtain the integral polyhedron PX(G).

3 Complete multi-partite graphs

In this section, we consider complete p-partite graphs and establish a connec-
tion to so-called complete 2-roses of order n. Given n > q ≥ 2, let Rq

n = (V, E)
be the hypergraph where V = {1, . . . , n} and E contains all q-element subsets
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of V . Nobili and Sassano [22] called the incidence matrix of Rq
n the complete

q-rose of order n and we denote it by M(Rq
n). In [8], it was shown (see [2] for

the proof):

Theorem 2 ([2,8]) The covering polyhedron Q∗(M(Rq
n)) is given by the non-

negativity constraints and

x(V ′) ≥ |V ′| − q + 1

for all subsets V ′ ⊆ {1, . . . , n} with |V ′| ∈ {q + 1, . . . , n}.

3.1 Complete bipartite graphs

We start to consider complete bipartite graphs Km,n with bipartition A =
{1, . . . ,m} and B = {m + 1, . . . ,m + n}. We note that Km,n has false twins
(unless m = 1 = n) and, thus, no OLD-set, hence we only analyse LD- and
LTD-sets. We begin with the case of stars K1,n, i.e., A = {1} and n ≥ 2. Note
that K1,2 = P3 and it is easy to see that γLD(K1,2) = γLTD(K1,2) = 2 holds.

Lemma 1 For a star K1,n with n ≥ 3, we have

CLD(K1,n) = M(R2
n+1) and CLTD(K1,n) =



1 0 . . . 0

0
... M(R2

n)

0


.

Proof. Consider a star K1,n with bipartition A = {1} and B = {2, . . . , n+ 1}
with n ≥ 3.

From Theorem 1, the rows of the matrix MLD(K1,n) are the characteristic
vectors of the sets

N [1] = V and N [i] = {1, i} for all i ∈ B,
N(1)4N(i) = B 4 {1} = V for all i ∈ B,
N [i]4N [j] = {1, i} 4 {1, j} = {i, j} for i, j ∈ B.

Thus, CLD(G) is clearly composed by rows corresponding to N [i] = {1, i} for
i ∈ B, and 4[i, j] = {i, j} for i, j ∈ B, which implies CLD(K1,n) = M(R2

n+1).

From Theorem 1, the rows of the matrix MLTD(K1,n) are the characteristic
vectors of the sets
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N(1) = B and N(i) = {1} for all i ∈ B,
N(1)4N(i) = N [1] for all i ∈ B,
N [j]4N [k] = {j, k}, j 6= k, j, k ∈ B.

Deleting the redundant rows, we obtain

CLTD(K1,n) =



1 0 . . . 0

0
... M(R2

n)

0


.

2

From the above description of the facets of the covering polyhedron associated
with complete q-roses by [2], we conclude:

Corollary 3 Consider K1,n with bipartition A = {1}, B = {2, . . . , n + 1},
n ≥ 3.

(a) PLD(K1,n) is described by nonnegativity constraints and the inequalities x(V ′)
≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ {1, ..., n+ 1}.

(b) PLTD(K1,n) is described by nonnegativity constraints, x1 ≥ 1 and the in-
equalities x(B′) ≥ |B′| − 1 for all nonempty subsets B′ ⊆ {2, ..., n+ 1}.

For the LD-number of K1,n, the full rank constraint x(V ) ≥ |V | − 1 of
PLD(K1,n) immediately implies that γLD(K1,n) = n. Furthermore, combin-
ing x1 ≥ 1 and x(B) ≥ |B| − 1 yields the full rank constraint x(V ) ≥ |B|
for PLTD(K1,n) which implies γLTD(K1,n) = |V | − 1 = n (and provides an
alternative proof for the result given in [18]).

Observe that for K2,2, it is easy to see that γLD(K2,2) = γLTD(K2,2) = 2. For
general complete bipartite graphs Km,n with m ≥ 2, n ≥ 3, we obtain:

Lemma 2 For a complete bipartite graph Km,n with m ≥ 2, n ≥ 3, we have

CX(Km,n) =

M(R2
m) 0

0 M(R2
n)


for X ∈ {LD,LTD}.

Proof. LetKm,n be a complete bipartite graph with bipartitionA = {1, . . . ,m},
B = {m+ 1, . . . ,m+ n} and m ≥ 2, n ≥ 3.

From Theorem 1, the rows of the matrix MLD(Km,n) are the characteristic
vectors of the sets

9



N [i] = {i} ∪B for all i ∈ A and N [j] = {j} ∪ A for all j ∈ B,
N(i)4N(j) = B ∪ A for all i ∈ A, j ∈ B,
N [i]4N [j] = {i, j} for i, j ∈ A or i, j ∈ B,

whereas the rows of the matrix MLTD(K1,n) are the characteristic vectors of
the sets

N(i) = B for all i ∈ A and N(j) = A for all j ∈ B,
N(i)4N(j) = B ∪ A for all i ∈ A, j ∈ B,
N [i]4N [j] = {i, j} for i, j ∈ A or i, j ∈ B.

Deleting the redundant rows, only the sets from 42[G] remain and we obtain
in both cases

CX(Km,n) =

M(R2
m) 0

0 M(R2
n)

 .
2

Note that results from [2] show that

CID(Km,n) = CLD(Km,n) = CLTD(Km,n).

Hence, we directly conclude from the facet description of PID(Km,n) by [2]:

Corollary 4 For X ∈ {LD,LTD}, PX(Km,n) is given by the inequalities

(1) x(C) ≥ |C| − 1 for all nonempty C ⊆ A,
(2) x(C) ≥ |C| − 1 for all nonempty C ⊆ B.

Moreover, γX(Km,n) = |V | − 2 = m+ n− 2.

The closed formula for γLTD(Km,n) provides an alternative proof for the result
previously given in [18].

3.2 Complete p-partite graphs

The above results can be further generalized for complete p-partite graphs.
Consider Kn1,...,np = (U1∪· · ·∪Up, E) where each Ui induces a nonempty stable
set and all edges between Ui and Uj , i 6= j are present. We use |Ui| = ni for
i = 1, . . . , p, |V | = n and assume n1 ≤ n2 ≤ . . . ≤ np as well as p ≥ 3. For
illustration, complete 3-partite and 4-partite graphs are depicted in Figure 3.

We note that Kn1,...,np has false twins and, thus, no OLD-set, unless n1 =
· · · = np = 1 and the graph is a clique.

Lemma 3 Let Kn1,n2,...,np be a complete p-partite graph.

10



Fig. 3. (a) A complete 3-partite graph with n1 = 2, n2 = 3 and n3 = 4, (b) A
complete 4-partite graph with n1 = 1, n2 = n3 = 2 and n4 = 3.

(a) If n1 = · · · = np = 1, then Kn1,n2,...,np equals the clique Kp and

CX(Kn1,n2,...,np) = M(R2
p)

for X ∈ {LD,OLD,LTD}.
(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then

CX(Kn1,n2,...,np) =



M(R2
r) 0 0 . . . 0

0 M(R2
nr+1

) 0 . . . 0
...

. . .
...

0 . . . M(R2
np

)


for X ∈ {LD,LTD}.

(c) If n1 = 1 and n2 ≥ 2, then

CX(Kn1,n2,...,np) =



0 M(R2
n2

) 0 0 . . . 0

0 0 M(R2
n3

) 0 . . . 0
...

. . . . . .
...

0 0 . . . M(R2
np

)


for X ∈ {LD,LTD}.

(d) If n1 ≥ 2, then

CX(Kn1,n2,...,np) =



M(R2
n1

) 0 0 . . . 0

0 M(R2
n2

) 0 . . . 0
...

. . .
...

0 . . . M(R2
np

)


for X ∈ {LD,LTD}.
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Proof. (of Lemma 3) Let G = Kn1,n2,...,np be a complete p-partite graph, and
assume n1 ≤ n2 ≤ . . . ≤ np.

(a) If n1 = . . . = np = 1, let {vi} = Ui for i ∈ {1, . . . , p}. From Theorem 1,
the rows of the matrix MLD(G) are the characteristic vectors of the sets
N [vi] = V , for all vi ∈ V ,
N(vi)4N(vj) = (V − {vi})4 (V − {vj}) = {vi, vj}, for vi, vj ∈ V ,

whereas the rows of MOLD(G) and MLTD(G) correspond to the sets
N(vi) = V − Ui, for all vi ∈ V ,
N(vi)4N(vj) = {vi, vj}, for all vi, vj ∈ V .

Deleting redundant rows, only the symmetric differences remain and we
obtain in all three cases CX(G) = M(R2

p).
(b) If n1 = n2 = . . . = nr = 1 with r ∈ {2, . . . , p − 1}, let {vi} = Ui with

i ∈ {1, . . . , r} and
ni⋃

j=1
{vij} = Ui with i ∈ {r + 1, . . . , p}. Theorem 1 implies

that the rows of the matrix MLD(G) are the characteristic vectors of the
sets
N [vi] = V , for vi ∈ Ui with i ∈ {1, . . . r},
N [vij ] = (V − Ui) ∪ {vij}, for vij ∈ Ui with i ∈ {r + 1, . . . p} and j ∈
{1, . . . , ni},
N(vi)4N(vj) = {vi, vj}, for vi ∈ Ui, vj ∈ Uj with i, j ∈ {1, . . . r},
N(vi)4 N(vjk

) = {vi} ∪ Uj, for vi ∈ Ui with i ∈ {1, . . . r} and vjk
∈ Uj

with j ∈ {r + 1, . . . p} and k ∈ {1, . . . , nj},
N(vik)4N(vjl

) = Ui ∪ Uj, for vik ∈ Ui, vjl
∈ Uj with i, j ∈ {r + 1, . . . p},

k ∈ {1, . . . , ni} and l ∈ {1, . . . , nj},
N [vij ] 4 N [vik ] = {vij , vik}, for vij , vik ∈ Ui with i ∈ {r + 1, . . . p} and
j, k ∈ {1, . . . , ni},

whereas the rows of MLTD(G) are the characteristic vectors of the sets
N(vi) = V − Ui, for vi ∈ Ui with i ∈ {1, . . . r},
N(vi)4N(vj) = {vi, vj}, for vi ∈ Ui, vj ∈ Uj with i, j ∈ {1, . . . r},
N(vi)4 N(vjk

) = {vi} ∪ Uj, for vi ∈ Ui with i ∈ {1, . . . r} and vjk
∈ Uj

with j ∈ {r + 1, . . . p} and k ∈ {1, . . . , nj},
N(vik)4N(vjl

) = Ui ∪ Uj, for vik ∈ Ui, vjl
∈ Uj with i, j ∈ {r + 1, . . . p},

k ∈ {1, . . . , ni} and l ∈ {1, . . . , nj},
N [vij ] 4 N [vik ] = {vij , vik}, for vij , vik ∈ Ui with i ∈ {r + 1, . . . p} and
j, k ∈ {1, . . . , ni}.

After deleting the redundant rows, we have in both cases

CX(Kn1,n2,...,np) =



M(R2
r) 0 0 . . . 0

0 M(R2
nr+1

) 0 . . . 0
. . . . . .

...

0 . . . M(R2
np

)


.
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(c) If n1 = 1 and n2 ≥ 2, let {v1} = U1 and
ni⋃

j=1
{vij} = Ui with i ∈ {2, . . . , p}.

Again from Theorem 1, the rows of the matrixMLD(G) are the characteristic
vectors of the sets
N [v1] = V ,
N [vij ] = (V − Ui) ∪ {vij}, for vij ∈ Ui with i ∈ {2, . . . , p} and j ∈
{1, . . . , ni},
N(v1)4 N(vij ) = (V − {v1})4 (V − Ui) = Ui ∪ {v1}, for vij ∈ Ui with
i ∈ {2, . . . , p} and j ∈ {1, . . . , ni},
N(vik)4 N(vjl

) = (V − Ui)4 (V − Uj) = Ui ∪ Uj, for vik ∈ Ui, vjl
∈ Uj

with i, j ∈ {2, . . . , p}, k ∈ {1, . . . , ni} and l ∈ {1, . . . , nj},
N [vij ]4 N [vik ] = ((V − Ui) ∪ {vij})4 ((V − Ui) ∪ {vik}) = {vij , vik}, for
vij , vik ∈ Ui with i ∈ {2, . . . , p} and j, k ∈ {1, . . . , ni},

whereas the rows of MLTD(G) are the characteristic vectors of the sets
N(v1) = V − U1,
N(vij ) = V − Ui, for vij ∈ Ui with i ∈ {2, . . . , p} and j ∈ {1, . . . , ni},
N(v1) 4 N(vik) = Ui ∪ {v1} for vik ∈ Ui with i ∈ {2, . . . , p} and k ∈
{1, . . . , ni},
N(vik) 4 N(vjl

) = Ui ∪ Uj, for vik ∈ Ui, vjl
∈ Uj with i, j ∈ {2, . . . , p},

k ∈ {1, . . . , ni} and l ∈ {1, . . . , nj},
N [vij ]4N [vik ] = {vij , vik}, for vij , vik ∈ Ui with i ∈ {2, . . . , p} and j, k ∈
{1, . . . , ni}.

After deleting the redundant rows, we have in both cases

CX(Kn1,n2,...,np) =



0 M(R2
n2

) 0 0 . . . 0

0 0 M(R2
n3

) 0 . . . 0
...

. . . . . .
...

0 0 . . . M(R2
np

)


.

(d) Finally, if n1 ≥ 2, let
ni⋃

j=1
{vij} = Ui with i ∈ {1, . . . , p}. Again from

Theorem 1, the rows of the matrix MLD(G) are the characteristic vectors
of the sets
N [vij ] = (V −Ui)∪{v}, for vij ∈ Ui with i ∈ {1, . . . , p} and j ∈ {1, . . . , ni},
N(vik)4 N(vjl

) = (V − Ui)4 (V − Uj) = Ui ∪ Uj, for vik ∈ Ui, vjl
∈ Uj

with i, j ∈ {1, . . . , p}, k ∈ {1, . . . , ni} and l ∈ {1, . . . , nj},
N [vij ]4 N [vik ] = ((V − Ui) ∪ {vij})4 ((V − Ui) ∪ {vik}) = {vij , vik}, for
vij , vik ∈ Ui with i ∈ {1, . . . , p} and j, k ∈ {1, . . . , ni},

whereas the rows of MLTD(G) are the characteristic vectors of the sets
N(vij ) = V − Ui, for vij ∈ Ui with i ∈ {1, . . . , p} and j ∈ {1, . . . , ni},
N(vij )4 N(vkh

) = Ui ∪ Uk, for vij ∈ Ui, vkh
∈ Uk with i, k ∈ {1, . . . , p},

j ∈ {1, . . . , ni} and h ∈ {1, . . . , nk},
N [vij ]4N [vik ] = {vij , vik}, for vij , vik ∈ Ui with i ∈ {1, . . . , p} and j, k ∈
{1, . . . , ni}.
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In this case, only the last sets from 42[G] remain and we have in both cases

CX(Kn1,n2,...,np) =



M(R2
n1

) 0 0 . . . 0

0 M(R2
n2

) 0 . . . 0
...

. . .
...

0 . . . M(R2
np

)


.

2

From the description of the facets of the covering polyhedron associated with
complete q-roses by [2] and taking the block structure of the matrices into
account, we conclude:

Corollary 5 Let Kn1,n2,...,np be a complete p-partite graph.

(a) If n1 = · · · = np = 1, then PX(Kn1,n2,...,np) is given by the inequalities
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ V
and γX(Kn1,n2,...,np) = n− 1 for X ∈ {LD,OLD,LTD}.

(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then PX(Kn1,n2,...,np) is
given by the inequalities
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ U1 ∪ · · · ∪ Ur,
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {r + 1, . . . , p}
and γX(Kn1,n2,...,np) = n− p+ r − 1 for X ∈ {LD,LTD}.

(c) If n1 = 1 and n2 ≥ 2, then PX(Kn1,n2,...,np) is given by the inequalities
• x(U1) ≥ 0,
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {2, . . . , p},
and γX(Kn1,n2,...,np) = n− p for X ∈ {LD,LTD}.

(d) If n1 ≥ 2, then PX(Kn1,n2,...,np) is given by the inequalities
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {1, . . . , p}
and γX(Kn1,n2,...,np) = n− p for X ∈ {LD,LTD}.

Corrollary 5(a) provides an alternative proof for the result on OLD-sets in
cliques given in [25].

4 Some families of split graphs

A graph G = (C∪S,E) is a split graph if its node set can be partitioned into a
clique C and a stable set S. Split graphs are closed under taking complements
and form the complementary core of chordal graphs since G is a split graph
if and only if G and G are chordal or if and only if G is (C4, C4, C5)-free [13].
Our aim is to study X-sets in some families of split graphs having a regular
structure from a polyhedral point of view.

14



(a) (d)(c)(b)

Fig. 4. (a) star, (b) crown, (c) thin headless spider, (d) thick headless spider.

4.1 Complete split graphs

A complete split graph is a split graph where all edges between C and S are
present. Complete split graphs can be seen as special case of complete multi-
partite graphs studied in Section 3. In fact, a complete split graph is a clique if
|S| = 1, a star if |C| = 1, and a crown if |C| = 2, see Fig. 4(a),(b). Otherwise,
the graph can be seen as a complete multi-partite graph where all parts but
one have size 1, i.e. as Kn1,n2,...,np with n1 = · · · = np−1 = 1 and np ≥ 2 such
that U1 ∪ · · · ∪ Up−1 induce the clique C and Up the stable set S. Hence, we
directly conclude from Lemma 3 and Corollary 5:

Corollary 6 Let G = (C ∪ S,E) be a complete split graph.

(a) If |S| = 1, then G is a clique,

CX(G) = M(R2
|C|+1)

and γX(G) = |C| for X ∈ {LD,OLD,LTD}.
(b) If |C| = 1, then G is a star, we have CLD(G) = M(R2

|S|+1),

CLTD(G) =



1 0 . . . 0

0
... M(R2

|S|)

0


.

and γX(G) = |S| for X ∈ {LD,LTD}.
(c) Otherwise, we have

CX(G) =

M(R2
|C|) 0

0 M(R2
|S|)


and γX(G) = |S|+ |C| − 2 for X ∈ {LD,LTD}.
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4.2 Headless spiders

A headless spider is a split graph with C = {c1, . . . , ck} and S = {s1, . . . , sk};
it is thin (resp. thick) if si is adjacent to cj if and only if i = j (resp. i 6= j),
see Figure 4(c),(d) for illustration. Clearly, the complement of a thin spider
is a thick spider, and vice-versa. It is easy to see that for k = 2, the path P4

equals the thin and thick headless spider. Moreover, it is easy to check that
headless spiders are twin-free, so OLD-sets exist.

We start our analysis with thick headless spiders. A thick headless spider
with k = 3 equals the 3-sun S3 and it is easy to see that γLD(S3) = 3,
γOLD(S3) = 4 and γLTD(S3) = 3 holds. To describe the clutters for k ≥ 4, we
use the following notations. Let Jn denote the n × n matrix having 1-entries
only and In the n × n identity matrix. Furthermore, let Jn−1,n(i) denote a
matrix s.t. its i-th column has 0-entries only and removing the i-th column
results in Jn−1, and In−1,n(j) denote a matrix s.t. its j-th column has 1-entries
only and removing the j-th column results in In−1.

Lemma 4 For a thick headless spider G = (C ∪ S,E) with k ≥ 4, we have

COLD(G) =

M(R|S|−1
|S| ) 0

0 M(R2
|C|)

 ,
whereas

CLD(G) =



I|S| M(R|C|−1
|C| )

Jk−1,k(k) Ik−1,k(k)
...

...

Jk−1,k(1) Ik−1,k(1)

M(R2
|S|) M(R2

|C|)

J|S| I|C|


and CLTD(G) =



0 M(R|C|−1
|C| )

Jk−1,k(k) Ik−1,k(k)
...

...

Jk−1,k(1) Ik−1,k(1)

M(R2
|S|) M(R2

|C|)

J|S| I|C|


.

The lines in the rows of the matrix M(R∈|C|) are ordered according to the rows

of M(R∈|S|) (that is for the same pairs (i, j) ∈ {1, ..., k}2).

Proof. (of Lemma 4) Let G = (C ∪ S,E) be a thick headless spider with
k ≥ 4. From Theorem 1, the rows of the matrices MLD(G), MOLD(G) and
MLTD(G) are composed of characteristic vectors of the following sets: the
closed neighborhoods (for MLD(G))

N [ci] = C ∪ S − {si} for all i ∈ {1, . . . , k},
N [si] = (C − {ci}) ∪ {si} for all i ∈ {1, . . . , k},
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the open neighborhoods (for MOLD(G) and MLTD(G))

N(si) = C − {ci} for all i ∈ {1, . . . , k},
N(ci) = (S − {si}) ∪ (C − {ci}) for all i ∈ {1, . . . , k},

the symmetric differences of open neighborhoods of nodes at distance 1 (in all
three cases)

N(si)4N(cj) = (S − {sj}) ∪ {ci, cj} for all i, j ∈ {1, . . . , k},
N(ci)4N(cj) = {si, sj} ∪ {ci, cj} for all i, j ∈ {1, . . . , k},

as well as the symmetric differences of open neighborhoods of nodes at distance
2 (for MOLD(G))

N(si)4N(sj) = {ci, cj} for all i, j ∈ {1, . . . , k},
N(si)4N(ci) = S − {si} for all i ∈ {1, . . . , k}

and the symmetric differences of closed neighborhoods of nodes at distance 2
(for MLD(G) and MLTD(G))

N [si]4N [sj] = {si, sj} ∪ {ci, cj} for all i, j ∈ {1, . . . , k},
N [si]4N [ci] = S ∪ {ci} for all i ∈ {1, . . . , k}.

Deleting the redundant rows from MOLD(G), only the submatrix 42(G) re-
mains and we have

COLD(G) =

M(R|S|−1
|S| ) 0

0 M(R2
|C|)

 .
From the neighborhoods, onlyN [si] remain for CLD(G) (resp.N(si) for CLTD(G)).
From the symmetric differences, N [si] 4 N [sj] equals N(ci) 4 N(cj) for all
i, j ∈ {1, . . . , k}, which results in

CLD(G) =



I|S| M(R|C|−1
|C| )

Jk−1,k(k) Ik−1,k(k)
...

...

Jk−1,k(1) Ik−1,k(1)

M(R2
|S|) M(R2

|C|)

J|S| I|C|


and CLTD(G) =



0 M(R|C|−1
|C| )

Jk−1,k(k) Ik−1,k(k)
...

...

Jk−1,k(1) Ik−1,k(1)

M(R2
|S|) M(R2

|C|)

J|S| I|C|


.

Note thatN(si)4N(cj) = (S−{sj})∪{ci, cj} does not contain {si, sj}∪{ci, cj}
(as sj 6∈ ((S − {sj}) ∪ {ci, cj})). 2
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From the description of the polyhedron associated with complete q-roses by
[2] and taking the block structure of COLD(G) into account, we conclude:

Corollary 7 For a thick headless spider G = (C∪S,E) with k ≥ 4, POLD(G)
is given by the inequalities

• xi ≥ 0 for all i ∈ C ∪ S,
• x(S ′) ≥ |S ′| − k + 2 for all S ′ ⊆ S with |S ′| ≥ k − 1,
• x(C ′) ≥ |C ′| − 1 for all C ′ ⊆ C with |C ′| ≥ 2,

and γOLD(G) = |C|+ 1.

On the other hand, from the clutter matrices CLD(G) and CLTD(G), we imme-
diately see that C is an X-set for X ∈ {LD,LTD}. However, C is a minimum
X-set only if k = 4. For thick headless spiders with k ≥ 5, we can show, using
polyhedral arguments, that k − 1 is a lower bound for the cardinality of any
X-set.

For that, we use the following result. For any polyhedron P ⊂ Rn, let PI :=
conv(P ∩ Zn) denote the convex hull of all integer points in P . Given a ∈ Zn

and b 6∈ Z, if the inequality aTx ≥ b is valid for P and tight for some x∗ ∈ P ,
then the inequality aTx ≥ dbe, called a Chvátal-Gomory cut, is valid for PI ,
but violated by x∗.

Applying the Chvátal-Gomory procedure to common facets from QLD(G) and
QLTD(G), we obtain a valid inequality implying the studied lower bound.
Exhibiting an X-set of size k − 1 thus ensures minimality:

Theorem 3 For a thick headless spider G = (C ∪ S,E) with k ≥ 5, we have
γX(G) = k − 1 for X ∈ {LD,LTD}.

Proof. Let G = (C ∪ S,E) be a thick headless spider with k ≥ 5 and X ∈
{LD,LTD}.

Claim 1 The constraints

x(SI) + x(CI) ≥ |I| − 1

with SI = {si ∈ S : i ∈ I} and CI = {ci ∈ C : i ∈ I} are valid for PX(G) for
all I ⊆ {1, . . . , k} with |I| ≥ 2.

For |I| = 2, the constraints correspond to the facets of QX(G) from the sub-
matrix (

M(R2
|S|) M(R2

|C|)
)

of CX(G) associated to the symmetric differences N(ci)4N(cj) = {si, sj} ∪
{ci, cj} = N [si]4N [sj] for all i, j ∈ {1, . . . , k}.
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For |I| ≥ 3, the constraints can be derived by the Chvátal-Gomory procedure
from all constraints associated to I ′ ⊂ I with |I ′| = |I| − 1 in a similar way
as in the proof from [2] for 2-roses by applying the procedure to the subsets
I ′ ⊆ {1, . . . , k} (and, thus, simultaneously to both parts S and C of G).

In order to arrive at the constraint associated to a subset I, we sum up the
constraints

x(SI′) + x(CI′) ≥ |I ′| − 1

for all I ′ ⊂ I with |I ′| = |I| − 1 and obtain

|I ′|x(SI) + |I ′|x(CI) ≥ |I|(|I ′| − 1).

Dividing this inequality by |I ′| and rounding up the rhs yields

x(SI) + x(CI) ≥ |I ′| = |I| − 1

by
|I|(|I ′| − 1)

|I ′|
=

(|I ′|+ 1)(|I ′| − 1)

|I ′|
=
|I ′|2 − 1

|I ′|
= |I ′| − 1

|I ′|
.

That way, we obtain all the constraints

x(SI) + x(CI) ≥ |I| − 1

for all I ⊆ {1, . . . , k} with |I| ≥ 3. As all these constraints are derived by the
Chvátal-Gomory procedure, they are all valid for PLTD(G), and the constraint

x(S) + x(C) ≥ k − 1

associated to I = {1, . . . , k} yields k − 1 as lower bound for the size of any
X-set of G.

Claim 2 Any subset V ′ of nodes with

V ′∩S = {si, sj} and V ′∩C = C−{ci, cj, cl} with distinct {i, j, l} ⊂ {1, . . . , k}

is an LTD-set of G.

For that, we show that V ′ has a non-empty intersection with all relevant open
neighborhoods and symmetric differences. Indeed,

V ′ ∩ C contains (for k ≥ 5) at least 2 nodes and, thus, intersects N(si) =
C − {ci} for all i ∈ {1, . . . , k},
N(ci) = (S − {si}) ∪ (C − {ci}) is redundant for all i ∈ {1, . . . , k},
V ′ ∩ S = {si, sj} intersects the symmetric differences N(si)4 N(cj) = S −
{sj} ∪ {ci, cj} for all i, j ∈ {1, . . . , k},
V ′ ∩ S = {si, sj} intersects the symmetric differences N(ci) 4 N(cj) =
{si, sj} ∪ {ci, cj} containing si or sj, whereas V ′ ∩C = C −{ci, cj, cl} inter-
sects the remaining symmetric differences of this type,
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this holds also for N [si]4N [sj] = {si, sj} ∪ {ci, cj} for all i, j ∈ {1, . . . , k},
V ′ ∩ S = {si, sj} clearly intersects N [si] 4 N [ci] = S ∪ {ci} for all i ∈
{1, . . . , k}.

Hence, any such V ′ is indeed an LTD-set of G.

Comparing CLD(G) with CLTD(G), we see that the two matrices differ only
in the part related to the neighborhoods. The same set V ′ has also a non-
empty intersection with all relevant closed neighborhoods as it clearly inter-
sects N [si] = {si} ∪ (C − {ci}) for all i ∈ {1, . . . , k}. Thus, any such set V ′ is
also an LD-set of G.

This shows that γX(G) ≤ k − 1 holds in both cases, and combining this
with the lower bound established above finally shows γX(G) = k − 1 for
X ∈ {LD,LTD}. 2

The situation is different for thin headless spiders:

Lemma 5 For a thin headless spider G = (C ∪ S,E) with k ≥ 3, we have

CLD(G) =
(
I|S| I|C|

)
and COLD(G) = CLTD(G) =

(
0 I|C|

)
.

Proof. Let G = (C∪S,E) be a thin headless spider with k ≥ 4. From Theorem
1, the rows of the matrices MLD(G), MOLD(G) and MLTD(G) are composed
of characteristic vectors of the closed neighborhoods (for MLD(G))

N [si] = {si} ∪ {ci} for all si ∈ S,
N [ci] = {si} ∪ C for all ci ∈ C,

the open neighborhoods (for MOLD(G) and MLTD(G))

N(si) = {ci} for all i ∈ {1, . . . , k},
N(ci) = {si} ∪ (C − {ci}) for all i ∈ {1, . . . , k},

the symmetric differences of open neighborhoods of nodes at distance 1 (in all
three cases)

N(si)4N(ci) = {si} ∪ C for all i ∈ {1, . . . , k},
N(ci)4N(cj) = {si, sj} ∪ {ci, cj} for all i, j ∈ {1, . . . , k},

the symmetric differences of open neighborhoods of nodes at distance 2 (for
MOLD(G))

N(si)4N(cj) = {sj} ∪ (C − {ci, cj}) for all i, j ∈ {1, . . . , k},

and the symmetric differences of closed neighborhoods of nodes at distance 2
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(b) (c)(a)

Fig. 5. The three thin suns T4 where (a) is a sunlet and (c) a thin headless spider.

(for MLD(G) and MLTD(G))

N [si]4N [cj] = {si, sj} ∪ (C − {ci}) for all i, j ∈ {1, . . . , k}.

Deleting the redundant rows, only the closed resp. open neighborhoods of
si ∈ S remain so that we obtain

CLD(G) =
(
I|S| I|C|

)
and COLD(G) = CLTD(G) =

(
0 I|C|

)
.

2

We immediately conclude:

Corollary 8 For a thin headless spider G = (C ∪ S,E) with k ≥ 3,

(a) PLD(G) is given by the inequalities
• xsi

+ xci
≥ 1 for all i ∈ {1, . . . , k} and non-negativity constraints

and γLD(G) = k follows;
(b) PX(G) is given by the inequalities
• xi ≥ 1 for all ci ∈ C and xi ≥ 0 for all si ∈ S,
C is the unique X-set of minimum size and γX(G) = |C| = k follows for
X ∈ {OLD,LTD}.

5 Thin suns

The latter result on thin headless spiders can be further generalized to thin
suns. A sun is a graph G = (C ∪S,E) whose node set can be partitioned into
S and C, where S = {s1, . . . , sk} is a stable set and C = {c1, . . . , ck} a (not
necessarily chordless) cycle. A thin sun Tk = (C ∪ S,E) is a sun where si is
adjacent to cj if and only if i = j.

That is, thin headless spiders are special thin suns where all chords of the
cycle C are present (such that C induces a clique). Another special case are
sunlets where no chords of the cycle C are present (such that C induces a
hole). Clearly, the (only) thin sun T3 equals the thin headless spider; the three
possible thin suns T4 are depicted in Fig. 5.
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We call two nodes ci and cj of a thin sun Tk = (C∪S,E) false C-twins if ci and
cj are non-adjacent and NC(ci) = NC(cj) holds (where NC(v) = N(v) ∩ C).

Lemma 6 For a thin sun Tk(C ∪ S,E) with k ≥ 4, we have

CLD(Tk) =
(
I|S| I|C|

)
, CLTD(Tk) =

(
0 I|C|

)
, COLD(Tk) =

 0 I|C|

S(R2
|S|) 0


where S(R2

|S|) is the row-submatrix of M(R2
|S|) containing the characteristic

vectors of all symmetric differences N(ci)4N(cj) with ci and cj false C-twins.

Proof. Let Tk = (C ∪ S,E) be a thin sun with k ≥ 4. From Theorem 1,
the rows of the matrices MLD(Tk), MOLD(Tk) and MLTD(Tk) are composed of
characteristic vectors of the closed neighborhoods (for MLD(Tk))

N [si] = {si} ∪ {ci} for all si ∈ S,
N [ci] = {si} ∪NC [ci] for all ci ∈ C,

the open neighborhoods (for MOLD(Tk) and MLTD(Tk))

N(si) = {ci} for all si ∈ S,
N(ci) = {si} ∪NC(ci) for all ci ∈ C,

the symmetric differences of open neighborhoods of nodes at distance 1 (in all
three cases)

N(si)4N(ci) = {si} ∪NC [ci] for all i ∈ {1, . . . , k},
N(ci) 4 N(cj) = {si, sj} ∪ (NC [ci] 4 NC [cj]) ⊇ {si, sj, ci, cj} for all i, j ∈
{1, . . . , k} (as ci and cj are adjacent),

the symmetric differences of open neighborhoods of nodes at distance 2 (for
MOLD(Tk))

N(si) 4 N(cj) = {sj} ∪ (NC(cj) − {ci}) for all i, j ∈ {1, . . . , k} (as ci is a
common neighbor of si and cj),
N(ci)4N(cj) = {si, sj} ∪ (NC(ci)4NC(cj)) for all i, j ∈ {1, . . . , k},

and the symmetric differences of closed neighborhoods of nodes at distance 2
(for MLD(Tk) and MLTD(Tk))

N [si]4N [cj] = {si, sj}∪ (NC [cj]−{ci}) ⊇ {si, sj, cj} for all i, j ∈ {1, . . . , k}
(as ci is a common neighbor of si and cj),
N [ci] 4 N [cj] = {si, sj} ∪ (NC [ci] 4 NC [cj]) ⊇ {si, sj, ci, cj} for all i, j ∈
{1, . . . , k} (as ci and cj are non-adjacent).

Deleting the redundant rows, from MLD(Tk) and MLTD(Tk) only the closed
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resp. open neighborhoods of si ∈ S remain so that we obtain

CLD(Tk) =
(
I|S| I|C|

)
and CLTD(Tk) =

(
0 I|C|

)
.

From MOLD(Tk), the open neighborhoods of si ∈ S remain as well as the
characteristic vectors of all symmetric differences N(ci)4N(cj) = {si, sj} for
all pairs ci and cj that are false C-twins (and, thus, NC(ci) 4 NC(cj) = ∅
holds) so that we obtain

COLD(Tk) =

 0 I|C|

S(R2
|S|) 0

 .
2

Therefore, independent from the subgraph induced by C, the clutters CLD(Tk)
and CLTD(Tk) are the same as the corresponding clutters for thin headless
spiders and we immediately conclude:

Corollary 9 For a thin sun Tk = (C ∪ S,E) with k ≥ 4,

(a) PLD(Tk) is given by the inequalities xsi
+ xci

≥ 1 for all i ∈ {1, . . . , k} and
non-negativity constraints and γlD(Tk) = k follows;

(b) PLTD(Tk) is given by the inequalities xi ≥ 1 for all ci ∈ C and xi ≥ 0 for all
si ∈ S, C is the unique LTD-set of minimum size and γLTD(Tk) = |C| = k.

It is left to study the polyhedron associated with OLD-sets in thin suns. As
false C-twins play a crucial role, we define the following two set families. Let
FCT (Tk) be the set of all subsets C ′ ⊆ C such that all nodes in C ′ are
pairwise false C-twins, and let MFCT (Tk) contain the sets C ′ ∈ FCT (Tk)
that are inclusion-wise maximal and have at least two nodes. Furthermore, let
S(C ′) = {si ∈ S : ci ∈ C ′}.

Theorem 4 For a thin sun Tk = (C ∪ S,E) with k ≥ 4, POLD(Tk) is given
by the inequalities

• xsi
≥ 0 for all si ∈ S, xci

≥ 1 for all ci ∈ C,
• x(S(C ′)) ≥ |S(C ′)| − 1 for all C ′ ∈ FCT (Tk),

and we have γOLD(Tk) = |C|+∑
C′∈MFCT (Tk) |S(C ′)| − 1.

Proof. Let Tk = (C ∪ S,E) be a thin sun with k ≥ 4. The row-submatrix
(0I|C|) of COLD(Tk) clearly results in the constraints xci

≥ 1 for all ci ∈ C.
Now, consider the row-submatrix (S(R2

|S|)0) of COLD(Tk). By the definition of

false C-twins, all sets C ′ ∈ MFCT (Tk) are pairwise disjoint. Hence, S(R2
|S|)

has a block-structure, where each block equals M(R2
|S(C′)|) for some C ′ ∈
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MFCT (Tk). From the description of the facets of the covering polyhedron as-
sociated with complete q-roses by [2] and taking the block structure of S(R2

|S|)
into account, we conclude that POLD(Tk) has a constraint

x(S(C ′)) ≥ |S(C ′)| − 1 ∀C ′ ∈ FCT (Tk)

(where the constraint associated with a set C ′ ∈ FCT (Tk) of size one corre-
sponds to a non-negativity constraint). Hence, POLD(Tk) is given by the above
mentioned inequalities.

Moreover, adding up all constraints xci
≥ 1 for all ci ∈ C and

x(S(C ′)) ≥ |S(C ′)| − 1 ∀C ′ ∈MFCT (Tk)

results in the valid inequality

x(C) +
∑

C′∈MFCT (Tk)

x(S(C ′)) ≥ |C|+
∑

C′∈MFCT (Tk)

|S(C ′)| − 1

which provides a lower bound for γOLD(Tk). On the other hand, choosing all
but one node from each subset S(C ′) for all C ′ ∈ MFCT (Tk) and all nodes
from C provides an OLD-set of the same size, which finally implies

γOLD(Tk) = |C|+
∑

C′∈MFCT (Tk)

|S(C ′)| − 1.

2

The situation clearly simplifies for thin suns Tk = (C ∪ S,E) without false
C-twins:

Corollary 10 For a thin sun Tk = (C ∪ S,E) with k ≥ 4 and without false
C-twins, we have COLD(Tk) = (0 I|C|) so that POLD(Tk) is given by the in-
equalities xi ≥ 1 for all ci ∈ C and xi ≥ 0 for all si ∈ S, C is the unique
OLD-set of minimum size and γOLD(Tk) = |C| = k follows.

This applies in particular to sunlets Tk with k ≥ 5.

6 Concluding remarks

In this paper, we proposed to study the LD-, OLD- and LTD-problem from
a polyhedral point of view, motivated by promising polyhedral results for the
ID-problem [2,4,5,7]. That way, we were able to provide closed formulas for
the LD- and LTD-numbers of all kinds of complete p-partite graphs, for the
studied families of split graphs and thin suns as well as the OLD-numbers of
thin and thick headless spiders and thin suns.
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In particular, if we have the same clutter matrix for two different X-problems,
then we can conclude that every solution of one problem is also a solution for
the other problem, and vice versa, such that the two X-polyhedra coincide
and the two X-numbers are equal. This turned out to be the case for

• complete bipartite graphs as CID(Km,n) = CLD(Km,n) = CLTD(Km,n) holds
by Lemma 2 and results from [2],
• cliques as CLD(Kp) = COLD(Kp) = CLTD(Kp) holds by Lemma 3(a),
• complete p-partite graphs as CLD(Kn1,n2,...,np) = CLTD(Kn1,n2,...,np) holds by

Lemma 3,
• thin headless spiders G as COLD(G) = CLTD(G) holds by Lemma 5.

Furthermore, we were able to provide the complete facet descriptions of

• the LD- and LTD-polyhedra for all complete p-partite graphs (including
complete split graphs), for thin headless spiders and thin suns (see Section
3, Corollary 8 and Corollary 9,
• the OLD-polyhedra of cliques, thin and thick headless spiders and thin suns

(see Corollary 5, Section 4) and Theorem 4.

The complete descriptions of some X-polyhedra also provide us with in-
formation about the relation between Q∗(CX(G)) and its linear relaxation
Q(CX(G)). A matrix M is ideal if Q∗(M) = Q(M). From the complete de-
scriptions obtained in Section 3 and Section 4, we conclude:

Corollary 11 The LD-, LTD- and OLD-clutters of thin headless spiders are
ideal for all k ≥ 3.

Corollary 12 The LD- and LTD-clutters of thin suns as well as the OLD-
clutters of thin suns without false C-twins are ideal for all k ≥ 3.

For any nonideal matrix, we can evaluate how far M is from being ideal by
considering the inequalties that have to be added to Q(M) in order to obtain
Q∗(M). With this purpose, in [1], a matrix M is called rank-ideal if only 0/1-
valued constraints have to be added to Q(M) to obtain Q∗(M). We further
conclude:

Corollary 13 The LD- and LTD-clutters of all complete p-partite graphs
and the OLD-clutters of cliques, thick headless spiders and thin suns are rank-
ideal.

Finally, the LD- and LTD-clutters of thick headless spiders have a more
complex structure such that also a facet description of the LD- and LTD-
polyhedra is more involved in this case. However, based on the common part
of the clutters and using polyhedral arguments, is was possible to establish
that k − 1 is a lower bound for the cardinality of any LD- and LTD-set.
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Exhibiting an LD- and LTD-set of size k − 1 thus allowed us to deduce the
exact value of the LD- and LTD-number of thick headless spiders (Theorem
3).

This demonstrates how the polyhedral approach can be applied to find X-
sets of minimum size for special graphs G, by determining and analyzing the
X-clutters CX(G), even in cases where no complete description of PX(G) is
known yet.

As future lines of research, we plan to work on a complete description of the
LD- and LTD-polyhedra of thick headless spiders and to apply similar and
more advanced techniques for other graphs in order to obtain either X-sets of
minimum size or strong lower bounds stemming from linear relaxations of the
X-polyhedra, enhanced by suitable cutting planes.
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