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Abstract—In this work, a new solution for the automatic
recognition of relative changes in mental workload is proposed.
Wearable sensors were used to collect EEG, EDA, PPG and eye-
tracking data from 26 human subjects while performing the n-
back task with three difficulty levels n ∈ {1, 2, 3}. The objective
is to recognize whether the mental workload is increasing,
decreasing or stable by comparing the current signals’ window
with a previous one. The proposed 3-class classifier uses mainly
CNN layers with a novel merging layer that systematically
captures the interactions between local segments of the two
inspected windows. In fact, it is inspired by the competitive
success of both transformer- and CNN-based networks in time
series classification. While the proposed solution exploits the
efficiency of CNN networks, it also enjoys, similar to trans-
formers, the capacity of capturing the interactions between local
events of the sequence thanks to the proposed merging layer.
In terms of accuracy, experimental results show the superiority
of the proposed solution over classical CNN, BiLSTM and
transformer networks on eye-direction, PPG and EEG data while
its performance is comparable with the transformer networks on
eye-pupil-diameter and EDA data. The average training time per
epoch is considerably smaller than the ones of transformer and
BiLSTM networks as shown in the experimental results.

Index Terms—Mental workload (MWL), deep neural networks
(DNNs), time series classification (TSC), eye-tracking, photo-
plethysmogram (PPG), electroencephalogram (EEG), electroder-
mal activity (EDA), n-back task, transformer neural network,
convolutional neural network (CNN).

I. INTRODUCTION

The concept of mental workload (MWL) describes the
ability of a human operator to supply the resources required
by a task [1]. Thus, given the complexity of the task and
the ability of a human operator to handle it, mental workload
can range from underload, normal load to overload [2]. The
automatic recognition of mental workload represents a hot
research topic with a wide spectrum of important applications

like brain-computer interfaces, driver awareness, mental health
monitoring and human safety in high workload environments
[1], [2], [3].
MWL recognition is generally formulated as a classification
problem [2]. Deep learning solutions for time series classi-
fication have shown extraordinary results in a wide variety
of applications [17]. In fact, after the remarkable success of
transformer neural networks [6] in the domain of natural lan-
guage processing (NLP), transformers have been employed in
time series representation and related applications. Time series
transformers like the Gated Transformer Network (GTN) [9]
and the Time Series Transformer (TST) [11] have achieved
very good results on time series classification, including the
classification of electrophysiological signals. On the other
hand, some variants of CNN networks like ResNet [7], In-
ception [10] and Fully Convolutional Network (FCN) [12]
showed a comparable performance with transformer networks.
For example, FCN outperformed GTN on 5 reference datasets
while GTN performed better on 4 reference datasets [9].
ResNet outperformed GTN on 5 out of 11 reference datasets.
The CNN variant proposed by Franceschi et al. [16] has been
compared with TST on the ECG heartbeat dataset which con-
sists of segmented and preprocessed ECG signals for heartbeat
classification. It showed an accuracy of 0.756%, just 2% less
than the accuracy achieved by the TST transformer. Finally, the
Inception network outperformed TST on the reference dataset
IEEEPPG [13] where the objective is to estimate heart rate
using PPG sensors [11].
Given these competitive results of CNNs and transformers, the
motivation underlying this work is to propose a solution for
the automatic recognition of MWL relative changes exploiting
the efficiency advantages of the CNNs combined with the
capacity of capturing the interactions between local segments



of the time series inspired by the self attention mechanism of
transformers.

II. DATA ACQUISITION

Data were collected from 26 healthy participants using eye-
tracking, EDA, PPG and EEG sensors. Eye tracking data were
collected using Vive Pro Eye HMD with sampling frequency
fs = 120 Hz. In this study, we considered eye pupil diameter
and eye direction data of the left and right eyes. EEG, PPG
and EDA data were collected using the BITalino (r)evolution
Plugged Kit BT with sampling frequency fs = 200 Hz. The
experimental protocol followed the n-back task [4], [3] with
three difficulty levels n ∈ {1, 2, 3}. Participants were asked
to report their subjective assessment of mental workload on
classical ISA scale of 1 to 5. Raw data have been segmented
into 35-second windows. Thus the dimensionality of the
considered modalities are as follows:

• Eye pupil diameter data ∈ R4200×2

• Eye direction data ∈ R4200×6 for both left and right eyes
each with directions on x, y and z axes.

• EEG data ∈ R7000×2 for EEG of the left and right
hemispheres.

• EDA data ∈ R7000×1

• PPG data ∈ R7000×1

Then, pairs of signals have been created with the correspond-
ing labels: increasing, stable and decreasing mental workload.
Note that these pairs have been semi-randomly selected re-
specting two conditions: 1) left and right buffers of each pair
belong to the same subject; and 2) the three classes are equally
represented in the dataset (33.33% of data in each class). The
resultant dataset consists in 468 samples per modality.

III. METHODOLOGY

Time series can be seen as sequences of local events. These
events can be represented in real-valued vectors whose role is
equivalent to token embeddings in NLP. This can be achieved
using fully connected dense layers [11] or 1D convolutional
layers with down-sampling (e.g. using max pooling) as dis-
cussed in [11] and recommended in [14]. We adopt the second
solution in the design of the BiLSTM [8] and transformer [6]
networks.
Let’s illustrate the proposed architectures on the pupil diameter
data as an example. The raw time series is passed through a
CNN, gϕ, as illustrated in Fig. 1. Thus, the raw time series
of pupil diameter data which consists in 4200 time steps
and two channels is converted into a new sequence of local
events with 105 time steps and 16 channels. Note that in the
proposed architecture, the current and previous buffers should
be processed using the same embedding layer gϕ and then
the same BiLSTM/transformer hψ . The BiLSTM/transformer
is not used to compress data but rather to contextualize
the representation using the recurrence mechanism in the
BiLSTM and the self attention mechanism in the transformer.
Therefore, in order to compress the features extracted by
BiLSTM/transformer before passing them to a dense classifier,
a pooling layer is applied.
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Fig. 1. The proposed architecture of the transformer- and BiLSTM-based
classifiers for pupil diameter data: a) the general architecture; b) the CNN
used for preparing the local events’ embeddings.

Here, we describe the proposed solution, namely IG-CNN for
Interaction-Grid-based CNN. The idea underlying IG-CNN is
to combine the advantage of capturing the interactions be-
tween local segments of time series, inspired by transformers,
and the efficiency advantage of CNNs. Fig. 2-a shows the
architecture of the proposed solution. A convolutional network
fθ is used to represent the the current and the previous
buffers X1 ∈ R4200×2 and X2 ∈ R4200×2, as sequences
Y 1 ∈ R17×20 and Y 2 ∈ R17×20 of 17 time steps and 20
features. f(θ) is shown in Fig. 2-b. Theoretically, the inner
product between a column of Y 1 and a column of Y 2 can
capture the similarity between the two corresponding local
segments of the time series X1 and X2 in a similar manner
of deducing the semantic similarity between two tokens from
the inner product of (or the cosine distance between) their
embeddings in NLP. This might be helpful to discriminate
stable MWL from unstable one. However, in the considered
application, we need instead to derive a formula that enables
capturing the change direction (increasing vs. decreasing) of
MWL. To this end, the interaction grid between the features
extracted from the two time series is generated using the
formula Z = (Y 2 −Y 1)(Y 2 +Y 1)

⊺ as illustrated in Fig. 2-
c. The square matrix Z ∈ R17×17 is finally flattened and
passed through a fully connected layer to perform the 3-class
classification.

IV. EXPERIMENTAL RESULTS

A. Experimental configurations

The experiments have been performed on an NVIDIA RTX
A3000 GPU whose compute capability is 8.6. The RAM is 22
GB (6 GB dedicated + 16 GB shared). Keras library has been
used to implement the proposed solutions with TensorFlow
acting as a back-end. The dataset has been randomly split
into a training set (80%) and a test set (20%). The optimizer
RectifiedAdam [15] has been used with the categorical cross-
entropy cost function.
The transformer network contains 4 identical blocks that
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Fig. 2. The proposed solution IG-CNN: a) the overall architecture; b) f(θ) architecture; c) the features matrix Z with systematic inspection of the interaction
between local segments of the previous and the current time-series

follow the original transformer encoder architecture [6]. Each
block contains 4 self-attention heads and a fully connected
layer. The head size is 8 while the size of the fully connected
layer is 15. Residual connections and layer normalization are
used as in the standard transformer encoder [6]. Each block
applies a 40% dropout to fight over-fitting. The implementa-
tion of the transformer network is based on the code in [18].
The BiLSTM [8] consists in 4 bidirectional LSTM [5] layers
with the dimensionality of the output space of each of them
is 8. The entire sequence (not only the last output) is returned
from each of these layers. Thus, the proposed design of both
the transformer and the BiLSTM doesn’t change the dimen-
sionality of the input space. They are used to contextualize the
representation of local segments of time series.
Finally, the the kernel size in the CNNs gϕ and fθ equals
10 while the remaining configurations of these CNNs are
illustrated in Fig. 1 and Fig. 2, respectively.

B. Results

Table. I shows the accuracy of the proposed solution IG-
CNN compared to CNN, BiLSTM and transformer on five
different modalities. IG-CNN shows the best results on all
modalities except the EDA data. Pupil diameter data represents
the most exploitable modality with a high accuracy of 90.5%
using IG-CNN and the transformer. Fig. 3 shows the confusion
matrix resulting from the evaluation of the proposed solution
IG-CNN. The ambiguity between the classes ”increasing” and
”decreasing” is very low with only two false detection cases.
Table. II shows the training time/epoch of the proposed solu-
tion compared to the considered reference networks. Just like
the basic CNN, the required training time/epoch is less than
30% of the time required by the transformer or the BiLSTM.

V. CONCLUSIONS AND FUTURE WORK

An efficient solution for the classification of MWL relative
changes has been proposed. The experimental results have
shown the superiority of the proposed solution over classic

TABLE I
THE ACCURACY (%) OF IG-CNN (PROPOSED) COMPARED TO CNN,

BILSTM AND TRANSFORMER NETWORKS ON 5 MODALITIES.

Neural Data source
Network EYE P EYE D PPG EEG EDA

CNN 86,3 74,1 67,3 72,6 45,2
BiLSTM 88,2 77,6 64,6 73,4 48,3

Transformer 90,5 80,2 66,9 73,8 50,2
IG-CNN 90,5 82,5 77,2 84,4 46,4

Fig. 3. The confusion matrix resulting from the evaluation of the proposed
solution, IG-CNN, on relative MWL recognition using pupil diameter data.

TABLE II
THE TRAINING TIME/EPOCH (MS) OF IG-CNN (PROPOSED) COMPARED TO

CNN, BILSTM AND TRANSFORMER NETWORKS ON 5 MODALITIES.

Neural Data source
Network EYE P EYE D PPG EEG EDA

CNN 759 759 759 759 759
BiLSTM 3135 3135 3927 3927 3927

Transformer 2673 2706 2805 2772 2772
IG-CNN 759 759 759 759 759

CNN, BiLSTM and transformer networks in terms of classifi-
cation accuracy. The training time is considerably smaller than
the ones of BiLSTM and transformer.
In future work, the influence of inter-individual variability will
be analyzed using the leave-one-subject-out cross validation
strategy. In addition, the possibility of creating multi-modal
features will be investigated instead of using each modality
separately.
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