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Abstract

Algorithmic recourse provides explanations that help users overturn an unfavorable decision by a machine
learning system. But so far very little attention has been paid to whether providing recourse is beneficial or
not. We introduce an abstract learning-theoretic framework that compares the risks (i.e., expected losses) for
classification with and without algorithmic recourse. This allows us to answer the question of when providing
recourse is beneficial or harmful at the population level. Surprisingly, we find that there are many plausible
scenarios in which providing recourse turns out to be harmful, because it pushes users to regions of higher
class uncertainty and therefore leads to more mistakes. We further study whether the party deploying the
classifier has an incentive to strategize in anticipation of having to provide recourse, and we find that sometimes
they do, to the detriment of their users. Providing algorithmic recourse may therefore also be harmful at the
systemic level. We confirm our theoretical findings in experiments on simulated and real-world data. All in all,
we conclude that the current concept of algorithmic recourse is not reliably beneficial, and therefore requires
rethinking.

1 Introduction

Machine learning (ML) models are increasingly being used to make consequential decisions in areas such as
finance (Mukerjee et al., 2002), healthcare (Begoli et al., 2019; Grote and Berens, 2020), and hiring (Nabi
and Shpitser, 2018; Schumann et al., 2020). When these decisions are unfavorable to the people they affect,
algorithmic recourse provides explanations and recommendations to favorably change their situation (Karimi
et al., 2022). For instance, when an individual is denied a bank loan, they might like to know the reasons and
in particular what they can do to get a loan in the future.

A prominent approach to providing recourse is via counterfactual explanations, which suggest how the
individual should change their features in order to flip the decision of the ML model (Wachter et al., 2017,
Ustun et al., 2019; Joshi et al., 2019). Originally, counterfactuals were chosen to minimize the distance
between the original and the new features (Wachter et al., 2017), but more recently attention has also been paid
to generating realistic suggestions which are actionable and lie on the data manifold (Ustun et al., 2019; Joshi
etal.,, 2019). In addition, various types of robustness have been studied, including to random perturbations
(Virgolin and Fracaros, 2023; Dominguez-Olmedo et al., 2022; Pawelczyk et al., 2022b), to data shifts (Rawal
et al., 2020; Dutta et al., 2022), or to the case that the counterfactual might not be perfectly implementable
(Artelt et al., 2021). It has further been recognized that providing recourse has consequences at the population
level, because it changes the distribution of the data. These consequences have been studied in the context
of fairness for subgroups (Gupta et al., 2019) and with respect to social segregation (Gao and Himabindu,
2023), but so far there has been no work that studies the consequences of providing recourse for classification
accuracy.

To see why accuracy matters, consider again the loan example mentioned above. If a person is able to repay
a loan they got through recourse, then recourse has been beneficial. But if they end up defaulting on their
payment, then recourse has actually been harmful, both for the user and the lending institution. Providing
recourse in a way that undermines the accuracy of the ML model in determining which users are likely to
default, can therefore be dangerous. In fact, the bank loan example above, which is standard in the recourse
literature, is also used as a motivating example in the context of strategic classification. There it is seen as a
significant risk that loan applicants might try to game the system by changing their features to flip the class
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Figure 1: Left panel: Initial situation, the ML model classifies individual with starting features x( either
negatively (in blue) or positively (in red). Its risk is denoted by Rp(f). Points classified negatively are given
the opportunity to move to the decision boundary (yellow dotted arrows). Right panel: The points close
enough to the boundary accept recourse and move towards the decision boundary. The risk with recourse,
Rqg P (f), is then higher, because at the decision boundary the uncertainty about the true class is maximal, and
the points that accepted recourse are now more likely to be misclassified.

without actually improving their true creditworthiness (Brown et al., 2022; Perdomo et al., 2020; Milli et al.,
2019).

Main Contributions In this work, we study the effects of recourse on classification accuracy at the population
level. All our results are obtained in the context of a new learning-theoretic framework, which we introduce in
Section 2. Accuracy is measured by the risk, which is the expected loss of a given classifier. When recourse is
provided, it changes the distribution of the data, and hence the risk. We are primarily interested in whether
recourse makes the risk go up or down. To answer this question it matters how the class probabilities of
the users change upon receiving recourse. We distinguish between the compliant case, in which these class
probabilities truly improve, and the defiant case, in which the class probabilities do not improve at all (for
instance because the users are trying to game the system). In Section 3 we show that, if the classifier is optimal
without recourse, then recourse will be harmful, because it increases the risk both for the compliant and for
the defiant case. The reason is that recourse pushes users towards the decision boundary, where the class
uncertainty is higher, which therefore leads to more mistakes. See Figure | for an illustration. Section
extends these results to probabilistic classifiers that are only near-optimal, which allows for estimation errors,
and to surrogate losses like, e.g., the cross-entropy loss. In Section 5 we recognize that the party deploying
the classifier may strategically choose their classifier in order to minimize the resulting risk after providing
recourse. We obtain separate results for the defiant and compliant cases, which show that there is an incentive
to preemptively undo the effect of recourse. For the defiant case, this makes the risks with and without recourse
identical, so implementing recourse only places a burden on all parties, without any resulting advantage. For
the compliant case, the risk with recourse does decrease, so this is the only case where we do observe an
advantage to providing recourse. Finally, in Section 6 we corroborate our theoretical results by experiments, in
which we observe the risk increase for a large majority of the experiments both on synthetic data and on real
data.

Not Reliably Beneficial In summary, our findings show that there are many common cases in which recourse
is harmful, because it leads to worse classification accuracy. This suggests that instead of debating how to
provide recourse, we should rethink whether the current approach to recourse is desirable at all. Notably,
there is no escape by pointing to exceptions in which recourse is beneficial, like e.g. our results on strategic
classification for the compliant case, or by pointing to specific examples where it is beneficial in practice: if
recourse is not reliably beneficial nearly all the time, then it is not suitable to be broadly adopted.

1.1 Further Related Work

Causality and Algorithmic Recourse The difference between the defiant and the compliant case has
already been noted in the causal algorithmic recourse community. This has lead to counterfactual methods
with guarantees for actual improvement of the class probabilities, which ensure that we are closer to the
compliant case Konig et al. (2021, 2022). However, our results show that, even in the fully compliant case,
recourse may still be harmful. More generally, it has been pointed out that users can only act on counterfactual
recommendations if these take the causal relation between the user’s actions and their features into account



(Karimi et al., 2021). Our framework is general enough to express such causal interventions, because they
only affect the risk via their effect on the distribution of the data.

Strategic Classification Strategic classification considers the effect of deploying a classifier in an environ-
ment with strategic players, who want to change their features in order to influence how they are classified
(Hardt et al., 2016; Levanon and Rosenfeld, 2021; Miller et al., 2020; Tsirtsis et al., 2019; Yatong Chen, 2021).
This makes the distribution of the data dependent on f as well, because the behavior of the players depends
on the classifier f. The more abstract setting in which there can be any dependence between f and the data
distribution, has been studied under the heading of performative prediction (Perdomo et al., 2020; Mofakhami
et al., 2023). Our results about strategizing in Section 5 are a special case of strategic classification, in which
the behavior of the players is guided by the recourse mechanism. In contrast to previous results that mostly
considered how to minimize the risk in f while taking the dependence of f on the distribution into account, our
aim is to quantify the difference in the risk when we compare the settings with and without recourse.

2  Framework and Main Definitions

In this section we formalize the effect of recourse by comparing the risk in the situation without recourse to
the risk with recourse applied.

2.1 General Framework

We consider binary classification, in which users with corresponding features = from a closed, convex domain
X C RY will be classified into classes ) = {—1,+1}. We assume a model f : X — Y has already
been trained. This may be a deterministic classifier, with )A) = {—1,+1}, or a probabilistic classifier, with
V= [O 1], for which f () represents the probability that 2 should be classified as +1. The error of a prediction

Yy € y with respect to the true label y € ) is measured by a loss function ¢ : y x Y — R. For instance, for
deterministic predictions § € {—1,+1}, the 0/1 loss is E(gj = ]l{y #y 1} and, for probablhstlc predictions
g € [0, 1], the log loss or cross-entropy loss is £(7, y) = 5(1 ln +3 y)In —y

"

In the absence of recourse, the data will consist of pairs (X, Y") from X x Y with distribution P, and the
quality of f is evaluated by its risk

Rp(f) = X0 ]}I*;)NP[E(f(XO), Y. (Risk without Recourse)

A classifier f5 € argmin § Rp(f), which minimizes the risk, is called Bayes-optimal. For instance, for 0/1
loss, f(z0) = sign(P(Y = 1|Xy = 20) — 1) is Bayes-optimal. Throughout the paper, we take the sign
function sign(z) to be +1 if z > 0 and —1 for z < 0.

When we add recourse to the mix, a user first arrives with feature vector X, which is drawn according to the
marginal distribution of P on X. Then, depending on the original features X, the specifics of the recourse
protocol, and the model f, the user’s features are transformed into new features X € X'. Here X may be a
deterministic function of X, but in general it can also depend on X in a non-deterministic way if the recourse
protocol is randomized or when the user’s response to recourse is not fully predictable. Finally, a label Y is
generated, and we let Q) ¢ denote the resulting distribution of (X, X,Y"). The resulting risk is then measured
under the marginal distribution of (X, Y") under Q:

Rq,(f) = (X, YH;:NQf [Lf(X),Y)]. (Risk with Recourse)

Thus the marginal distribution of X under @) ¢ is always the same as under P. Note further that f influences
the risk with recourse in two ways: directly via its predictions f(X) and indirectly via its effect on the
distribution @) s. Except for Section 5 we will think of f as fixed, and we will simplify notation by writing @
instead of Q) ¢.

As motivated in the introduction, we care about the accuracy of classifiers at the population level. This is
measured by the risk, so we will say that recourse is beneficial if the risk under () is smaller than the risk under
P, and harmful otherwise.

2.2 Specializing the Framework

The framework above is so general that it can represent any mechanism for providing recourse. In order to say
something concrete, we have to specialize it further.



Effect on the Label Distribution Naively, we might expect that changing the user’s features from X to
X would also change their label distribution from P(Y|X) to P(Y|X), but what actually happens depends
on the underlying causal effect of providing recourse (Miller et al., 2020; Konig et al., 2022), and in general
any effect on the label distribution is possible. We will focus on two extreme cases which differ in whether
individuals fully comply with or fully defy this naive expectation:

(Compliant) Q(Y | X, X) = P(Y | X). The change in features causes a true change in label probability.

(Defiant) Q(Y | X0, X) = P(Y | Xo). The user only changes their features, without altering their label
probability.

The defiant case has also been referred to as “gaming”’ (Konig et al., 2022; Perdomo et al., 2020). It is
illustrated well by the following example by Konig et al. (2022): consider a classifier which classifies whether
a patient is infected with Covid based on their symptoms. Then taking cough drops to suppress coughing may
change the classification without changing the true probability of being infected.

Recourse Mechanism We will think of class 41 as being favorable to the users, while class —1 is undesirable
to them. For instance, +1 might represent a bank loan being granted, while —1 means that the loan application
is rejected. Whenever a user with features X is classified as f(X) = —1 by a deterministic classifier, they
may request recourse. Many prominent approaches (Wachter et al., 2017; Ustun et al., 2019; Karimi et al.,
2020; Pawelczyk et al., 2022a) to algorithmic recourse provide the user with a counterfactual explanation
XCF = p(X,) which is the solution to an optimization problem of the form

X e argmin (X, 2), )
Z2EX: f(z)=+1

where ¢(zg, z) models the cost for the user of moving from z¢ to z. This can describe many different cost
mechanisms, and can even be used to express constraints like monotonicity in an Age feature or consistency
with a causal model, by assigning large cost to any z that violates the constraints. For the optimization problem
in (1) to be well defined, we need to assume that the set

{reX| f(x) =+1} is closed. )

A consequence of this, is that a point on the decision boundary of a classifier will be classified as class +1. So,
in order for f}, to satisfy this condition for 0/1 loss, it matters that we defined sign(0) = +1 above. For many
of our results, we will further assume that the cost

¢(xo,z) increases monotonically with the distance ||z — x|, 3)

which means that larger changes require more effort from the user. Under this assumption, ¢ always maps
users g in the negative class to the decision boundary; for users in the positive class, recourse does not
do anything and ¢(xg) = zo. (See Lemma 6 in Appendix A.) If the user implements the counterfactual
explanation exactly, then X = X°F, but they might also deviate from it in a stochastic way, which would make
X a noisy approximation of X°F (Pawelczyk et al., 2022b). For simplicity, we will focus on the noiseless
case with X = X°F. We do explicitly take into account the fact that not all users might receive recourse and
that each user has a choice in whether to implement it. Let B € {0, 1} be an indicator variable for whether
recourse is received and implemented, with conditional probability Pr(B =1 | Xy) = r(Xp). It then follows
that

X =(1-B)Xo+ BX“ =(1-B)X,+ Bp(Xy).
Note that, when f(X,) = +1, we always have X = X, irrespective of B, because p(Xy) = X, as mentioned
above. Some examples of possible r functions are:

* r(x0) = 1. All users implement recourse;

* r(zo) = L{||xzo — ¢(z0)|| < D} for some D > 0. Only those users within distance D of the decision
boundary implement recourse;

=g —e(zq)lI?

o r(xg) = e 257 for some 02 > 0. All users implement recourse with some probability
and that probability is exponentially decreasing in the squared distance they have to cover, with a
bandwidth o2

'We avoid this terminology in the context of algorithmic recourse, because users may follow a recourse recommendation
in good faith and still not change their label probability.



3 Risk Increase for the Bayes-Optimal Classifier

In this section we present our first main result, which relates the risk with recourse under @ to the risk without
recourse under P. The result implies that the risk with recourse is larger, because recourse will move data
from a region where the prediction is relatively certain, for example P(Y = —1|X) = 0.9, to the decision
boundary, where things are the least certain, because P(Y = +1|X) = 1/2. We also illustrate this in an
example with Gaussian data. The proofs and additional details for the example in this section can be found in
Appendix

Theorem 1 (Bayes-Optimal Classifier Risk Increase). Let ¢ be the 0/1 loss, and assume the setting of
Section 2.2 (i.e., (1), (2), (3)). Suppose that P(Y = 1| Xy =x) = %for all x on the decision boundary of f.
Then

(a) For the defiant case,
Ro(fp) = P(B=1,Y = -1) = P(B=1,fp(Xo) #Y) + Rp(fp) = Rp(fp); 4
(b) For the compliant case,
Rqo(fp) = 5P(B=1,[p(Xo) = —1) = P(B =1, fp(Xo) = -1,Y = 1) + Rp(f})
> Rp(fp). &)

Both inequalities are strict if P(B = 1, f5(Xo) = —1) > 0, i.e. if the probability of recourse in the negative
class is non-zero.

Theorem | gives an explicit expression for the risk with recourse when f} is the Bayes classifier for P. Under
very general conditions, it shows that providing recourse always increases the risk, for any recourse probability
function r and any monotonically increasing cost function c!

3.1 Gaussian Example

We proceed with a simple example that can be analyzed in closed form and plotted visually. We assume
the data is generated as follows. Let P(X, | Y = y) be N (i, %) fory = +1 and N (v, X) for y = —1 for
positive definite ¥, with equal prior class probabilities P(Y = —1) = P(Y = +1) = 1. For simplicity
we will assume that ||u|s-1 = ||v||s-1 and set § := ¥ ~!(u — v). Then the optimal classifier is known
to be f}(zo) = sign(zg 0), and the Bayes risk can be expressed in terms of the distribution function ® of
a standard normal distribution: Rp(f}) = ®(—1||x — v||s-1). For Euclidean cost c(z¢, 2) = [lzo — 2|,
providing recourse boils down to projecting onto the hyperplane {x € X | 276 = 0} and this projection can

be expressed analytically by a linear transformation ¢(z) = (I — %) xo. We see the effect of providing

recourse on the data distribution and the risk for the compliant case in Figure 2. We have taken 1 = (4+1,+1) T,
v=(-1,-1)"T and & = (o} %°), and set r(zo) = 1. In this case, Rp(f}) = ®(—1||p — v|s-1) ~ 0.1.
The figure also shows empirically that the risk increases, which matches the prediction by Theorem | that
Ro(fp) =+ + 3®(—3|lu — vlls-1) = 0.31. The defiant case is not shown, because it would result in a
similar picture, but with Rg(f}) = 3.

| | 41 correct . N
« —1 correct .o N
x +1 wrong O
x —1 wrong i .

(Rp(fp) =0.11 | Ro(fp) = 0.30

Figure 2: Left: Bayes classifier, original predictions; Right: predictions after providing recourse in the
compliant case.



4 Risk Increase for Probabilistic Classifiers

In practice, we do not have direct access to the Bayes-optimal classifier and the classifier is learned from
data. In this section, we therefore drop the requirement that the classifier is exactly Bayes-optimal. We will
further consider probabilistic classifiers g : X — [0, 1]. Thresholding g then leads to a binary classifier
f(x) = sign(g(z) — ). We will compare the risk with recourse to the risk without recourse, first for the 0/1
loss and then for a class of surrogate losses that includes the cross-entropy loss. The assumptions we make
differ, but in both cases the conclusion is that the risk with recourse exceeds the risk without recourse when g
is sufficiently accurate. The proofs for this section are presented in Appendix

4.1 Risk Increase for the 0/1 loss

We again focus on the 0/1 loss first. We can handle the defiant case without further assumptions. But for
the compliant case we require that g is highly accurate in the sense that its decision boundary is close to
Bayes-optimal. A simple sufficient requirement would be that there exists € > 0 such that

3-PY =1|Xg=ux)<e for all = such that g(x) = 1/2. (A)

This gives a uniform control over deviations anywhere along the decision boundary of g. At the cost of a
slightly more complicated condition, this uniform bound can be relaxed to an average under the distribution
over the points from the negative class that get mapped to the decision boundary of g:

2 —P(Y =1| X =¢(20))|P(dzo) < e. (B)
{wo:g(zo)</2}

Assuming ¢ is continuous, it will equal g(x) = 1/2 for all points x on its decision boundary. When ¢ maps all
points x( from the negative class to the decision boundary of g, it follows that (A) implies (B).

We are now ready to derive an analogous result to Theorem 1:

Theorem 2 (Probabilistic Classifier Risk Increase, 0/1 loss). Let £ be the 0/1 loss. Let g : X — [0,1] be a
continuous, probabilistic classifier, and define f(x) = sign(g(z) — %) Assume (1), (2), (3) from Section
Then,

(a) For the defiant case,
Ro(f)=P(B=1Y =-1)-P(B=1,[f(Xo) #Y) + Rp(f).
Moreover, Rg(f) > Rp(f) if and only if
P(Y=-1|B=1,f(Xo) =-1) > 3. (6)

1

If we additionally assume that g satisfies (B) with 0 < € < 3, then

(b) For the compliant case, Rq(f) is lower and upper bounded by

(1 +e)P(B=1, f(Xo) = —1)+ P(f(Xo) = +1,Y = —1)
+P(B=0,f(Xo)=-1,Y =1).

Moreover, Ro(f) > Rp(f) if
PY=-1|B=1,f(Xo)=-1)>j +e. ©)

Equations (6) and (7) express that the class —1 is actually more likely (with a margin of €) conditional on the
set of points in the negative class that accept recourse. This will be satisfied when f is a reasonably accurate
classifier. The intuition is that in this case moving points to the decision boundary is harmful, because they
are more likely to be misclassified there. We also note that, for ¢ = 0, f will be equal to the Bayes-optimal
classifier, and the condition is always satisfied, so we recover the conclusion from Theorem | that the risk will
always increase.

4.2 Risk Increase for Surrogate Losses

In this section, we investigate the scenario in which the loss is not the 0/1 loss, but rather a surrogate loss. We
are primarily thinking of the cross-entropy loss, as defined in Section 2, but our result also applies to any other
loss for probabilistic predictions § € [0, 1] which is such that £(1/2, —1) = £(1/2, +1) is constant.



Theorem 3 (Probabilistic Classifier Risk Increase, Surrogate Loss). Ler ¢ : [0,1] x {—1,+1} — R be
any loss such that £(1/2,—1) = £(1/2,41) = c for some constant c. Let g : X — [0, 1] be a continuous,
probabilistic classifier, and define f(x) = sign(g(x) — %). Further assume (1), (2), (3) from Section 2.2. Then,
both for the defiant and for the compliant case, we have Rg(g) > Rp(g) if and only if

E y, — _ = <ec
E [0(9(X0),Y) | f(Xo) 1,B=1]<c¢ (8)
B~Bernoulli(r(Xp))

Condition § means that, on average over users from the negative class who receive recourse, the loss should be
lower than the value of the loss at the decision boundary. This means that g should be a reasonably accurate
classifier, which performs better on this group than simply predicting 1/2. But it is much weaker than requiring
that g should be close to Bayes-optimal, as we did in Theorems | and 2. We can get away with this weaker
requirement, because, at the decision boundary, g(z) = 1/2 and therefore the loss is ¢ regardless of the
underlying distribution of Y. This is also the reason that the defiant and the compliant case coincide.

5 Strategic Classification

So far we have assumed that the classifier f was fixed, but when the party deploying f knows in advance that
they will need to provide recourse, they have an incentive to strategically choose f in order to minimize the
resulting risk under @. In this section, we study the result of strategizing for both the defiant and compliant
scenario. Before presenting our results, we first introduce the part of the setup that is common to both. At the
end of the section, we reflect on our findings in a short discussion.

5.1 Common Setup

Throughout this section we focus on binary classifiers f : X — {—1,+1} with the 0/1 loss. And, since f
is now variable, we write () s and ¢ instead of ) and . We assume that anyone either accepts or rejects
recourse deterministically, i.e. that r(zg) € {0,1} for all zy. And we also assume that the classifier f is
selected from a restricted class of functions F. Under the effect of recourse, F transforms into

Fo i=A{xo = fes(x0)) | f € F}.

We say that F is invariant under recourse if, for any f € F, there exists a unique f’ € F such that f’
with recourse is equivalent to f without recourse, i.e. f'(¢ s (xo)) = f(xo) for all z(. This implies, in
particular, that 7, = F. As a concrete example, one can think of linear classification, with recourse defined at
bringing any point with distance less than D > 0 to the positive class. In this example, shifting the original
classifier by D orthogonally to the decision boundary in the direction of the negative class gives another
equivalent classifier: it is thus invariant under recourse. Details for this example and another one are provided
in Appendix

5.2 Defiant Case
In the defiant case, the setting above implies that providing recourse does not change the risk:

Theorem 4 (Strategizing in the Defiant Case). Let ¢ be the 0/1 loss, assume (1), (2), (3) from Section
with r(zg) € {0,1} for all xy € X, and suppose F is invariant under recourse. Then, providing recourse in
the defiant case does not change the risk when the party deploying the classifier strategizes to minimize their
risk over F:

min Ro, (f) = min Rp(f).

Intuitively, the reason is that in the defiant case it is strategically optimal to maintain the original decision
boundary, because users do not really change upon receiving recourse. This is possible when F is recourse
invariant, because then there is always a function available that compensates for the effect of recourse.
Recourse therefore has no effect on the final decisions, but instead only places a burden on users who have to
implement it and on the party deploying the classifier, which has to provide a recourse mechanism. In this
case, recourse therefore has only negative effects, and may be considered harmful. We prove Theorem 4 in
Appendix

5.3 Compliant Case

In the compliant case, the situation is different and strategizing can actually improve the risk. We require the
following definition.



Table 1: Estimated risks on synthetic data sets. Lower risk is bold.

Moons data  Circles data  Gaussians data
Rp Rg Rp Rg Rp Rq

Logistic Regression (LR) 0.13 033 051 034 0.14 0.32
GradientBoostedTrees (GBT) 0.08 0.30 0.19 026 0.13 0.33
Decision Tree (DT) 0.08 029 019 023 0.13 0.34
Naive Bayes (NB) 0.13 033 0.17 016 015 0.28
QuadraticDiscriminantAnalysis (QDA) ~ 0.13 0.33 0.17 0.16 0.12 0.33
Neural Network(4) 0.12 032 023 030 0.13 0.36
Neural Network(4, 4) 0.04 026 017 022 0.12 0.40
Neural Network(8) 0.04 023 016 020 0.12 0.36
Neural Network(8, 16) 0.04 026 0.6 0.18 011 035
Neural Netowrk(8, 16, 8) 0.04 026 0.16 0.18 0.11 0.35

Definition 1. Suppose F is recourse invariant, and let f € argmin;cr R p(f) be a minimizer of the risk
without recourse. Let f' € F be the (unique) classifier such that f'(¢ (x0)) = f(xo) for all xy € X and
define v to be,

vi= B [(f(X0),Y) -  E [l(f(Xo),Y)].

T (Xo,Y)~P (Xo,Y)~Q s

Here, the function f’ compensates the effect of giving recourse for the original classifier f, and it exists by
recourse invariance. The quantity v measures the change in risk when we fix the classifier to be f, but the
data are either generated by P (no recourse) or @ s (recourse for the classifier f’). Intuitively, v measures the
effect of recourse on the distribution of users when the strategy is to choose a function f’ that compensates for
the effect of recourse. We generally expect recourse to move users further into the positive class, and therefore
to make it more certain that their class label will indeed be Y = +1, which means that v would be positive. A
detailed example is provided in Appendix

Theorem 5 (Strategizing in the Compliant Case). Let ¢ be the 0/1 loss, assume (1), (2), (3) from Section
and suppose F is invariant under recourse. Let vy be as in Definition . Then, the risk after providing recourse
in the compliant case can be bounded in terms of the risk without recourse when the party deploying the
classifier strategizes to minimize their risk over F,

min Ro, (f) < Ro,, (f) = min Bp(f) -7,

where [ is as in Definition

When 7 is positive, this shows that providing recourse will be beneficial. In Appendix D, we prove Theorem
and expand the example of Section 3.1 by showing that v > 0 in that case.

5.4 Discussion

We observe that both in the defiant and in the compliant case, an appealing strategy for the party deploying
the classifier is to compensate for the effect of recourse by changing their classifier in a way that maintains
the original decision boundary. This implies that all users get classified exactly the same way as without
recourse, and the only effect of recourse is to change the conditional distribution of Y. For instance, in a bank
loan setting, the same customers would get the loan, but some customers might be required to reduce their
probability of defaulting before getting it.

Rp(f) =0.09  Rg(f) =0.30 Rp(f) =019  Rg(f) =0.26 Rg(f) = 0.33

Figure 3: From left to right: Moons, Circles and Gaussian datasets. The left image for each shows the
classifications with gradient boosted trees; the right image shows the effect of giving recourse.



Table 2: Estimated risks on real data sets. Lower risk is bold.

Credit data Census data HELOC data

Wachter GS CoGS Wachter GS CoGS Wachter GS CoGS

Rp Rg Rp Rg Rp RQ[RP Rg Rp Rg Rp RQ[RP Rg Rp Rg Rp Rq
LR 0.17 0.05 0.17 0.05 0.17 0.04|0.21 0.29 0.21 0.33 0.21 0.32]0.29 0.41 0.29 0.41 0.29 0.44
GBT 0.06 0.06 0.06 0.07 0.06 0.07|0.15 0.04 0.15 0.23 0.15 0.33{0.20 0.21 0.20 0.25 0.20 0.37
DT 0.29 0.12 0.29 0.05 0.29 0.05|0.23 0.21 0.23 0.43 0.23 0.45|0.19 0.25 0.19 0.21 0.19 0.31
NB 0.11 0.06 0.11 0.06 0.11 0.07(0.19 0.78 0.19 0.76 0.19 0.81|0.29 0.44 0.29 0.43 0.29 0.48
QDA 0.12 0.06 0.12 0.06 0.12 0.07(0.20 0.78 0.20 0.75 0.20 0.82|0.32 0.46 0.32 0.47 0.32 0.52
NN(4) 0.06 0.06 0.06 0.07 0.06 0.06(0.16 0.26 0.16 0.25 0.16 0.26|0.29 0.47 0.29 0.46 0.29 0.50
NN(4, 4) 0.06 0.06 0.06 0.07 0.06 0.07 |0.15 0.30 0.15 0.27 0.15 0.30|0.29 0.47 0.29 0.47 0.29 0.51
NN(8) 0.06 0.06 0.06 0.06 0.06 0.07 |0.16 0.34 0.16 0.33 0.16 0.33|0.28 0.44 0.28 0.46 0.28 0.51
NN(8, 16) 0.06 0.06 0.06 0.07 0.06 0.07 |0.15 0.36 0.15 0.34 0.15 0.36|0.27 0.42 0.27 0.45 0.27 0.46
NN(8, 16, 8) |0.06 0.06 0.06 0.07 0.06 0.07 |0.15 0.36 0.15 0.34 0.15 0.36|0.27 0.42 0.27 0.45 0.27 0.46

6 Experiments

In addition to our theoretical results, we perform several experiments that showcase the possible increase in
risk by providing recourse. We conduct these on synthetic data and real data. In both cases we generate Y
according to the compliant setting, and recourse is provided for all x( that are classified as class —1. Further
details for all the experiments are available in Appendix

6.1 Synthetic Data

The synthetic data consist of the 3 datasets shown in Figure 3, all in 2 dimensions: a Moons dataset, which
consists of two translated semi-circles with Gaussian noise; a Circles dataset, which consists of two nested
circles with Gaussian noise; and a final dataset consisting of 2 Gaussians with different means and covariances.
Counterfactuals for ¢(zg, z) = ||z — xo|| were computed by a brute force search to find the closest point z
with f(z) = 41 from a dense grid over X'.

A summary of the estimated risks for a variety of classifiers can be seen in Table |. We observe that the risk
increases in all cases with the exception of logistic regression on the Circles dataset. This happens because
logistic regression has a linear decision boundary, which is severely inappropriate for this data. Without
recourse, almost half of the class 41 is misclassified, because the linear boundary cuts both circles. If the
points of the outer circle, which are of class —1, are projected onto this line, a large portion will land inside
the inner circle, where the conditional probability of class +1 will be significantly larger than %

6.2 Real Data

For the real datasets we use the Give me Credit, Census Income, and Home Equity Line of Credit (HELOC)
datasets, from the CARLA Python package (Pawelczyk et al., 2021). All features were normalized to [0, 1].
We compare various classifiers, and 3 counterfactual methods: Wachter’s method (Wachter et al., 2017),
the Growing Spheres method (Laugel et al., 2017), and Counterfactual Genetic Search (CoGS) (Virgolin
and Fracaros, 2023). The main challenge on real data is that we do not have access to the true conditional
distribution, P(Y | Xy). This distribution is needed to sample Y after obtaining X = ¢(X) through recourse.
To circumvent this issue we reserve a large portion of the data to train a calibrated classifier for the conditional
probabilities.

A summary of the estimated risks can be seen in Table 2. Again, we see that in most cases the risk increases.
Most exceptions occur in the Credit dataset. A possible explanation here is that the classes are very unbalanced,
with class —1 appearing only 6.8% of the time. This may lead to low precision P(Y = —1 | f(Xo) = —1),
because there are many positive examples that can be misclassified as negative. Since the precision should
be high in order to satisfy the condition in (7), as we have P(Y = —1 | f(Xo) = -1,B=1) = P(Y =
—1| f(Xo) = —1) by giving recourse to every point, this opens up the possibility that recourse improves the
risk.

7 Conclusion

We demonstrated, analytically and empirically, that in many cases the risk will increase when recourse is
provided. This implies that recourse can be harmful at the population level, and therefore for a large group
of users. In such cases, alternative types of explanations might be called for. One interesting alternative
direction is the existing work on contestability, which addresses the question of whether an algorithmic
decision is correct according to common sense, moral or legal standards (Freiesleben, 2022). As a possibility
for future work, our framework might be extended by also accounting for the cost incurred by the users when



implementing recourse, e.g. by adding a scaled version of ¢(Xo, X) to Rg(f). Assuming positive costs, this
would make recourse even less appealing, and lead to the conclusion that it is harmful in an even larger number
of cases. Another extension, which would be more interesting to explore, would be to apply our framework in
cases where the users and the party deploying the classifier have different loss functions. Then the relation
between f and Bayes-optimal decisions for the user’s loss would be broken, which might lead to different
conclusions.
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A Proofs of Section
Recall that, for any xo € X, we choose

p(xg) € argmin  c¢(zo,2).
z€X: f(z)=+1

Lemma 6. Assume that {z € X | f(z) = +1} is a closed subset of R, and that for any fixed xo, (o, 2) is
increasing with ||xg — z||. Then p(xo) belongs to the boundary of {z € X | f(z) = +1} forall xy € X such
that f(xg) = —1 and p(x0) = o if xo belongsto {z € X | f(z) = +1}.

Proof. First, we remark that c¢(zo, 2) is minimized by z = x¢, whenever xy € {z € X' | f(z) = +1}, which
shows that p(xg) = xo forall zgin {z € X' | f(z) = +1}.

Moving towards the case of g such that f(z¢) = —1. Letus setx; = ¢(xp) and A = {z € X' | f(2) = +1}.
By contradiction, assume that 1 does not belong to the boundary of A. Since by construction z; € A, then
we must have 27 € A°, the interior of A. Therefore, there exists p > 0 such that the open ball B(x1, p) is
fully included in A. Let us construct x», the intersection point between segment [z, ] and the closed sphere
centered at « of radius p/2. We know that x2 € A, and

|20 — 2|l = [|wo — 21| — p/2 < |lT0 — 21 -

Since ¢(xg, z) is increasing with ||z¢ — z||, ¢(xo, x2) < ¢(zg, z1). This contradicts the definition of z1 and
concludes the proof. O

B Further Details for Section

Before we start the proof of the main result in Section 3, we will introduce notation and some additional results.
The conditional distributions of Y given X, will be denoted by

pr(@) =PY =+1|Xo=2)=1-PY =-1|Xo=2)=1—p_(z).

Now, we will prove a general result about expressing the risk under @, of which Theorem 1 is a consequence.
Every expectation E will be with respect to P in this section.

Lemma 7. Let £ be a loss function with {(y,y) = 0, and assume the setting of Section (i.e., (1), (2), (3)).
Suppose that P(Y = 1| Xy =z) = %for all x on the decision boundary of f. Then

(a) For the defiant case,
Rq(f) =1, -1)P(Y = =1DE[r(Xo)[Y = 1] + E[(1 — r(X0)){(f(X0), Y)]; (9

(b) For the compliant case,
Rq(f) =41, —1)E [r(Xo)p—(¢(X0))] + E[(1 — r(Xo))l(f(X0),Y)]. (10)

Proof. Before distinguishing between the 2 cases, we expand the expression for the risk under @ as

Ro(f) = / ((f(2), 9)Qdy | 2 20)Q(dzfeo) P(do)
X2xY

- / r(20)0(f ((z0)), 1)Q(dy | @(0), 20) P(do)

X XY

+ / (1= r(20))((f (x0), y)P(dy | x0) P(dxo)

XXY

=((1, —1)/r(m0)Q(Y = —1] p(xg), z0)P(dxo) (since f(p(z0)) = 1)
X
+E[(1—7(Xo0))(f(Xo), Y)].

We focus now on the integral in the first term.
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Defiant Case: The first term in the expression in the above display becomes

/ F(20)Q(Y = 1 | (o), 20) P(dao) = / F(20) P(Y = —1 | ) P(dao)

X

X
=PY =-1) | r(zo)P(dxo | Y = —1)
/
=PY=-1DE[r(Xo)|Y =-1].

Compliant Case: The first term now becomes

/ r(20)Q(dy | (o), z0) P(dzo) =

X

r (o) P(dy | ¢(x0)) P(dzo)

r(z x0))P(dzg)

J e
— [ )P = =1 plan)) Pldan)
= [ o)

X
X
X

E [r(Xo)p-(¢(X0))] -

We are now ready to prove Theorem 1.

Theorem 1 (Bayes-Optimal Classifier Risk Increase). Let ¢ be the 0/1 loss, and assume the setting of
Section 2.2 (i.e., (1), (2), (3)). Suppose that P(Y = 1|Xo =z) = 3 L for all x on the decision boundary of f.
Then

(a) For the defiant case,
Ro(fp)=P(B=1Y =-1)-P(B=1,[fp(Xo) #Y) + Rp(fp) = Rp(fp); 4
(b) For the compliant case,
Ro(fp) = 3P(B =1, fp(Xo) = —1) = P(B =1, fp(Xo) = -1,Y = 1) + Rp(f})
> Rp(fp)- )

Both inequalities are strict if P(B = 1, f5(Xo) = —1) > 0, i.e. if the probability of recourse in the negative
class is non-zero.

Proof. For both cases, we will first prove the equality and then show that the expectation is always non-negative
for the inequality. From those proofs it can be seen how the strict inequality is derived. We apply Lemma 7 to
both cases. Remark that £(1, —1) = ¢(—1,1) = 1 and rewrite the common term as

E[(1 —7(X0))l(fp(X0),Y)] = Rp(fp) — E[r(Xo)L (fp(Xo) # Y)]

= Rp(fp) — P(B =1, fp(Xo) #Y). (11)
Defiant Case: In this case, we rewrite the first term in (9) to get
PY =-1E[r(Xo)]Y = -1 =E[r(Xo)1(Y = -1)]. (12)
Combining expressions (I 1) and (12) gives the result,
Rq(fp) = E[r(Xo)(L(Y = —1) = 1(fp(Xo) # Y))| + Rp(fp) (13)

—P(B=1Y = —1)— P(B=1,f3(X) #Y) + Rp(f}).
It remains to show that the difference of the first two probabilities is positive. We return to the formulation in
terms of expectations and indicator functions. We can rewrite the indicator functions in (13) as

By =) = 1fp(an) #4) =y = —1) ~ ((J3e0) = Ly = 1) +10z(aw) = Ly =)
= 1(fp(r0) = ~Ly = ~1) = 1(fp(r0) = ~L,y = 1)
= 1(fp(r0) = ~)(Aly = ~1) ~L(y = 1))
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The expectation in (4) now becomes

/ r(20)(1(y = —1) — 1(fp(z0) # 1)) P(dzo, dy)

XxYy

- / rzo)(A(y = —1) — 1(y = 1))P(dy | X = z)P(do)
{fp=—1}xY

= [ o)) ~ pi(a0)) P, (14)
{fp=-1}
Now, by f being the Bayes optimal classifier we know that p_(z¢) > p4 (o) for all zg on {f} = —1}. So,
we see that the integral in (14) is non-negative.

Compliant Case: We note that p (p(z0)) = p—(p(20)) = 3 for any z¢ with f}(20) = —1, because those
points are projected onto the decision boundary by assumption (3) and Lemma 6. The points on the decision
boundary of the Bayes classifier are exactly where the probability of being either class is %, by assumption.
The first expectation in (10) can now be written as

E[r(Xo)p—(¢(Xo))] = 3E[r(Xo)1(fp(Xo) = —1)] + E[r(Xo)p- (Xo)1(f5(Xo) = +1)]
=3P(B=1,fp(Xo) = -1)+ P(B=1, fp(Xo) = +1,Y = -1).  (15)

We note that the second probability in (15) cancels the second probability (1 1) partly. First we write the latter
probability as

P(B =1, f5(Xo) #Y) = P(B =1, f3(Xo) = 1,Y = —1)
+P(B=1,fp(Xe)=-1Y =1).
Subtracting both probabilities gives
P(B =1, f5(Xo) = 1,Y = 1) = P(B =1, f3(Xy) £ Y)
=—-PB=1,fp(Xo)=-1,Y =1).
Substituting (15) and (1 1) into the expression for R (f}5) gives
Ro(fp) = E[r(Xo)p—(¢(Xo))] + E[(1 — r(X0))l(f(X0),Y)]
=E [r(Xo)p-(¢(Xo0))] + Rp(fp) = P(B =1, fp(Xo) #Y)
— LP(B =1, [5(Xo) = —1) - P(B =1, f3(Xo) = —1,Y = 1) + Rp(f}).

To derive the necessary inequality, we focus again on the first two probabilities and write this explicitly as an
integral. This integral is given by

LP(B =1, f3(Xo) = —1) - P(B =1, fp(Xo) = ~L.Y = 1)

- / r(z0) (4 — ps (0)) P(dixo)
{fp=-1}
>0

Where we have used that the on the set {zg € X' | f}(zo) = —1} it must be that p (zo) < 3, because f} is
the Bayes classifier.

The strict inequality follows by remarking that the difference of the integrand in both integrals of the defiant
and compliant case will be strictly positive on some positive probability set, if P(B =1, f5 = —1) > 0. O

B.1 Additional Details Gaussian Example in Section
In Section 3.1 it is claimed that the Bayes risk can be written as Rp(f5) = ®(—3|u — v|s-1). Here, we
show this and additionally derive the Bayes optimal classifier for general y, v € R,
The conditional distribution can be calculated explicitly

P(Y = 1)e"3@=w =" (@=n)
PY =1)e 2l@-mT 2 @) 4 p(y = —1)e-2(@) 87 (@-v)

1

T 4@ T g lully o = IvIE_0)

PY =1|Xo=2)=
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From this we see that for § = X~ (u — v) and g = — 1 (||ul|4-. — [[¥[|%-.) the Bayes classifier is given by
f5(z) = sign(z "6 + 6y). We can now calculate the Bayes risk by first rewriting this risk as
Rp(fp) = 5P(fp(Xo) = =11V =1) + 5P(fp(Xo) = 1]V = -1)
=1iP(Xg0+00<0]Y =1)+1P(XJ0+6,>0|Y =-1). (16)
As X, is Gaussian, conditional on Y, we know that XOT 0 + 0y is also Gaussian. For Y = 1, we get

N ("0 + 0o, 0]%-,) and for Y = —1 we get N'(v "6 + 6o, [|0]|%_, ). Translating and rescaling allows us to
rewrite the probabilities in (16) in terms of the CDF & of the standard normal distribution,

—u'6—0
«H&W+ﬂﬂwlY=D:®(1M|o>
»-1

:(I)(—nun o S (R ||v||§_1>>

[l — ’/||z—1

—3llp— w3
=9 () = @(—Lfu—vls)-
i —v|s 2

Analogously, we would get
P(XJ0+60>0]Y = 1) = (=4[~ v|5-1).

Combining the two probabilities gives the desired result.

C Proofs of Section
In this section we present all the previous and additional results of Section 4.

C.1 Proof of Theorem

Theorem 2 (Probabilistic Classifier Risk Increase, 0/1 loss). Let £ be the 0/1 loss. Let g : X — [0,1] be a
continuous, probabilistic classifier, and define f(x) = sign(g(z) — 3). Assume (1), (2), (3) from Section
Then,

(a) For the defiant case,
Ro(f)=P(B=1Y=-1)-PB=1,f(Xo) #Y) + Rp(f).
Moreover, Ro(f) > Rp(f) if and only if
P(Y =-1|B=1,f(Xo)=-1)> 3. ©6)

If we additionally assume that g satisfies (B) with 0 < ¢ < , then
(b) For the compliant case, Rq(f) is lower and upper bounded by
(3 +e)P(B=1, f(Xo) = —1)+ P(f(Xo) = +1,Y = —1)
+P(B=0,f(Xo)=-1,Y =1).
Moreover, Rg(f) > Rp(f) if
PY=-1|B=1f(Xo)=-1)> 1% +e. (7

Proof. Defiant Case: We again use Lemma 7 which gives us
Ro(f) =P =-1)E[r(Xo) | Y = 1] + E[(1 — 7(Xo)L(f(Xo) # Y)]
=PY =-1,B=1)+P(f(Xo) #Y) - P(f(Xo) #Y,B =1)
=P(Y =-1,B=1) - P(f(Xo) #Y,B =1) + Rp().

To derive the second claim, we upper bound Rp(f) by Ro(f). We see that the Rp(f) term drops on both
sides and we are left with

P(f(Xo)#Y,B=1)< P(Y =—1,B=1)
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We expand the terms
P(f(Xo) #Y,B=1) = P(f(Xo) = 1,Y = —1,B = 1) + P(f(Xo) = —1,Y = 1, B = 1)
PY=-1,B=1)=P(f(X9)=1,Y=-1,B=1)+ P(f(Xo) =-1,Y =-1,B=1),
Again, cancelling the common terms gives us
P(f(Xo)=-1Y =1,B=1) < P(f(Xo) = -1,Y = ~1,B =1)
P(Y =1 f(Xo) = —1,B=1) < P(Y = —1| f(Xo) = =1,B=1)
P(Y = 1] f(Xo)= -1, B=1) > L.

Compliant Case: We apply Lemma 7. Note, that Assumption B and Lemma 6 tell us that on the set
{zo € X | f(wo) = —1} we have that £ — e < p_((Xp)) < % + ¢ in expectation. For the first expectation
we get the upper bound

E [r(Xo)p-(¢(Xo))] = E [r(Xo)1{f(Xo) = —1}p—((Xo))] + E [r(Xo)1{/f(Xo) = 1}p_(Xo)]
< (3 +e)P(f(Xo) =-1,B=1)+P(f(Xo) =LY =-1,B=1).
Analogously, for the lower bound we get
E[r(Xo)p-(¢(X0))] > (3 —e)P(f(Xo) = —1,B=1) + P(f(Xo) = 1,Y = —-1,B=1).
We write the second expectation as follows in this case,
E[(1 — r(Xo))l(f(X0),Y)] = P(f(Xo) # Y. B =0).
This leaves us with
Ro(f) < (5 +e)P(f(Xo) = -1,B=1)+ P(f(Xo) =1,Y = -1,B =1)
+P(B=0,f(Xo)#Y)
< (3 +e)P(f(Xo) = -1, B =1)+ P(f(Xo) = 1,Y = —1)
+P(f(Xo)=-1L,Y=1,B=0). (17)
Similarly, for the lower bound we get
Ro(f) = (3 —e)P(f(Xo) = —1,B=1)+ P(f(Xo) = 1,Y = —1)
+ P(f(Xo) =-1,Y =1,B=0) (18)
Combining expressions (17) and (18) gives the desired lower and upper bound.
We move to the second claim. This time, we upper bound Rp(f) by the derived lower bound. This gives us

P(Y =1, f(Xo) = 1) < <l —)P(f(Xo) = —1,B =1)

P(f(Xo)=-1,Y =1,B=0)
P(Y:l,f(Xo):—l,le)g( —e)P(f(Xo)=-1,B=1)
P(Y =1| f(Xo)=-1,B=1) < (5 —¢)
P(Y =-1|f(Xo)=-1,B=1)> (3 +¢)
O
C.2 Proof of Theorem
Theorem 3 (Probabilistic Classifier Risk Increase, Surrogate Loss). Lez ¢ : [0,1] x {—1,+1} — R be

any loss such that £(1/2,—1) = £(1/2,+1) = c for some constant c. Letg: X — [0,1] be a continuous,
probabilistic classifier, and define f(x) = sign(g(z) — ). Further assume (1), (2), (3) from Section 2.2. Then,
both for the defiant and for the compliant case, we have Ro(g) > Rp(g) if and only if

K U(9(X0),Y) | f(Xo)=-1,B=1]<ec. 8
(Xo,Y)~P [ (g< 0)) ) | f( 0) , ] <ec ( )
B~Bernoulli(r(Xo))
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Proof. Let I = 1{f(Xy) = —1, B = 1} be the indicator for recourse in the negative class. Then, since
©(Xo) lies on the decision boundary (DB) when X is in the negative class,

Rolg)= E [l(g(X)Y)]

(XY~
= ol eI+ E | [Hg(X),Y)(1 - 1))
= W E A2+ (B [Hg(X0). Y)(1 = D) (¢(Xo) on the DB)
=cP(f(Xo) =—LB=1)+ E _ [((g(X0),Y)(1- D) (by definition of ¢)
> Ell(g(Xo). V)T + B [g(Xo0),Y)(1 - 1)]
= Rp(9),

where the inequality is equivalent to (). O

D Additional results and proofs for Section

D.1 Examples of classifiers invariant under recourse

Let us justify more rigorously the linear classifier example introduced in Section 5.

Example 1. Consider the set of linear classifiers F = {fg g, (7) = sign(z "0 + 6) | 0 € R, 0y € R} with
the convention that sign(z) = +1 for z > 0 and sign(z) = —1 otherwise. If the recourse map is such that any

point xy within distance D > 0 of the decision boundary of fy g, gets mapped to the positive class, then this
class is invariant under recourse, because

fo.0,((fo.01570)) = fo.0,(x0)  forallwg € X

when 0 = 0y — D||0]|. To see this, note that the (signed) distance from z to the decision boundary for fj g,
is %. Hence the following are all equivalent:
fo.0,(0(fo,01,70)) = +1
_,Tp_p
290 — 05 <D
161l

zq 0+ 0y > —D| 0]

200 +00 >0

fo.00 (z9) = +1.

One can extend this idea to other geometrical shapes:

Example 2. Consider the spherical classifiers for which fy ;(x) = +1 if and only if ||z — 6]|| > b. Then the
set F = {fop | 0 € R4 b € Ry} is invariant under recourse when the recourse map is again such that any
point ¢ in the negative class that lies within distance D > 0 of the decision boundary of fg ; gets mapped to
the positive class. This follows because providing recourse has the effect of effectively shrinking b by D, so
we can undo this effect by increasing b to ¥’ = b+ D:

f@,b/(@(fayb/,x())) = fg,b(ito) for all X € X.

D.2 Proof of Theorem

Theorem 4 (Strategizing in the Defiant Case). Let ¢ be the 0/1 loss, assume (1), (2), (3) from Section
with r(xo) € {0,1} for all xg € X, and suppose F is invariant under recourse. Then, providing recourse in
the defiant case does not change the risk when the party deploying the classifier strategizes to minimize their
risk over F:

JJf}ggRQf(f) = }Ig;lRp(f)-
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Proof. Note that in the defiant case Q(Y | Xo) = P(Y | Xp). We write

min Ro (f) = min i o, [€(f(X),Y)]

_%lg(xo,g)wa[( (Spf(XO))a Y]
)

= ?22 (Xo,@)~P[ (flef(Xo)),Y)] (By defiant case)
= fnelgl (X0715)NP[ (f(Xo0),Y)] (by definition of F,)
=min E [/(f(Xo),Y)] (since F = F,)

fEF (X0,Y)~P

gggRQf(f) = gcrgng(f%

D.3 Explicit v bound

Example 3. Let us further specialize the setting of Example | to the task of distinguishing between two
Gaussians with different means p, v € R? and common positive definite covariance matrix Y. That is, let
P(Y = —1) = P(Y = +1) = 1/2, and the data is distributed according to P(X,|Y = +1) = NM(y,X) and
P(XolY = =1) = N(v,%). Then f = fg9, for 6 =S (u—v)and 6y = =% (u+v) 'S (u —v) is the
Bayes optimal classifier. See Section for a justification. The compensating classifier is given by f/' = Jo.o;
for 6 = 6y — D||6||. Then recourse for f” affects users in a band of width D||#|| which lies just in the positive
class according to f:
A={z:0<2"04+6, < D|9|},

and
=/ Y = 1| Xo = 20) ~ P(Y = ~1| Xo = op(20)) } P(d)
A
_ _ o B _ o [(=)
A
Again by Section B. 1, we can write the posterior distribution as
1
P(Y = 71|X0 = :L') = 1 +69TI+907

Now, we write

To(f @0) +60=0"azo+ 0 — ()" (ﬁéﬁg@)

:9T$0+90+1,

since f/(wg) = —1. Thus, 0T ¢/ (x0) +6 > 6z + 0. Since the mapping ¢ — 1/(1 + exp(t)) is decreasing,
we deduce that v > 0 in this case.

D.4 Proof of Theorem

Theorem 5 (Strategizing in the Compliant Case). Let £ be the 0/1 loss, assume (1), (2), (3) from Section
and suppose F is invariant under recourse. Let vy be as in Definition . Then, the risk after providing recourse
in the compliant case can be bounded in terms of the risk without recourse when the party deploying the
classifier strategizes to minimize their risk over F,

. < / — . _
Ij}ggRQf(f) < Rq, (f') ?gg__lRP(f) 7,
where f' is as in Definition I.

Proof. As in the defiant case, the proof considers the strategic choice f’, which compensates for the effect
of recourse in order to maintain the same decision boundary as in the case without recourse. The effect of
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recourse is then only to change the distribution in a way that is captured by Definition |. We first notice that
minger Rq,(f) < Rq,, (f') holds because f’ € F. Then we write

Ro,(f) = B, [0(X), )
= (xo g, [ (s (X0)), )
= (X(J,Y]%NQW [g(f(XO)y Y)]
N (XU@)NPWJ((XO% Y)] -~ (definition of )

Rq, (f) =min Rp(f) —7.

E Details Experimental Setup

All the code to reproduce the experiments and figures in this paper is available in a GitHub repository . file
provided with the supplementary material. All experiments were performed on a single 32-core CPU node
(AMD Rome 7H12) with 64GB of RAM. For all experiments we used the following classifiers from the
scikit—-learn (version 1.0) library:

* LogisticRegression, with the default parameters, except for
class_weigt="balanced’.

* GradientBoostingClassifier, with the default parameters, except for
n_estimators=10.

* DecisionTreeClassifier, with the default parameters, except for
class_weigt='balanced’ and max_depth=4.

* GaussianNB, with the default parameters.

* RandomForestClassifier, with the default parameters except for
class_weigt="balanced’, max_depth=4andn_estimators=10.

* QuadraticDiscrimantAnalysis, with the default parameters.

* MLPClassifier, with the default parameters and hidden layers,
hidden_layer_sizes=(4,).

* MLPClassifier, with the default parameters and hidden layers,
hidden_layer_sizes=(4, 4).

* MLPClassifier, with the default parameters and hidden layers,
hidden_layer_sizes=(8,).

* MLPClassifier, with the default parameters and hidden layers,
hidden_layer_sizes=(8, 16).

* MLPClassifier, with the default parameters and hidden layers,
hidden_layer_sizes=(8, 16, 8).

The amount of time the experiments need to be run in fill was too long to run multiple iterations to generate
error bounds on the estimated risks presented in Tables | and 2. To circumvent this issue, we upper bound
standard error by 2\/%, as the outcome of the risk is in the bounded interval [0, 1]. If the estimated risk

before and after recourse is within this error, we highlighted both the risks.

E.1 Synthetic Data

For each of the synthetic data experiments, we generated 5000 training samples and 1000 test samples with
balanced classes, i.e. P(Y = +1) = P(Y = —1) = +. Examples of the results of these experiments can be
found in Figures 4, 5, and

Zhttps://github.com/HiddeFok/consequences-of-recourse
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 https://github.com/HiddeFok/recourse-robust-explanations-impossible 

Moons dataset The Moons dataset is acquired through the make_moons function from scikit-learn.
A data point X is sampled by first discretizing [0, 7r) uniformly and drawing one of these points U uniformly,
without replacement. Then, sample ¢ ~ N(0, 0% I3) and construct X by setting

Xo=s(U)+e= {Z?E((g))] +e forY = +1
Xo:=c(U)+e= [i:‘;ﬁfég;] - B] te forY = —1.

For our examples we selected o = 0.2.

To re-sample the label Y after providing recourse we calculate the conditional distribution of this model. Let, p
be the density of €. Then, the density of Xy | Y = 41 and X, | Y = —1, denoted by g and g_ respectively,
is given by

gelan) = = [ ol = stu))an

g— (o) = 71r/07r p(xo — c(u))du.

In our implementation this integral is approximated by a Riemann sum. The conditional distribution now
follows,
g+ (zo) P(Y =1) 9+ (x0)
PY=1|Xo=a0) = — )
9+(20) P(Y =1) + g—(20) P(Y = =1) g4+ (20) + g (20)

Circles dataset The Circles dataset is acquired through the make_circles function from
scikit-learn. A data point X is sampled by first discretizing [0, 27) uniformly and drawing one of

these points U uniformly, without replacement. Then, sample ¢ ~ N(0, 0%13), set A € (0, 1) and construct X
by setting

Xo=As(U)+e=A [Z?S((g))} +e forY = +1
Xo=s(U)+e= [‘;’;Egﬂ te forY = —1.

For our examples we selected o = 0.2 and A = 0.6.

To re-sample the label Y after providing recourse we calculate the conditional distribution of this model. Let,
p be the density of . Then, the density of Xy | Y =1 and X, | Y = —1, denoted by ¢, and g_ respectively,
is given by

g+ (x0) = %/0 Trp(gco — As(u))du,
2m
g—(z0) = %/o p(zo — s(u))du.

In our implementation this integral is approximated by a Riemann sum. The conditional distribution now
follows,

g+ (wo)P(Y =1) _ g+ (20)
g (x0)P(Y =1) + g (20)P(Y = =1) g4 (20) +g—(w0)

P(Y:1|X0:£L‘0):

Gaussians dataset The Gaussian data points are sampled from 2 Gaussians with different means y, v € R?
and different covariances ¥, ¥_ € R2%2,

XY =+1 NN(ﬂszr)
X|Y=-1~N(u2X,).
The densities of the 2 conditional distributions are given by

1 1 Te-1
_ ~ L (@o—m) "S5 (w0—1)
g+(IIZ’0) 271"24,‘6 2
1 1 Ty—1
_ —5(zo—v) X (zofu).
go(l‘o) 27T‘27|e
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Table 3: Details of the datasets used during the experiments
Credit data Adult data HELOC data

P(Y = +1) 0.932 0.239 0.480
P(Y =-1) 0.068 0.761 0.520
Neond train 40000 30000 5000
Neond calib 10000 10000 2000
Nigain 5000 5000 5000
Nieg 1000 1000 1000

The conditional distribution is given by the odds between the densities of the 2 gaussians

_ _ _ 9+ (o)
PRV =1%o = 0) = 9—(z0) + g+ (20)

E.2 Real Data

Here, we describe how the experiments for the real data was performed.

Conditional distribution estimation As mentioned before the main challenge with real data is that we do
not have access to P(Y | Xj). To circumvent this, we estimate this function as well as possible, by reserving
most of the data to train a calibrated classifier. N.ong rain are used to train this classifier and Ngng calip are used
to calibrate this classifier. The exact values of the data splits are given in Table 3. Furthermore, we perform a
grid search over a large set of parameters using cross validation to find the best performing calibrated classifier.
The parameters in the grid search are

* learning_rate: {0.05,0.15},
* n_estimators: {10,20,60},
* subsample: {0.8,0.9,1},

* max_depth: {1,2,3}.

As a base classifier we use the GradientBoostedClassifier from scikit—learn and we use Platt
scaling (Platt et al., 1999) to calibrate the probabilities.

Classification and Recourse After a conditional distribution is estimated for each dataset, we train the same
set of classifiers as for the synthetic data on Vy,;, different data points. Then, counterfactuals are generated
using the different methods and using the trained conditional estimated distribution a new class label is sampled
for the position at the counterfactual point. The estimated risk is then calculated for the dataset before and
after recourse is provided.
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Rp(f) =013

Rq(f) =0.33

Rp(f) =013

Rq(f) =0.33

Rp(f) = 0.08

Rq(f) =0.30

-

Rp(f) =013

Rq(f) =0.33

Rp(f) = 0.08

Rq(f) =029

Rp(f) =004

Rq(f) =026

Figure 4: Examples of the effect of giving recourse with various classifiers on the Moons data set. From left to
Right, Top to Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).

Rp(f) =051  Rq(f) =034 Rp(f) =017  Rq(f)=0.16

\.\-'\ | | | \.\-.\ | | | \.\.\ | | |
Rp(f) =017  Ro(f)=0.16 Rp(f)=019  Ro(f) =023 Rp(f)=016  Ro(f) =0.18

Figure 5: Examples of the effect of giving recourse with various classifiers on the Circles data set. From left to
Right, Top to Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).

Ro(f) =034

Ro(f) = 0.28

Rp(f) =0.15

Figure 6: Examples of the effect of giving recourse with various classifiers on the Gaussians data set. From
left to Right, Top to Bottom: LR, QDA, GBT, NB, DT, NN(8, 16).
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