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I. INTRODUCTION

The concept of mental workload (MWL) describes the ability of a human operator to supply the resources required by a task [START_REF] Wickens | Multiple resources and performance prediction[END_REF]. Thus, given the complexity of the task and the ability of a human operator to handle it, mental workload can range from underload, normal load to overload [START_REF] Zhou | Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review[END_REF]. The automatic recognition of mental workload represents a hot research topic with a wide spectrum of important applications like brain-computer interfaces, driver awareness, mental health monitoring and human safety in high workload environments [START_REF] Wickens | Multiple resources and performance prediction[END_REF], [START_REF] Zhou | Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review[END_REF], [START_REF] Beh | MAUS: A Dataset for Mental Workload Assessmenton N-back Task Using Wearable Sensor[END_REF]. MWL recognition is generally formulated as a classification problem [START_REF] Zhou | Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review[END_REF]. Deep learning solutions for time series classification have shown extraordinary results in a wide variety of applications [START_REF] Ismail Fawaz | Deep learning for time series classification: a review[END_REF]. In fact, after the remarkable success of transformer neural networks [START_REF] Vaswani | Attention is all you need[END_REF] in the domain of natural language processing (NLP), transformers have been employed in time series representation and related applications. Time series transformers like the Gated Transformer Network (GTN) [START_REF] Liu | Gated Transformer Networks for Multivariate Time Series Classification[END_REF] and the Time Series Transformer (TST) [START_REF] Zerveas | A Transformer-Based Framework for Multivariate Time Series Representation Learning[END_REF] have achieved very good results on time series classification, including the classification of electrophysiological signals. On the other hand, some variants of CNN networks like ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], Inception [START_REF] Szegedy | Going deeper with convolutions[END_REF] and Fully Convolutional Network (FCN) [START_REF] Wang | Time series classification from scratch with deep neural networks: a strong baseline[END_REF] showed a comparable performance with transformer networks. For example, FCN outperformed GTN on 5 reference datasets while GTN performed better on 4 reference datasets [START_REF] Liu | Gated Transformer Networks for Multivariate Time Series Classification[END_REF]. ResNet outperformed GTN on 5 out of 11 reference datasets. The CNN variant proposed by Franceschi et al. [START_REF] Franceschi | Unsupervised Scalable Representation Learning for Multivariate Time Series[END_REF] has been compared with TST on the ECG heartbeat dataset which consists of segmented and preprocessed ECG signals for heartbeat classification. It showed an accuracy of 0.756%, just 2% less than the accuracy achieved by the TST transformer. Finally, the Inception network outperformed TST on the reference dataset IEEEPPG [START_REF] Zhang | TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise[END_REF] where the objective is to estimate heart rate using PPG sensors [START_REF] Zerveas | A Transformer-Based Framework for Multivariate Time Series Representation Learning[END_REF]. Given these competitive results of CNNs and transformers, the motivation underlying this work is to propose a solution for the automatic recognition of MWL relative changes exploiting the efficiency advantages of the CNNs combined with the capacity of capturing the interactions between local segments of the time series inspired by the self attention mechanism of transformers.

II. DATA ACQUISITION

Data were collected from 26 healthy participants using eyetracking, EDA, PPG and EEG sensors. Eye tracking data were collected using Vive Pro Eye HMD with sampling frequency f s = 120 Hz. In this study, we considered eye pupil diameter and eye direction data of the left and right eyes. EEG, PPG and EDA data were collected using the BITalino (r)evolution Plugged Kit BT with sampling frequency f s = 200 Hz. The experimental protocol followed the n-back task [START_REF] Schmiedek Florian | A task is a task is a task: putting complex span, n-back, and other working memory indicators in psychometric context[END_REF], [START_REF] Beh | MAUS: A Dataset for Mental Workload Assessmenton N-back Task Using Wearable Sensor[END_REF] with three difficulty levels n ∈ {1, 2, 3}. Participants were asked to report their subjective assessment of mental workload on classical ISA scale of 1 to 5. Raw data have been segmented into 35-second windows. Thus the dimensionality of the considered modalities are as follows:

• Eye pupil diameter data ∈ R 4200×2 • Eye direction data ∈ R 4200×6 for both left and right eyes each with directions on x, y and z axes. • EEG data ∈ R 7000×2 for EEG of the left and right hemispheres.

• EDA data ∈ R 7000×1 • PPG data ∈ R 7000×1
Then, pairs of signals have been created with the corresponding labels: increasing, stable and decreasing mental workload. Note that these pairs have been semi-randomly selected respecting two conditions: 1) left and right buffers of each pair belong to the same subject; and 2) the three classes are equally represented in the dataset (33.33% of data in each class). The resultant dataset consists in 468 samples per modality.

III. METHODOLOGY

Time series can be seen as sequences of local events. These events can be represented in real-valued vectors whose role is equivalent to token embeddings in NLP. This can be achieved using fully connected dense layers [START_REF] Zerveas | A Transformer-Based Framework for Multivariate Time Series Representation Learning[END_REF] or 1D convolutional layers with down-sampling (e.g. using max pooling) as discussed in [START_REF] Zerveas | A Transformer-Based Framework for Multivariate Time Series Representation Learning[END_REF] and recommended in [START_REF] Chollet | CHAPTER 6 "Deep learning for text and sequences[END_REF]. We adopt the second solution in the design of the BiLSTM [START_REF] Graves | Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition[END_REF] and transformer [START_REF] Vaswani | Attention is all you need[END_REF] networks. Let's illustrate the proposed architectures on the pupil diameter data as an example. The raw time series is passed through a CNN, g ϕ , as illustrated in Fig. 1. Thus, the raw time series of pupil diameter data which consists in 4200 time steps and two channels is converted into a new sequence of local events with 105 time steps and 16 channels. Note that in the proposed architecture, the current and previous buffers should be processed using the same embedding layer g ϕ and then the same BiLSTM/transformer h ψ . The BiLSTM/transformer is not used to compress data but rather to contextualize the representation using the recurrence mechanism in the BiLSTM and the self attention mechanism in the transformer. Therefore, in order to compress the features extracted by BiLSTM/transformer before passing them to a dense classifier, a pooling layer is applied. Here, we describe the proposed solution, namely IG-CNN for Interaction-Grid-based CNN. The idea underlying IG-CNN is to combine the advantage of capturing the interactions between local segments of time series, inspired by transformers, and the efficiency advantage of CNNs. Fig. 2-a shows the architecture of the proposed solution. A convolutional network f θ is used to represent the the current and the previous buffers X 1 ∈ R 4200×2 and X 2 ∈ R 4200×2 , as sequences Y 1 ∈ R 17×20 and Y 2 ∈ R 17×20 of 17 time steps and 20 features. f (θ) is shown in Fig. 2-b. Theoretically, the inner product between a column of Y 1 and a column of Y 2 can capture the similarity between the two corresponding local segments of the time series X 1 and X 2 in a similar manner of deducing the semantic similarity between two tokens from the inner product of (or the cosine distance between) their embeddings in NLP. This might be helpful to discriminate stable MWL from unstable one. However, in the considered application, we need instead to derive a formula that enables capturing the change direction (increasing vs. decreasing) of MWL. To this end, the interaction grid between the features extracted from the two time series is generated using the formula Z = (Y 2 -Y 1 )(Y 2 + Y 1 ) ⊺ as illustrated in Fig. 2c. The square matrix Z ∈ R 17×17 is finally flattened and passed through a fully connected layer to perform the 3-class classification.

IV. EXPERIMENTAL RESULTS

A. Experimental configurations

The experiments have been performed on an NVIDIA RTX A3000 GPU whose compute capability is 8.6. The RAM is 22 GB (6 GB dedicated + 16 GB shared). Keras library has been used to implement the proposed solutions with TensorFlow acting as a back-end. The dataset has been randomly split into a training set (80%) and a test set (20%). The optimizer RectifiedAdam [START_REF] Liu | On the Variance of the Adaptive Learning Rate and Beyond[END_REF] has been used with the categorical crossentropy cost function. The transformer network contains 4 identical blocks that follow the original transformer encoder architecture [START_REF] Vaswani | Attention is all you need[END_REF]. Each block contains 4 self-attention heads and a fully connected layer. The head size is 8 while the size of the fully connected layer is 15. Residual connections and layer normalization are used as in the standard transformer encoder [START_REF] Vaswani | Attention is all you need[END_REF]. Each block applies a 40% dropout to fight over-fitting. The implementation of the transformer network is based on the code in [START_REF] Theodoros | Timeseries classification with a Transformer model[END_REF].

𝒀 1 = 𝑓 𝞡 (𝑿 1 ) 𝑿 1 ∈ ℝ 4200×2 𝑿 2 ∈ ℝ 4200×2 𝒀 2 = 𝑓 𝞡 (𝑿 2 ) ℝ 17×20 ℝ 17×20 𝒁 = 𝒀 2 -𝒀 1 𝒀 2 + 𝒀 1 ⊤ ℝ 17×17 ℝ 4200×8 ℝ 2100×8 ℝ 2100×12 ℝ 525×12 ℝ 525×16 ℝ 105×16 𝑓 𝞡 ℝ 105×20 ℝ 17×20
The BiLSTM [START_REF] Graves | Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition[END_REF] consists in 4 bidirectional LSTM [START_REF] Hochreiter | Long shortterm memory[END_REF] layers with the dimensionality of the output space of each of them is 8. The entire sequence (not only the last output) is returned from each of these layers. Thus, the proposed design of both the transformer and the BiLSTM doesn't change the dimensionality of the input space. They are used to contextualize the representation of local segments of time series. Finally, the the kernel size in the CNNs g ϕ and f θ equals 10 while the remaining configurations of these CNNs are illustrated in Fig. 1 and Fig. 2, respectively.

B. Results

Table. I shows the accuracy of the proposed solution IG-CNN compared to CNN, BiLSTM and transformer on five different modalities. IG-CNN shows the best results on all modalities except the EDA data. Pupil diameter data represents the most exploitable modality with a high accuracy of 90.5% using IG-CNN and the transformer. Fig. 3 shows the confusion matrix resulting from the evaluation of the proposed solution IG-CNN. The ambiguity between the classes "increasing" and "decreasing" is very low with only two false detection cases. CNN, BiLSTM and transformer networks in terms of classification accuracy. The training time is considerably smaller than the ones of BiLSTM and transformer.

In future work, the influence of inter-individual variability will be analyzed using the leave-one-subject-out cross validation strategy. In addition, the possibility of creating multi-modal features will be investigated instead of using each modality separately.

Fig. 1 .

 1 Fig. 1. The proposed architecture of the transformer-and BiLSTM-based classifiers for pupil diameter data: a) the general architecture; b) the CNN used for preparing the local events' embeddings.

Fig. 2 .

 2 Fig. 2. The proposed solution IG-CNN: a) the overall architecture; b) f (θ) architecture; c) the features matrix Z with systematic inspection of the interaction between local segments of the previous and the current time-series

Fig. 3 .

 3 Fig. 3. The confusion matrix resulting from the evaluation of the proposed solution, IG-CNN, on relative MWL recognition using pupil diameter data.

Table .

 . II shows the training time/epoch of the proposed solution compared to the considered reference networks. Just like the basic CNN, the required training time/epoch is less than 30% of the time required by the transformer or the BiLSTM.

	V. CONCLUSIONS AND FUTURE WORK
	An efficient solution for the classification of MWL relative
	changes has been proposed. The experimental results have
	shown the superiority of the proposed solution over classic

TABLE I THE

 I ACCURACY (%) OF IG-CNN (PROPOSED) COMPARED TO CNN, BILSTM AND TRANSFORMER NETWORKS ON 5 MODALITIES.

	Neural		Data source		
	Network	EYE P	EYE D	PPG EEG EDA
	CNN	86,3	74,1	67,3	72,6	45,2
	BiLSTM	88,2	77,6	64,6	73,4	48,3
	Transformer	90,5	80,2	66,9	73,8	50,2
	IG-CNN	90,5	82,5	77,2	84,4	46,4

TABLE II THE

 II TRAINING TIME/EPOCH (MS) OF IG-CNN (PROPOSED) COMPARED TO CNN, BILSTM AND TRANSFORMER NETWORKS ON 5 MODALITIES.

	Neural		Data source		
	Network	EYE P	EYE D	PPG	EEG	EDA
	CNN	759	759	759	759	759
	BiLSTM	3135	3135	3927 3927 3927
	Transformer	2673	2706	2805 2772 2772
	IG-CNN	759	759	759	759	759