

232.038

Projet BePAT :

BeaQuant, a digital autoradiograph for the production of radionuclides for nuclear medicine applications

Arthur Bongrand

Melissa Azzoune, Samuel Duval, Arnaud Guertin Julie Champion

Boulogne-Billancourt, 21 – 25 november

Jubatech

Uranium 238.029

Astatine

85

Physics of Radiation InteractionS with Matter and Applications

My career path

BeaQuant : real-time autoradiography system for "small" samples

Autoradiography

 \rightarrow An **emission imaging technique** carried out from a radioactive source placed in contact with an emulsion, a photographic film or an adapted detector

 \rightarrow Area of interest located at the surface (\approx 10 µm deep)

Glass slide

Lefeuvre et al., under review NIMA

Metal foil

Samples

Applications

 \rightarrow "Thin" (<1 cm thick) \approx size of a small sugar square

 \rightarrow Pre-clinical (oncology + drug discovery)

Visualization of molecules or fragments of molecules

 \rightarrow Can be electroplated on a glass slide, a "sugar" or a **metal foil (new)**

 \rightarrow Geology (study of uraniferous rocks, environmental pollution...)

Specificities of the BeaQuant

labeled with radioactive elements

- \rightarrow Real-time direct counting
 - ✓ Quantification
 - ✓ Tracking

Technology	Direct gaseous counter	
Performance	 Spatial: Alpha 20 μm – Beta 20 μm – High energy β or β⁺ 50 μm Linearity over 5 orders of magnitude Sensitivity: 0.0005 cpm/mm² (≈ mBq) 	
Markers	All radioisotopes	

Radionuclide production scheme and expertise of PRISMA@Subatech

BePAT

Properties of Alpha- and Beta-Emitting Radionuclides

α therapy benefit

- Short range in human tissues : ≈ 100µm (≈ cell diameter)
- High Linear Energy Transfer (LET) : 60-200 keV/µm
- Great DNA damages \rightarrow no cell repair

²³⁰U/²²⁶Th from ²³⁰Pa

considering Arronax's characteristics 17 and 30-70 MeV Proton beam

BePAT

• α therapy benefit

- Short range in human tissues : ≈ 100µm (≈ cell diameter)
- High Linear Energy Transfer (LET) : 60-200 keV/µm
- Great DNA damages → no cell repair

²³⁰U/²²⁶Th from ²³⁰Pa

considering Arronax's characteristics 17 and 30-70 MeV Proton beam

Application of BePAT

Irradiation station and beam line

Verification of production cross section

Some rules for the preparation of the BePAT samples

Capsule and metal foils

Metal foil can be electrodeposited after digestion and chemical separation

Samples

- \rightarrow Metal foil
- → Metal foil electrodeposited after digestion and chemical separation (in the future)
- Sample activity
- → Insensitive to γ and X → $A(\alpha) + A(\beta+) + A(\beta-) < 20 \text{ kBq}$ - Specific calculations required !
- Challenge
- \rightarrow Short-lived isotope !

Experimental study conditions

Cible	Source	
Th 232 (11,72g/cm ³)	Protons	
6,25 cm ² (2,5.2,5 cm ²) epaisseur 43,2 μm	2,5 cm d'extension latérale	

$$\boldsymbol{\sigma}(\mathbf{E}) = \frac{M. Y(E)}{Na \ e \ x \ \rho}$$

ou
$$\boldsymbol{\sigma}(\mathbf{E}) = \frac{M. Act(tirr)}{Na \ e \ x \ \rho \ (1 - exp(-\lambda tirr)))}$$

Modèle physique \rightarrow INCL Cascade Intranucléaire de Liège tdchain.lst \rightarrow rendement [atm/sources] si >10⁻⁸ sinon \rightarrow tdchain.act \rightarrow activité [Bq]

nucl	lide	yield	nuclide	yield
	 2	1 0005 09	V:: 91	1 0005 07
Ho	2	1.000E-08	Kr 85	2 100E-07
Co	70	1.000E-08	Kr 86	1.210E-06
Ni	71	1.000E-08	Kr 87	1.310E-06
Cu	68	1.000E-08	Kr 88	2.450E-06
Cu	70	2.000E-08	Kr 89	2.130E-06
Cu	71	2.000E-08	Kr 90	1.880E-06

nuclide		atoms	radioac	tivity
		[atoms/cc]	[Bq/cc]	[Bq]
Н	3	3.2542E+03	5.8015E-06	1.5664E-07
He	6	2.9263E+00	2.5144E+00	6.7890E-02
He	8	8.0768E-03	4.7006E-02	1.2692E-03
Li	8	5.2072E-02	4.2973E-02	1.1603E-03
Li	9	1.0599E-03	4.1203E-03	1.1125E-04
Be	7	1.9679E+01	2.9666E-06	8.0097E-08
Be	8	4.9126E-18	4.1621E-02	1.1238E-03
Be	10	1.3998E+01	2.0341E-13	5.4922E-15
Be	11	2.6077E-19	1.3089E-20	3.5339E-22

Experimental procedure

Irradiation scenarios

AZZOUNE 2022

Contraintes $\rightarrow A(\alpha)+A(\beta) \le 20kBq$ $\rightarrow I = 1 nA$ $\rightarrow tirr = 15 min$

Localized α -spectrometry

MATERIAUX

Energy spectrum

gamn	ia-ray spect	trum weig	nted by energ	y (42-groups)	
grp.	energy	[MeV]	flux	energy flux	relative
	upper	lower	[n/s/cc]	[MeV/s/cc]	error
1	50.000	30.000	0.0000E+00	0.0000E+00	0.0000E+00
2	30.000	20.000	0.0000E+00	0.0000E+00	0.0000E+00
3	20.000	14.000	0.0000E+00	0.0000E+00	0.0000E+00
4	14.000	12.000	0.0000E+00	0.0000E+00	0.0000E+00
5	12.000	10.000	3.4274E-08	3.7702E-07	3.9448E-02
6	10.000	8.000	2.5845E-08	2.3260E-07	3.9432E-02
7	8.000	7.500	2.6211E-08	2.0313E-07	3.9404E-02
8	7.500	7.000	2.4590E-08	1.7828E-07	3.9308E-02
9	7.000	6.500	9.7197E+04	6.5608E+05	6.6655E-02
10	6.500	6.000	1.0106E+06	6.3162E+06	4.0591E-02
11	6.000	5.500	3.3388E+06	1.9198E+07	3.4109E-02
12	5.500	5.000	6.5112E+06	3.4184E+07	2.5902E-02
13	5.000	4.500	7.2631E+06	3.4500E+07	1.9996E-02
14	4.500	4.000	1.3590E+07	5.7756E+07	2.0798E-02
15	4.000	3.500	2.2669E+07	8.5009E+07	1.8877E-02
16	3.500	3.000	3.6049E+07	1.1716E+08	2.1157E-02
17	3.000	2.500	6.8483E+07	1.8833E+08	1.4998E-02
18	2.500	2.000	8.6090E+07	1.9370E+08	1.2366E-02
19	2.000	1.660	8.0379E+07	1.4709E+08	1.0404E-02
20	1.660	1.500	7.6818E+07	1.2137E+08	2.7601E-02
21	1.500	1.340	8.0274E+07	1.1399E+08	1.9271E-02
22	1.340	1.330	7.7190E+06	1.0305E+07	1.0502E-01
23	1.330	1.000	2.1836E+08	2.5439E+08	1.4559E-02
24	1.000	0.800	1.8044E+08	1.6239E+08	1.4900E-02

Conclusion

- Monte Carlo simulation software PHITS
- \rightarrow Irradiation scenarios + Energy spectrum
- \rightarrow Tally: [T-DCHAIN] + DCHAIN <3

Perspectives

- 1. Comparison with experimental measurements
- 2. Study of the isotopic purity
- 3. Influence of other parameters : Target thickness, incident particles, other production channels (Ac-226/Th-226)
- 4. Spectrometry

Backup

