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ABSTRACT
In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers
of neurodegenerative dementias, enormous advancement has taken place in the field, and the
Task Force takes now the opportunity to extend and update the original paper. New concepts
of Alzheimer’s disease (AD) and the conceptual interactions between AD and dementia due to
AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-ana-
lytical sample handling, biobanking, analyses and post-analytical interpretation of the results
were intensively studied and optimised. A global quality control project was introduced to evalu-
ate and monitor the inter-centre variability in measurements with the goal of harmonisation of
results. Contexts of use and how to approach candidate biomarkers in biological specimens
other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development
was achieved in neuroimaging techniques, including studies comparing amyloid-b positron emis-
sion tomography results to fluid-based modalities. Similarly, development in research laboratory
technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and
diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in
clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise
the most reliable early diagnostic modalities. Finally, the first studies were published addressing
the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative
disorders.
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Introduction

The concept of biomarkers in neurodegenerative
disorders

Twelve years after publication of the first WFSBP con-
sensus paper on the biomarkers of dementia disorders
(Wiltfang et al. 2005), the WFSBF Task Force now takes
the opportunity to update this consensus to reflect
the most current state-of-the-art in the field.

Pharmacological treatment strategies for neuropsychi-
atric diseases have been developed in the ‘times of neuro-
chemistry’ and since that time no real new therapeutic
targets have been discovered for dementia disorders,
Parkinson’s disease (PD), depression or schizophrenia, all
of them characterised by high societal and personal bur-
den. However, recent developments have led to define
and test specific and selective biomarkers for the early
detection of neurodegenerative diseases.

The ‘biomarker concept’ includes a variety of pos-
sible research strategies: (a) predictive biomarkers for
estimating disease probability at the pre-clinical stage,
(b) diagnostic biomarkers, e.g. for precise differential
diagnosis, (c) prognostic biomarkers for prognosis/
chance of healing, (d) treatment response biomarkers
(‘theramarkers’) for estimating the response to therapy,
(e) surrogate biomarkers for getting evidence, how
intervention influences the endpoint of interest, (f)

trait markers as invariable characteristics of a disease
e.g. gene mutations, and (g) state markers to follow
disease progression, e.g. enzymes, ions, etc.

The most rigorous but most solid definitions of ‘a
diagnostic biomarkers’ in the field of neurodegenera-
tive dementias, especially for Alzheimer’s disease (AD)
were those given by two National Institute on Aging
(NIA) and Alzheimer Association consensus conferences
(Consensus Report of the Working Group 1998, Frank
et al. 2003), as well as Shaw et al. (2007) and Gerlach et al.
(2012), which includes the following features:

� linked to fundamental features of the
neuropathology,

� validated in neuropathologically confirmed cases,
� able to detect the disease early in its course and

distinguish it from other dementias,
� non-invasive, simple to use and inexpensive,
� not influenced by symptomatic drug treatment.

The following criteria should be fulfilled before
acceptance as a valid biomarker for AD (Consensus
report of the Working Group 1998; Frank et al. 2003;
Gerlach et al. 2012; Shaw et al. 2007):

� sensitivity (>85%; 100% indicates that all patients
are identified with the disease),
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� specificity (>85%; 100% identifies all individual free
of the disease),

� prior probability (the background prevalence of the
disease in the population tested),

� positive predictive value (>80%; refers to the per-
centage of people who are positive for the bio-
marker and have definite the disease at autopsy),

� negative predictive value (percentage of people
with a negative test, and no disease at autopsy).

In addition, to meet endophenotype criteria candi-
date markers have to be:

� heritable,
� relatively state-independent and stable over time,
� associated with the illness,
� found in affected as well as unaffected family mem-

bers at a higher rate than in the general
population.

Currently, the most interesting uses/applications of
biomarkers are: (a) pre-symptomatic diagnosis of
neuropsychiatric disorders, which is an important
aspect as such specific and selective biomarkers would
allow early treatment strategies at a time when in AD
and PD more than 50% of degenerating types of neu-
rons are still available and can be rescued; (b) provid-
ing evidence for effectiveness of therapies; and (c)
differentiation of subtypes of a certain disorder, as in
the case of ‘dementias’. Based on all available informa-
tion at the time, an algorithm was developed to iden-
tify a large population of individuals that may benefit
from prevention studies (Hampel et al. 2010).

Due to the fact, that drug development for AD cur-
rently is unsuccessful, validated targets and validated
biomarkers are of utmost importance. Blennow et al.
(2014) have tried to make recommendations for bio-
markers during all stages of drug development proc-
esses. Such strategies are of great interest; however,
they are based on a close interaction of researchers
involved in drug development and those, who trans-
late basic research into clinical practice. Unfortunately,
this interaction between basic scientists, clinicians and
drug-developing institutions has proven to be chal-
lenging and in need of improvement.

In this review we describe possible candidate diag-
nostic biomarkers for the early detection of AD and
other types of dementias and to critically discuss
problems for their reliable detection, such as lack of
standardisation of calibration materials, relatively large
inter-centre variability, or uncertainty how to interpret
some of untypical biomarker patterns. As there is no
evidence for sporadic AD (as based on their multiple

subtypes, multiple phenotype, multiple triggers, mul-
tiple pathobiochemical causes) to be encompassed by
one specific and selective biomarker, the combination
of biomarker compounds/gene measure may be suit-
able to identify both causal targets for drug develop-
ment and particular subtypes of AD, as well as other
neurodegenerative disorders for a selective treatment.

The historical concept of AD

There is no doubt that discovery of drugs that could
treat AD would mean a breakthrough in medicine. To
achieve this goal, however, it is important to have
diagnostic tools capable of correctly identifying of
patients and identification of the disease, if possible
already at the early pre-clinical stages.

In our medical schools we learnt that AD was a clin-
ical-pathological entity: historically the diagnosis of AD
cannot be certified clinically and definite diagnosis
needs a histological confirmation based on cerebral
biopsy or post-mortem examination (McKhann et al.
1984). In the absence of such histological evidence, the
clinical diagnosis of AD can only be probable and should
only be made when the disease is advanced and reaches
the threshold of dementia. Based on the NINCDS-
ADRDA criteria, the diagnosis of probable AD requires
that a dementia syndrome is established by clinical
examination, documented by mental status question-
naire, and confirmed by neuropsychological testing:
there must be a deficit in two or more areas of cogni-
tion, including memory with a progressive worsening
over time responsible for a significant impact on activ-
ities of daily living. There may not be any disturbance of
consciousness at time of the assessment and no evi-
dence of systemic or other brain diseases that could
account for a dementia syndrome. Therefore, the clinical
diagnosis of AD is considered within a two-step proced-
ure with: (a) an initial identification of a dementia syn-
drome and (b) the exclusion of other possible
aetiologies of dementia syndrome with blood/cerebro-
spinal fluid (CSF) investigations for ruling out infectious,
inflammatory or metabolic diseases and with brain neu-
roimaging (CT scan or MRI) for excluding small-vessel
diseases, strategic lacunar infarcts, large vessel infarcts
and/or cerebral haemorrhages, brains tumours, hydro-
cephalus and similar conditions.

Considering AD as a dementia led to the concept
of mild cognitive impairment (MCI), a label that refers
to objective memory and/or cognitive impairment not
severe enough to impact the activities of daily living.
MCI is a concept introduced by Reisberg et al. (1982)
and the Mayo Clinic group (Petersen et al. 1999) to fill
the gap between cognitive changes of normal aging

246 P. LEWCZUK ET AL.



on the one hand, and those, on the other hand, asso-
ciated with dementia (vascular, degenerative, etc.). MCI
is a syndrome collecting under a single label a variety
of pathological entities that may share clinical features
but have different aetiologies. To decrease the clinical
and pathological heterogeneity, sub-typing MCI has
been proposed (i.e. single and multi-domain, amnestic
and non-amnestic (Petersen 2004)). However, only 70%
of amnestic MCI cases which have progressed to
dementia actually met neuropathological criteria for
AD (Jicha et al. 2006). This aetiologic heterogeneity of
MCI is problematic (Dubois and Albert 2004). From the
clinical point of view, in a given patient, the mission of
the clinician is to identify the disease responsible for
the syndrome, as it may have significant impact in
terms of prognosis and/or treatment. For example, it is
meaningful to distinguish between depression and AD
in patients with a diagnosis of MCI. From the research
point of view, heterogeneity of MCI may dilute the
potential for a significant treatment effect and may
have contributed to the negative outcomes where
none of the tested medications were successful in
delaying the time to diagnosis of AD (Jelic et al. 2006).

Revisiting the current concept of AD

A number of considerations emphasise the need to
revise the conceptual framework of AD:

(1) Considering AD only at the threshold of dementia
is too late. AD pathology has already been ongoing for
decades when the patients express the first cognitive
symptoms. The diagnosis of AD should be made ear-
lier than at this stage of disease expression for many
reasons:

� There is no reason to link the diagnosis of a disease
with a certain threshold of severity thereby exclud-
ing patients from the possibility of treatment due
to that they are not yet expressing a full-blown
dementia.

� There is no justification to anchor the diagnosis of
AD to a dementia syndrome. If we refer to PD, the
diagnosis does not hinge on a level of severity, for
example, when the patient is bedridden, but on
the presence of the earliest motor symptoms, for
example, a limited resting tremor of one hand. The
same should apply for AD.

� Earlier intervention for drug development also
appears as a necessity. Selecting patients with func-
tional disability may be too late because, at this
stage, amyloid burden is already very pervasive as
shown by amyloid positron emission tomography
(PET) studies in vivo (Jack et al. 2009).

(2) The NINCDS-ADRDA criteria for AD have a low
specificity against other dementias because at the time
of these criteria, i.e. 1984, the clinical phenotype of AD
was not specified and no reference to biomarkers of
AD was proposed. This explains why AD was fre-
quently misdiagnosed with other neurodegenerative
diseases that can fulfil the NINCDS-ADRDA criteria
(Varma et al. 1999). Since 1984, great progress has
been made in several domains:

� The clinical phenotype of AD has been refined: in
more than 85% of the cases, AD presents as a pro-
gressive amnestic disorder. Episodic memory deficit
is a precautious and reliable neuropsychological
marker of AD (Dubois and Albert 2004). It is sup-
ported by the fact that post-mortem studies of AD
patients provide evidence of a rather specific pat-
tern of cortical neuronal lesions which appear to
begin within the medial temporal lobe structures
(entorhinal cortex, hippocampal formations, para-
hippocampal gyrus) (Delacourte 2006), areas known
to be critical for long-term episodic memory. This
pattern explains a rather homogeneous clinical
presentation of AD, which can be divided into two
main stages: the first consists of a progressive and
rather isolated amnestic syndrome in relation to
the early involvement of the medial temporal struc-
tures. The second is characterised by the addition
and the development of cognitive symptoms in the
domain of executive (conceptualisation, judgment,
problem solving) and instrumental (language,
praxis, face or object recognition) functions and of
psycho-behavioural changes, due to the increased
burden and progression of neuronal lesions to the
neocortical areas (Braak and Braak 1991b). All these
symptoms progressively impact on the autonomy
of the patient defining the dementia stage.

� The diagnostic accuracy of AD has also been
improved in the last years because of the character-
isation and the definition of other dementias
through specific criteria, including the primary pro-
gressive aphasias (PPA), cortico-basal degeneration
(CBD), posterior cortical atrophy (PCA) and demen-
tia with Lewy bodies (DLB). The individualisation of
these new diseases, overlapping with AD syndrome,
has consequently decreased its apparent
heterogeneity.

� As reviewed in this paper, reliable biomarkers for
AD have been isolated that are now available at
least in expert centres: MRI enables detailed visual-
isation and volumetric measures of medial temporal
lobe structures; PET using fluorodeoxyglucose
(FDG) is helpful in measuring the glucose
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metabolism in cortical neurons and glial cells; CSF
biomarkers can detect molecular pathological fea-
tures of AD in vivo; PET using amyloid radiotracer
can visualise the presence of amyloid lesions in the
cerebral cortex. These biomarkers improve the diag-
nostic accuracy for AD and their diagnostic predict-
ability has been extended to the pre-dementia
stage and even the pre-clinical states of AD.

(3) The possible identification of in vivo biomarkers of
AD pathology is responsible for a major change in the
conceptualisation and the diagnosis of the disease. MRI
and CSF are no longer proposed for only excluding
other aetiologies in case of a dementia syndrome.
They are now proposed to be part of the diagnostic
procedure. The revised diagnostic criteria, proposed by
the International Working Groups (IWG) (Dubois et al.
2007; Dubois et al. 2014) or by the NIA/AA (Albert
et al. 2011; McKhann et al. 2011), and reviewed in this
paper, have both introduced the biomarkers in the
diagnostic framework. Depending of a definition, bio-
markers can be linked to the disease process and/or a
stage of severity; correspondingly, these criteria allow
us to identify AD at a prodromal stage and even at a
pre-clinical stage of the disease. Both sets of criteria
recognise pre-clinical states of AD, which are charac-
terised by the presence of a positive pathophysio-
logical biomarker in cognitively normal subjects.

Epidemiology of dementia disorders

Prevalence of dementia

An estimated 47 million people worldwide were living
with dementia in 2015. This number is expected to
double every 20 years to 132 million by 2050 (Prince
et al. 2015). Due to population growth and demo-
graphic aging, the increase is predicted to be highest
in low- and middle-income countries (Prince et al.
2015). The most common subtypes are AD, vascular
dementia (VaD), DLB, frontotemporal dementia (FTD)
and PD. Estimates of the proportion of dementia cases
attributable to these subtypes vary considerably
among studies. There is agreement that AD is the
most common cause of dementia, accounting for
50–70% of cases. After AD, VaD is the most common
cause of dementia, causing around 15% of cases
(O’Brien and Thomas 2015). About 8% of people living
with dementia have clinically diagnosed DLB-type,
increasing to 10–15% when additional testing was
applied (Stevens et al. 2002; Rahkonen et al. 2003). In
a meta-analysis of population-based studies, FTD
accounted for 2.7% of all dementia cases older than

65 years (Hogan et al. 2016). FTD appeared more com-
mon among young-onset dementia patients with
prevalence estimates varying from 3 to 26% (Vieira
et al. 2013). Although PD is a common neurodegener-
ative movement disorder (Dorsey et al. 2007), PD-
related dementia (PDD) occurs in �80% of PD patients
over the course of their illness (Stevens et al. 2002;
Irwin et al. 2017).

Prevalence of AD pathology

The characteristic pathological substrates of AD, Ab
containing plaques and Tau-containing neurofibrillary
tangles, can be also found in the brains of persons
without dementia. In a meta-analysis of non-demented
subjects, the prevalence of amyloid pathology as esti-
mated by biomarkers in CSF or by PET imaging was
23% in cognitively normal individuals, 25% in subjects
with subjective cognitive impairment and 49% among
patients with MCI (Jansen et al. 2015; Hoglund et al.
2017). In cognitively normal subjects, amyloid positiv-
ity preceded the onset of the symptoms by 20–30
years (Jansen et al. 2015). In a recent meta-analysis,
the prevalence of amyloid pathology in patients with
a clinical diagnosis of AD-type dementia was found to
be 88% at the age of 70. The prevalence decreased
with age, from 93% at the age of 50 to 79% at the
age of 90. The prevalence was higher in carriers of the
apolipoprotein E (APOE) e4 allele, the major genetic
risk factor for AD (97% at the age 50 to 90% at the
age 90) than in subjects without the APOE e4 allele
(86% at the age 50 to 68% at the age 90). The preva-
lence of amyloid pathology in non-AD-type dementias
was 51% in DLB, 30% in VaD and 12% in FTD
(Ossenkoppele et al. 2015). Concomitant AD pathology
may occur in about 25% of patients with PDD (Irwin
et al. 2012). Amyloid pathology in these individuals
may be an indication of clinical misdiagnosis or may
be present as a secondary pathology.

Risk factors for dementia

Both genetic and environmental factors predispose to
dementia and the interplay between the various risk
factors in these disorders still needs clarification.

The most commonly reported risk factors for AD-
type dementia are advanced age (Matthews and
Brayne 2005), presence of the APOE e4 allele (Morris
et al. 2010), female sex (Brookmeyer et al. 1998), low
educational level (Ott et al. 1995; Evans et al. 1997),
cardiovascular disease (Hofman et al. 1997; Luchsinger
et al. 2005; Bellou et al. 2016) and diabetes mellitus
type 2 (T2DM) (Carlsson 2010). Indeed, a growing
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body of evidence, summarised recently in (Riederer
et al. submitted), shows that T2DM is a risk factor for
both, AD and VaD, based on pathology of glucose util-
isation. This pathology is the consequence of a dis-
turbance of insulin-related mechanisms leading to a
brain insulin resistance. Although the underlying
pathological mechanisms for AD and VaD are different
in many aspects, the contribution of T2DM and insu-
lin-resistant brain state to cerebrovascular disturbances
in both disorders cannot be neglected. Therefore, early
diagnosis of metabolic parameters including those rele-
vant for T2DM is required. Moreover, it is possible that
therapeutic options utilised today for diabetes treatment
may also have an effect on the risk for dementia.

Age and the APOE e4 allele are also risk factors for
amyloid pathology in non-demented individuals.
However sex, educational level and vascular pathology
are not associated with amyloid pathology (Jansen
et al. 2015; Vemuri et al. 2015). These risk factors may
therefore contribute to AD-type dementia through
non-amyloid-related mechanisms.

In VaD, age is also the most important risk factor,
doubling the risk of the disease every 5.3 years
(Jorm and Jolley 1998; O’Brien and Thomas 2015).
Stroke is a strong risk factor increasing the risk
for VaD by 10–30% (Pendlebury and Rothwell 2009).
Cardiovascular disease and other vascular risk factors
such as smoking and diabetes may predispose to VaD
as well (Hofman et al. 1997; Luchsinger et al. 2005;
Bellou et al. 2016).

Risk factors for DLB include a history of anxiety,
depression, stroke or a family history of PD, and APOE
e4 allele (Boot et al. 2013; Tsuang et al. 2013). Also,
DLB is more common in men than in women (Walker,
Possin, et al. 2015).

For FTD, mutations in the C9orf72 gene are the
most common genetic cause (DeJesus-Hernandez et al.
2011) followed by MAPT and GRN mutations
(Rademakers et al. 2012).

For Parkinson’s dementia, age (Pringsheim et al.
2014), male sex (de Lau and Breteler 2006), a history
of anxiety or depression and environmental factors
such as pesticide exposure, head injury and rural living
(Noyce et al. 2012) are among suggested risk factors.
Additionally, the APOE e4 allele may independently
influence the risk of dementia in PDD (Irwin et al.
2012, 2017).

CSF biomarkers of AD and their diagnostic-
relevant interpretation

The early diagnosis of AD, especially in the prodromal
phase, remains difficult if only clinical symptoms are

taken into consideration (Dubois et al. 2007; Aluise
et al. 2008). This is reflected in general low accuracy of
the clinical AD diagnostic methods in the absence of
biomarker information. For logical reasons, the earlier
stage of the disease, the lower is the accuracy of clin-
ical diagnosis.

As reviewed later in this paper, two neuropatho-
logic features are consequently found in the brains of
patients with AD: extracellular plaques composed of
amyloid b (Ab) peptides, and intracellular neurofibril-
lary tangles containing hyperphosphorylated Tau pro-
teins (Braak and Braak 1991b). Therefore, it is not
surprising that these two groups of molecules are the
most established biomarkers of the disease.

Neurochemical dementia diagnostics (NDD)

Amyloid precursor protein and its metabolites

Amyloid plaques are composed mainly of the peptides
derived from the enzymatic cut of b-amyloid precursor
protein (APP) (Kang et al. 1987). This transmembrane
protein is encoded in humans by a gene on chromo-
some 21, and its alternative splicing results in at least
three isoforms, with the form known as APP 695 (i.e.
the one consisting of 695 amino acid residues)
expressed predominantly in the brain (Panegyres
1997). The physiological role of APP is not clear so far;
however, an involvement in cell-to-cell and matrix
interactions is postulated. Enzymatic processing of APP
by b-secretase(s) followed by c-secretase(s) leads to
the release of several forms of Ab peptides.
Interestingly, the discovery of the Ab peptides ending
at different C termini leads to a conclusion that differ-
ent c-secretase activities may exist (Citron et al. 1996;
Klafki et al. 1996); however, as an alternative explan-
ation a different mechanism is postulated of the
dependency of the cleavage site from the length of
the intramembrane APP domain (Lichtenthaler et al.
2002). APP can also be processed by a-secretase,
which results in the release of soluble APPa but not
Ab peptides in the so-called ‘non-amyloidogenic
pathway’.

Interestingly, not only full-length Ab peptides (i.e.
these having aspartic acid at the N terminus position of
1) but also N-terminally shortened forms seem to play
a role in the pathophysiology of AD. Truncated frag-
ments (Ab11–42 and Ab17–42) are also found in amyl-
oid plaques and in the preamyloid lesions of Down
syndrome, a disease-model for early-onset AD study.
Very little is known about the structure and activity of
these smaller peptides, although they could be the pri-
mary AD and Down syndrome pathological agents.
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With atomic force microscopy, channel conductance
measurements and calcium imaging, Jang et al. (2010)
showed that non-amyloidogenic Ab9–42 and Ab17–42
peptides form ion channels with loosely attached sub-
units and elicit single-channel conductance. Although
definitely interesting from the pathophysiologic point
of view, the diagnostic role of the N-terminally short-
ened Ab forms as potential AD biomarkers remains
unclear.

In vitro, Ab peptides can be metabolised by several
enzymes; animal studies in vivo concentrated mostly on
two groups of enzymes, insulin degrading enzyme (IDE)
and neprilysin. Particularly the role of IDE in the deg-
radation of Ab peptides seems to be very interesting
from the pathophysiologic point of view, since it links
two degenerative diseases, AD and T2DM. Indeed, dia-
betes is one of the risk factors to develop AD (Carlsson
2010). Increasing insulin level in human subjects
increases the concentration of Ab in the CSF (Taubes
2003; Watson et al. 2003; Karczewska-Kupczewska et al.
2013), which might be explained by the fact that IDE
more efficiently degrades insulin than Ab peptides or
that insulin competes with Ab peptides.

Numerous studies reported decreased CSF concen-
tration of Ab peptides ending at the C terminus of 42
(Ab42) in AD patients ((Lewczuk, Esselmann, Groemer,
et al. 2004; Shaw et al. 2011), and reviews: (Blennow
et al. 2006; Lewczuk and Kornhuber 2011)), whereas
the total level of the Ab peptides remains unchanged
(Motter et al. 1995). Mechanisms leading to the
decreased concentrations of Ab42 in CSF in AD are
not clarified so far. Accumulation of the peptide in the
plaques is suggested by some investigators; however,
this hypothesis cannot explain the results of a select-
ive decrease of the concentration of Ab42 in the CSF
of the subgroup of patients with Creutzfeldt-Jakob dis-
ease (CJD) who did not develop any amyloid plaques
at all (Wiltfang et al. 2003). Similarly, decreased levels
of CSF Ab42 were recorded in bacterial meningitis
(Sj€ogren et al. 2001), a disease which may cause
chronic memory deficits but does not present with Ab
plaques, which can be explained by increased degrad-
ation of all Ab peptides by infiltrating inflammatory
cells in meningitis (Portelius et al. 2017).

Spies et al. (2012) systematically reviewed potential
mechanisms leading to the decrease of Ab42 CSF con-
centrations in AD. One of the theoretically possible
explanations could be a hypothetical decrease in the
Ab generation. This could be, for example, due to the
decreasing number of neurons releasing Ab peptides
into the brain parenchyma proportional to the degree
of neurodegenerative pathology. This, however, stays
in disagreement with the increased load of the Ab42

in the brain tissue (Lewczuk et al. 2003). Moreover, in
such a scenario, not only Ab42 but also other isoforms
(including the two most abundant Ab peptides in the
human CSF, Ab40 and Ab38), should have in AD
decreased CSF concentrations, which is not the case.
Further counterargument is the decreased Ab42 con-
centration in familial AD as well as in Down syndrome,
diseases characterised by genetically-driven overpro-
duction of Ab peptides (Tapiola et al. 2001). Moreover,
some (Lewczuk, Kamrowski-Kruck, et al. 2010; Lewczuk
et al. 2012), but not all (reviewed in Olsson et al.
2016), studies show that the CSF concentrations of the
soluble APP are actually increased in the CSF of AD
and MCI-AD patients, and taking into consideration
that sAPPb and Ab peptides (including Ab42) are
released in the same metabolic pathway, it is difficult
to accept that the reduction of the Ab42 concentration
is caused by the decrease in its production.

Another mechanism leading to decreased Ab42
concentrations in the CSF of AD might be its increased
degradation. This increased degradation, however,
should affect not only Ab42 but also other Ab pepti-
des, at least Ab40, since it is known that both peptides
are largely metabolised by the same enzymes, for
example by IDE, as mentioned earlier, and that the
efficiency of IDE to degrade Ab1–40 and Ab1–42 is
very similar (Perez et al. 2000). Moreover, increased
degradation of Ab42 should lead to the decrease of
the formation of Ab42 deposits in the brain paren-
chyma, and should hamper formation of the plaques.
Since this is not the case, one can assume that the
hypothesis of the increased degradation cannot
explain decreased Ab42 concentrations in AD.

The next potential explanation of the decreased
Ab42 CSF concentrations in AD is its increased clear-
ance from the brain tissue to the blood across the
blood–brain barrier. This mechanism would lead to the
decreased amount of the Ab42 molecules in the brain
parenchyma, which would mean that correspondingly
less Ab42 molecules could enter the CSF. As a matter
of fact, Ab peptides are actively transported across the
blood–brain barrier by the lipoprotein receptor-related
protein. Some investigators found increased expression
of this transporter in perivascular cells in response to
Ab42, but not Ab40, in vitro; however, uptake of Ab42
by these cells resulted in their degeneration (Wilhelmus
et al. 2007). On the other hand, the expression of lipo-
protein receptor-related protein was found decreased
in AD by other studies, whereas mechanisms of the Ab
transport from the blood to the brain were found upre-
gulated (Deane et al. 2009). Moreover, we (Lewczuk,
Kornhuber, et al. 2010) as well as other investigators
(van Oijen et al. 2006; Graff-Radford et al. 2007) found
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decreased Ab42 concentrations and/or Ab42/40 ratios
in the blood of AD patients or subjects at AD risk,
which is another argument against the clearance of
parenchymal Ab42 into the blood as a cause of the
CSF Ab42 concentration decrease. On the other hand,
blood concentrations of Ab peptides result not only
from the peptides’ influx, but are also influenced by
other factors, such as binding to blood proteins or
clearance mechanism existing in blood.

Finally, there is a very interesting, however not yet
proven, hypothesis that the CSF concentrations of
Ab42 in AD patients only seems decreased, because
the accumulation of Ab42 monomers into soluble
oligomers leads to masking of the epitopes for the
antibodies used in the ligand-based analytical meth-
ods. Indeed, in favour of this hypothesis, a recently
published study reported increased concentrations of
Ab oligomers in the CSF of AD patients (Wang-Dietrich
et al. 2013). In favour of this hypothesis, Ab1–42
showed similar concentrations in AD and controls
when the CSF samples were denaturated before the
measurements (Slemmon et al. 2012).

Irrespective of the cause of decreased Ab1–42 con-
centration in CSF, sensitivity and specificity of Ab1–42
alone to distinguish AD from elderly controls were
78% and 81%, respectively, in the study of Hulstaert
et al. (1999), and Galasko et al. (1998) reported similar
figures of 78% and 83% for sensitivity and specificity,
respectively. In a recent large-scale meta-analysis, aver-
age Ab42 ratio between AD and controls was 0.56,
and between cohorts with MCI due to AD and those
with stable MCI was also strong (0.67). In 130 out of
131 studies considered in this meta-analysis, CSF Ab42
concentration was decreased in AD compared to the
controls (Olsson et al. 2016).

Hypothesis-driven evidence suggests that the con-
centration of Ab1–42 depends not only on the physio-
logic status of a given individual (presence or absence
of AD pathology) but also on the total amount of Ab
peptides in the CSF. This perhaps reflects different effi-
ciency of the processing of the APP molecules by b-
and c-secretases or perhaps differences in the expres-
sion profile of the APP molecules on the cell surfaces.
Indeed, the range of the CSF sAPP concentrations
spans 4–6-fold in different subjects, which indirectly
suggests the corresponding differences in their activ-
ities of a- and b-secretases (Lewczuk, Kamrowski-Kruck,
et al. 2010; Lewczuk et al. 2012). Better diagnostic per-
formance of the Ab42/40 ratio compared to the
Ab1–42 concentration might then be explained by the
assumption that the subjects with either extraordinary
low or extraordinary high concentrations of total Ab
peptides in the CSF characterise also with the

respectively low or high Ab1–42 (Wiltfang et al. 2007).
In such a case, a normalisation of the Ab1–42 concen-
tration by the application of the Ab42/40 ratio, instead
of the Ab1–42 alone, improves the interpretation of
the biomarkers. Correspondingly, the normalisation of
the Ab1–42 concentration for the total Ab peptides
CSF concentration (or their most abundant isoform, i.e.
Ab1–40), in a form of an Ab42/40 concentration ratio
can improve the sensitivity and the specificity of the
AD diagnosis. Indeed, we (Wiltfang et al. 2007;
Lewczuk, Lelental, et al. 2015), as well as others
(Hansson et al. 2007; Spies et al. 2012), found better
clinical performance of the CSF Ab42/40 concentration
ratio compared to the concentration of Ab1–42 alone.
Recently, this same conclusion was reached by two
other research groups (Beaufils et al. 2013; Slaets, Le
Bastard, Martin, et al. 2013). Improved performance of
the CSF Ab42/40 ratio as compared with Ab1–42 alone
was also shown when Ab species were analysed by
mass spectrometry (Pannee, Portelius, et al. 2016). In
other words, neglecting Ab42/40 as an AD biomarker
leads to a false-negative (in the case of an AD subject
with high Ab CSF concentrations) or a false-positive (in
the case of a non-AD subject with low Ab CSF concen-
trations) interpretation.

Furthermore, as it will be discussed in the chapter
on Ab-PET studies, Ab42/40 ratio seems to correlate
better than Ab1–42 with amyloid b load in the brain
(Janelidze, Zetterberg, et al. 2016; Lewczuk et al. 2017).

Two further experimental observations support the
application of the Ab42/40 ratio for AD diagnostics:
(a) Ab42/40 is less prone to the error of misinterpret-
ation when non-polypropylene test tubes (as are often
found in standard clinical lumbar puncture trays) are
used to collect CSF (Lewczuk, Beck, et al. 2006), likely
due to the fact that both Ab isoforms seem to absorb
to the tube surface to a similar extent (Willemse et al.
2017); and (b) two studies using a different set of
enzyme-linked immunosorbent assay (ELISA) values
(produced by a currently non-existing vendor and
based on N-terminally non-specific antibodies) that
have applied the Ab42/40 ratio to predict AD in MCI
subjects (Hansson et al. 2007) and discriminate early
symptomatic AD from controls (Lewczuk, Esselmann,
Otto, et al. 2004) reported almost identical Ab42/40
cut-offs (0.095 and 0.098, respectively), whereas the
corresponding cut-offs for Ab42 alone differed by
more than 15% (640 and 550pg/ml, respectively).

Also, in a recent study by Dorey et al. (2015) investi-
gating the performance of these markers for corres-
pondence with clinical diagnosis, CSF Ab40
concentrations were higher in AD than non-AD
patients, and inclusion of CSF Ab40 as an Ab42/40
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ratio corrected 76.2% of misinterpreted cases in AD
patients with normal CSF Ab42 concentrations and
94.7% of cases when Ab40 was used alone.

Tau protein and its phosphorylated forms

Tau proteins belong to the family of microtubule-asso-
ciated proteins found in neuronal and non-neuronal
cells (reviewed in (Buee et al. 2000)). The human Tau-
gene is located on the long arm of chromosome 17.
Its alternative splicing leads to formation of six iso-
forms of the protein in adult human brain: 4R2N,
3R2N, 4R1N, 3R1N, 4R0N and 3R0N, ranging from 352
to 441 amino acid residues (Mandelkow et al. 2007),
whereas longer isoforms, resulting from the expression
of the exon 4a, which is not transcribed in the CNS,
exist in the peripheral nervous system (Cairns et al.
2004). Physiological role of Tau is still not fully under-
stood. Some studies suggest that they play role in
neuronal microtubule stability but there are controver-
sies. Tau proteins are also involved in promoting
microtubule nucleation, growth and bundling, and it is
hypothesised that phosphorylation of the Tau mol-
ecule is an important factor in regulating Tau-micro-
tubule interaction (reviewed in Shahani and Brandt
2002). The phosphorylation status of Tau is considered
to change during development, with a relatively high
degree of phosphorylation during the foetal phase fol-
lowed by a steady decrease with age, possibly as a
result of phosphatase activation (Mawal-Dewan et al.
1994; Rosner et al. 1995). Total Tau protein concentra-
tion has been extensively studied as an unspecific
marker of neuronal damage in neurodegeneration.

Concentrations of total Tau, and its hyperphos-
phorylated form (notably at threonine 181, pTau181)
in the CSF are elevated �2-fold in individuals with AD
(Olsson et al. 2016). Levels of these CSF biomarkers are
positively correlated with neurofibrillary tangle (NFT)
pathology observed at autopsy (Tapiola et al. 1997;
Buerger et al. 2006). Total Tau measured in the CSF is
thought to reflect the intensity of neuronal damage
and degeneration, and its concentrations can be
increased across multiple degenerative conditions
including stroke, VaD, head trauma, CBD, greatly in
CJD, and to a lesser degree in certain variants of FTD
(Blennow et al. 2010; Andreasson et al. 2014). It needs
to be stressed that the meaning of Tau concentrations
in CSF is much less well established than CSF Ab; how-
ever, more profound discussion of this matter is
beyond the scope of this paper. For example, it has
been reported that neurons secrete Tau in an activity-
dependent manner and that increased release of Tau
could be induced by AD-associated factors, potentially

also in the absence of neuronal death and tangle
pathology (Yamada et al. 2011).

While the increase in the total Tau CSF concentra-
tion is considered to reflect unspecific disruption of
the nerve cells, abnormal hyperphosphorylation of Tau
is considered more specific for AD (Iqbal et al. 1986),
and hyperphosphorylated molecules of Tau form
neurofibrillary tangles (Grundke-Iqbal et al. 1986). Tau
can be phosphorylated at 79 putative amino acid posi-
tions, serine and threonine being predominant. In
studies available so far, mean sensitivity and specificity
of Tau phosphorylated at different positions varied
from 44% to 94%, and 80% to 100%, respectively
(Blennow et al. 2001).

In AD cohorts CSF total Tau and pTau levels are
highly positively correlated and sometimes used inter-
changeably. Reports of the effects of APOE genotype
on CSF Tau levels have been inconclusive, likely
reflecting differences in the disease stage of individu-
als in the different studies. Elevations in CSF Tau (and
pTau) in MCI cases and cognitively normal older indi-
viduals are associated with a longitudinal risk to
develop AD dementia, providing in vivo evidence of
their utility in defining pre-clinical stages of AD
(Blennow et al. 2010; Vos et al. 2013). Cross-sectional
studies have shown that CSF Tau and pTau181 con-
centrations increase with disease progression, and
these levels positively correlate with cognitive impair-
ment (Blennow et al. 2010; Bateman et al. 2012).
However, more recent studies that evaluate within-per-
son longitudinal change over time suggest that Tau
levels may actually decrease in symptomatic cases of
autosomal-dominant AD (ADAD) (Fagan et al. 2014)
and late-onset AD (LOAD) (Toledo, Xie, et al. 2013).
The study with the longest time between repeated
sampling shows no clear changes in CSF Tau levels
over 4 years (Mattsson, Portelius, et al. 2012). The
potential causes of declines in CSF markers of Tau late
in the course of the disease are still being explored;
such patterns have implications for clinical trials that
use changes in CSF biomarkers as potential endpoints.

Diagnostic-oriented interpretation

A simple ‘copying-and-pasting’ of laboratory reference
ranges of the AD biomarkers from one diagnostic
centre to another should be avoided (Lewczuk,
Kornhuber, et al. 2006; Molinuevo et al. 2014); on the
other hand, a need to improve the comparison of the
results (and even more importantly, their interpret-
ation) between laboratories led to propose an inter-
pretation algorithm that could be easily implemented
in clinical neurochemistry routine (Lewczuk et al. 2009;
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Lewczuk, Kornhuber, et al. 2015) (Figure 1). In brief,
depending on the concentrations of the biomarkers,
the numeric score is given, and the final sum (in the
range 0–4 points) defines the categorisation of a given
patient into one of the groups with different probabil-
ity of AD pathology, which is eventually presented to
the physician on the CSF integrated report. The algo-
rithm is method unspecific, which means that the
assays to measure biomarkers of the Ab and Tau
groups can be replaced by assays based on different
sets of antibodies (from other manufacturers) or even
other analytical platforms. If the results of Ab and Tau/
pTau are pathological, the overall result is interpreted
as neurochemically probable AD. Results of the NDD
analysis with all biomarkers in normal ranges are inter-
preted as no neurochemical evidence of organic CNS
disease. Results in between, either with normal Tau/
pTau and abnormal Ab, or vice versa, pathological
Tau/pTau and normal Ab, are interpreted by the
Erlangen Score Algorithm as neurochemically possible
AD. The isolated very high concentration of Tau is
interpreted as suspected rapidly progressing neurode-
generation, improbable AD, but this same concentra-
tion of Tau accompanied by pathological Ab
concentrations/ratio would shift the interpretation to
possible or even probable AD depending if pTau is
normal or not, respectively. Indeed, the diagnostic rec-
ommendations published by the National Institute on
Aging 2 years after the publication of the Erlangen

Score Algorithm (McKhann et al. 2011) use almost the
same wording and very similar interpretational
concepts.

Early (pre-dementia) diagnosis

Results from the large-scale longitudinal studies and
meta-analyses show that the CSF alterations typical for
AD have good diagnostic accuracy of more than 80%
in discriminating MCI subjects who would convert to
AD from those who remain stable or would progress
to other dementias (Hansson et al. 2006; Mattsson
et al. 2009).

As a matter of fact, CSF alterations are, at least cur-
rently, the first that can be observed in the disease
process. A combination of three CSF biomarkers,
namely Tau, pTau181 and Ab42, could detect incipient
AD among patients fulfilling the criteria for MCI with a
sensitivity of 68% (95% CI 45–86%) and a specificity of
97% (95% CI 83–100%), therefore suggesting a hope
to discriminate the subgroup of patients with MCI
who would eventually develop AD from these who
would not to offer early treatment for the subjects at
risk (Zetterberg et al. 2003). In a more advanced study
from the same research group (Hansson et al. 2006),
137MCI patients, who underwent lumbar puncture
(LP) at a baseline, were followed clinically for 4–6
years, together with 39 healthy individuals that were
cognitively stable over 3 years thus serving as controls.
The combination of CSF Tau and Ab1–42 at baseline
in this study yielded a sensitivity of 95% and a specifi-
city of 83% for the detection of the incipient dementia
due to AD in patients with MCI, showing increased
relative risk of progression to AD in MCI cases with
pathological Tau and Ab1–42 at the baseline (hazard
ratio (HR) 17.7, P< 0.0001). The combination of Tau
and Ab1–42/pTau181 ratio yielded closely similar
results (sensitivity 95%, specificity 87%, HR 19.8). In a
similar study, the cut-off levels of Ab1–42 and
pTau181 derived from the differential analysis of early
dementia patients, and applied unaltered on the
results obtained in the MCI group, allowed definition
of a subgroup of subjects without AD but with
increased risk to develop the disease (Lewczuk and
Wiltfang 2008).

A model of the dynamics of the alterations of the
biomarkers in the course of AD was proposed by Jack
et al. (2010). The first alterations characteristic for AD
occur in the amyloid b pathway, and can be observed
as the decreased concentrations of Ab42 in the CSF
and/or deposition of Ab plaques in the brain on the
Ab-PET scan in an early pre-clinical phase.
Neuropathological findings of significant Ab

Figure 1. Erlangen Score. Erlangen Score is the sum of the
scores for Ab biomarkers (0, normal; 1, borderline pathological;
2, pathological) and Tau/pTau biomarkers (0, normal; 1, bor-
derline pathological; 2, pathological), always in relation to a
given laboratory’s cut-offs. Depending on the total score, NDD
is interpreted as: 0, neurochemically normal; 1, AD neuro-
chemically improbable; 2–3, AD neurochemically possible; 4,
AD neurochemically probable. The original algorithm was
modified by excluding cases with very high Tau concentra-
tions, which points at rapidly progressing neurodegeneration
(for example, CJD).
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depositions in the brains of cognitively normal per-
sons, discussed above, further support the concept
that the Ab pathology precedes clinical symptoms
(Knopman et al. 2003). Increase in the CSF Tau concen-
trations occurs later and even perhaps as a conse-
quence of the accumulating Ab pathology. Indeed,
there is evidence that the extracellular Ab depositions
in AD influence the clearance of Tau released from
dying neurons (Ballatore et al. 2007). At the stage of
the disease when the first clinical symptoms are
observable, i.e. in MCI, the intensity of the Ab path-
ology does not correlate with the clinical and cogni-
tive symptoms, and only weak correlation of Tau
concentrations with the cognitive functions are
observed (Lewczuk, Esselmann, Otto, et al. 2004;
Vemuri et al. 2009), which further support the hypoth-
esis that Ab, and to a lesser degree Tau, reach plateau
before the onset of the first clinical symptoms.

Blood-based biomarkers

Although CSF and neuroimaging biomarker modalities
offer excellent diagnostic accuracy and can be key
considerations in differential diagnostic procedures, as
well as understanding co-morbid neuropathology,
blood-based biomarkers offer important advantages
over CSF and neuroimaging biomarkers of being (a)
less invasive, (b) more acceptable to patients, (c) cost-
effective, (d) time-effective and, importantly, (e) feas-
ible at the population level (Lista et al. 2013; O’Bryant,
Edwards, et al. 2016). Therefore, blood-based bio-
markers offer an ideal complementary step to
advanced CSF and neuroimaging biomarkers and can
serve as the first-step in a multi-stage process
(Henriksen et al. 2014; O’Bryant, Edwards, et al. 2016)
similar to the procedures utilised in other disease
states (e.g. cancer, cardiovascular disease, infectious
disease). Such a multi-stage model can significantly
facilitate appropriate referrals to CSF and neuroimag-
ing biomarkers in addition to providing a path towards
securing reimbursement approval from key payers.

In order to best understand the putative uses of
blood-based biomarkers in AD, it is prudent to first
outline key potential contexts of use (COU) of these
biomarkers that have potential for improving patient
outcomes (O’Bryant et al. 2017). The FDA/NIH BEST
Resource defines COU as ‘a statement that fully and
clearly describes the way the medical product devel-
opment tool is to be used and the medical product
development-related purpose of the use’ (F-NBW
Group 2016). Explicitly defining the COU with the end
goal in mind guides the entire development pro-
gramme of the biomarker itself; however, a key

limitation to the research field has been the lack of
explicit outlining of these potential COUs which results
in continuous discovery studies that rarely move
beyond initial clinical replication. The fit-for-purpose
validation methods should be utilised to determine if
the level of validation associated with the biomarkers
is sufficient to support the COU. With this in mind, the
primary themes receiving the most attention in AD
blood-based biomarker research can be divided into
key COUs as follows:

1. AD blood-based diagnostic test (diagnostic
biomarker)

2. Primary care tool for a multi-stage diagnostic pro-
cess (diagnostic biomarker)

3. Blood-based tool for predicting future risk of AD
(predictive biomarker)
a. Blood-tool for predicting risk for AD among

cognitively normal adults
b. Blood-tool for predicting conversion from MCI

to AD
4. Blood biomarker for predicting progression among

AD cases
Additional COUs that have been studied to a
lesser degree, but are as important as those above
include:

5. Blood biomarker for stratification into clinical trials
6. Blood biomarkers for predicting treatment

response to therapeutics (i.e. companion
diagnostic)

Of note, many of these putative COUs align closely
with the categories of biomarkers outlined by the
FDA/NIH BEST Resource (F-NBW Group 2016): (a) sus-
ceptibility/risk biomarker, (b) diagnostic biomarker, (c)
monitoring biomarker, (d) prognostic biomarker, (e)
predictive biomarker, (f) pharmacodynamics/response
biomarker, and (g) safety biomarker.

As an illustrative example to outline the importance
(clinical and financial) and feasibility one of the above-
mentioned COUs is provided in Figure 2. Here the
multi-stage diagnostic process beginning with a
blood-based tool in primary care is outlined. In this
scenario, a blood-based tool would be utilised to
screen out those who should not be referred for add-
itional services, which will have multiple benefits: (a)
patients concerns will be eased, (b) CSF and PET facili-
ties will not be overrun by those not needing services
and (c) not providing advanced diagnostic services to
those who do not need them will result in billions of
saved dollars. This structure can pave the path for
seeking regulatory and reimbursement approval for
many advanced diagnostic procedures as well as the
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use of multiple such procedures (e.g. CSF and PET)
among those complicated cases with high likelihood
of multiple neurodegenerative diseases.

Diagnostic COU research

The most studied potential COU for blood-based bio-
markers in AD are diagnostic biomarkers. Individual
marker analyses of plasma amyloid, Tau, neurofilament
light (NF-L) and others, have been examined (Bacioglu
et al. 2016; Olsson et al. 2016); however, current data
suggest that these markers are not sufficient to fill this
particular COU. In a seminal study, a 120 plasma pro-
tein-based algorithm accurately distinguished AD
patients from healthy controls (89% accuracy) (Ray
et al. 2007); however, enthusiasm waned when the
findings did not cross-validate on an independent
assay platform (Soares et al. 2009). Researchers from
the Australian Imaging, Biomarkers and Lifestyle (AIBL)
group generated an 18-marker plasma-based panel
that discriminated AD from controls with high accur-
acy and replicated those findings in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort (Doecke
et al. 2012). Work from Washington University St. Louis
and University of Pennsylvania suggested strong sig-
nals for a plasma-based algorithm for this COU utilis-
ing the same Luminex-based multiplex platform
utilised in AIBL, ADNI and TARCC initial discovery stud-
ies (Hu et al. 2012). A series of studies have been con-
ducted examining the potential utility of
autoantibodies in discriminating AD and other neuro-
degenerative diseases from controls yielding excellent
accuracy (areas under the curve (AUC)� 0.90) (Nagele
et al. 2011; DeMarshall et al. 2015, 2016). A series of
studies has recently been conducted explicitly related

to this COU (O’Bryant et al. 2010; O’Bryant et al. 2014;
O’Bryant, Edwards, et al. 2016). Initial discovery work
was conducted using a Luminex-based research use
only (RUO) platform that identified a 108-protein sig-
nature that was highly accurate in discriminating AD
(n¼ 197) from controls (n¼ 203, AUC¼ 0.95) (O’Bryant
et al. 2010), which was subsequently refined to the
top 30 markers that retained excellent accuracy
(AUC¼ 0.95) (O’Bryant et al. 2011b), and subsequently
replicated on an electrochemiluminescence platform
(AUC¼ 0.98) (O’Bryant et al. 2014). This work has been
replicated across cohorts (O’Bryant et al. 2011a), eth-
nicities (O’Bryant et al. 2013; Edwards et al. 2015;
Villarreal et al. 2016), species (O’Bryant et al. 2014)
(mouse and human) and tissue (O’Bryant et al. 2014)
(serum, plasma, brain).

Most recently, a ‘locked-down’ referent sample was
generated (O’Bryant, Edwards, et al. 2016) for an AD
blood test in primary care per Institute of Medicine
guidelines that is currently being directly applied pro-
spectively to newly collected community-based older
adults and elders. It is anticipated that CSF and PET
biomarkers will be the confirmatory diagnostic bio-
markers of AD (as well as pre-clinical AD) and that the
most clinically useful COU for blood-based biomarkers
within the diagnostic realm will be to serve as the
first-step in a multi-stage diagnostic process (O’Bryant,
Edwards, et al. 2016). There are currently over 500 mil-
lion older adults around the globe. Given the cost of
PET and CSF (still far less than PET) relative to blood-
based methods, the availability of a blood-based tool
in primary care settings that is utilised to determine
who does not undergo PET and CSF exams provides a
viable strategy similar to the strategies that have suc-
cessfully navigated the regulatory and reimbursement

Figure 2. Conceptual overview of multi-stage neurodiagnostic process beginning with blood screen in primary care setting.
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hurdles in the cancer arena (i.e. PET scans are not first-
line diagnostics) (Gold et al. 2012). Such a strategy
could rapidly be scaled to provide a test within routine
clinical practice, although only scalable and cost-effect-
ive blood-based biomarkers have the potential for
achieving this COU. That is, if a blood-based tool is
not a fraction of CSF and PET biomarkers, it will have
little chance of meeting the global needs.

A tightly related COU to that of diagnostics is the
search for a blood-based biomarker for detecting
amyloid pathology. This putative COU has been exam-
ined in both the AIBL and ADNI cohorts. In the AIBL
study, a plasma-based nine-analyte signature that
yielded a sensitivity and specificity of 0.80 and 0.82,
respectively for detecting PET-based amyloid positivity
(Burnham et al. 2014). In a study of 96 ADNI partici-
pants, a significant relationship between plasma amyl-
oid and [11C]PIB uptake among APOE e4 non-carriers
was identified (Swaminathan et al. 2014). In a different
sample seven plasma proteins (including A2M, Apo-A1
and multiple complement proteins) were significantly
associated with amyloid burden (Westwood et al.
2016). In a pilot study of 40 PIB-positive individuals
(controls, MCI, AD) along with 22 PIB-negative individ-
uals (controls), plasma amyloid proteins (Ab40, Ab42)
and Ab-approximate peptides (AbAPs; APP669–671)
were significantly correlated with amyloid PET positiv-
ity with a sensitivity and specificity of 0.93 and 0.96,
respectively (Kaneko et al. 2014). Although still very
early in discovery phases, this COU has tremendous
potential for influencing the design of clinical trials tar-
geting amyloid.

Prognostic COU research

An important potential COU for blood-based AD bio-
marker science, which equally applies to CSF-based
biomarkers, is the identification of individuals at great-
est risk, which can take several forms: (a) risk of inci-
dent cognitive impairment and AD, (b) risk of
progressing from MCI to AD dementia and (c) risk for
progression within AD. Biomarkers related to these
specific COUs have tremendous potential for clinical
intervention trials aimed at preventing AD, halting pro-
gression from MCI, as well as slowing progression
among patients with manifest AD. In the seminal art-
icle by Ray et al. (2007), the AD detection algorithm
identified patients with MCI who progressed to AD
(81% accuracy). There have been some promising
results from studies using extracellular vesicles (EVs)
enriched for neuronal origin showing that EV bio-
marker may be abnormal in pre-clinical AD (up to 10
years before AD diagnosis) (Fiandaca et al. 2015;

Kapogiannis et al. 2015), and may also be useful for
predicting conversion from MCI to dementia (Winston
et al. 2016). Baseline levels of plasma clusterin (ApoJ)
was recently shown to predict risk for incident demen-
tia and stroke among 1,532 non-demented subjects of
the Framingham Study Offspring cohort (Weinstein
et al. 2016). The topic of metabolomics has also been
studied heavily within this COU recently with a signa-
ture of ten metabolites identified that predicted risk
for incident MCI/AD with 90% or greater accuracy
among community-dwelling older persons (Mapstone
et al. 2014). A total of 202 participants were examined
in the discovery phase and 295 in the validation
phase. While this work suggests a signal to look at
metabolomics for this potential COU, it has to be repli-
cated (Casanova et al. 2016; Li et al. 2016). As in the
diagnostic COUs, plasma proteomics have been
studied within this COU. Recent work analysing plasma
proteomics from 452 cognitively normal elders,
169MCI non-converters, 51MCI converters and 476 AD
cases from across three independent cohorts,
AddNeuromed (ANM), Kings Health Partners-Dementia
Case Register (KHP-DCR) and Genetics AD Association
(GenAD), a set of ten proteins was identified that pre-
dicted progression from MCI to AD (average time of
conversion approximately 1 year, AUC¼ 0.78) (Hye
et al. 2014). There are clear signals within potential
prognostic COUs for AD using blood-based bio-
markers, which can have a dramatic impact on clinical
trial design. However, this work remains within the dis-
covery stage with few replication studies conducted
and most work continues to be conducted utilising
RUO technology platforms and, therefore, significant
work remains for movement of these discovery find-
ings towards potential clinical use (O’Bryant et al.
2017).

Technological and methodological considerations

Peripheral biomarkers (blood or otherwise) of brain
disorders present significant challenges with regards
to standardisation, harmonisation, mass production
(e.g. antibody based methods) and ‘locking down’
methods for transition to industry and clinical stand-
ards (e.g. CLIA, CLSI). One key advancement produced
by the international Professional Interest Area on
Blood-Based Biomarkers was the generation of the
first-ever guidelines for pre-analytic processing of
specimens (O’Bryant et al. 2015). This work provided a
basic set of pre-analytic processing variables to be fol-
lowed (and refined) and a minimum set of information
that should be provided within publications to allow
for appropriately designed cross-validation efforts.
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More recently, this workgroup published a novel para-
digm for advancing biomarker discovery to clinic
(O’Bryant et al. 2017). The working group also recently
published work comparing blood biomarkers across
platforms and tissue (plasma versus serum) with
results highlighting that, while often statistically signifi-
cantly correlated, biomarker levels obtained across dif-
ferent platforms or blood fraction (serum versus
plasma) may not be comparable (O’Bryant, Lista, et al.
2016). There have been; however, recent technological
developments in the RUO space that allow for the
detection of markers at very low levels (Andreasson
et al. 2016), and these novel technologies may provide
substantial advantages if they are demonstrated to
perform at clinical standards over time (e.g. CLSI,
CLIA). As evident from the continued progress of the
Global Biomarkers Standardization Consortium of CSF
biomarkers (GBSC), the blood-based biomarker field
will need to address additional methodological barriers
in order to produce clinically useful and applicable
biomarkers. It is noteworthy that most of the work
within the AD blood-based biomarker space remains
in early discovery stage with only a few laboratories
replicating across cohorts and even fewer attempting
to lock down methods for prospective studies.
Another limitation is the use of discovery RUO-based
platforms that do not perform within clinically
required parameters. While broad-based discovery
technologies offer significant advantages in early
stages, it is imperative that these results be replicated
on platforms that can be utilised as laboratory devel-
oped tests or in vitro diagnostics (IVD).

Potential diagnostic role of EVs in the blood

A recent approach to diagnostic biomarker discovery
has been based on deriving extracellular vesicles (EVs)
from peripheral blood and enriching them for neur-
onal origin. Given their origin, these EVs can presum-
ably be used to interrogate brain pathogenic
processes previously inaccessible in vivo, effectively
akin to a ‘liquid biopsy’. A series of case–control stud-
ies have generated a candidate set of EV-based pro-
tein biomarkers for AD. The initial study focussed on
the main pathogenic proteins, Ab42, p181-tau, pS396-
tau, which were all shown to be elevated in AD cases
compared to controls, with the exception of total tau
(Fiandaca et al. 2015). Since this initial study, other
groups have shown similar elevations in these markers
in relation to progression from MCI to dementia
(Winston et al. 2016) and in Down syndrome (Hamlett
et al. 2016). Subsequent studies focussed on important
intracellular pathways implicated in AD pathogenesis

and used plasma EVs enriched for neuronal origin to
show significant differences in key molecules. It has
been shown that neuronal origin-enriched EVs from
AD cases show: a pattern of Ser and Tyr phosphoryl-
ation of the insulin receptor substrate 1 (IRS-1) sug-
gesting the presence of brain insulin resistance
(Kapogiannis et al. 2015); elevated lysosomal enzymes
(cathepsin D, LC3) and ubiquitin suggesting lysosomal
dysfunction (Goetzl et al. 2015b); decreased cellular
survival factors (REST) suggesting impaired responses
to cellular stress (Goetzl et al. 2015a); and decreased
synaptic proteins suggesting synaptic degeneration
(Goetzl, Kapogiannis, et al. 2016). Most of these
markers did not track disease severity and were not
associated with cognitive performance, except for
some synaptic proteins (synaptopodin, synaptotagmin
and synaptophysin) (Goetzl, Kapogiannis, et al. 2016).
In a variation of this methodology, one study used
antibodies against the glutamate transporter (GLAST)
to derive plasma EVs enriched for astrocytic origin and
found elevations in enzymes involved in APP cleavage
(BACE-1, c-secretase), Ab42 and ptau (Goetzl, Mustapic,
et al. 2016). Whereas the sensitivity and specificity of
many of these biomarkers were not sufficient for clin-
ical diagnosis (e.g. Goetzl et al. 2015a, 2015b), a subset
(ptau, Ab42, p-IRS-1) achieved impressive classification
accuracy in these initial studies (Fiandaca et al. 2015;
Kapogiannis et al. 2015) and can be selected for
larger-scale replication studies. In addition to protein-
based EV biomarkers, a recent study used AIBL sam-
ples to show that a set of 16 EV-derived miRNAs per-
form well in predicting AD (Cheng et al. 2015).

In summary, blood-based biomarkers have signifi-
cant advantages that can be used to enhance the util-
ity of CSF and imaging biomarkers. They are cost and
time efficient, readily acceptable to patients and
accessible globally for primary care implementation.
While there is a substantial amount of work to support
many putative blood-based biomarkers across a range
of potential COUs, much of this work remains in early
discovery phases and requires a great deal of add-
itional work, especially validation studies in independ-
ent cohorts, before consideration within clinical
settings.

Post-mortem findings in AD and other
dementia disorders

The histopathological examination of the brain using
modern molecular-biological methods under standar-
dised conditions represents the ‘gold standard’ of
diagnosis, although the frequent overlap of various
processes and multimorbidity of the aging brain cause
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considerable diagnostic challenges (Jellinger and
Attems 2015; Kovacs 2016).

Alzheimer’s disease

AD is morphologically characterised by the extracellu-
lar deposition of Ab peptides (amyloid plaques, cere-
bral amyloid angiopathy) and accumulation of Tau
protein within neurons (neurofibrillary tangles/NFT),
dendrites (neuropil threads), and neuritic plaques in
brain parenchyma, inducing defects of synaptic
connections (Figure 3). Current algorithms for the
neuropathological diagnosis of AD are based on semi-
quantitative assessment of plaques and NFTs and their
age-adjustment in the CERAD protocol, topographic
staging of neuritic/Tau pathology (Braak stages) and
the progress and distribution of Ab deposition which
is different from Tau pathology. Combining the CERAD
and Braak scores NIA-RI criteria relate dementia to AD-
typical lesions with high, intermediate and low likeli-
hood. The recent NIA-AA guidelines consider levels of
AD pathology regardless of the clinical history
(Montine et al. 2012). They include: (a) the recognition
that AD pathology may occur in the absence of cogni-
tive impairment; (b) an ‘ABC’ score of AD pathology
incorporating assessments of Ab plaques based on its
phase (A), staging of NFTs based on the Braak staging
system (B), and scoring of neuritic plaques based on
semiquantiative assessment of at least five neocortical
regions based on CERAD criteria (C); (c) more detailed
approaches for co-morbid conditions, such as DLB,
vascular brain injury and others. The NIA-AA guidelines
distinguished pure AD from non-AD dementia and

non-demented cases with a sensitivity of 71% and a
specificity of 99%. However, these guidelines only con-
sider the classical ‘plaque and tangle’ phenotype, and
do not consider that AD neuropathology is heteroge-
neous, including subtypes, e.g. the limbic predominant
or hippocampal sparing forms and primary age-related
tauopathy (PART), previous tangle-predominant demen-
tia, with Tau pathology mainly restricted to the limbic
system (up to Braak stage IV), absence of Ab pathology
and low APOE e4 frequency (Crary et al. 2014). AD in
very old demented subjects differs in both intensity
and distribution from that of younger age groups and
there is considerable overlap between demented and
non-demented oldest patients, and morphological dif-
ferences exist between genetic/familial and sporadic AD
(see Jellinger 2014).

a-Synuclein aggregation disorders

DLB shares many morphological features with PDD
(Figure 4). Staging systems are based on semi-quanti-
tative assessment of a-synuclein (aSyn) pathology in
specific brain regions, distinguishing six different
stages (from olfactory bulb and brainstem to cortex)
(Braak et al. 2006). DLB shows a variable mixture of
aSyn and AD pathologies, which may act synergistic-
ally. In some studies, more than half of DLB brains had
enough AD-like lesions to attain the pathological diag-
nosis of definite AD (Slaets, Le Bastard, Theuns, et al.
2013), but cognitive impairment may also be related
to severe cortical and limbic aSyn pathology in the
absence of significant AD pathology, although both

Figure 3. Histological lesions in Alzheimer’s disease. Neurofibrillary tangles, neuropil threads, neuritic plaques (lower left) and
amyloid angiopathy (upper left insert).
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pathologies may modify the clinical phenotype
(Walker, McAleese, et al. 2015; Toledo et al. 2016).

Frontotemporal lobe degeneration (FTLD)

FTLD shows distinct patterns of progressive brain
atrophy. Molecular correlates according to predomin-
ant protein aggregates are: microtubule-associated
Tau protein (FTLD-Tau), TAR DNA binding protein-43
(FTLD-TDP-43), and fusion sarcoma protein (FTLD-
FUS), but there are cases of overlapping pathology.
Major genetic causes of FTLD are mutations in MAPT
(Tau-gene), progranulin GRN and C9orf72, the latter
being a common cause of FTLD and amyotrophic
lateral sclerosis (FTLD-ALS). FTLD-TDP and ALS, but
not FTLD-FUS, have properties of amyloid (Irwin
et al. 2015; Kovacs 2016). Further details on the FTD
neuropathology in the context of potential novel
biomarkers are discussed in the FTLD section later in
this paper.

Vascular dementia (cognitive impairment/VaD, VCI)

VaD, recently referred to as vascular cognitive disease
includes a variety of cerebrovascular lesions, for which,
due to the high variability of morphological findings
and multifactorial pathogenesis, no generally accepted
morphological criteria are available. Major types of
VaD are multiple infarct encephalopathy, small-vessel
and strategic infarct type dementia (microinfarcts in
functionally important brain areas interrupting major
neuronal circuitries), subcortical lacunae mainly involv-
ing basal ganglia; white matter lesions and microin-
farcts (subcortical arteriosclerotic leukoencephalopathy
Binswanger), large and small cerebral haemorrhages,
hippocampal sclerosis; cerebral amyloid angiopathy
(Kalaria 2016). Recent guidelines assessing 14 patholo-
gies in 13 brain areas showed reproducible results but
need further validation (Skrobot et al. 2016).

Mixed type neuropathology is diagnosed when a
combination of various pathologies, in particular AD

Figure 4. Dementia with Lewy bodies. Diffuse brain atrophy (upper left), degeneration of substantia nigra (lower left), multiple
Lewy bodies and Lewy neurites in brainstem and cerebral cortex (right).
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with cerebrovascular lesions and/or Lewy pathology is
present, which occurs in up to 80% of elderly demen-
ted patients. Subcortical cerebrovascular lesions are
more frequent in AD patients than in non-demented
controls (Jellinger 2014).

Prion diseases (transmissible spongiform
encephalopathies (TSE))

This rare fatal disorder characterised by tissue depos-
ition of a misfolded isoform of the cellular prion protein,
referred to as PrPSc, is subclassified according to mor-
phological criteria. Human prion diseases include idio-
pathic forms (sporadic CJD, sporadic familial insomnia),
inherited (genetic/familial) forms, e.g. Gerstmann-
Str€aussler-Scheinker disease (GSS), fatal familial insom-
nia) and acquired forms (variant CJD (transmission of
bovine TSE to humans) and iatrogenic CJD (transmission
of prions through pituitary hormones, transplantation of
dura mater, cornea, etc.). Based on the histological
lesions and genetic data, current classification of human
prion diseases relates to the type, location and distribu-
tion of PrP deposits and plaques, and the molecular
types, which allows a reliable identification of the differ-
ent subtypes with high inter-laboratory accuracy (Kovacs
2016). Often prionopathy and AD-related pathology
appear simultaneously (Tousseyn et al. 2015).

Rapidly progressive and early-onset dementias

Rapidly progressive dementia (RPD), being quickly
fatal, is an important diagnostic problem. In addition
to frequent prion diseases it includes rapidly progress-
ing tauopathies and a-synuclein aggregation disorder,
autoimmune infections, toxic-metabolic and neoplastic
diseases. In patients with RPD, treatable disorders are fre-
quently mistaken for CJD, and a rapidly progressive form
of AD that may mimic CJD shows genetics and neuro-
pathology that differ from classical AD, probably repre-
senting a distinct subtype of AD (Geschwind 2016).

In conclusion, neuropathology using harmonised
definitions and standardised inter-laboratory methods,
including quantitative assessment of essential lesions,
can achieve a diagnosis or classification of dementia
disorders in up to 90–95% of cases. In the majority of
cases, except for those with known genetic or meta-
bolic background, however, it may not be able to clar-
ify the causes or aetiology of the particular disorder.

AD biomarkers in autopsy-confirmed cases

According to the Consensus Report of the Working
Group on Molecular and Biochemical Markers of

Alzheimer’s Disease, published in 1998, AD biomarkers
should be able to detect a fundamental feature of the
pathology. The diagnostic accuracy of biomarkers
should also be documented in autopsy-confirmed
dementia cases as the pathological diagnosis still is
considered to be the reference standard.

As 4% of the more than 5,000 subjects whose CSF
samples have been analysed since 2004 at the
BIODEM lab at UAntwerp came to autopsy, it has been
possible to set up validation studies in subjects with
autopsy-confirmed diagnoses. Diagnostic performance
was established for the core AD CSF biomarkers
(Ab1–42, Tau and pTau181) in 100 autopsy-confirmed
dementia and 100 control subjects (Engelborghs et al.
2008). The existing model based on CSF Ab1–42 and
Tau aiming at discriminating AD dementia from con-
trol subjects (Hulstaert et al. 1999) were validated. The
results obtained were very promising and showed that
this model can identify all AD cases in the population
(sensitivity, 100%; specificity, 90.72%). In an independ-
ent autopsy-confirmed cohort of AD patients and con-
trols, the Tau/Ab1–42 ratio resulted in sensitivity and
specificity values of respectively 85.7% and 84.6%
(Shaw et al. 2009). However, as discriminating AD from
controls assumes a rather artificial clinical situation,
new models were built (Engelborghs et al. 2008;
Toledo et al. 2012; Toledo, Cairns, et al. 2013). It was
shown that autopsy-confirmed dementia patients
could be discriminated from controls with a sensitivity
of 86% and a specificity of 89%; but, more importantly,
Tau and Ab1–42 optimally discriminated AD from
pooled non-AD dementias and controls (sensitivity,
90%; specificity, 89%), and AD was optimally discrimi-
nated from non-AD using pTau181 and Ab1–42 (sensi-
tivity, 80%; specificity, 93%) (Engelborghs et al. 2008).
Very comparable results were achieved in the OPTIMA
cohort for the discrimination of AD from non-AD
dementia patients, pTau/Ab1–42 resulted in sensitivity
and specificity values of, respectively, 88% and 100%
(Seeburger et al. 2015). The Tau/Ab1–42 ratio was
shown to be useful to discriminate definite AD from
FTLD subjects, too (Bian et al. 2008). A systematic lit-
erature review estimated the sensitivity and specificity
values for CSF biomarkers to discriminate autopsy-con-
firmed AD from non-AD dementias at respectively 82%
and 75% (Cure et al. 2014).

These studies have demonstrated the diagnostic
value of each of the three AD CSF biomarkers and that
sensitivity and specificity match the requirements as
set forward by the Working Group on Molecular and
Biochemical Markers of Alzheimer’s Disease (1998). It
has been demonstrated in these autopsy-confirmed
cohorts that the diagnostic accuracy of the AD CSF
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biomarkers is independent of the analytical platform
(multi-analyte Luminex assay (INNO-BIA AlzBio3) in
comparison to single-analyte ELISA tests (INNOTEST))
(Le Bastard et al. 2013; Struyfs et al. 2014).

In an extended cohort of 157 autopsy-confirmed
AD and non-AD cases, of which 22 had a clinically
ambiguous diagnoses, 18 out of 22 (82%) patients
with clinically ambiguous diagnoses were correctly
diagnosed using AD CSF biomarkers, meanwhile dem-
onstrating the added diagnostic value of AD CSF bio-
markers for differential dementia diagnosis (Le Bastard
et al. 2010). Especially for differential dementia diagno-
sis, pTau181 is an essential component of the AD CSF
biomarker panel (Koopman et al. 2009; Struyfs,
Niemantsverdriet, et al. 2015).

As stated above, mixed pathologies can limit the
diagnostic accuracy of the current AD CSF biomarker
panel. A significant proportion of patients with DLB
show AD co-pathology, plaques and neurofibrillary
tangles. Autopsy-confirmed DLB patients with plaques
showed lower CSF Ab1–42 concentrations than DLB
patients without plaques, but to the same degree as
AD patients. So, concomitant amyloid pathology in
DLB limits the use of Ab1–42 for the differential diag-
nosis of AD versus DLB (Slaets, Le Bastard, Theuns,
et al. 2013). However, when aSyn was added to the
CSF biomarker panel, autopsy-confirmed AD patients
could be discriminated from DLB patients, resulting in
a sensitivity and specificity of 85% and 81%, respect-
ively (Slaets et al. 2014). Also, as already mentioned
previously in this paper, adding Ab1–40 to the AD CSF
biomarker panel improved the diagnostic accuracy
from 74% to 80% to differentiate between (autopsy-
confirmed) AD and non-AD patients (Slaets, Le Bastard,
Martin, et al. 2013).

In case of atypical presentation of AD, suggesting
CJD, determination of total CSF prion protein (t-PrP)
levels is helpful, as CSF t-PrP concentrations were
decreased compared with control participants and
patients with AD. CSF t-PrP determination reached
82.1% sensitivity and 91.3% specificity to discriminate
(autopsy-confirmed) CJD from AD patients (Dorey,
Tholance, et al. 2015).

Genetic analyses in AD diagnostics

Genetic research has contributed systematically for
more than 25 years to complete the genetic architec-
ture of AD. In fact, genetic factors account for up to
80% of the attributable risk in common AD forms
(Gatz et al. 1997; Gatz et al. 2006). This observation
implicates genetic determinant probably in most of
the pathophysiological pathways in AD. In other

words, unravelling the genetics of AD offers probably
one of the best ways to discover the underlying
pathophysiological processes in AD. This genetic jour-
ney started in the early 1990s with the discovery of
fully penetrant mutations in APP, Presenilin 1 (PSEN1),
and Presenilin 2 (PSEN2), as the cause of autosomal-
dominant forms of early-onset AD (EOAD) (Goate et al.
1991; Mullan et al. 1992; Rogaev et al. 1995;
Sherrington et al. 1995). The discovery of highly pene-
trant pathogenic mutations in these genes has pro-
vided important clues about the pathogenesis of AD.
In the case of presenilins, they are thought to be the
catalytic subunit of the c-secretase complex, which is
formed by Psen1 or Psen2 together with PEN-2 (PS
enhancer 2), Nicastrin and APH-1(anterior-pharynx
defective) (Selkoe and Wolfe 2007). The c-secretase
complex is responsible for the cleavage of several type
I membrane proteins within their transmembrane
domains, among them the intramembrane cleavage of
APP that leads to the formation of the b-amyloid pep-
tide (Xia 2008; Lleo and Saura 2011). The mutations in
PSEN1 and PSEN2 influence the c-secretase mediated
cleavage of APP leading probably to a premature
release of longer hydrophobic and aggregation-prone
peptides such as Ab1–42. Interestingly, research has
shown that these mutations are probably qualitative,
i.e. they do not increase production of Ab1–42 over
Ab1–40, but they affect the ratio between both spe-
cies in favour of Ab1–42. This altered Ab1–42/1–40
may represent seeds for nucleation and amyloidosis
seen in AD (De Strooper and Karran 2016). Further
supporting the role of Ab1–42 in AD pathology, muta-
tions in APP leading to AD affect proteolysis of APP in
favour of Ab1–42 (Dimitrov et al. 2013), and APP dupli-
cations have been also identified in autosomal-domin-
ant EOAD families (Rovelet-Lecrux et al. 2006). All
these findings have reinforced the central role of the
Ab homeostasis in the pathology of AD, in particular
Ab1–42 production in dominant forms of AD.
However, mutations in these three genes are rare with
an overall estimated prevalence below 1%. In fact,
mutation in PSEN1, PSEN2, and APP are found only in
5–10% of EOAD leaving most AD cases genetically
unresolved (Goldman et al. 2011; Van Cauwenberghe
et al. 2016). This also suggests that additional, as yet
unknown, genes may underlay these unexplained
EOAD cases. Furthermore, it should be noted that
EOAD patients only represent 2–10% of all AD cases,
and thus the vast majority of AD patients with LOAD
will also test negative for mutations in these three
genes.

Contrary to EOAD, LOAD is considered a multifac-
torial disease, i.e. individual disease risk is determined
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by genetic, environmental and demographic factors, as
well as interactions between them. Hereby, the genetic
component itself is complex and heterogeneous impli-
cating several genetic factors which modulate the risk
of suffering of AD, but each one alone is not sufficient
to cause the disease.

For more than 20 years, the only known genetic
susceptibility factor for LOAD was the APOE gene
encoding the apoliprotein E (ApoE) (Corder et al. 1993;
Strittmatter et al. 1993). In APOE, three major allelic
variants are found which are called APOE-e2, APOE-e3
and APOE-e4. Two sites of the amino acid sequence in
ApoE differ in these allelic variants leading to three
different protein isoforms (ApoE2, ApoE3 and ApoE4).
In the early 1990s, genetic studies in familial and spor-
adic LOAD identified a strong genetic association
between the APOE-e4 allele and the susceptibility of
LOAD. In fact, APOE is the strongest risk factor for
LOAD, with one APOE-e4 allele increasing AD risk by
3-fold, and two APOE-e4 alleles increasing AD risk by
12-fold (Lambert and Amouyel 2011; Michaelson 2014).
In addition, APOE-e4 has a dose-dependent effect on
age of onset (Corder et al. 1993). Interestingly, the esti-
mated lifetime risk for AD is more than 50% for APOE-
e4 homozygotes and 20–30% for APOE-e3 and APOE-e4
heterozygotes, compared with 11% for men and 14%
for women overall irrespective of APOE allele combin-
ation (Genin et al. 2011; Scheltens et al. 2016). For
APOE-e2, compelling evidence supports a protective
effect and a delaying effect on age of disease onset
(Corder et al. 1994; Farrer et al. 1997). APOE-e3 is
thought to be a neutral allele in respect to its effect
upon susceptibility to AD. The effect of ApoE upon AD
risk is thought to be mediated by its ability to bind to
Ab and effectuates the clearance of soluble Ab and Ab
aggregations. In this regard, research has shown that
ApoE4 seems to be less efficient in mediating Ab clear-
ance compared to ApoE3 and ApoE2 (Michaelson
2014). Thus, these findings on ApoE provided further
support to the amyloid hypothesis and the central role
of Ab homeostasis in the pathogenesis of AD. However,
several lines of evidence suggest that the strong effect
of the APOE-e4 allele on LOAD risk goes beyond its abil-
ity to bind Ab. For instance, ApoE is expressed in sev-
eral tissues such as liver, brain, macrophages and
monocytes, and it is involved in several physiological
processes, including transport of cholesterol and other
lipids, neuronal growth, repair response after tissue
injury, neurogenesis, synaptic plasticity and spine integ-
rity, neuroinflammation, and activation of lipolytic
enzymes (Liu et al. 2013). Interestingly, most of these
processes have been involved in AD pathogenesis, and
research has shown that in some of them ApoE seems

to modulate AD pathology in an Ab-independent man-
ner (Yu et al. 2014). In addition, cardiovascular diseases
constitute known risk factors for LOAD, such as the
observation that APOE is a risk factor for different car-
diovascular traits including hyperlipidaemia, coronary
artery disease and atherosclerosis (Wilson et al. 1994;
Song et al. 2004). Hence, APOE may modulate risk of
LOAD through its effect upon risk for cardiovascular
diseases.

Although APOE is the strongest genetic risk factor
for LOAD, the effect of APOE-e4 to AD susceptibility
explains only a small fraction of the estimated herit-
ability of 80% leaving most of the heritability of AD
unexplained (missing heritability) (Ridge et al. 2013).
The most pivotal influence on identifying this missing
heritability has been the introduction of a hypothesis-
free genetic strategy: the genome-wide association
study (GWAS). Additionally, subsequent introduction of
a statistical approach to the GWAS strategy, i.e. the
meta-analysis of multiple independent GWASs, has
helped to increase power and to reduce false-positive
findings (Evangelou and Ioannidis 2013). Thus in 2009
the first two large-scale international collaborative
GWAS confirmed APOE as the strongest genetic factor
for LOAD, and most importantly increased the number
of identified genetic risk loci. Since 2009, additional
GWAS and meta-analysis thereof have increased
LOAD-associated signals. These include signals close
to, or within, candidate genes such as CLU (clusterin),
PICALM (phosphatidylinositol binding clathrin assembly
protein), CR1 (complement component (3b/4b) recep-
tor 1), BIN1 (bridging integrator 1), MS4A6A/MS4A4E
(membrane-spanning 4-domains, subfamily A, mem-
bers 6A and 4E), CD33 (CD33 molecule), CD2AP (CD2-
associated protein), ABCA7 (ATP-binding cassette, sub-
family A (ABC1), Member 7), EPHA1 (EPH receptor A1)
and ATP5H/KCTD2 genes (Harold et al. 2009; Lambert
et al. 2009; Seshadri et al. 2010; Hollingworth et al.
2011; Naj et al. 2011; Boada et al. 2014). In 2013, the
number of genome-wide significant susceptibility loci
for AD was doubled by the mega meta-analysis of a
sample of 74,046 persons reported by the
International Genomics of Alzheimer’s Disease Project
(Lambert et al. 2013). In this study, 11 novel associ-
ation signals were reported, i.e. DSG2 (desmoglein 2),
PTK2B (protein tyrosine kinase 2b), SORL1 (sortilin-
related receptor, L(DLR Class) A Repeats Containing),
SLC24A4 (solute carrier family 24 member 4), INPP5D
(phosphatidylinositol-3,4,5-trisphosphate 5-phosphat-
ase 1), MEF2C (myocyte-specific enhancer factor 2C),
NME8 (NME/NM23 family member 8), ZCWPW1 (zinc
finger CW-type and PWWP domain containing 1),
CELF1 (CUGBP, Elav-like family member 1), FERMT2
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(fermitin family member 2), and CASS4 (Cas scaffolding
protein family member 4). Conversely to APOE, none
of these novel signals increased the susceptibility to
LOAD by more than 2-fold (odds ratio, OR¼ 2)
(Lambert et al. 2013). Thus in view of their small ORs,
genetic variants within these loci are unlikely to be
causative. Despite this, the candidate risk genes
named by GWAS provided further support to the
amyloid cascade hypothesis because some these gene
signal are linked to Ab homeostasis and/or Tau path-
ology (Lambert and Amouyel 2011). On the other
hand, clustering the genes in biological pathways
revealed three main pathways involved in LOAD
besides Ab and Tau, cholesterol and lipid metabolism,
immune system and inflammatory response, and endo-
somal vesicle cycling. This observation was further
supported by an alternative approach to classical
case–control GWAS called pathway analysis (Jones
et al. 2010; IGAP 2015).

Thus, the past years have witnessed major advances
in the understanding of the genetics of LOAD.
However, awareness that genetic research into LOAD
has not reached its limit is increasing. Ridge et al.
(2016), for example, have estimated that 69% of the
genetic variance in AD remains unexplained by known
AD-risk variants, leaving an important part of the herit-
ability of LOAD as yet unexplained. The hope to catch
this missing heritability has motivated development of
novel approaches to search for rare variants (minor
allele frequency <1%) that cannot be found by clas-
sical GWAS approaches. Herein, next-generation
sequencing (NGS)/whole-exome sequencing have
already enabled the identification of causative muta-
tions in families and sporadic cases for whom linkage
analysis was not possible, including mutations in
SORL1 (Pottier et al. 2012) and TREM2 (Guerreiro et al.
2013; Jonsson et al. 2013). Furthermore, NGS has
allowed the identification of rare variants in APP,
PSEN1 and PSEN2, which increase the risk for AD in
LOAD families (Cruchaga et al. 2012). These studies
underscore the value of this technology in the search
for rare variants/mutations in families and sporadic
cases with no mutations in known AD genes, even in
the investigation of small samples.

Finally, the ultimate goal of these genetic findings
is to search for ways to translate genetic findings to
routine clinical practice. From a translational point of
view, identification of highly penetrant mutation in
APP, PSEN1 or PSEN2 has led to valuable targets cur-
rently used in diagnosis and drug development
(Goldman et al. 2011; Schneider et al. 2014). A most
direct translational application of genetic findings in
APP, PSEN1 and PSEN2 is molecular genetic diagnostic

and predictive screening, even though the real utility
of this genetic testing is very limited because, as men-
tioned before, causal mutations explain only a small
fraction of AD patients. Nevertheless, the ability to
provide definitive molecular diagnostics in familial
cases is an important step towards personalised medi-
cine. Furthermore, predictive testing also helps at-risk
individuals from dominant AD families because it ends
uncertainty of whether one has inherited the gene
and also helps planning the future, including educa-
tion, financial, family and career. Notwithstanding,
before offering genetic testing, a multidisciplinary
team, including clinicians, genetic counsellors, psychol-
ogists and social workers, should extensively evaluate
which patient or at-risk individual may actually benefit
from genetic testing (Goldman et al. 2011; Gauthier
et al. 2013).

For GWAS findings, the application to clinical prac-
tice is more difficult for two main reasons. First, GWAS
signals most probably do not represent the causative
mutation(s), but rather they lie close to the real muta-
tion(s) (Hardy and Singleton 2009). Second, all these
variants showed modest to low effect on disease risk,
which renders these variants useless in terms of distin-
guishing patients from controls, and in terms of guid-
ing clinical managements. APOE-e4 allele presence is
neither sufficient nor necessary to cause AD. Some
research has been devoted to explore the utility of
GWAS signals combined in a genetic risk score (GRS),
which provides a cumulative effect score based on the
individual susceptibility variants. However, results from
studies using GRS combining all or part of GWAS sig-
nals have been inconclusive concerning disease pro-
gression and clinical diagnosis (Sleegers et al. 2015;
Lacour et al. 2016; Louwersheimer et al. 2016). In add-
ition, sensitivity and specificity obtained in these stud-
ies render GRS inadequate for clinical practice.
Interestingly, a recent study investigated the disease
prediction accuracy using genome-wide genetic data
regardless of whether variants were consistently asso-
ciated with LOAD or not. Using more than 300,000
genome-wide variants, combined in one single genetic
score, the authors of this work reached a disease pre-
diction accuracy of 78.2% (Escott-Price et al. 2015).
Although these results are far from the standards used
for clinical practice, they underscore the added value
of such a GRS in algorithms searching for individuals
at risk for AD. Additional research is now fostered to
identify the real causative variants underpinning GWAS
signals, to explore gene–gene and gene–environment
interactions of genetic variants. All this additional gen-
etic information will definitely improve current
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predictive algorithms that include mainly non-genetic
biomarkers and clinical data.

Pre-analytics in the CSF biomarkers analysis

Pre-analytical confounders affect the quality of sam-
ples and the reliability of biomarker data (Lewczuk,
Beck, et al. 2006; Vanderstichele et al. 2012; Teunissen
et al. 2014). Up to 70% of all biomarker-related prob-
lems occurring in laboratory diagnostics are due to
pre-analytical errors (Lippi et al. 2011). Most of the
pre-analytical errors consist of incorrect procedures
during collection, handling, preparing or storing sam-
ples (Lippi et al. 2011). Therefore, recognising these
confounders and controlling the pre-analytical condi-
tions for CSF analyses will lead to improved reproduci-
bility and quality of biomarker measurements. The
following pre-analytical confounders have been
studied extensively in CSF analysis and will be dis-
cussed here: sample withdrawal volume, blood con-
tamination of CSF, types of sample collection and
storage tubes, storage volume, centrifugation speed,
storage temperature, delayed freezing of samples,
long-term stability and the number of freeze–thaw
cycles.

Collection volume

The volume of CSF taken from a patient during LP can
influence CSF protein concentrations, because many
brain-derived proteins have a rostrocaudal concentra-
tion gradient, i.e. a higher concentration in CSF
sampled more proximal to the ventricles (Reiber 2001).
For example, a slight decrease of CSF a-synuclein con-
centrations was found from rostral to caudal (Hong
et al. 2010; Mollenhauer et al. 2012). In contrast, data
on the rostro-caudal gradient of the AD biomarkers
are conflicting: whereas some groups did not find
such gradient (Bjerke et al. 2010; del Campo et al.
2012; Vanderstichele et al. 2012), others did, and found
that they depended on the medical conditions of the
patients (Brandner et al. 2014). In this situation, a
standardised CSF collection volume by LP may be
advised for biomarker analyses (e.g. 12ml) (del Campo
et al. 2012). Of note, no correlation between the vol-
ume of collected CSF and the risk of post-LP headache
was found (Kuntz et al. 1992; Duits et al. 2016).

Blood contamination of CSF

Blood contamination can influence CSF biomarker con-
centrations and may occur during a traumatic LP
(‘bloody tap’). Biomarker concentrations can be

affected in opposite directions: (a) elevated protein
concentrations, because the protein of interest is also
abundant in blood, or (b) decreased protein concentra-
tions, due to degradation of the protein of interest by
blood proteases or disturbance by highly abundant
proteins in blood plasma. Since the total protein con-
centration in CSF is approximately 0.5% of that in
blood, the concentration in CSF of many proteins is
affected by even minor amounts of blood contamin-
ation (You et al. 2005). A good example is the concen-
tration of aSyn in CSF which is substantially increased
by blood contamination, since erythrocytes also con-
tain aSyn (Hong et al. 2010; Kang et al. 2013).

Although no significant changes in Ab1–42 levels
were found in CSF contaminated with blood compared
to uncontaminated CSF (Bjerke et al. 2010), the CSF
Ab42 concentration decreased after addition of an
amount of plasma that corresponds to a CSF/serum
albumin ratio of 11–55� 10�3, probably due to the
binding of free Ab to plasma proteins (Bjerke et al.
2010). Tau and other proteins could likewise be
affected by binding to proteins or degradation by pro-
teases present in the plasma (You et al. 2005; Park
et al. 2015). The confounding effect of a traumatic
puncture can simply be avoided by discarding the first
millilitres of blood-contaminated CSF in the case of
artificial bleeding, and starting collection of CSF when
the sample is clear, as instructed by most international
protocols (Teunissen et al. 2009; del Campo et al.
2012; Vanderstichele et al. 2012; Park et al. 2015; Reijs
et al. 2015). In the case where blood contamination
cannot be avoided, immediate centrifugation of the
CSF sample is recommended to remove blood cells
from the sample (Park et al. 2015), although plasma
proteins will remain in the CSF. The effect of erythro-
cytes on the protein concentrations is for most CSF
biomarkers negligible when their number is below 500
per ml; therefore this maximum limit is generally
regarded as acceptable (Teunissen et al. 2014; Reijs
et al. 2015). Quantification of haemoglobin concentra-
tions, which can also be done in archived material,
may also be used as a marker for possible blood con-
tamination of the CSF, albeit the release of haemoglo-
bin into CSF only occurs after lysis of erythrocytes.
Furthermore, to reduce the risk of a traumatic LP, 25G
needle compared to 20G needle has been shown to
be beneficial (Bertolotto et al. 2016).

Collection and storage tubes and storage volume

One of the best studied pre-analytical confounders for
the assessment of dementia biomarkers in CSF, and
one that may dramatically affect the outcome of the
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analyses, is the type of collection and storage tubes
for CSF. Protein properties (such as lipophilicity, hydro-
phobicity, isoelectric point) could have effects on the
interaction of the protein with the tube material.
Lipophilic proteins, such as Ab, bind in a non-specific
manner to tubes made of materials other than poly-
propylene. Hydrophilic pTau protein is, in general, less
adsorbed to the tube walls compared to the more
hydrophobic Ab (Lewczuk, Beck, et al. 2006; Perret-
Liaudet et al. 2012). However, adsorption of proteins
can also be influenced by surface roughness of the
tube or the polymer surface charge in relationship to
the isoelectric point of the protein (Duncan et al. 1995;
Sweileh et al. 2010; Perret-Liaudet et al. 2012; Poncin-
Epaillard et al. 2012).

When comparing tubes made from other materials
than polypropylene, such as glass or hard plastic
tubes, such as polystyrene tubes, lower levels of Ab42,
Tau and, in some studies, pTau were recovered from
the CSF collected in these non-polypropylene tubes
(Andreasen et al. 1999; Bjerke et al. 2010; Lewczuk,
Beck, et al. 2006; Perret-Liaudet et al. 2012).
Additionally, the adsorption is higher for proteins if
pure polypropylene tubes are used compared to tubes
made of copolymers of polypropylene and polyethyl-
ene, which have lower adsorption properties
(Sunderland et al. 2003). Treatment of the surface of
the polypropylene tube with Tween-20 can reduce the
binding of CSF Ab peptides to the tube (Pica-Mendez
et al. 2010), and use of siliconized low-binding tubes
reduces adsorption of CSF aSyn (del Campo et al.
2012). Transfer of CSF into different tubes made of
polypropylene or other materials for processing or
storage purposes, can result in a 20–60% decrease in
measured protein concentrations (Perret-Liaudet et al.
2012). Measured concentrations of Ab42 decreased by
approximately 25% with each consecutive transfer,
whereas Ab40 decreased approximately by 16% and
Tau decreased by only 4% (Toombs et al. 2014).

Accurate planning of storage of CSF in appropriate
aliquot volumes for biomarker analysis is preferred
over repeated freeze–thawing (see also later in this
paper) of the CSF for multiple uses, which usually
leads to unpredictable changes in the biomarkers con-
centrations. Additionally, since long-term storage could
theoretically lead to evaporation of fluids and there-
fore influence protein concentrations, storage of CSF
at different volumes and temperature conditions was
systematically studied. Significant evaporation was
observed at room temperature but not at –80 �C or
–20 �C (Willemse et al. 2015). Small polypropylene
tubes (1–2ml) with screw caps are the ideal storage
tubes and the minimum recommended volume of

aliquots is 0.1ml (Teunissen et al. 2014) or between
0.25 and 0.5ml (del Campo et al. 2012). Reducing stor-
age volume from 75% to 50% of total tube capacity
may decrease Ab42 concentration by 3.7% (P¼ 0.03),
whereas no change was observed in Tau and pTau
concentrations (Leitao et al. 2015). Given the limited
information available, currently it is safe to advise to
fill storage tubes up to 75% of its capacity (del Campo
et al. 2012; Teunissen et al. 2014; Leitao et al. 2015).

In general, polypropylene tubes are recommended
for use in both CSF collection and long-term storage.
However, tubes made of a copolymer of both polypro-
pylene and polyethylene are preferred over those
made of polypropylene alone. Treatment of tube surfa-
ces (e.g. with Tween 20) before use may be beneficial
in specific cases. Furthermore, preferably the tubes
should be filled to 75% of its capacity.

Centrifugation speed

Centrifugation of CSF samples could be useful to
remove (invisible) blood components prior to long-
term storage (Park et al. 2015). When CSF samples that
were not centrifuged, were compared to CSF samples
that were centrifuged after 1, 4, 48 and 72 h after
withdrawal, no influence on Ab42, Tau and pTau con-
centrations was demonstrated (Schoonenboom et al.
2005). In the case of non-traumatic CSF samples, bio-
marker concentrations were not influenced by centrifu-
gation (Le Bastard et al. 2015). Therefore,
centrifugation of CSF (at 2,000� g) for 10min at room
temperature (Reijs et al. 2015) can be considered
before analysis and/or storage, but is not essential,
unless the CSF is not clear. A lower centrifugation
speed (e.g. 400–800� g) is recommended if cells have
to be preserved in the CSF for cell count (Teunissen
et al. 2014).

Storage temperature and delayed freezing of
samples

The delay between sampling and freezing may affect
CSF protein levels. Ab42, Ab40, Tau and pTau have
been reported to remain stable at room temperature
for a period up to 24 h (Kaiser et al. 2007; Bjerke et al.
2010), 4–5 days (Zimmermann et al. 2011) or even
12–14 days (Schoonenboom et al. 2005; Simonsen
et al. 2013) after LP. Thereafter, a decrease in protein
concentrations was observed, probably due to proteo-
lytic processes and degradation of proteins
(Schoonenboom et al. 2005). Also storage of CSF sam-
ples at 4 �C for 2 days may reduce Ab42 concentra-
tions by 20%, but no significant effect was found for
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Tau and pTau (Schoonenboom et al. 2005). The con-
centration of aSyn is also affected: storage of CSF at
room temperature for 4 h leads to significant altera-
tions in aSyn levels (Simonsen et al. 2013). A 40%
reduction in CSF aSyn concentration was found after
storage for 4 h at 4 �C (del Campo et al. 2012). As a
general guideline, CSF samples are frozen as soon as
possible at –80 �C, and the stability of yet unstudied
proteins in the CSF should be tested (Teunissen et al.
2014; Le Bastard et al. 2015; Reijs et al. 2015).
However, sometimes immediate freezing of the CSF
samples is not possible. International guidelines rec-
ommend to preferably store the CSF samples at room
temperature before, during and after centrifugation
(Teunissen et al. 2014), and limit the delay of freezing
of the CSF samples to 4 h maximally (Park et al. 2015).
Some guidelines are more strict in recommending a
delay of no more than 30–60min, with a maximum of
2 h between collection and freezing (or temporarily
store the CSF samples at 4 �C for no more than 5
days) (del Campo et al. 2012; Vanderstichele et al.
2012; Teunissen et al. 2014; Reijs et al. 2015).

For transportation to an external laboratory, where
routine AD biomarkers are to be analysed, special con-
ditions, such as freezing or cooling of a sample, are
not necessary and not recommended, if transportation
time does not exceed 5-6 days (Zimmermann et al.
2011; Lelental et al. 2016).

Long-term stability and freeze–thaw cycles

CSF sample stability might be affected by its storage
time (Schoonenboom et al. 2005). Previous studies
showed that CSF samples stored for 1 year (Lelental
et al. 2016), 2 years (Bjerke et al. 2010; Zimmermann
et al. 2011), up to 6 years (Schipke et al. 2011) or even
10 years (Vanderstichele et al. 2012) at –80 �C
remained stable for Ab42, Tau and pTau, but Ab40

levels were less stable. It has been suggested that CSF
Ab40 might be more vulnerable to degradation
(Schipke et al. 2011). In conclusion, CSF can be stored
for up to 10 years at –80 �C for analysis of AD bio-
markers, although negative effects of extended storage
periods on yet unstudied proteins cannot be excluded
(del Campo et al. 2012; Vanderstichele et al. 2012).

Repeated freeze–thaw cycles can be an issue when
proteins are less stable, such as Ab42, in comparison to
more stable proteins, such as Tau and pTau
(Zimmermann et al. 2011). The influence of freeze–thaw
cycles has previously been tested for up to six cycles
(Schoonenboom et al. 2005; Zimmermann et al. 2011;
Le Bastard et al. 2015; Leitao et al. 2015). The CSF Ab42
concentrations decreased after three freeze–thaw
cycles by 20%, while CSF Tau and pTau levels remained
stable up to six freeze–thaw cycles (Schoonenboom
et al. 2005; Le Bastard et al. 2015; Leitao et al. 2015).
Therefore, aliquotting CSF in appropriate volumes for
future use is preferred over repeated freeze–thawing,
and a maximum of two freeze–thaw cycles is generally
recommended for CSF samples (Lewczuk, Kornhuber,
et al. 2006; Zimmermann et al. 2011; del Campo et al.
2012; Reijs et al. 2015).

Notwithstanding the fact that (pre- and post-) ana-
lytical parameters can affect the clinical classification,
an exploratory study provided evidence that, for a spe-
cific context of use, the impact on clinical accuracy of
biomarker concentration shifts might be lower than
originally expected, as induced shifts of ±20% in only
one of the three biomarkers has limited impact on the
clinical accuracy of AD CSF biomarkers in MCI and
autopsy-confirmed AD patients when using the IWG-2
criteria (Niemantsverdriet et al. 2016).

Table 1 provides an overview of the pre-analytical
confounders that may affect CSF analysis of Ab40,
Ab42, Tau, pTau and aSyn proteins, and recommenda-
tions to control these confounders. Abiding by these

Table 1. Overview of pre-analytical confounders and current recommendations in the CSF ana-
lysis of AD biomarkers.
Confounder Recommendation

Sample withdrawal volume 12ml
Type of needle 25G atraumatic needle
Location of LP Intervertebral space L3-L5
Traumatic LP Discard blood-contaminated CSF until sample is clear, followed

by immediate centrifugation at 2,000� g for 10min at RT
Erythrocyte count <500 erythrocytes/ml
Sample collection tube PP tube, but preferably copolymer PP-PE tube
Sample storage tube PP tube, but preferably copolymer PP-PE tube
Sample storage volume 1–2ml, preferably filled to 75% of its capacity
Sample centrifugation Not essential, only when CSF sample is blood-contaminated
Sample storage temperature As soon as possible at –80 �C
Delayed freezing of samples <4 h
Long-term stability Up to 10 years at –80 �C
Freeze-thaw cycles Maximum of two cycles

CSF: cerebrospinal fluid; LP: lumbar puncture; PP: polypropylene; PE: polyethylene; RT: room temperature.
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recommendations may improve the reproducibility
and quality of biomarker measurements. Additionally,
standardised procedures of biobanking discussed later
in this paper, will be helpful to validate assays for, and
study (pre-analytical) confounders of, existing and
novel CSF biomarkers within collaborative international
studies.

Circadian variation as a confounder for AD
and PD CSF biomarkers

Diurnal variations in AD biomarkers

Another pre-analytical factor influencing quality of the
diagnostic-relevant outcome of the AD biomarkers
measurements is timing of the CSF collection. It repre-
sents one of the most practical critical issues, and
hence it is important to test whether diurnal variation
influences the outcome of the biomarkers’ measure-
ments. So far, only a few studies have addressed the
issue of diurnal variation in CSF AD biomarkers, with
inconsistent results.

Bateman et al. (2007) observed that CSF Ab levels
varied significantly (1.5- to 4-fold) over 36 h in a group
of 15 healthy individuals aged 23–78 years. A lumbar
catheter was placed in all participants and 6ml of CSF
were collected hourly in polypropylene tubes. CSF
Ab1–x, A1–40, and A1–42 were measured by ELISA in
each hourly CSF sample. During a time period of 36 h,
the Ab levels peaked at 12 and 23 h with troughs at
baseline, and 25 h showing significant fluctuations of
more than 50% within 6 h. A sinusoidal pattern of Ab
levels was described across participants, supposed to
be due to time of day, activity or dynamic changes in
the production or clearance rate of Ab. This study was
the first to arise the issue of a possible diurnal vari-
ation of CSF biomarkers that could represent a signifi-
cant obstacle when using CSF biomarkers as
diagnostic tools. In the study reported by Bjerke et al.
(2010), 14 psychiatrically and neurologically healthy
subjects underwent knee surgery. CSF was serially col-
lected by LP with an 18-Gauge Portex epidural needle
at baseline, after 4–6 h (mean 5.3 h) and after 24 h. If
compared to Bateman’s results, data showed more sta-
ble levels with a slight but significant decrease in CSF
Ab42 after 4–6 h, which tended to return to baseline
levels after 24 h. A possible reason for these results is
that, as opposed to Bateman’s study, a smaller CSF
volume was taken; this could have led to a minor
impact on the CSF dynamics.

More recently, Slats et al. (2012) studied the within-
subject variability of other AD biomarkers, i.e. Tau and
pTau, and found no diurnal variation in CSF dynamics

during a 36-h sampling (6ml/h). While previous data
were principally obtained in mostly young healthy par-
ticipants, this study enrolled older subjects and
patients with AD, in order to determine daily variability
in these relevant age groups. Six patients suffering
from mild AD (59–85 years, MMSE 16–26), and six
healthy volunteers (64–77 years) underwent insertion
of an intrathecal catheter, from which 6ml of CSF
were collected each hour for 36 h. Variability of CSF
Ab40, Ab42, Tau and pTau concentrations was lower
than expected, and the data observed by Bateman
et al. were not confirmed. These findings suggest that
CSF biomarker variability is relatively low in healthy
older controls and AD patients. Also Moghekar et al.
(2012) examined CSF Tau along with Ab but no diurnal
fluctuation of the biomarkers was reported. Ten
patients suspected of having idiopathic normal pres-
sure hydrocephalus or pseudotumor cerebri were
enrolled. Most of the patients had mild cognitive defi-
cits associated with their suspected diagnosis (MMSE
score range 20–30). All patients underwent insertion of
a catheter into the lumbar subarachnoid space on the
first day of hospitalisation. After monitoring of intracra-
nial pressure for 18 h, drainage of CSF was initiated at
noon and collection of CSF for analysis started at
18:00 h on the first day of drainage. Forty millilitres of
CSF were withdrawn from the lumbar catheter every
6 h for 24 or 36 consecutive hours. The levels of Ab42,
Ab40, Tau, and pTau, although significantly different
between the patients, did not fluctuate appreciably
over time (Moghekar et al. 2012).

Along with core biomarkers of AD, other proteins
are currently studied as candidate biomarkers, with
significant results in their role in CSF diagnostics.
Biomarkers of the amyloidogenic pathway are being
taken into account in AD diagnosis, since Ab42 is pro-
duced from cleavage of APP, and several critical steps
of amyloid metabolism can cause daily Ab fluctuations
resulting from, for example, fluctuations of neuronal
activity during the day (Cirrito et al. 2005).
Dobrowolska measured APP proteolytic products
sAPPb, sAPPa, Ab40 and Ab42 over 36 h in CSF from
cognitively normal young and elderly participants, as
well as in CSF from participants with AD (total of 49
participants). For all participants, an intrathecal lumbar
catheter was placed between the L3–L4 interspace or
the L4–L5 interspace. Every hour for 36 h, 6ml of CSF
and 12ml of plasma were withdrawn. Diurnal fluctua-
tions were observed in sAPPa, sAPPb, Ab40 and Ab42,
diminishing with increased age (Dobrowolska et al.
2014).

In another study, Cicognola et al. (2016) investi-
gated diurnal variability of classical and candidate CSF
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biomarkers in a cohort of neurosurgical patients carry-
ing CSF drainage after neurosurgical intervention for
tumours, head trauma or haemorrhages, or for moni-
toring CSF pressure. As candidate biomarkers they
considered markers of amyloid metabolism (Ab38,
Ab40, sAPPa, sAPPb), synaptic loss (NG), neuroinflam-
mation (YKL-40), neuronal damage (VILIP-1) and these
related to genetic risk (APOE). Samples were collected
from a cohort of 13 neurosurgical patients from either
ventricular (n¼ 6) or lumbar (n¼ 7) CSF drainage at six
time points during 24 h, 1–7 days following the neuro-
surgical intervention. Haemorrhagic CSF samples were
excluded; if the drainage was placed after a trauma,
haemorrhage or tumour surgery, CSF samples col-
lected were acceptable if they were either clear or
only slightly and stably xantochromic. Even if set on
different ranges between subjects, the overall levels
of the individual biomarkers were very stable over
time and did not seem to be affected by external
factors. None of the biomarkers showed significant
diurnal variation. Site of drainage (lumbar versus ven-
tricular) did not influence this result (Cicognola et al.
2016).

Diurnal variation in aSyn species

As it will be reviewed in more detail later in this paper,
many studies have investigated the diagnostic and/or
prognostic performance of CSF aSyn species, i.e. total,
oligomeric and phosphorylated aSyn, in PD and AD
cohorts, reporting conflicting results (Wang et al. 2015;
Parnetti, Cicognola, et al. 2016).

With respect to CSF aSyn species diurnal variations,
data are still scanty (Mollenhauer et al. 2016). Spies
et al. (2011) led a pilot study performing repeated CSF
sampling in healthy elderly and AD patients. CSF sam-
ples of six healthy controls (59–85 years old) and six
AD patients (64–77 years old) who underwent
repeated CSF sampling from an indwelling intrathecal
catheter with 1-h intervals were analysed. No linear
trend in aSyn concentrations over 33 h was observed.
In order to investigate the presence of a sinusoidal
pattern they included a cosinor analysis in the model
that did not identify sinusoidal variation in CSF aSyn
concentrations. These results did not change when AD
patients and healthy controls were analysed separately
(Spies et al. 2011).

Taken together, diurnal variation does not seem to
represent a major variability factor. This evidence is of
utmost importance, since it implies that the diagnostic
procedure of LP can be carried out at different time
points during the day, without any influence on the
results obtained for the AD biomarkers.

Biobanking

Following proper pre-analytical procedures, outlined
above, assures high quality of the samples, which can
be used for routine diagnostic analyses, as well as
stored in repositories (biobanks), with the aim of
research use in the future. Therefore, much effort has
recently been devoted to optimisation of procedures
for the CSF collection and biobanking (Teunissen et al.
2009; del Campo et al. 2012).

CSF is obtained by LP, a method that is fairly well
accepted by patients and can be performed safely. For
example, severe complaints occur in less than 1% of the
punctures (Duits et al. 2016). Evidence-based recom-
mendations to optimally perform the procedure, as well
as other tools, such as a training video explaining the
procedure step by step, are now in place (Engelborghs
et al. 2017; Babapour Mofrad et al. 2017), which helps to
reduce the risk of complications by adoption of proced-
ural details that minimise risk factors, for example by
application of small gauge needles, refraining from the
use of syringe, and through education and providing
comfort to the patients to reduce anxiety.

As mentioned, CSF can be centrifuged to remove
cells (lymphocytes, erythrocytes), which is advised as
cells consume CSF glucose, and cellular proteases able
to modify proteins can be released from dying cells.
Centrifugation, if used, is recommended to occur
within 1 h after collecting the CSF sample. A study
comparing effects of time between LP and centrifuga-
tion/storage on the low-molecular-weight proteome
did not show a difference in detected proteins
(Jimenez et al. 2007), but these results may not hold
true for more sensitive methods that are becoming
more and more available.

During aliquotting, low-binding biobank tubes
should be used, again to minimise absorption of the
CSF proteins. Special care must be taken to close the
vials, as this may lead to evaporation of fluid. It was
perceived that evaporation of stored fluids occurs dur-
ing long-term storage, but a systematic experiment
over 4 years showed that evaporation does not occur
under normal freezer conditions (Willemse et al. 2015).

It may be obvious, but still not generally imple-
mented, that freezing-proof and barcoded labels are
not used. Barcoding requires electronic registration.
Clinical samples are usually tracked by laboratory infor-
mation management systems (LIMS), but the practice
for biobanking is often different. Biobanking systems
should employ barcodes, as failure in patient identifi-
cation has been identified as an important source of
variation for medicinal laboratories (Plebani 2006),
which will also conceivably account for biobanking
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practice. There is increasing availability of software for
biobanking, and these better serve the needs for body
fluid sampling, i.e. systems can be linked to LIMS to
avoid failures in patient identification, to provide over-
views of number of samples and volume per patients,
track and trace of samples via barcodes, and flexibility
to, e.g. add clinical data or ethical consent information.
Continuous, alarmed, tracking of freezer temperature
24/7 is standard of practice in biobanks, and under-
scores the high responsibility for biobank personnel
for this precious resource.

An issue in long-term biobanking is the stability of
such proteins at these conditions, which can span up
to 20 years. This is an important issue, for which there
is little evidence yet. Of course, long-term storage sta-
bility is not relevant for diagnostic practice, where
samples are usually processed within weeks, but more
important for large-scale biomarker studies using his-
torically collected samples. One approach to define
long-term storage for a biomarker is to experimentally
generate Arrhenius plots. In this approach, samples are
put at different temperatures during increasing inter-
vals for a defined time period (e.g. 3 weeks), which
generates a formula based on which long-term decline
for longer periods and at different temperatures can
be extrapolated (Kirkwood 1977). The disadvantage is
the extrapolation, which assumes similar behaviour
over prolonged periods and at different temperatures,
which is not yet proven for every biomarker or matrix.
Another approach is to analyse samples collected over
a long period from a clinically homogeneous popula-
tion. This is based on the idea that patient biology
within clinically homogeneous groups does not vary
across time. This approach can only be applied if the
collection protocol has been unchanged over the
years, as change in tubes or introduction of extra
transfers to novel tubes could have led to lower Ab
levels. In this way, Ab concentrations will be the same
in AD patient groups now as they were 20 years ago,
but if there was a difference then it would be due to
changes of dependent variables, such as time.

Very recently, an international project in cooper-
ation with Integrated BioBank of Luxemburg was
launched to test inter-centre biomarkers variability
resulting from different biobanking standard operating
procedures (SOPs) across centres (Coordinators: C.
Teunissen, F. Betsou and P. Lewczuk).

The Alzheimer’s Association International
Quality Control (QC) programme

Taken together the issues in pre-analytics of the sam-
ples used for AD biomarkers analyses, as discussed

above, it is not surprising that their intra- and inter-
laboratory QC turned out nontrivial very shortly after
the introduction of these modalities into research, and
then routine, laboratories. This holds true particularly
in case of methods based on the ELISA or other
immunoassay techniques, involving manual pipetting
steps in 96-well plates.

Further, it has to be stressed that the legal situation
in many countries, as well as normalisation require-
ments defined by state institutions as well as by the
International Standardization Organisation (ISO) put
large pressure on the issues of laboratory measure-
ments quality and its control (Waedt et al. 2012).

Outline and aims for the QC programme

The Alzheimer’s Association QC programme for CSF
biomarkers was started in 2009, with the aim to estab-
lish an organisation to monitor the performance of
CSF biomarker measurements between laboratories
and to monitor longitudinal variations due to batch-
to-batch variability in assay production (Mattsson
et al. 2011). The long-term goal of the whole pro-
gramme is to improve the quality of the whole chain
of procedures in CSF biomarker measurements, which
would result in stable results over time and harmon-
ised values worldwide with the possibility to intro-
duce uniform cut-off levels between laboratories. This
would serve as the basis for an increased use of CSF
biomarkers in clinical diagnostic routine practice,
which would be of large benefit for the patients,
especially when we hopefully will have disease-modi-
fying drugs targeting amyloid and Tau pathology
available.

An important goal of the QC programme is also, by
making CSF biomarker variability objective, to stimu-
late other standardisation efforts, ranging from SOPs
for LP, CSF handling and storage, analytical protocols
and production procedures (Mattsson et al. 2011). In
addition, a goal with the QC programme was also to
stimulate biotechnology companies to develop novel
high-quality versions of their assays, and to make
novel assays on fully automated laboratory analysers.

The QC programme is based on across-laboratory
analysis of QC CSF samples (aliquots of pooled CSF)
that are sent to the participating laboratories for ana-
lysis of the AD CSF biomarkers. The programme is
open for labs using any generally available kit for Ab,
Tau or pTau, and is designed to present each labora-
tory with three blinded challenges per year. Each
round consists of three QC samples, with two samples
per round having unique biomarker concentrations
while one sample is identical in every round.
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The early rounds in the QC programme

Results from the first two rounds presented results for
40 laboratories from Europe, the United States, Japan,
Australia and South America (Mattsson et al. 2011).
Results showed the expected between-lab variability
of 13% up to 36%. A checklist for how the assays are
performed in each lab was constructed with the aim
to identify analytical factors that may underlie the vari-
ability, but no clear effect or differences between labo-
ratories could be found (Mattsson et al. 2011). In a
subsequent paper, results from the first ten rounds in
the QC programme were presented (Mattsson et al.
2013), showing no clear improvement in between-lab
performance. This may have been anticipated, since
the outcome of any QC programme is only to monitor
between-laboratory and longitudinal stability. Instead,
just as in other areas of laboratory medicine, this
needs to be done in complementary standardisation
efforts.

The IFCC working group for CSF proteins

The International Federation of Clinical Chemistry
Work Group on CSF proteins (IFCC WG-CSF) works in
collaboration with GBSC, and includes researchers
both from the academia and industry. The goal is to
establish Reference Measurement Procedures (RMPs),
or ‘gold standard’ methods for Tau and Ab in CSF, and
to develop a Certified Reference Material (CRM), mean-
ing aliquots of a large CSF pool in which levels of the
biomarkers have been set using the RMPs (Kuhlmann
et al. 2016). After tests of homogeneity and stability,
aliquots of the CRM will be distributed to kit vendors
and large laboratories for harmonisation of levels
between assay formats, and to secure long-term
(batch-to-batch) stability of assays. Four independent
laboratories have developed a selected reaction moni-
toring (SRM) mass spectrometry (MS) method for CSF
Ab42. Two such methods for the quantification of CSF
Ab 1–42 have been published (Korecka et al. 2014;
Leinenbach et al. 2014) and accepted and listed by
the Joint Committee for Traceability in Laboratory
Medicine as RMPs (nos C11RMP9 and C12RMP1). The
performance of these RMPs has also been examined in
a Round Robin study, with excellent agreement
between methods (Pannee, Gobom, et al. 2016). The
Ab42 SRM methods correlated well (R2¼ 0.98) and
showed high analytical precision with an intra-labora-
tory coefficient of variation (CV) of 4.7%, and when
using one CSF sample as a candidate CRM, the inter-
laboratory variability was 8.3% (Pannee, Gobom, et al.
2016). The validation of these RMPs is important for

the development of a CRM and thereby for the stand-
ardisation of the AD CSF biomarker measurements,
since they are needed for value assignment of the can-
didate CRMs.

Another important step for the development of a
CRM is evaluation of the commutability, or the rela-
tionships of results from different methods for a refer-
ence material and for representative types of samples.
Thus, a CRM for CSF Ab and Tau is commutable only if
it behaves in the same way as clinical CSF samples,
which is necessary for using the CRM for calibration or
trueness control, and in the end to ascertain correct
clinical outcomes of assays. In contrast, the use of
purified Ab or Tau protein as a CRM is not recom-
mended in laboratory medicine. A paper reporting two
commutability studies on the AD CSF biomarkers was
recently published (Bjerke et al. 2016), in which routine
immunoassays and the LC-MS/MS RMP were employed
to measure individual CSF samples and different for-
mats of candidate CRMs. Results showed that only the
native CSF pool was commutable, and suitable as a
CRM, in contrast to different variants of artificial or
spiked CSF (Bjerke et al. 2016). Based on these results,
three CRMs based on native CSF with low, medium
and high levels of Ab1–42 concentrations will be used.

Seeing improvements in performance in the QC
programme

Two of the immunoassays that have been in the QC
programme since the start have been further devel-
oped and validated, including the MSD 96-Well MULTI-
SPOTVR Human Ab42 V-PLEX Kit (Meso Scale Discovery,
Gaithersburg, MD, USA), and the INNOTESTVR

b-AMYLOID (1–42) (with ready-to-use calibrators,
Fujirebio Europe). This has resulted in lower between-
laboratory CVs since their introduction in 2014, which
now show a mean of 15.5% for the V-PLEX and 16.5%
for the INNOTEST for CSF Ab42 (round 14, 2014 to
round 22, 2016). In comparison, the EUROIMMUN
beta-Amyloid (1–42) ELISA method and the Luminex
INNO-BIA AlzBio3 show CVs of 17.6% and 22.1%,
respectively (Table 2).

Importantly, novel assays have been developed on
fully automated laboratory analysers that show very
stable measurements also between laboratories. The
Elecsys b-Amyloid(1–42) assay (Roche Diagnostics,
Penzberg, Germany) was the first fully automated
assay in the QC programme. This method shows very
high analytical performance with excellent lot-to-lot
comparability (correlation coefficients >0.995) and
repeatability CVs of 1.0%–1.6%, and is standardised
against the MS RMP for CSF Ab42 (Bittner et al. 2016).
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The Elecsys assay has been in the QC programme
since 2014 (eight rounds), and shows very low
between-laboratory CVs, with a mean of 4.2% (Table
2), which is a major improvement as compared with
the other immunoassays.

Another assay on a fully automated laboratory ana-
lyser is the Lumipulse G b-AMYLOID 1–42 (Fujirebio
Europe NV, Ghent, Belgium). This method shows very
low between-assays and between-instrument CVs, and
correlates well with the MS RMP for CSF Ab42. The
Lumipulse assay has been tested in two rounds of the
QC programme, and showed a very low between-
laboratory CV, with a mean of 6.8% (Table 2), which is
very promising, although it should be mentioned that
the results for both platforms were so far obtained
only by low number and very specialised laboratories.

During the years since the start of the Alzheimer’s
Association QC programme, technical developments
and standardisation efforts have resulted in a marked
improvement in performance for the core AD CSF bio-
markers. Especially, two large biotech companies have
developed fully automated assay versions of the CSF
biomarker assays for Tau and Ab in CSF that can be
run on large clinical chemistry analysers. These assays
show excellent performance with very low between-
laboratory CVs. These developments will serve as the
basis for the introduction of global cut-off values and
for a general introduction of CSF biomarkers in early
clinical diagnosis, which will be of great importance
for patients the day we had disease-modifying
therapies.

The Alzheimer’s Association QC programme is
needed also in the future, since these achievements

do not mean that the QC programme has lost its role
in monitoring assay and laboratory performance.
Instead, exactly as in other disease areas, there will be
a continuous, and most likely growing, need for profi-
ciency programmes for the AD CSF biomarkers in the
future.

Magnetic resonance imaging and hippocampal
atrophy in AD

In the recent decades, also imaging markers of neur-
onal injury in AD have been extensively studied.
Although not specific, they are highly sensitive, and
they are present long before clinical symptoms appear
(Glodzik-Sobanska et al. 2005; Mosconi 2005). Medial
temporal lobe (MTL) atrophy was one of the first iden-
tified characteristic imaging features of AD. Early stud-
ies employing CT with negative angulation showed
that 70% of patients with minimal memory impair-
ment and 87% of demented subjects had hippocampal
atrophy, compared to only 20% of controls (de Leon
et al. 1988). Moreover, 91% of MCI subjects who had
hippocampal shrinkage at baseline declined to demen-
tia, as compared to 19% of those who remained stable
(de Leon et al. 1989). Since that study, the discrimina-
tive and predictive value of entorhinal, hippocampal
and more general MTL atrophy was confirmed by hun-
dreds of publications (Glodzik-Sobanska et al. 2005). In
addition, to volumetric measurements of a priori
selected regions, machine learning (Rathore et al.
2017) and other data-driven hypothesis-free techni-
ques (such as independent component analysis,
Willette et al. 2014) have been applied to structural

Table 2. Performance of the analytical methods for CSF b-amyloid (Ab42) in the Alzheimer’s Association Quality Control (QC)
programme during 2014–2016.
Assay name INNOTESTVR EuroImmune/ADx AlzBio3 Meso Scale Elecsys Lumipulse

b-amyloid (1–42) b-amyloid (1–42) b-amyloid (1–42) Human Ab42 b-amyloid (1–42) b-amyloid (1–42)
Fujirebio Fujirebio Roche Diagnostics Fujirebio

Technique ELISA ELISA Luminex V-PLEX Fully automated Fully automated

Round
2014-14A 18 16 low n 2.9
2014-14B 21 19 low n 4.4
2014-15A 15 7.1 12 4.6
2014-15B 17 14 12 3.4
2104-16A 27 57 40 13 3
2014-16B 17 19 30 11 2.5
2015-17A 19 6.5 17 21 1.9
2015-17B 14 8.2 15 20 3.2
2015-18A 13 22 25 10 7.2
2015-18B 13 16 13 9.4 4.7
2015-19A 13 13 40 10 3
2015-19B 13 13 15 13 1.5
2016-20A 17.4 18 ND 10.5 2
2015-20B 21.1 15.4 ND 14 Out of range
2016-21A 15 18 22 8.1 10 6.3
2016-21B 11 15 29 7.4 5.2 4
MEAN 16.5 18.4 21.6 12.2 4.0 5.2

Values indicate between-laboratory CV (%).
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MRI data performing particularly well in classifying AD
patients and controls and predicting MCI conversion
to AD.

Decreased uptake of FDG is another hallmark of AD.
A pattern of temporo-parietal and posterior cingulate
hypometabolism is well established (Mosconi 2005)
(Figure 5). More interestingly, it has been shown that,
using a detailed anatomical sampling approach and
MRI/PET coregistration, enables imaging of early ento-
rhinal cortex (EC) hypometabolism predictive of future
clinical decline (de Leon et al. 2001). Application of
hippocampal mask derived from manual hippocampal
tracing on MRI images revealed that hippocampal
hypometabolism is not only present in both MCI and
AD relative to controls (Mosconi et al. 2005), but also
predictive of cognitive decline in healthy subjects
(Mosconi et al. 2008). Overall, the precise application
of anatomical sampling is supported by post-mortem
studies showing the EC and the hippocampus as the ear-
liest sites of neurofibrillary tangle involvement and sub-
sequent spreading of pathology to neocortical regions.

Although they are not included in current diagnos-
tic guidelines, other imaging markers are being
actively studied. Decreased cerebral blood flow (CBF)
in MCI and AD patients has been documented.
Moreover, impaired groups exhibit not only reduction
in resting CBF but also impairment in vasoreactivity as
measured by vasodilation in response to carbon diox-
ide increase (Glodzik et al. 2013). The areas showing

resting and challenge abnormalities include multiple
neocortical regions as well as the hippocampus.
Proton magnetic resonance spectroscopy (H-MRS) has
been employed for many decades and has consistently
confirmed the decrease in N-acetylaspartate (NAA) lev-
els: the marker of normal neuronal functioning.
Reductions are measurable with global techniques,
such as the whole-brain NAA approach, as well as with
single-voxel spectroscopy (Glodzik et al. 2015; Ratai
et al. 2016). Reductions precede volume loss, as dem-
onstrated by a study where MCI subjects had signifi-
cantly higher grey matter volumes than AD patients,
but their NAA levels did not differ (Glodzik et al. 2015).
Another feature of 1H-MRS in AD is an increase in
myo-inositol levels (Ratai et al. 2016).

Comparison of CSF and Ab-PET in early
diagnostics; new emerging neuroimaging
technics

Ab and Tau pathology in AD can be assessed not only
in the CSF, but also via PET. The last decade brought a
proliferation of PET amyloid tracers including widely
used first-generation 11C Pittsburgh compound B (PIB)
and several recently FDA-approved fluorinated radio-
pharmaceuticals: florbetapir, florbetaben and flumeta-
mol. Although the first- and second-generation tracers
differ in their degree of cortical binding and signal-to-
noise ratio, they exhibit a similar pattern of cortical

Figure 5. Amyloid deposition (upper panel, white arrows) and glucose hypometabolism (lower panel, red arrows) in an AD
patient. Images from [11C]PIB-PET and [18F]FDG-PET, respectively. SUVR, standardised uptake value ratio, presented as ratios to
cerebellum).
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retention in AD patients (Villemagne 2016). The pat-
tern consists of high signal in frontal, parietal and lat-
eral temporal cortices, striatum, cingulate and
precuneus, with sparing of the MTL and occipital cor-
tex (Villemagne 2016). The findings that about 25% of
cognitively healthy individuals have appreciable amyl-
oid deposition as demonstrated by PET imaging
(Mathis et al. 2012; Villemagne 2016), and 60% of MCI
patients have levels comparable to those seen in AD
(Mathis et al. 2012), seem to support a long silent pre-
clinical phase of the disease.

PET imaging of Ab

The development of a PET radioligand with a high
affinity for aggregated Ab revolutionised the field of
AD by providing a way to visualise amyloid plaque
deposition in vivo. The first such tracer was 11C-
labelled N-methyl 11C-2-(4-methylaminophenyl)-6-
hydroxybenzothiazole, also known as PIB (Wang et al.
2002). Histological work using autoradiography and
immunohistochemistry indicated that this tracer has a
high affinity for fibrillar and cored plaques (Klunk et al.
2003; Klunk et al. 2004; Bacskai et al. 2007). PET amyl-
oid tracer binding is increased in individuals with an
AD diagnosis, those with MCI who later develop
dementia due to AD, and approximately one-third of
older adults who are cognitively normal at the time of
the PET scan (Vlassenko et al. 2011; Johnson et al.
2012; Vlassenko et al. 2012; Risacher and Saykin 2013).
Similar to what is seen with CSF Ab42, the APOE e4
allele is associated with greater PET amyloid depos-
ition across both pre-clinical and clinical phases of the
disease (Morris et al. 2010; Johnson et al. 2012;
Risacher and Saykin 2013).

The pattern of binding observed with amyloid PET
tracers mirrors that seen in histopathological evalu-
ation (Braak and Braak 1991a, 1991b). The greatest
deposition is observed in the precuneus, posterior cin-
gulate, medial frontal, lateral parietal and lateral tem-
poral cortices. These regions are part of the functional
brain network known as the default mode network
(Buckner et al. 2005), which is highly connected with
the rest of the brain. In both LOAD and ADAD PET
deposition is most prominently seen early in the
course of the disease in the precuneus and posterior
cingulate gyrus, before appearing in other regions.
After initial presentation, patterns of deposition are
quite diffuse, with increased PET tracer binding pre-
sent throughout the brain, even during pre-clinical
stages of the disease.

PET amyloid scans can be visually read as ‘positive’
or ‘negative’. A positive scan is one that has high

cortical uptake and indicates moderate to severe Ab
deposition. As an alternative to visual reads, data can
be processed to provide a quantitative measure of pla-
que burden. Typically values from a set of key regions
are averaged together to provide a summary measure
of Ab deposition. This quantitative data can either be
examined as a continuous variable or transformed into
a binary designation of positivity or negativity. As with
CSF Ab42 levels, approximately one-third of cognitively
normal elderly individuals are amyloid positive by PET.
The frequency of PET positivity increases with advanc-
ing age (Jack, Wiste, Weigand, et al. 2014), and also
rises to 60% in MCI and 90% in clinically diagnosed
AD cases (Johnson et al. 2012). Over time cognitively
normal and MCI individuals who are positive for amyl-
oid PET (or CSF Ab42) have an elevated risk for subse-
quent cognitive decline (Johnson et al. 2012; Risacher
and Saykin 2013; Vos et al. 2013; Vos et al. 2016).

Due to the relatively short (�20min.) half-life of
11C, PIB usage is limited to facilities that have cyclo-
trons. Since the initial introduction of PIB, 18F com-
pounds with a longer half-life (�110min.) have been
developed (Morris et al. 2016). These 18F tracers have
similar properties to PIB and demonstrate a high affin-
ity for fibrillary Ab but have more non-specific binding
in white matter. This greater white matter binding
observed with many 18F tracers alters the presentation
for visual reads and requires the numerical quantifica-
tion of deposition to compensate for ‘spillover’ from
white matter into cortical regions.

PET imaging of Tau

Developing Tau imaging deserves a special mention.
Multiple fluorinated tracers are currently being studied.
So far, a distinctive pattern of inferior temporal and
posterior parietal retention in AD patients has been
described. Furthermore, it has been documented that
the degree of binding correlates with the severity of
dementia symptoms (Okamura et al. 2016).

Tau PET imaging is a nascent technique but may
provide a new resource to characterise the develop-
ment and spread of tangle pathology in vivo. As briefly
introduced in previous sections, there are six different
Tau isoforms that can be grouped based upon
whether they have three or four repeats (3R and 4R)
of the microtubule-binding domain. Some tauopathies
have only 3R Tau (e.g. Pick’s disease), others only 4R
(e.g. progressive supranuclear palsy (PSP)), or a mixture
of 3R and 4R (e.g. AD). In these neurodegenerative
disorders the deposition of Tau is not uniform through-
out the brain; there are disease-specific regional
patterns of Tau deposition. In AD, post-mortem
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histopathological work shows that NFT pathology is
first observed in the transentorhinal region before
spreading in turn to the EC, hippocampus, and the
rest of the MTL (Braak and Braak 1991a; 1991b). From
the confines of the MTL the pathology spreads to the
association neocortex and finally into primary sensory
cortices. NFTs are also observed in typical aging, but
this pathology is constrained to the MTL. Tau PET
imaging can quantify both how much aggregated Tau
is present in the brain and also the spatial pattern of
its deposition. Early work has demonstrated increased
tracer binding in lateral temporal regions in pre-clinical
individuals and further uptake in the temporal lobe,
lateral occipital cortex and temporal parietal junction
in later disease stages (Chien et al. 2013; Gordon,
Friedrichsen, et al. 2016; Johnson et al. 2016). While
early work with Tau PET has been promising, more
studies must be performed to understand the selectiv-
ity of these tracers to AD and other neurodegenerative
disorders and their specificity to tau inclusions and dif-
ferent strains.

Comparison between CSF and PET markers

Amyloid PET ligand retention is negatively correlated
with CSF Ab42 levels but has no significant

relationship with either Ab38 or Ab40 (Fagan et al.
2009; Janelidze, Zetterberg, et al. 2016; Lewczuk et al.
2017). This relationship is consistent with plaques
being primarily composed of Ab42 fibrils, with CSF
Ab42 reductions resulting from an active sequestration
into aggregated forms (i.e. plaques). The high corres-
pondence between markers provides strong evidence
that these measures capture the same underlying
pathological process despite measuring different forms
of the pathological protein (fibrillar Ab with PET and
soluble Ab with CSF). However, the concordance
between these two markers is not perfect, with a pro-
portion of individuals consistently observed who are
considered amyloid-negative by PET but amyloid posi-
tive by CSF Ab42 or, less often, vice versa: amyloid
positive by PET and amyloid-negative by CSF Ab42 or
Ab42/40 ratio. Some of this discordance has been
shown to reflect individuals who are simply low pro-
ducers of Ab since normalising the Ab42 values to
overall Ab levels (e.g. using a ratio of Ab42 to the
more abundant Ab40 species) reduces the amount of
discordance (Figure 6) (Janelidze, Zetterberg, et al.
2016; Racine et al. 2016; Lewczuk et al. 2017).
Emerging data also support a temporal delay,
where reductions in CSF Ab42 are detectable prior to
amyloid positivity by PET (Bateman et al. 2012;

Figure 6. Scatterplots of cortical amyloid PET load using [11C]PiB and Ab1–42 concentrations (A) and Ab42/40 ratio (B). Vertical
line represents dichotomous cut-off for PiB positivity. Horizontal lines represent the best-performing cut-offs of the respective CSF
biomarkers calculated in the present study. Green areas comprise CSF/PET concordant results (either CSF–/PET– or CSFþ/PETþ),
yellow areas comprise discordant results with normal CSF and abnormal PET (CSF–/PETþ), and red areas include results with
abnormal CSF and normal PET (CSFþ/PET–). Note: (a) better concordance between Ab42/40 and PET compared to Ab1–42 and
PET, and (b) significantly more CSFþ/PET– than CSF–/PETþ discordant cases for both CSF biomarkers. Reprinted slightly modified
from (Lewczuk et al. 2017) with kind permission from IOS Press. The publication is available at IOS Press through http://dx.doi.org/
10.3233/JAD-160722.
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Palmqvist et al. 2016; Vlassenko et al. 2016). When bio-
markers are measured early in the disease, this temporal
lag would contribute to a discordance. Therefore, while
amyloid PET and CSF Ab42 are often considered inter-
changeable, CSF Ab42 (and/or the Ab42/Ab40 ratio)
likely detects the earliest changes in Ab pathology, but
CSF Ab42 levels then plateau during early symptomatic
stages. Increases in amyloid PET become detectable
after initial changes in CSF, but PET measures continue
to increase later into the course of the disease.

While there is an established body of work examin-
ing Ab with both CSF and PET, only recently have
similar analyses been possible for Tau. Initial studies
have shown positive correlations between CSF Tau
and pTau and PET measures of tauopathy (Chhatwal
et al. 2016; Gordon, Friedrichsen, et al. 2016). However,
such work is very preliminary. Additional studies are
needed to confirm both the strength and temporal
associations between the two modalities and better
characterise the exact relationship between Tau
markers in CSF and PET.

Overview of the current AD diagnostic
guidelines

Overview of current AD diagnostic guidelines

As reviewed and stressed on several occasions in this
paper, biomarker research conducted in the last deca-
des has shifted AD conceptualisation from a clinical-
pathological entity to a clinical-biological one and AD
is now defined as a pathological continuum that can
be arbitrarily divided in three stages: pre-clinical
(abnormal biomarkers and no or only subtle cognitive
impairment), MCI or prodromal AD (abnormal patho-
physiological biomarkers and episodic memory impair-
ment) and dementia (abnormal biomarkers and clear
cognitive and functional impairment). By enabling the
assessment of AD pathophysiology in vivo and inde-
pendently of dementia, biomarkers have not only pro-
duced a major shift in both AD conceptualisation but
also in its diagnosis, as well as playing an important
role in drug development (Cummings 2011).

The possibility of assessing relevant AD pathophysi-
ology in living persons through biomarkers has
resulted in a change in guidelines and diagnostic crite-
ria for AD. Two sets of criteria recently published will
be discussed in more detail in this paper; one by the
IWG that has recently been revised (IWG-2 (Dubois
et al. 2014)) and the other by working groups
assembled by the NIA and the Alzheimer’s Association
in the US (McKhann et al. 2011). In short, although
both groups define AD as a pathological continuum,

the NIA-AA defines different clinical syndromes and
the pre-clinical stage, which are diagnosed with their
own specific algorithm. The NIA-AA divided the clinical
phase of AD into MCI and AD dementia but employ
different approaches to the diagnosis in each stage of
the illness.

� MCI due to AD (Albert et al. 2011). The clinical crite-
ria for MCI are the same as those previously pub-
lished. The NIA-AA criteria stratify the diagnosis of
MCI with biomarkers to determine the likelihood
that the syndrome is due to AD. A single positive
biomarker of either amyloid abnormalities or neuro-
degeneration supports intermediate likelihood of
MCI due to AD and two biomarkers, one of amyloid
type and one of neurodegeneration type, support
high likelihood of MCI due to AD.

� AD dementia (McKhann et al. 1984). The NIA-AA cri-
teria apply an approach that differs from the
approach to MCI due to AD. Ten categories of
dementia of the AD-type are established.

By contrast, a single diagnostic algorithm that can
be applied at any stage of the disease continuum rein-
forcing our understanding of AD as a clinical-biological
entity, is proposed by the IWG. The work performed
by both the IWG and the NIA-AA is still evolving, so
slight modifications in the proposed diagnostic criteria
are expected. Moreover, harmonisation efforts are cur-
rently underway so hopefully these two sets will even-
tually merge into a single one. Both IWG and NIA-AA
criteria agree in the integration of AD biomarkers in
the diagnostic process and in the recognition of an
asymptomatic (pre-clinical) stage that can be deter-
mined through these biomarkers (Sperling et al. 2011;
Dubois et al. 2014). Nevertheless, whereas biomarker
abnormalities are required for diagnosis according to
IWG criteria, the NIA-AA ones use biomarker informa-
tion (if available) to assess the likelihood (high, inter-
mediate or unlikely) that a clinical syndrome is due to
AD. In addition, whereas the NIA-AA criteria support
the diagnosis of AD in asymptomatic individuals with
biomarker evidence for Ab accumulation, for the IWG-2,
these persons are considered to be in an at-risk state of
the disease. Finally, it is to mention that IWG criteria for
typical AD require an objective impairment in episodic
memory whereas a less strict approach is considered by
NIA-AA criteria for the diagnosis of MCI due to AD.

Overview of the current research criteria

IWG criteria (Dubois et al. 2007, 2014)

The International Working Group on the Research
Criteria for Alzheimer’s Disease emphasises a single
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clinical-biological set of criteria across the spectrum of
the symptomatic phases of the disease consisting of:

� a specific clinical phenotype: an amnestic syndrome
of the hippocampal type is the keystone of the clin-
ical syndrome of typical AD (Dubois and Albert
2004). It is best identified by tests that control for
an effective encoding of the to be remembered
items and that facilitate their retrieval. Using mem-
ory tests with cueing, either at bedside (5-Word
Test) (Dubois et al. 2002) or by neuropsychologist
(Free and Cued Selective Reminding Test – FCSRT)
(Grober et al. 1988) is recommended because of
their good specificity for AD (Dierckx et al. 2009;
Mormont et al. 2012; Wagner et al. 2012).

Other memory tests, particularly those based on list
learning and delayed recall, can also be effective in
identification of the amnestic syndrome of AD. These
tests include different versions of the paired-associate
learning and the Rey auditory verbal learning tasks
(Fowler et al. 2002; Estevez-Gonzalez et al. 2003;
Lowndes et al. 2008). An amnestic presentation may
not always be the case in AD, and other clinical phe-
notypes can be associated with post-mortem evidence
of AD pathology (Murray et al. 2011). Therefore, the
IWG has introduced the concept of ‘atypical forms
of AD’ with specific clinical phenotypes that include
non-amnestic focal cortical syndromes, such as logo-
penic aphasia, bi-parietal atrophy, PCA and frontal vari-
ant AD.

� the presence of AD biomarker. Biomarkers are sup-
portive features of a diagnostic framework that is
anchored around a core clinical phenotype. The AD
diagnosis evoked in case of a specific clinical
phenotype (either typical or atypical) needs con-
firmation from the presence of one or several AD
biomarkers. Among these, in vivo evidence of AD
pathology (CSF changes of Abeta and Tau levels or
positive amyloid PET) is the most specific (Dubois
et al. 2014) and should be required for research
purposes or atypical cases.

For the IWG, the diagnosis of AD is made on the
basis of both clinical and biological evidence, with a
high level of specificity and predictive validity. The
diagnostic algorithm begins with a characteristic
clinical phenotype (typical or atypical) and then
requires supporting biomarkers that reflect the under-
lying AD process or pathology. The availability of spe-
cific in vivo biomarkers of AD pathology has moved
the definition of AD from a clinical-pathological entity

to a clinical-biological entity. As biomarkers can be
considered as surrogate markers of the histopatho-
logical changes, the clinical diagnosis can now be
established in vivo and reference to dementia may no
longer be needed.

Proposal for a new lexicon for AD

The new conceptual framework of AD suggests rede-
fining a common lexicon (Dubois et al. 2010) concern-
ing AD and related entities:

(1) Alzheimer’s disease

AD should now be a label defining the clinical disorder
which starts with the onset of the first specific clinical
symptoms of the disease and which encompasses
both the prodromal and dementia phases. AD now
refers to the whole spectrum of the clinical phase of
the disease and is not restricted to the dementia
syndrome.

(2) AD dementia

It is likely to still be meaningful to identify the demen-
tia threshold as a severity milestone in the course of
disease. The presence of a dementia adds a set of
management issues for the clinician to address includ-
ing those related to patient autonomy such as driving,
financial capacity, as well as those related to care liv-
ing. The transition between the two states may be
arbitrary when the underlying disease is a continuous
process.

(3) Prodromal AD

The prodromal stage of AD refers to the early symp-
tomatic pre-dementia phase of the disease, charac-
terised by a specific clinical phenotype of the
amnestic syndrome of the hippocampal type with
positive pathophysiological biomarkers. The memory
disorders can be isolated or associated with other
cognitive or behavioural changes that may not be
severe enough to interfere significantly with activities
of daily living.

(4) Atypical AD

Atypical forms of AD refer to well-defined, but less
common, clinical phenotypes that occur with AD path-
ology. These include cortical syndromes of logopenic
aphasia, PCA and frontal variants of AD. The diagnosis
of atypical AD is supported by positive pathophysio-
logical biomarkers of AD.
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(5) Mixed AD

Mixed AD is defined by the co-occurrence of
Alzheimer’s pathology with other biological causes of
cognitive decline, mainly cerebrovascular disease or
Lewy body pathology. Patients should fulfil the diag-
nostic criteria for typical AD and additionally present
with clinical and brain imaging/biological evidence of
other co-morbid disorders such as cerebrovascular dis-
ease or DLB.

(6) Pre-clinical states of AD

There is a growing interest in the long pre-clinical
phase of AD. This pre-clinical phase refers to cogni-
tively normal individuals with biomarker evidence of
Alzheimer pathology. Positive retention of amyloid PET
or low Ab level in the CSF is being reported in up to
30% of older normal controls (Rowe et al. 2003). These
normal individuals may or may not later convert to
prodromal AD. Such evolution to a clinical disease
may depend on several factors including genetic fac-
tors (such as APOE genotype), other risk factors (such
as vascular factors) or protective factors (diet, cognitive
reserve) and co-morbidities (e.g. T2DM). In the absence
of knowledge about what factors combine to influence
conversion, these normal individuals who are bio-
marker positive have been defined as ‘asymptomatic
at risk for AD’ or ‘asymptomatic amyloidosis’, because
a large percentage of them will not progress to a
symptomatic clinical condition. This is not the case of
cognitively normal individuals sharing an autosomal-
dominant monogenic AD mutation (Bateman et al.
2012). Because of the full penetrance of the mutations,
these individuals will inevitably develop a clinical AD if
they live long enough. They are at a ‘pre-symptomatic’
state for AD.

Research versus clinical criteria

While these newer criteria both aim to allow for the
diagnosis of AD earlier and, more accurately, they
depend on the availability of suitable biomarkers.
According to a report of Alzheimer’s Disease
International (AsDI 2009), 58% of people with demen-
tia live in low- and middle-income countries. Even in
developed countries, there is still a lack of availability
of high-tech investigations for biomarkers outside ter-
tiary or research centres. Therefore, the new diagnostic
approach can only apply in expert centres with facili-
ties to assess a large spectrum of biomarkers, viable
assessment procedures and with access to normative
data. In this context, such criteria may be useful for
complex diagnosis and for early dementia cases.

Ethical implications of the new biomarker-
based diagnostic criteria for AD

Ethical challenges arising from new AD diagnostic
criteria

Biomarker-based criteria discussed in the previous sec-
tion are currently being applied in academic settings
and incorporated as inclusion criteria in clinical trials.
In this scenario, a number of distinct ethical issues in
research and clinical settings arise that are considered
in the following sections.

Ethical challenges in research studies

Ethical issues arising from AD biomarkers are mainly
related with studies and trials involving asymptomatic,
pre-clinical individuals, in relation to determining
appropriate risk/benefit ratios and whether or not bio-
marker status information that would normally not be
received in routine clinical practice should (or should
not) be disclosed (Lingler and Klunk 2013; Roberts
et al. 2013; Kim et al. 2015). The main risks deriving
from disclosure of biomarker status include placing a
cloud of uncertainty over participants that may affect
their daily lives and/or performance in specific proce-
dures, and the complexity of conveying clinically non-
relevant biomarker status of uncertain prognosis. On
the other hand, main benefits comprise the protection
of biomarker-negative individuals from risks and harms
related to clinical studies’ procedures, and the positive
impact that this information may have on people’s
lives. The relevance of differentiating between study
types (observational versus interventional) to favour
disclosure or not, was recently highlighted (Molinuevo
et al. 2016).

When considering the prospect of long-term studies
in pre-clinical AD, to avoid the impact of knowing on
participants’ performance, together with disclosing
clinically non-relevant biomarker or genetic status of
uncertain prognosis, blinded enrolment (i.e. when bio-
marker status is not disclosed) was recommended for
observational studies, unless the aim of the study is to
investigate the impact of disclosure on outcome. By
contrast, transparent enrolment (i.e. requiring disclos-
ure) was favoured for interventional studies, since pro-
tecting the subjects that are biomarker negative from
risks and harms related to the intervention prevail
over the motivations noted above to support blinded
enrolment. Furthermore, a recent systematic analysis
comparing the ethics of transparent versus blinded
enrolment in AD prevention trials provided strong
arguments that there are no special risk-benefit,
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informed consent, or fair participant selection issues
that require blinded enrolment.

An important additional argument for the transpar-
ent design (i.e., requiring gene or biomarker disclos-
ure) is that this design better reflects the future
clinical practice of drug prescription to those who
learn that they have an altered AD biomarker.
A design that includes biomarker disclosure would
therefore more closely resemble routine clinical prac-
tice and so can provide information about the success
of this potential clinical future. Furthermore, blinded
designs require risk-negative participants to be
enrolled in order to avoid ‘disclosure by enrolment’;
thus, transparent enrolment has the advantage of min-
imising the number of participants enrolled to attain
sufficient statistical power to obtain clinically meaning-
ful results. New trials currently under design, such as
the new API trial with APOE e4 homozygotes, will be
disclosing APOE status (Green et al. 2009).

Research designs that disclose risk information can
further protect subjects by implementing safeguards.
Before disclosing genetic or biomarker status, the
investigator ought to assess if the potential participant
is emotionally capable of enrolling in a study. Data
from the REVEAL study clearly show that those who
exhibited a high degree of emotional stress before
undergoing genetic testing were more likely to have
emotional difficulties after disclosure (Green et al.
2009). For those included, one way to reduce potential
stress is to provide continuous counselling throughout
the study or through social forums where open discus-
sions can take place as this has been shown to have a
direct positive effect on stress and anxiety (Billings
and Moos 1985).

Ethical issues in clinical practice

All medical decisions generate consequences for the
patient and society. Medical practice should therefore
be performed under the guidance of the following
ethical principles: beneficence, nonmaleficence, auton-
omy, justice, integrity, dignity and vulnerability. With
regard to AD diagnosis, as it was stated in the AD-Bill
of Rights: ‘Every person diagnosed with Alzheimer’s
disease or a related disorder deserves to be informed
of one’s diagnosis’. Furthermore, patient advocacy
groups, such as the US Alzheimer’s Association have also
been emphatic on this point ‘Except in unusual circum-
stances, physicians and the care team should disclose
the diagnosis to the individual with AD because of the
individual’s moral and legal right to know’.

Therefore, the major ethical issues, and their corre-
sponding ethical principles, governing early diagnosis

(including early diagnosis supported by biomarkers)
are self-determination (autonomy), efficacy (benefi-
cence) and safety (nonmalfeasance), and from the pre-
vious quotes it is inferred that the ruling principle is
currently autonomy, since self-determination has
grown as a fundamental right of the individual, which
is especially important in the early diagnosis of a neu-
rodegenerative disease such as AD.

Beneficence is the ethical principle closely related
to the benefit, outcome for the patient and the effi-
cacy of the intervention. Nowadays there is no aetio-
logical treatment for AD, so the potential benefits of
early prodromal diagnosis are to decrease the anxiety
of uncertainty, to allow for the early introduction of
(not only pharmacological) interventions, and to help
the individual and his/her family prepare for
dementia’s onset. Most of these potential benefits are
relative and depend on the attitude, beliefs, personal-
ity, character and even spirituality of the individual,
reinforcing again the fundamental importance of the
autonomy ethical principle. Furthermore, the psycho-
logical benefits of early diagnosis are individual-
related, and they may similarly depend on the person’s
character, personality and probably on the level of
anxiety introduced by uncertainty. In this sense, the
participant willing to know biomarker results support-
ing an early diagnosis and who may benefit from it,
most likely belongs to a self-selected subgroup of peo-
ple. This fact implies a straight link with the governing
principle of the programme: autonomy.

Autonomy is the ethical principle related to individ-
ual freedom, personal decision-making and self-deter-
mination. As mentioned above, it is the ruling
principle of medical practice and we believe it should
also be the governing principle of early prodromal
diagnosis, since the decision of wishing to know or
not to know should be individually taken by a compe-
tent individual and its potential benefit may be medi-
ated through an autonomous decision. Autonomy
should be reassured through self-soliciting diagnosis,
permanent capacity to change one’s will, confidential-
ity and strict informed consent. Informed consent
embodies the need to respect persons and their
autonomous decisions. In this sense, competent con-
sent is essential to justify subjects (Emanuel et al.
2000) involvement in the pre-dementia or prodromal
diagnosis of AD. Competence is a pivotal concept in
decision-making in medical practice, allowing individu-
als to manifest autonomy, their right to decide by
themselves.

In summary, the will to know if a memory problem
represents the beginning of AD, hence the need to
disclose biomarker results, is the main driving factor
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for seeking an early diagnosis. Furthermore, it is the
keystone of the ethical principle of autonomy and the
driver for trying to perform an early diagnosis on
behalf of the patient. This should still be put in rela-
tion to that we have no effective treatment, as well as
the risk for a false-positive diagnosis (Winblad et al.
2016).

The concept of suspected non-AD
pathophysiology (SNAP)

Origins of the SNAP construct

SNAP is a biomarker-based construct denoting individ-
uals who have a normal Ab biomarker pattern, but
have an abnormal biomarker of neurodegeneration or
neuronal injury (Jack et al. 2012). The roots of the
SNAP construct lie in the design of the above-dis-
cussed NIA-AA recommendations for the diagnosis of
AD (Albert et al. 2011; Jack et al. 2011; McKhann et al.
2011; Sperling et al. 2011). The NIA-AA recommenda-
tions defined three clinical stages of AD: pre-clinical,
MCI and dementia (Albert et al. 2011; Jack et al. 2011;
McKhann et al. 2011; Sperling et al. 2011). In addition,
pre-clinical AD was divided into three stages. Imaging
and CSF biomarkers were integrated into the NIA-AA
recommendations with two important criteria shaping
how this was done (Jack et al. 2011). First, most bio-
marker research programmes employed primarily
either imaging or CSF biomarkers, not both. Therefore,
biomarkers had to function similarly in environments
where either CSF or imaging was the dominant bio-
marker method. Second, the NIA-AA recommendations
were designed for individuals in the AD pathway; they
were not intended to encompass all cause dementia/
cognitive impairment nor general cognitive aging. The
assumption was therefore made that neurodegenera-
tion/neuronal injury was related to AD tauopathy. The
rationale for this assumed link between tauopathy and
neurodegeneration/neuronal injury in AD was based
on autopsy data (Ingelsson et al. 2004), as well as a
proposed sequence of biomarker events where
amyloidosis was an upstream event which promoted
tauopathy (Jack et al. 2010, 2013). Tauopathy was
directly responsible for neurodegeneration/neuronal
injury, which, in turn, was the most proximate cause
of clinical symptoms (Jack et al. 2010, 2013).
These considerations led to the following implementa-
tion of biomarkers in the NIA-AA recommendations.
Individuals were designated as either normal or
abnormal for biomarkers of Ab and Tau related-
neurodegeneration/neuronal injury (Albert et al. 2011;
Jack et al. 2011; McKhann et al. 2011; Sperling et al.
2011).

The SNAP construct emerged when the NIA-AA pre-
clinical AD staging recommendations were applied to
a clinically normal cohort (Jack et al. 2012). In these
individuals who were over age 70, 31% fell into stages
1–3 of pre-clinical AD, 43% were amyloid normal and
neurodegeneration normal (A�N�) and 23% were
amyloid normal and neurodegeneration abnormal
(A�Nþ). The A�Nþ group was labelled SNAP on the
assumption that this was a pathologically heteroge-
neous group with a variety of non-Alzheimer’s pathol-
ogies (Jack et al. 2012).

To reflect NIA-AA staging while accounting for
SNAP, many research groups subsequently adopted a
two-class biomarker construct in which participants
were assigned to one of four biomarker categories:
A�N�, AþN�, A�Nþ (SNAP) or AþNþ (Knopman
et al. 2012; Roe et al. 2013; van Harten, Smits, et al.
2013; Vos et al. 2013; Wirth et al. 2013; Jack, Wiste,
Weigand, et al. 2014; Mormino et al. 2014; Toledo
et al. 2014; Ivanoiu et al. 2015; Jack et al. 2015; Wisse
et al. 2015; Burnham et al. 2016; Gordon, Blazey, et al.
2016; Jack, Therneau, et al. 2016). This two-class NIA-
AA staging plus SNAP biomarker construct has been
useful because it provided a common framework for
different research groups to communicate findings
from their own research cohorts.

Characteristics of clinically normal and MCI SNAP
subjects

Early studies describing SNAP were not focussed on
this group alone but instead were intended to com-
pare individuals in different biomarker groups using
the two-class NIA-AA staging plus SNAP biomarker
construct. In these studies the A–N– group was often
used as the reference in group-wise comparisons.
Different biomarker methods were used to classify
individuals in these studies. Some used imaging alone
(Jack et al. 2012; Knopman et al. 2012; Wirth et al.
2013; Mormino et al. 2014; Ivanoiu et al. 2015), others
CSF alone (Roe et al. 2013; van Harten, Smits, et al.
2013; Vos et al. 2013), or CSF combined with imaging
(Toledo et al. 2014). Studies focussed on individuals
who were clinically cognitively normal or MCI
(Petersen et al. 2013a; Prestia et al. 2013; Caroli et al.
2015; Vos et al. 2015). The proportion of SNAP among
clinically normal individuals over 65 years of age was
consistent across these studies at roughly 25%. While
the proportion of SNAP among MCI was less consist-
ent, most likely due to smaller numbers, overall
around 25% of MCI individuals also seem to fall into
the SNAP category (Petersen et al. 2013a; Prestia et al.
2013; Vos et al. 2015; Caroli et al. 2015).
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A consistent finding among all studies was that the
proportion of APOE e4 carriers among SNAP, both clin-
ically normal and MCI, was far lower than among
AþNþ or AþN– individuals. Another consistent find-
ing was that SNAP individuals tended to be older than
the A–N– reference group. Less consistent findings
concerned sex predilection. Some studies found SNAP
was more common in men than women, others did
not. Baseline cognitive performance was also not con-
sistent among studies. Some found that among clinic-
ally normal individuals, SNAP had worse baseline
performance than the A–N– reference group (Mormino
et al. 2014), while other studies did not find this differ-
ence (Burnham et al. 2016).

A question that arose soon after the introduction of
SNAP was whether this construct was simply an arte-
fact of classification, i.e. was it simply a collections of
individuals who lie just on the normal side of the
amyloid biomarker threshold and just on the abnormal
side of the neurodegeneration/neuronal injury thresh-
old? Burnham et al. (2016) recently addressed this by
performing a series of analyses addressing imaging
and clinical characteristics of the four biomarker
groups with and without removing individuals close to
the biomarker thresholds. They found no difference in
their results when individuals close to the classification
thresholds were removed, thus proving that in most
individuals SNAP was not a classification artefact.

Clinical/cognitive outcomes

One of the most meaningful potential uses of bio-
marker classification is as an aid in predicting clinical/
cognitive outcomes. Every study to date that has
examined outcomes has found that the AþNþ group
has the worst clinical/cognitive outcomes of all bio-
marker groups. This has been true in cohorts com-
posted of individuals who were clinically normal or
MCI at baseline, and in cohorts where imaging or CSF
was used for biomarker classification. The findings for
SNAP participants, however, have not been uniform.
Some studies found no difference in cognitive out-
comes between SNAP and the A–N– reference group
(Mormino et al. 2014; Burnham et al. 2016), while
other studies found SNAP have worse outcomes than
A–N– individuals (Petersen et al. 2013b; Jack,
Therneau, et al. 2016).

Imaging outcomes

As stated above, longitudinal MRI and FDG-PET pro-
vide meaningful measures of the progression of neuro-
degeneration. The data on SNAP and imaging

outcomes is inconsistent. Some groups found that
rates of hippocampal atrophy are not different in
SNAP compared with the A–N– reference group
(Burnham et al. 2016; Gordon, Blazey, et al. 2016).
Other groups, however, found greater rates of decline in
hippocampal volume, cortical thickness and FDG metab-
olism in SNAP compared to A–N– individuals (Jack, Wiste,
Knopman, et al. 2014; Knopman et al. 2016).

Controversies and future research

Publication of the SNAP construct has raised contro-
versies (Chetelat 2013). Two obvious areas of contro-
versy are outlined in the prior sections: what are the
clinical and imaging outcomes in SNAP compared to
other biomarker groups? A third controversy concerns
the likely pathological substrates of SNAP. When SNAP
was first described, we assumed that these individuals
represented a heterogeneous collection of the many
non-AD pathologies that increase in prevalence with
age (Jack et al. 2012), including CVaD, DLB, TDP 43,
hippocampal sclerosis, argyrophylicgrain disease and
PART (Schneider et al. 2007; Schneider et al. 2009;
Nelson et al. 2011; Sonnen et al. 2011; Crary et al.
2014). Pathological heterogeneity was assumed to
occur not only across individuals but also within indi-
viduals, because most elderly individuals have more
than one of these age-related pathological processes
at autopsy (Schneider et al. 2007, 2009; Nelson et al.
2011; Sonnen et al. 2011).

We assumed that one of the pathologies underlying
SNAP was PART. PART and SNAP share several import-
ant features (Crary et al. 2014; Jack 2014). Both are
common in clinically normal elderly; APOE e4 is under-
represented in both; both increase in prevalence with
age; and MTL pathology features prominently in both.
Two of the first four subjects who met criteria for
SNAP and later came to autopsy also appear to have
met autopsy criteria for PART (Vos et al. 2013).
However, recent imaging studies have challenged this
idea. Both Mormino et al. (2016) and Wisse et al.
(2015) reported that Tau was not elevated in SNAP
relative to the A�N� reference group.

A new classification scheme for biomarkers used in
Alzheimer’s and cognitive aging research may help
resolve some of the controversies about SNAP
described above. This classification scheme is labelled
ATN (Jack, Bennett, et al. 2016), and it groups bio-
markers into three categories: (A) biomarkers of fibril-
lary Ab deposition or associated pathophysiology
(Blennow and Hampel 2003; Klunk et al. 2004); (T) bio-
markers of paired helical filament Tau or its associated
pathophysiology (Blennow and Hampel 2003;
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Villemagne et al. 2015; Brier et al. 2016; Johnson et al.
2016; Scholl et al. 2016, Schwarz et al. 2016); (N) bio-
markers of neurodegeneration or neuronal injury. Each
biomarker category is rated as normal (–) or abnormal
(þ). Individual scores might appear as Aþ T–Nþ, or
Aþ T–N–, etc. Individuals with an A–TþN–,
A–T–Nþ or A–TþNþ fall under the original definition
of SNAP (Jack et al. 2012). The ATN classification con-
struct will enable researchers to examine multi-modality
biomarker associations where the effects of tauopathy
and neurodegeneration/neuronal injury are segregated
in individuals whomeet criteria for SNAP (Figure 7).

Legal and regulatory issues in early AD
diagnostics: EMA statements

From a regulatory perspective, the European
Medicines Agency (EMA) accepts both the IWG and
the NIA-AA sets of criteria for diagnosis of AD, for
research purposes, and for trial enrichment. The cur-
rent position of EMA on the diagnostic guidelines is
summarised in a draft guidance recently published
(EMA 2016). This guideline follows the view that con-
siders AD a pathophysiological continuum with a long-
term pre-symptomatic stage preceding many years the
clinical manifestation.

The aim of the above-cited EMA/CHMP draft guide-
line was to evaluate, among others, the impact of new
diagnostic criteria for AD, taking into consideration
also the asymptomatic and pre-symptomatic disease
stages on clinical trial design; and the use of bio-
markers in the different phases of drug development.

However, adequate standardisation and validation of
biomarkers for regulatory purposes is still lacking
(Noel-Storr et al. 2013; Dubois et al. 2014). This also
reflects the continuous advances in the diagnostic
area of research. In this frame, a step forward is repre-
sented by the recent approval in the EU of the radio-
pharmaceuticals 18F-florbetapir, 18F-florbetaben and
18F-flutemetamol for PET imaging of Ab plaques in the
brain. These diagnostic ligands are used in patients
evaluated for AD, following an accurate clinical assess-
ment versus other forms of cognitive impairment; their
usefulness is being investigated in large observational
cohorts. Besides PET, also CSF biomarkers are currently
considered, although it is recommended to measure
multiple parameters such as Ab1–42, total Tau or its
hyperphosphorylated form (Hampel et al. 2014;
Medina and Avila 2014).

While the core clinical criteria still remain funda-
mental, biomarkers may increase the specificity of
diagnosis (Hampel et al. 2014). Unquestionably, stand-
ardisation and harmonisation in their use for early
diagnosis of AD along the development of clinical tri-
als needs continuous adjustment. In this context, valid-
ation of reliable and sensitive instruments to measure
cognitive, functional, behavioural and neuropsychiatric
symptoms especially in early disease stages are strongly
encouraged by EMA and other regulatory bodies.

CSF biomarkers in clinical trials for AD

The growing use of CSF biomarkers in clinical practice
and research studies has had an impact on clinical

Figure 7. Tau PET and MRI in an A–TþNþ SNAP subject. Clinically normal 81-year-old male participant in the Mayo Clinic Study
of Aging. Abnormal Tau PET uptake (AV1451) is present in the medial, basal, lateral temporal lobes bilaterally (left panel). Non-spe-
cific AV1451 uptake is present in the basal ganglia bilaterally. This participant also has medial temporal lobe atrophy (right panel)
and a normal amyloid PET scan (PIB, not shown). This individual’s ATN profile was A–TþNþ.
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trials that have incorporated them, assisting in partici-
pant selection and monitoring of target engagement.
Furthermore, they have the potential to demonstrate
evidence of disease modification. It is anticipated that
the standardisation of pre-analytical and analytical
conditions, together with the implementation of fully
automated assays of current and novel biomarkers,
will increase the use of CSF markers in clinical trials.
This may facilitate more efficient trial design that
eventually will lead to successful treatments. The main
potential applications of the CSF biomarkers in trials
are to facilitate the selection of participants (cohort
enrichment), to verify drug–target engagement, and to
provide biological evidence of disease modification
(Lleo et al. 2015; Parnetti, Eusebi, et al. 2016).

CSF biomarkers for inclusion/selection

The first report of a randomised trial that used CSF to
enrich a study population of patients with MCI was
published in 2015, and showed that only half of their
participants had biological evidence of AD (Coric et al.
2015). The study was important because it demon-
strated the value of CSF biomarkers in trials, in particu-
lar in a heterogeneous patient population such as MCI.
Moreover, these data helped to explain previous trial
failures in which the selection of participants was inad-
equate, thereby decreasing the power of these trials
to reach their expected outcomes.

The most widely used biomarker for participant
selection in clinical trials is Ab1–42, either alone or in
combination with total Tau. For example, the phase II
study of the c-secretase inhibitor Avagacestat required
that patients had either low CSF Ab1–42 levels or a
high total Tau to Ab1–42 ratio in addition to meeting
clinical criteria for MCI (Coric et al. 2015). Two trials
with the anti-amyloid antibody gantenerumab in
patients with prodromal (clinicaltrials.gov ID:
NCT01224106) and mild AD (clinicaltrials.gov ID:
NCT02051608) also required low levels of Ab1–42 in
CSF for inclusion. Data released from the trial in pro-
dromal AD also supported the value of CSF measures
in selecting the patient population and it is expected
that more trials will incorporate the same design.

CSF biomarkers as a measure of target
engagement

The capacity of CSF biomarkers to track pathophysio-
logical changes in CNS makes them excellent tools to
verify drug–target engagement in clinical trials. This is a
critical aspect since many of the previous trials in AD
failed because they lacked adequate target engagement.

The basic principle is that a change in the levels of
specific markers that are related to the mechanism of
pharmaceutical action would indicate that the drug is
reaching its target. Many pharmacological studies have
included changes in one or more CSF biomarkers
among their primary or secondary endpoints. In this
respect, trials with b-secretase inhibitors represent the
best example of the successful use of a CSF marker as
a measure of target engagement. Several trials with
b-secretase inhibitors (LY2811376, LY2886721, E2609
and MK-8931) have detected a reduction in CSF levels
of Ab1–42, Ab1–40, the sAPPb or other subproducts of
APP (Bell et al. 2013; Portelius et al. 2014; May et al.
2015). Other fragments, such as Ab5–42, Ab5–x or
sAPPa, have been found to be increased in CSF, sug-
gesting an enhanced alternative processing of APP fol-
lowing b-secretase inhibition (Mattsson, Rajendran,
et al. 2012; May et al. 2015).

A similar approach has been used in trials with
c-secretase inhibitors and modulators. Some trials
found a decrease in CSF levels of Ab1–42, Ab1–40
(Bateman et al. 2009; Tong et al. 2012; Coric et al.
2015) and Ab1–38 (Tong et al. 2012), and an increase
in CSF levels of Ab1–14, Ab1-15 and Ab1–16 (Portelius
et al. 2010; Portelius, Fortea, et al. 2012; Portelius,
Zetterberg, et al. 2012). Other studies, however, did
not find significant differences in levels of Ab1–42 or
Ab1–40 compared to a placebo group (Siemers et al.
2006; Galasko et al. 2007; Fleisher et al. 2008; Portelius,
Zetterberg, et al. 2012; Doody et al. 2013; Imbimbo
et al. 2013; Doody et al. 2015). Peptidomic approaches
could also be useful in the identification of biomarkers
to verify target engagement. The analysis of the CSF
peptidome by liquid chromatography and mass MS
prior to and following a single dose of the c-secretase
inhibitor semagacestat led (Holtta et al. 2016) to the
identification of 11 peptides that were altered follow-
ing pharmaceutical intervention.

The effects of anti-amyloid immunotherapy have
also been evaluated using CSF biomarkers, although
data are more difficult to interpret than in the studies
of b- and c-secretase inhibitors. None of the trials with
the active immunisation compounds, AN1792 and
CAD-106, were able to show changes in the levels of
amyloid-derived CSF biomarkers (Gilman et al. 2005;
Winblad et al. 2012). Likewise, treatment with the
monoclonal antibody bapineuzumab did not change
amyloid marker levels in CSF (Blennow et al. 2012). In
contrast, patients treated with solanezumab, a human-
ised monoclonal antibody designed to target soluble
Ab, did show an increase of total Ab1–40 and Ab1–42
levels in CSF (Siemers et al. 2010; Farlow et al. 2012;
Doody et al. 2014). Although the primary clinical
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outcome was not achieved in that study, the authors
hypothesised that the changes observed in CSF levels
could indicate a shift of Ab from the CNS to the per-
iphery or perhaps a mobilisation between compart-
ments reflecting a change in the balance between
fibrillar and soluble Ab (Farlow et al. 2012; Doody
et al. 2014). Two phase I dose-escalation studies with
ponezumab, another monoclonal antibody, also deter-
mined post-treatment CSF Ab1–42 levels but showed
contradictory results (Landen et al. 2013; Miyoshi et al.
2013). In summary, trials with b- and c-secretase inhibi-
tors have clearly shown that CSF biomarkers can be used
to verify drug-target engagement and a similar paradigm
can be applied to other therapeutic strategies.

CSF biomarkers as a measure of disease
modification

There is evidence that adequate markers of target
engagement might not necessarily capture disease-
modifying effects (Mattsson, Carrillo, et al. 2015). The
theragnostic value of each biomarker should be indi-
vidually assessed based on its association to cognitive
or functional endpoints. To date, all drugs attempting
to modify the course of AD have failed in their primary
clinical endpoints. For this reason, it is difficult to
address the question of whether CSF biomarkers can
predict clinical response. In addition, the total number
of patients with CSF measures in clinical trials is still
low, further limiting the possibilities to draw firm
conclusions.

Total Tau and pTau levels have been investigated
as surrogate markers of disease modification and as
indicators of the downstream effects in anti-amyloid
treatments. The trial with AN1792, the first active Ab
immunisation study showed that antibody responders
had a reduction in CSF total Tau levels compared to
those patients who received placebo (Gilman et al.
2005). However, treatment with CAD106, another
active immunotherapy, did not change the levels of
Tau or pTau (Winblad et al. 2012). Most trials with pas-
sive immunisation have also included Tau markers in
CSF in a subset of subjects. Treatment with bapineuzu-
mab was associated with a decrease in CSF pTau levels
in both the phase II and phase III trials (Blennow et al.
2012; Salloway et al. 2014). However, this effect was
not observed after treatment with solaneuzumab
(Doody et al. 2014). These findings could be inter-
preted as if treatments that act on fibrillar Ab have a
greater impact on downstream neurodegeneration
than those targeting soluble Ab (Lleo et al. 2015).
Results from ongoing studies with these and other
anti-amyloid treatments might shed new biological

evidence for the role of CSF markers to detect disease
modification.

In addition to Tau and pTau, other proteins have
been investigated in CSF to monitor the pathophysio-
logical pathways in AD. These novel biomarkers could
provide further insights in clinical trials. Tau-independ-
ent markers of neuronal damage, such as NF-L, VLP-1,
or the heart-type fatty acid-binding protein, could give
additional information about disease modification
effects in trials with anti-Tau therapies, in which levels
of total Tau and pTau could be the result of target
engagement (Parnetti, Eusebi, et al. 2016). Synaptic
markers (NG, SNAP-25), markers of neuroinflammation/
microglial activation (YKL-40 or CCL2) and markers of
protein homeostasis and lysosomal dysfunction (LAMP-
1 and LAMP-2) could be used as indicators of disease
progression (Alcolea et al. 2014; Cavedo et al. 2014;
Alcolea et al. 2015; Parnetti, Eusebi, et al. 2016). Markers
to detect common associated neuropathological comor-
bidities such as Lewy body or TAR DNA-binding protein
43 pathologies should also be further investigated in
clinical trials of AD (Cavedo et al. 2014; Mattsson, Carrillo,
et al. 2015; Parnetti, Eusebi, et al. 2016).

Future directions

There are still some crucial issues that need to be
improved in order to achieve an optimal implementa-
tion of CSF biomarkers in clinical trials. On the one
hand, more observational longitudinal studies with
larger sample sets are needed to determine the pat-
terns of biomarker change along the natural course of
the disease. On the other hand, there is an urgent
need to harmonise the assays across different plat-
forms and to develop international reference materials
and methods and global cut-points (Carrillo et al.
2013). The publication of international recommenda-
tions to standardise pre-analytical conditions (del
Campo et al. 2012; Vanderstichele et al. 2012) and the
launch of global initiatives to survey and monitor
inter-centre variability in analytical procedures
(Mattsson et al. 2011, 2013) have been major advances
in this respect. Finally, it is anticipated that as some
trials show clinical benefit in the ongoing AD trials,
the field will be able to draw more solid conclusions
about whether CSF markers of neurodegeneration can
be used alone or in combination as surrogate markers
of efficacy (Box 1).

CSF biomarkers in subjective cognitive decline

Epidemiological studies have shown that the purely
subjective feeling of cognitive decline with still normal
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performance on standard cognitive tests (subjective
cognitive decline, SCD) is associated with an increased
risk of future cognitive decline and dementia (Mitchell
et al. 2014). Moreover, there is increasing evidence
that the combination of SCD with biomarkers may be
particularly useful to identify AD very early at the pre-
MCI stage, which makes this approach highly attractive
for clinical trials and dementia prevention.

MRI studies have provided evidence that SCD is
often associated very subtle AD-like patterns of brain
atrophy (Peter et al. 2014; Perrotin et al. 2015; Schultz
et al. 2015). Even though a recent meta-analysis has
revealed no higher prevalence of amyloid positivity in
individuals with SCD in comparison to controls (Jansen
et al. 2015) individual PET studies have shown an
increased likelihood of amyloid positivity in SCD and a
correlation of SCD severity with amyloid deposition
(Amariglio et al. 2015; Perrotin et al. 2016; Zwan
et al. 2016). The discrepancy between studies is
mainly related to the lack of standardisation of the
definition and assessment of SCD. To address this,
an international working group (SCD initiative)
recently published consented research criteria of
SCD, which are recommended to use in trials
(Jessen et al. 2014).

With regard to CSF biomarkers, Visser et al. (2009)
observed an AD-type CSF profile in 51% of the SCD
patients and 32% of control subjects in a multicentre
European memory clinic study. Antonell et al. (2011)
studied 24 controls and 19 SCD cases. They observed
pathological measures of Asz42 in 26.3%, of Tau or
pTau in 15.8%, and of both, Ab42 and Tau or pTau in
10.5% of the SCD cases. In the controls, 29.2% showed
pathological Ab42 only, 4.2% pathological Tau or pTau
only, and 4.2% pathological Ab42 and Tau or pTau. In
a recent analysis of the ADNI datatset, Risacher et al.
(2015) found lower Ab1–42 and higher Tau/pTau con-
centrations in APOE e4-positive in comparison with

APOE e4-negative subjects. APOE e4-positive SCD indi-
viduals had significantly higher pTau concentrations
than APOE e4-positive controls.

Interestingly, in addition to studies in SCD,
Wolfsgruber et al. (2014, 2015) reported an association
of CSF AD biomarkers with particular memory con-
cerns in MCI, which was independent of the associ-
ation with cognitive performance. The particular
concern was also associated with cognitive decline in
MCI.

In a longitudinal memory clinic cohort of 127
patients with SCD, Ab42 and Tau were abnormal in 20
patients (both 16%), and pTau in 32 patients (25%) at
baseline. Ab42 was the strongest predictor of progres-
sion to MCI or AD with an adjusted HR of 16.0. The
adjusted HR associated with Tau was 2.8 and with
pTau 2.6 (van Harten, Visser, et al. 2013). In the same
cohort, SCD patients with either pathological Ab42
only or both Ab42 and Tau or pTau showed decline
over time in memory, executive functions and global
cognition, while SCD patients without pathological
CSF markers showed improvement or stable perform-
ance over time (van Harten, Smits, et al. 2013). Finally,
in a Swedish longitudinal study of 122 SCD subjects
with a 2-year follow-up, Hessen et al. (2015) observed
cognitive decline in those with pathological Tau con-
centration at baseline.

While the above studies reported prediction of
decline by biomarkers in SCD subjects, a recent study
from the AIBL cohort, based on amyloid PET predicted
cognitive decline in healthy elderly, who were amyloid
positive by SCD. The authors reported that an individ-
ual, who is amyloid positive, has an increased risk
(HR¼ 5.1) of cognitive decline, if he or she reports
SCD (Buckley et al. 2016). This study confirms the
model that SCD may correspond to the late stage of
pre-clinical AD, at the initial stage of decompensation
of brain function (Jessen et al. 2014).

Box 1. Evidence supporting a role for CSF biomarkers in clinical trials in AD.
CSF biomarkers for inclusion/selection

� In previous AD clinical trials, only half of participants selected by clinical criteria had biological evidence of AD.
� Ab1–42 alone or in combination with total tau has been the most widely used biomarker to enrich the selection of participants in clinical trials.

CSF biomarkers as a measure of target engagement
� Several trials with b-secretase inhibitors have detected a reduction in CSF levels of Ab1–42, Ab1–40, sAPPb or other subproducts of APP. Other

fragments, such as Ab5-42, Ab5-X or sAPPa, have been found increased in CSF, suggesting an enhanced alternative processing of APP after b-sec-
retase inhibition.

� In trials with c-secretase inhibitors and modulators, the changes in CSF levels of Ab1–42, Ab1–40 have not been consistent.
� None of the trials with the active immunisation compounds showed changes in the levels of amyloid-derived CSF biomarkers.
� Patients treated with solanezumab showed an increase of total Ab1–40 and Ab1–42 levels in CSF following treatment, perhaps reflecting a change

in the balance between fibrillar and soluble Ab.

CSF biomarkers as a measure of disease modification
� Total Tau and pTau levels have been investigated as markers of the downstream effects in anti-amyloid treatments.
� The active Ab immunisation study AN1792 (but not CAD106) showed that antibody responders had a reduction in CSF total Tau levels compared

to those patients who received placebo.
� Treatment with bapineuzumab (but not solanezumab) was associated with a decrease in CSF pTau levels.
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Clinical application of the CSF biomarkers in
AD: Dementia Competence Network
contribution

In recent years large-scale, multicentre studies have
addressed AD biomarkers from different perspectives.
The German Dementia Competence Network (DCN)
was launched in 2002 by 14 academic centres of excel-
lence in Germany and is funded by the German
Federal Ministry for Education and Research (BMBF).
The primary goals of the DCN are, among others, (a)
to establish procedures for the standardised multicen-
ter acquisition of clinical, biological and imaging data,
for centralised data management; (b) a comprehensive
clinical characterisation of MCI and incipient dementia;
and (c) to test whether CSF- and blood-based bio-
logical markers, as well as clinical and neuropsycho-
logical assessments, can be combined to measure the
progression of MCI and early AD over 3 years. The
DCN has built a structured multicentre cohort. In 2,200
patients with MCI or mild dementia a multidimen-
sional phenotyping with clinical, neuropsychological,
neuroimaging, blood and CSF biomarkers was per-
formed. Clinical follow-up examinations were per-
formed up to 3 years (Kornhuber et al. 2009).

To reduce inter-laboratory variability, standards for
the pre-analytical and analytical processing of bio-
logical samples (blood and CSF) have been developed
as an important prerequisite for NDD (Lewczuk,
Kornhuber, et al. 2006). Comprehensive biological sam-
ple characterisation allowed the world’s first successful
GWAS on amyloid markers in CSF with innovative con-
tributions to research on pathogenesis of AD (Ramirez
et al. 2014). The work by Wiltfang et al. (2007) showed
that the common sole determination of Ab1–42 was not
sufficient to reflect the Ab status, and demonstrated that
a quotient consisting of Ab1–42 and Ab1–40 correlated
significantly better with the degree of neurodegenera-
tion indicated by Tau protein, than Ab1–42 alone. The
results of this work have now been confirmed by other
groups (Dorey, Perret-Liaudet, et al. 2015; Janelidze,
Zetterberg, et al. 2016; Racine et al. 2016).

The experience with established CSF dementia bio-
markers Ab1–42, Ab1–40, Tau and pTau indicate an
urgent need for additional markers, improving the
diagnosis, differential diagnosis and the assessment of
progression. Lewczuk et al. (2010) measured sAPP in
CSF to improve NDD. The DCN cohort was also used
to demonstrate Ab peptide abnormalities in the
plasma of patients with neurochemical dementia
markers typical of AD.

The interplay between amyloid and mitochondrial
function has involved studies in an MRS study. In AD

patients, the N-acetyl-aspartate concentration in the
brain tissue, a putative marker of mitochondrial func-
tion, correlated with Ab42 in CSF. This finding indi-
cates an interaction of Ab and neuronal mitochondrial
dysfunction as key mechanism of AD pathology
(Jessen et al. 2011).

The results of the CSF biomarkers of the DCN
cohort were used to validate a cued recall memory
deficit in prodromal AD (Wagner et al. 2012) and, as
discussed above, to validate the Erlangen Score
Algorithm (originally developed based on a different
cohort (Lewczuk et al. 2009)) for the prediction of the
development of dementia due to AD in pre-dementia
subjects (Lewczuk, Kornhuber, et al. 2015). The
Erlangen Score Algorithm (Lewczuk et al. 2009)
inspired the diagnostic criteria of the NIA-AA for MCI
(Albert et al. 2011). Furthermore, in the MCI patients
of the DCN cohort, SCD is related to CSF biomarker
abnormalities (Wolfsgruber et al. 2015).

The CSF biomarkers of the DCN cohort were also
used in meta-analyses together with other dementia
cohorts. One study defined the prevalence of cerebral
amyloid pathology in persons without dementia
(Jansen et al. 2015). Another study validated research
criteria for the diagnosis of AD in patients with MCI
(Vos et al. 2015).

The DCN has not only gathered a range of bio-
markers, such as neuropsychology, structural MRI, MRS
and DNA, but also joined with large genetic consortia
such as GERAD to help to identify common variants
associated with AD. For details regarding other bio-
markers, the reader is referred to further publications
by the DCN and genetic consortia, for example:
(Harold et al. 2009; Teipel et al. 2010; Hollingworth
et al. 2011; de Souza Silva et al. 2013; Morgen et al.
2013; Heilmann et al. 2015). Taken together, the con-
tributions of the DCN greatly improved our under-
standing of the CSF biomarkers in AD.

BIOMARKAPD contribution

The BIOMARKAPD project was run during 2.5 years
and was the first EU-Joint Programme
Neurodegenerative Disease (JPND) project including
52 partners from 21 countries (51 European and one
Canadian centre) with the goal to standardise the sam-
pling and measurement for the already known bio-
markers, as well as to develop new ones for AD and
PD. This has been done by developing and validating
protocols for these processes and to give training
courses for the staff, and why now most of the centres
in Europe are performing this procedure in a common,
standardised way. BIOMARKAPD also developed protocols
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for analysis of the AD biomarkers CSF Ab, Tau and
pTau, as well as a new PD biomarker aSyn, both for
clinical practice and clinical trials. We have also identi-
fied NG (a candidate biomarker reviewed in more
details in the following sections of this paper) as a
new CSF biomarker on the function in nerve synapses
in AD, and DJ-1 in CSF as a new biomarker candidates
for PD.

BIOMARKAPD has performed the largest subject-
level meta-analysis on the prevalence of amyloid
abnormality in non-demented subjects; a novel ELISA
for NG, a dendritic marker, was validated clinically. The
marker was found to be increased in AD CSF in a dis-
ease-specific manner; the validation of a novel fully
automated method for CSF Ab measurement was built
upon the result from the BIOMARKAPD study. This will
further increase the accuracy of Ab measurements; a
capillary isoelectric focussing immunoassay for Ab
fragments was developed and validated, which may
be useful to monitor treatment effects of b-secretase
inhibitors against AD.

Structural highlights

The BIOMARKAPD consortium had a unique multidis-
ciplinary design which made it possible to cover the
whole process from biomarker discovery to implemen-
tation. We were also able to show that a large number
of participants can function together if the structure is
thoroughly outlined, the work is well defined with
clearly allocated sub-tasks and clear goals. A certified
reference method for CSF Ab and 5 L of CSF for the
development of a reference material for Ab has been
collected. A new reference model for Tau and pTau
will build upon this model. Central and virtual bio-
banks with samples collected according to the new
standardised way have been set-up.

The BIOMARKAPD project resulted during the study
period in 135 publications in international journals and a
number of sub-studies have been published after the end
of the project. The work within this project will continue in
the Society for CSF Analysis and Clinical Neurochemistry
(http://www.neurochem.info/html/home).

Longitudinal changes in the CSF biomarkers in
the ADNI participants

On the other side of the Atlantic Ocean, the first phase
of the ADNI started in 2004 aiming, among others, at
the longitudinal within-participant assessment of pro-
gression of the disease in an elderly population (mean
age of 75 years) (Weiner et al. 2015b). Subsequent
Phases include ADNIGO/2 and starting in August 2016,

the ADNI3 phase (Weiner et al. 2015a) includes new
additional participants as well as carryover participants
from earlier phases who remain in the study. Integral
to the ADNI study is standardisation of imaging, bio-
chemical and genetic biomarker measurements. In this
discussion we focus on the longitudinal changes in
CSF Ab1–42, Tau and pTau181 concentrations meas-
ured in ADNI participants who are an elderly group, an
important point to keep in mind when considering
these and studies in other age groups. The ADNI1
study required LPs in at least 50% of participants at
BASELINE study entry and at 1 year. An add-on study
resulted in the collection of annual CSF samples out to
3–4 years in 142 ADNI1 participants (18 AD, 74MCI, 50
cognitively normal). Longitudinal CSF samples have
been collected out to 4 years in the ADNIGO/2 phases
and analyses of these are planned for early 2017. In
this review we describe results for the ADNI1 longitu-
dinal dataset. The changes in CSF Ab1–42, Tau and
pTau181 in ADNI1 participants over time, from
BASELINE visit out to 3–4 years have been described
in several publications (Beckett et al. 2010; Vemuri
et al. 2010; Lo et al. 2011; Landau et al. 2013; Toledo,
Xie, et al. 2013; Mattsson, Insel, et al. 2015). During 1
year following BASELINE little change was observed
for these three CSF biomarkers except for a modest
increase in Tau in cognitively normal controls (Beckett
et al. 2010, Vemuri et al. 2010). The relative stability of
CSF Ab1–42, Tau and pTau181 was shown in another
study (in MCI and AD participants) over a 2-year time
period (Zetterberg, Pedersen, et al. 2007). Sampling
out to at least 3–4 years is needed to detect longitu-
dinal changes in CSF (Stomrud et al. 2010; Lo et al.
2011; Landau et al. 2013; Toledo, Xie, et al. 2013;
Mattsson, Insel, et al. 2015). There are several note-
worthy findings in these analyses of the ADNI longitu-
dinal CSF Ab1–42, Tau and pTau181 concentrations
including (a) reductions in Ab1–42, were greater in
cognitively normal than in MCI or early AD partici-
pants, a finding consistent with the model of Jack
et al. (2010) for the relationships between biomarker
changes and cognitive changes over time, wherein the
greatest rate of change for Ab1–42 occurs at early pre-
clinical stages of the AD continuum (Jack et al. 2010;
Jack et al. 2013); (b) a decline from ‘normal’ (defined
as above the 192 pg/ml cutpoint for Ab1–42 in the
ADNI study) to ‘pathological’ (below the 192 pg/ml
cutpoint value) in some cognitively normal and MCI
participants; (c) there were three observed types of
‘decline status’ for Ab1–42 in individual participants,
namely, (i) stable pathological: non-decliner partici-
pants whose Ab1–42 trajectories were stable but all
pathological (below the cutpoint concentration value);
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(ii) stable normal: non-decliner participants whose
Ab1–42 trajectories were stable but all concentration
values were above the cutpoint concentration value;
or (iii) decliners: participants whose Ab1–42 trajectories
were declining from above cutpoint, normal, to below
cutpoint, pathological, during the 3-4 year observation
period (Landau et al. 2013; Toledo, Xie, et al. 2013;
Mattsson, Insel, et al. 2015).

There are interesting implications of these data. The
results described above for the ADNI1 study provide
evidence for variable rates of decline in CSF Ab1–42
that are consistent with the documented presence of
disease heterogeneity in this late-onset AD study
population (Toledo, Cairns, et al. 2013; Cairns et al.
2015). Analyses of the data for those subjects whose
last sample was collected at 36–48 months (n¼ 89)
have revealed (Toledo, Xie, et al. 2013) that, in partici-
pants in the ADNI1 longitudinal study, CSF Ab1–42
was pathological in virtually all APOE e4 carriers, and
that all but one of the Ab normal non-decliners was
APOE e4 negative. These results are consistent with
the observation that APOE e4 positivity predisposes
individuals to earlier decline in CSF Ab1–42 concentra-
tions (Peskind et al. 2006). A recent pilot study in cog-
nitively normal middle-aged participants in the Adult
Children Study described within-subject decreases of
CSF Ab1–42 at greater frequency in APOE e4 allele car-
riers, compared to non-carriers in early middle age
subjects in this study (Sutphen et al. 2015). An analysis
of the cognitively normal ADNI1 participants whose
CSF Ab1–42 BASELINE values were normal showed
that over 3–4 years this subset split into two groups,
those whose Ab1–42 values remained stable and
above the 192 pg/ml cutpoint and those whose values
declined below the cutpoint concentration (Mattsson,
Insel, et al. 2015). The strongest predictor of Ab1–42
decline were BASELINE Ab1–42 levels in the lowest
third of the above-cutpoint range of values associated
with the cognitively normal participants (Mattsson,
Insel, et al. 2015). This observation raises the important
question around the clinical utility of Ab1–42 as a
potential continuous biomarker test parameter as con-
trasted with a dichotomous variable. Future studies in
larger numbers of study participants and using the
next generation of immunoassays will be required to
assess this question. These data are another important
example of the heterogeneity of biomarker findings in
ADNI participants that likely reflect the observed dis-
ease heterogeneity (Kang et al. 2015).

The observed heterogeneity was likely not due to
run-to-run variability or reagent batch effects, since in
all of the studies cited in this section the longitudinal
CSF samples for each study participant were analysed

in the same analytical run. Regarding pTau and Tau,
findings of interest were: MCI and AD diagnoses were
associated with lower and higher concentrations,
respectively, of Ab1–42 and Tau, but not pTau181
(Toledo, Xie, et al. 2013). According to analyses of the
chronology of biomarker changes in ADNI1 partici-
pants using linear regression models adjusted for age,
gender and APOE e4 genotype, pathological values of
BASELINE Ab1–42 predicted later increases in pTau181,
but neither Tau or pTau181 BASELINE values predicted
changes in Ab1–42 over time (Toledo, Xie, et al. 2013).
The observed time dynamics are consistent with
observations in autosomal-dominant participants in
the Dominantly Inherited Alzheimer Network (DIAN)
study in which the proposed timeline for CSF Ab1–42,
Tau and pTau181, based largely on cross-sectional
data and using the expected year of symptom onset
for each participant (Bateman et al. 2012; Fagan et al.
2014). Planned further analyses in expanded numbers
of the ADNI and other study cohorts over longer peri-
ods of time will be essential to confirm these results
and provide greater insight and understanding of dis-
ease heterogeneity in late-onset AD, and inform clin-
ical trial planners and ultimately routine clinical
practice on expected CSF biomarker trajectories and
their relationships to cognitive decline.

Potential novel biomarkers

Several investigations have been recently undertaken
in order to examine novel candidate biomarkers which
may better reflect the pathophysiological mechanisms
underlying the progression of the disease (Lewczuk,
Kamrowski-Kruck, et al. 2010; Hampel et al. 2012;
Cavedo et al. 2014; Hampel et al. 2014; Henriksen
et al. 2014; Mapstone et al. 2014; Mroczko et al. 2014;
Fiandaca et al. 2015; Lista et al. 2015; Mroczko et al.
2015; Lista and Hampel 2016; Lista et al. 2016).

Among others, these biomarkers include CSF NG, a
candidate marker for synaptic dysfunction and/or loss,
CSF NF-L, a marker of axonal degeneration (this
marker just recently re-emerged as relevant to AD; the
marker has a long-standing history in, e.g. multiple
sclerosis and amyotrophic lateral sclerosis), and CSF
triggering receptor expressed on myeloid cells 2
(TREM2), a candidate marker of microglial activation
(see http://www.alzforum.org/alzbiomarker for updated
meta-analyses (Olsson et al. 2016)).

Neurogranin: a marker of synapse loss in AD?

The very first toxic effects of Ab, preceding Tau path-
ology, may be synaptic impairment and dendritic loss
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(Herms and Dorostkar 2016). To examine this more
closely, we need reliable biomarkers for dendritic loss,
and in this context, NG, a neuron-specific dendritic
protein that is mainly expressed in the cortex and
hippocampus by excitatory neurons (Represa et al.
1990; Guadano-Ferraz et al. 2005) may be a promising
candidate. NG plays a key role in synaptic plasticity,
enhancing synaptic strength by regulating the avail-
ability of calmodulin (CaM) upon Ca2þ-mediated pro-
tein kinase C activation (Zetterberg and Blennow
2015). Further, phosphorylation of NG has been shown
to be essential for the induction of long-term potenti-
ation in pyramidal cells of the CA1 region of the
hippocampus, where it is highly enriched in dendritic
spines (Fedorov et al. 1995; Chen et al. 1997). NG lev-
els are significantly lower in the cortex and hippocam-
pus of AD patients as compared to controls
(Davidsson and Blennow 1998; Reddy et al. 2005).

In 2010, a semi-quantitative immunoprecipitation
western blot method showed increased CSF NG con-
centrations in the CSF of patients with AD compared
with cognitively normal controls (Thorsell et al. 2010).
Different sandwich immunoassays for the protein have
since been developed and the results suggest that CSF
NG indeed is a valid biomarker for dendritic loss in
AD. Cross-sectional studies show increased CSF con-
centration of NG in both AD and in the MCI stage of
the disease (De Vos et al. 2015; Kester et al. 2015;
Kvartsberg, Duits, et al. 2015; Kvartsberg, Portelius,
et al. 2015). Additionally, Kester et al. (2015) showed
longitudinally stable levels in AD but increased levels
over time in cognitively normal individuals, which sug-
gests that CSF NG may reflect pre-symptomatic synap-
tic dysfunction or loss. Further, CSF NG concentration
correlates with cognitive deterioration and disease-
associated changes in metabolic and structural bio-
markers over time, as recently shown in the ADNI
study (Portelius et al. 2015). Surprisingly, CSF NG
increase appears to be specific to AD; other neurode-
generative diseases show control-like concentrations
(Wellington et al. 2016). The research field is now
awaiting the first results on whether CSF NG concen-
tration normalises in response to treatment with novel
disease-modifying drug candidates against AD.

Neurofilament light: a Tau-independent marker of
neuroaxonal degeneration?

There are two major types of intermediate filaments in
the nervous system: neurofilaments and glial filaments.
Neurofilaments exist as 10-nm filaments in the axo-
plasm of neurons, where they give tensile strength to
dendrites and axons. They are composed of three

major polypeptides with molecular masses of 200, 150
and 68 kDa, respectively. As the name implies, neurofi-
lament light is the lightest of the three components
(Zetterberg 2016).

The first ELISA for NF-L was developed in the mid-
1990s (Rosengren et al. 1996). Rosengren and col-
leagues showed that CSF NF-L concentration was
increased in amyotrophic lateral sclerosis, particularly
so in patients with pyramidal tract involvement, and
that increased concentrations also characterised AD,
VaD and normal pressure hydrocephalus, but with
lower magnitude of the rise compared with that seen
in ALS (Rosengren et al. 1996). The authors concluded
that CSF NF-L was a promising biomarker for neurode-
generation in general; a conclusion that has later been
confirmed, e.g. in studies examining atypical PD (Hall
et al. 2012; Magdalinou et al. 2015) and FTD (Scherling
et al. 2014). Given the high expression of NF-L in large
calibre myelinated axons, studies on multiple sclerosis
soon followed. Researchers found that CSF NF-L is
increased in both relapsing-remitting and primary pro-
gressive multiple sclerosis, that CSF NF-L concentration
indicates ongoing axonal injury and reflects the inten-
sity of the process, that CSF NF-L concentration nor-
malises within 6–12 months in multiple sclerosis
patients following initiation of clinically effective treat-
ment, and that CSF NF-L thus is a promising biomarker
for disease intensity and progression, as well as for
treatment response (Teunissen and Khalil 2012).
Similar results on CSF NF-L dynamics have been
obtained in stroke, TBI, HIV-associated dementia and a
broad range of other neuroinfectious conditions. For a
long time researchers found increased CSF NF-L con-
centrations in AD, but this was often attributed to co-
morbidity of vascular disease (Bjerke et al. 2010). It has
now, however, become evident that CSF NF-L increase
is an inherent feature of AD, and that increased CSF
NF-L concentrations, along with biomarker evidence of
classical AD pathology, predict a more rapid disease
progression (Zetterberg et al. 2016). The marker
appears to be a non-specific marker of disease inten-
sity in neurodegenerative diseases, and could poten-
tially be used to detect treatment effects, in a similar
way as to which it has been successfully been
employed in the field of multiple sclerosis (Gunnarsson
et al. 2011).

CSF sTREM2: a novel biomarker of microglial
activation?

In the CNS, the triggering receptor expressed on mye-
loid cells 2 (TREM2) is specifically expressed on micro-
glia as a transmembrane protein that is processed by
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a- and c-secretases (Colonna and Wang 2016). TREM2
mutations cause neurodegenerative diseases and were
recently linked to AD (Guerreiro et al. 2013; Jonsson
et al. 2013). The ectodomain is shed into the CSF in
response to microglial activation (sTREM2) and was
first measured in CSF from MS patients, who had
increased concentrations as compared to controls.
Increased CSF sTREM2 concentrations were recently
reported in both dementia and MCI stages of AD and
CSF sTREM2 correlate with CSF Tau but not CSF Ab42
concentrations, suggesting that microglial activation
occurs in close connection with onset of neurodegenera-
tion (Heslegrave et al. 2016; Piccio et al. 2016; Suarez-
Calvet et al. 2016). The association of CSF sTREM2 with
protective versus harmful microglial activation is pres-
ently unknown; longitudinal studies with repeated CSF
samplings over time are needed to determine this.

Novel technologies in biomarkers research

A common limiting factor of biomarker research is the
access to well-characterised samples with regard to
diagnosis and pre-analytical factors. For this reason it
is desirable to use methods with low demand on sam-
ple volumes in order to be able to investigate as
many different biomarker candidates as possible in a
given set of samples. Another constraint is the sensi-
tivity of the assays that are used in the search. Even
though an ordinary ELISA is quite sensitive a biomol-
ecule cannot be investigated and evaluated for its
potential as a biomarker if its concentration is consist-
ently below the limit of quantification for the assay. In
this article a technology is considered novel if it, in
addition to not being older than approximately 10
years, has supreme sensitivity or much less demand
on sample volume compared with an ordinary ELISA.
On the other hand, biotechnology companies are
extremely active in the marketing of their technolo-
gies, and the figures regarding supreme sensitivity of
all novel methods should be taken with a pinch of
salt. The determination of the sensitivity of an
immunoassay depends strongly on several factors, e.g.
identity of the antibodies, the source of the calibrator
and way of calculating the limit of detection/quantifi-
cation. As long as these factors are not fixed any
method comparison to judge the sensitivity would be
like comparing apples and oranges.

Single-molecule counting

The single-molecule counting (SMC) technology devel-
oped by Singulex (Wu et al. 2006; Todd et al. 2007)
marked the start of ultra-sensitive immunoassays

claiming a 100 times higher sensitivity compared to
contemporary immunoassay platforms. In this bead-
based technology the sandwich complex (capture anti-
body-analyte-detection antibody), which is at the heart
of many immunoassays, is broken up and only the flu-
orescently labelled detection antibody is quantified as
single events as they are drawn into a capillary and
pass a laser beam that excites the fluorophore, and
give a signal above the threshold of the background
noise. The sum of the number of such discrete events
in a sample is the signal that is used for calculating
the concentration of the analyte. At higher concentra-
tions the probability increases for the occurrence of
more than one antibody passing the beam at the
same time and then a switch is automatically made to
measure the total amount of light emitted, which
allows for a high dynamic range of the platform. An
Erenna instrument is needed to run SMC assays, and
the platform is open, which allows for in-house assays
to be developed. For the time being multiplex is not
an option for the SMC technology.

Single-molecule array

Quanterix has invented and commercialised the single-
molecule array (Simoa) technology (Rissin et al. 2010),
which is a bead-based digital ELISA claimed to be
1,000-fold more sensitive than an ordinary ELISA. The
reason for the label ‘digital’ is that after the sandwich
complex is formed, using an enzyme-conjugated
detection antibody, the beads are trapped in 50-fl
wells together with the fluorogenic substrate, and the
small reaction volume allows for a detectable signal
even if only one sandwich complex is present on a
bead. At higher concentrations the probability of more
than one sandwich complex per bead increases and
the detection make a transit from digital to analogue
signal treatment to expand the dynamic range. A dedi-
cated analyser, Simoa HD-1, is needed and it is pos-
sible to make in-house assays. The option of
multiplexing is now also available on the platform
(Rissin et al. 2013; Rivnak et al. 2015).

Proximity extension assay

The proximity extension assay (PEA) utilises real-time
polymerase chain reaction (PCR) as a signal generator
(Fredriksson et al. 2002; Lundberg et al. 2011). In PEA
partly complementary DNA strands are conjugated to
two different antibodies allowing for the DNA strands
to hybridise when both antibodies come in proximity
to each other upon binding to the analyte. The design
of the complementary DNA parts prevents
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hybridisation in the absence of binding of both anti-
bodies to the analyte. In the presence of DNA poly-
merase and deoxynucleotides a double-stranded PCR
template is formed, which can be multiplied and
quantified using real-time PCR. PEA has been commer-
cialised by the company Olink, and their Proseek
multiplex assays can be used in any laboratory, given
that the necessary instruments are available, but the
company also offers a fee-for-service. PEA is not a
multiplex in the sense that all analytes are analysed in
one go, rather there are separate reactions, but even
so only a 1-ml sample is needed for a 92-plex assay.
The manufacturers claim that the sensitivity is, com-
parable or better than ELISA, down to fg/ml.

Slow off-rate modified aptamer scan

Nucleotides can be used for detection, as in PEA, but
also for binding specific target molecules and this
property is utilised in the slow off-rate modified
aptamer scan (SOMAscan) commercialised by
SOMAlogical (Rohloff et al. 2014). In SOMAscan, nucle-
otid-based aptamers are conjugated to biotin and
bound to streptavidin-coated beads via a linker con-
taining both a fluorophore and a photocleavable spa-
cer. After sample incubation followed by a wash, the
bound proteins are biotinylated, and the biotin-pro-
tein-aptamer-fluorophore complex is dissociated from
the beads using light photocleavage. After removal of
the beads, new streptavidin-coated beads are added,
to which the complex can bind and at the same time
allow for non-specific interactions to dissociate. Next,
the proteins are eluted from the aptamer-fluorophore
complex. After a wash the aptamer-fluorophore com-
plex is released from the beads under denaturing con-
ditions and the aptamers are hybridised to
complementary strands on a microarray chip and
quantified by fluorescence. By design, the intensity of
the fluorescent signal reflects the concentration of the
analyte in the sample, the sensitivity is typically as low
as ELISA systems, and the dynamic range is claimed to
be 8 orders of magnitude. It is also possible to use
qPCR or Luminex systems for quantification.
SOMAlogical offers more than 1,300 analytes on a fee-
for-service basis but it also possible to set up the
system in any laboratory, and there are also external
laboratories trained (e.g. Neurochemistry Lab VUmc) to
perform the analysis for research purposes.

Immunomagnetic reduction

When antibody-coated magnetic nanoparticles interact
with antigen the magnetically induced oscillation

decreases in a concentration-dependent way. This
effect is called immunomagnetic reduction (IMR) and
is the principle used in the detection system utilised
on the platform developed by the company MagQu
(Chieh et al. 2008). The technology has been shown to
be an order of magnitude more sensitive than a con-
ventional ELISA (Horng et al. 2006). MagQu offers an
assay service, where samples are sent to and analysed
by the company. Instruments for measuring IMR and
reagents for making in-house assays are available for
purchase from MagQu.

S-plex

Meso Scale Discovery has recently launched a sample-
testing service called S-plex. Even though the assays
can be analysed using their already established elec-
trochemiluminescence plate readers the detection is
improved and the company claims that the S-plex has
a 100–1000 times greater sensitivity than ELISAs. The
plan is to make the technology available outside the
company. However, according to a company represen-
tative, the novel extra sensitive detection process is a
company secret not to be revealed even after the
release of the S-plex to external laboratories.

Flexmap 3D

Luminex has been a player on the multiplex arena for
more than 20 years and their xMAP technology is
based on the principles of flow cytometry. The anti-
body-coated beads are filled with different ratios of
two fluorophores that identifies which analyte that is
bound and the detection antibody is labelled with
another fluorophore which is used for generation a
signal. Initially there was a limitation of 100 different
dye combinations, but when the FLEXMAP 3D plat-
form was launched in 2007 this number increased to
500. It is the introduction of a third dye in the beads
that has allowed for the increase in possible discrete
dye combinations. The platform is open allowing for
in-house multiplex assays to be developed in addition
to other companies to manufacture and vend kits for
the platform.

Magpix

Luminex has also a platform, MAGPIX, which utilises
magnetic beads filled with two different dyes and with
a limit of 50-plex assays. It might seem as a step back
decreasing the number of possible analytes but for
many applications it is a quite sufficient number.
Instead of measuring the beads one by one, as in
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FLEXMAP 3D, the beads are drawn to a plate using
magnetism and then exited with light. Pictures are
taken and image analysis allow for identification and
quantification. The same openness applies to MAGPIX
as to FLEXMAP 3D when it comes to in-house method
development.

Mass spectrometry

One thing that the above-mentioned technologies all
have in common is the use of antibodies in a way that
the analytes are measured indirectly. There are poten-
tial pitfalls connected to this, e.g. heterophilic antibod-
ies and non-specific binding, which can give false
results. Many of the problems with immunochemical
methods can be avoided using quantitative MS (Scherl
2015). As a principle MS is almost 100 years old, but
after the invention of the soft ionisation methods,
allowing for organic compounds to be analysed, the
evolution has been, and still is, fast. Today MS com-
petes well with the sensitivity of immunoassays but
for the time being immune assays in general have
higher throughput of samples.

Biomarkers in frontotemporal lobar
degeneration

FTLD comprises a group of neurodegenerative disor-
ders with overlapping symptomatology and histopath-
ology (see also the section on neuropathology above
in this paper). The common feature is the degener-
ation of the frontal and anterior temporal lobe, and at
present the following syndromes are assigned to the
FTLD spectrum (Seltman and Matthews 2012): the
three types of FTD including the behavioural variant of
FTD (bvFTD) and the semantic and non-fluent variants
of primary progressive aphasia (svPPA and nfvPPA),
FTD with motor neuron disease (FTD-MND), PSP and
corticobasal syndrome (CBS). These syndromes can fur-
ther be classified as behavioural variant (bvFTD), lan-
guage variant (svPPA and nfvPPA) and motor variant
(FTD-MND, PSP and CBS) of FTLD.

As outlined earlier in this paper, FTLD is neuropa-
thologically characterised by proteinaceous aggregates
in the brain, but there are differences in the protein
composition. Intracellular, Tau-positive aggregates
(FTLD-Tau) are found in 36%–50% of FTLD cases; most
nfvPPA show FTLD-Tau pathology in contrast to only
few svPPA patients. PSP and CBS also show predomin-
antly FTLD-Tau pathology with some exceptions for
CBS. The presence of aggregates positive for the TAR
DNA-binding protein of 43 kDa (TDP-43) accounts for
about 50% of FTLD patients; this type of pathology is

found in FTD-MND, in most svPPA patients and only
seldom in nfvPPA or CBS. The third characteristically
aggregated protein is FUS (FTLD-FUS) and bvFTD
patients appear with all three types of neuropathology
(Rabinovici and Miller 2010; Bang et al. 2015).

To date, diagnosis of FTLD syndromes is based on
clinical symptoms only (Litvan et al. 1996; Gorno-
Tempini et al. 2011; Rascovsky et al. 2011; Armstrong
et al. 2013) and is hampered by the great overlap of
the clinical manifestation within the FTLD subtypes
and with other types of dementia (e.g. AD) or move-
ment disorders (e.g. PD).

Candidate biomarkers that might help in the early
and differential diagnosis of FTLD were recently sum-
marised (Feneberg et al. 2012; Oeckl et al. 2015; Oeckl,
Metzger, et al. 2016; Oeckl, Steinacker, et al. 2016). AD
represents the most important disorder in the differen-
tial diagnosis of FTD. Especially if patients present with
predominant language deficits one has to distinguish
the logopenic variant of PPA, which is mostly associ-
ated with underlying AD pathology (Gorno-Tempini
et al. 2011). Tau, pTau181 and Ab42 are the most
promising biomarker candidates to help in differenti-
ation between FTD and AD. Several studies investi-
gated these biomarkers in FTD and AD as summarised
in different meta-analysis: CSF Ab42 is reduced (Tang
et al. 2014) and Tau (van Harten et al. 2011) and
pTau181 (van Harten et al. 2011) are increased in AD
compared to FTD. In fact, in the new criteria for bvFTD
a typical biomarker profile of AD would lead to an
exclusion of bvFTD. However, this point is certainly a
matter of discussion.

In recent years, studies focussed on the validation
of these results in larger patient cohorts and the com-
bination of the three biomarkers to increase sensitivity
and specificity. Skillback et al. (2014) could show
increased Tau and pTau181 and reduced Ab42 concen-
trations in AD in a cohort of more than 5000 patients.
Several other studies confirmed these observations
(Alcolea et al. 2014; Baldeiras et al. 2015; Ewers et al.
2015; Magdalinou et al. 2015; Struyfs, Van Broeck,
et al. 2015; Timmer et al. 2015). The combination of
Ab42 and pTau181 (as Ab42/pTau181 ratio) differenti-
ated better AD and FTD patients (Skillback,
Farahmand, et al. 2014). This was supported by two
other studies reporting increased sensitivity
(80%–86%) and specificity (82%) of the ratio Ab42/
pTau181 compared with the three biomarkers alone
(Baldeiras et al. 2015; Struyfs, Van Broeck, et al. 2015).

Although up to half of FTD cases show Tau path-
ology (Bang et al. 2015), unexpectedly CSF Tau is nor-
mal or only slightly altered in FTD patients in contrast
to its marked increase in AD. This leads to a more
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general discussion of whether CSF Tau is a marker of
Tau pathology or more a marker of synaptic impair-
ment (Halbgebauer et al. 2016). Further, some studies
suggest a Tau/pTau ratio as as good discriminatory
biomarkers between Tau and tdp-43 pathology
(Pijnenburg et al. 2015).

Tau isoforms such as pTau181 are expected to be
more specific, but data for FTD is sparse. Different
forms of Tau phosphorylation (pTau231 and pTau199)
have been investigated in FTD but they are increased
in AD too (Hampel et al. 2004), and more efforts is
needed to identify FTD-specific Tau isoforms.

Other products of the APP/Ab metabolism have
been suggested as promising biomarker candidates in
the past, e.g. Ab1–37 and Ab1–38 (Oeckl et al. 2015),
and a recent study by Struyfs et al. (2015) confirmed
an increased accuracy of the FTD versus AD diagnosis
when using Ab1–37 and Ab1–38. sAPP has been
shown to be elevated in AD and MCI compared with
FTD in some studies (Gabelle et al. 2011; Perneczky
et al. 2011; Alexopoulos et al. 2012; Alcolea et al.
2014), whereas previous data for sAPP were inconsist-
ent (Gabelle et al. 2011; Perneczky et al. 2011).
Magdalinou et al. (2015) did not observe differences in
sAPPa and sAPPb between AD and FTD in their recent
study. However, the evidence for these candidate bio-
markers is still too low and needs further validation in
larger patient cohorts. In addition, the confirmation of
differences between FTD and AD with techniques
other than immunoassays, as has been described
(Pannee et al. 2013), would be desirable.

NF-L and phosphorylated neurofilament heavy
chain (pNF-H) are important proteins of the axonal
cytoskeleton, and their increased concentrations in the
CSF are considered as a marker of axonal damage
(Petzold 2005). In FTD, CSF NF-L concentration has
been shown increased compared to AD (de Jong et al.
2007; Landqvist Waldo et al. 2013). In a large cohort of
patients, Skillback et al. (2014) confirmed increased
NF-L concentrations in FTD, but overlap between the
groups was still large, indicating that NF-L alone might
not be optimal to differentiate AD and FTD. On the
other hand, if used in combination with the classic AD
biomarkers, NF-L can introduce information about an
additional type of pathology and increase diagnostic
sensitivity and specificity as shown by de Jong et al.
(2007). Although no study focussed on NF-L differen-
ces between the FTD subtypes bvFTD, svPPA and
nfvPPA in recent years, previous studies (Landqvist
Waldo et al. 2013; Scherling et al. 2014) observed no
differences, which further supports its usefulness in
the discrimination of AD and FTD in general. Most
recently elevated levels of NF-L were also described in

blood (Meeter et al. 2016; Rohrer et al. 2016). Further
studies will show if NF-L can indeed be used as diag-
nostic or prognostic marker in FTD.

New biomarker candidates were discussed for the
differential diagnosis of AD and FTD, such as endosta-
tin (Salza et al. 2015), NG (Janelidze, Hertze, et al.
2016), ubiquitin (Oeckl et al. 2014), b-synuclein (Oeckl,
Metzger, et al. 2016) and YKL-40 (Olsson et al. 2013;
Magdalinou et al. 2015).

Data on CSF biomarkers in C9orf72 and MAPT muta-
tion carriers are still sparse. Elevated phosphorylated
TDP43 concentrations in CSF and plasma was found in
a small cohort of FTD patients with C9orf72 mutation
compared with sporadic FTD and controls (Suarez-
Calvet et al. 2014, Teunissen et al. 2016), although
diagnostic use of TDP43 was questionable (Steinacker
et al. 2008; Feneberg et al. 2014). Interestingly, in the
C9orf72 mutation, carriers’ increased CSF concentra-
tions of poly(GP) expression, as a result of the hexanu-
cleotide repeat extension, were seen (Su et al. 2014).
In patients with mutation of the progranulin gene,
decreased levels of progranulin in blood and CSF were
observed as loss of ‘protein’ (Ghidoni et al. 2008; Van
Damme et al. 2008).

Summarising, to date the AD core biomarkers Tau,
pTau181 and Ab42, as well as NF-L, are the most
promising biomarker candidates for the differential
diagnosis of FTLD, which is supported by several stud-
ies. Tau, pTau181 and Ab42 already show a satisfactory
diagnostic power to differentiate AD and FTD when
used in combination (ratio of Ab42/pTau181 and
Ab42/Tau), which can be further improved by includ-
ing NF-L concentrations.

CSF and blood biomarkers in amyothrophic
lateral sclerosis

ALS, the most common phenotype of motor neuron
disease, is characterised by progressive weakness due
to degeneration of upper and lower motor neurons
culminating in death, typically from respiratory failure,
with a median survival of 30 months from symptom
onset (Kiernan et al. 2011). Although the incidence of
ALS is not dissimilar to multiple sclerosis, its preva-
lence is greatly reduced as a result of its typically
much more rapid progression. ALS overlaps histo-
pathologically, and in some cases clinically, with a sub-
set of FTLD, through cytoplasmic inclusions of the
43 kDa TAR DNA binding protein, TDP-43, present in
97% of all cases (Mackenzie et al. 2007). ALS is clinic-
ally heterogeneous, with significant variability in rate
of disease progression, and a range of monogenetic
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associations so that it is increasingly viewed as a syn-
drome (Turner and Swash 2015).

The development of markers to distinguish ALS
from other causes of progressive motor weakness, to
improve the stratification of patients, and to assess
therapeutic efficacy is a major focus of research
(Turner et al. 2009). A range of cellular pathways,
including glutamatergic excitotoxicity, oxidative stress,
mitochondrial dysfunction and neuroinflammation
have been associated with ALS pathogenesis (Turner
et al. 2013). In common with other neurodegenerative
diseases, biofluids are viewed as an attractive potential
source of objective markers of disease activity. A broad
range of CSF and blood constituents have been exam-
ined over the course of four decades, ranging from
amino acids and neurotransmitters, to proteins more
specifically implicated in the pathogenesis of ALS.

Neurofilaments

Although non-specific to ALS, elevated CSF and blood
levels of NF-L and phosphorylated neurofilament
heavy chain are currently the leading biomarker candi-
date in ALS (Turner and Gray 2016).

The accuracy of CSF NF levels to distinguish
patients with ALS from healthy controls is well estab-
lished (Boylan et al. 2013; Zetterberg, Jacobsson, et al.
2007), with one recent study reporting an electroche-
miluminescent assay for NF-L as having a sensitivity of
97% and a specificity of 95% in this setting (Lu,
Macdonald-Wallis, et al. 2015). The extrapolation of
this for use as an adjunct to diagnosis in clinic is lim-
ited by the use, thus far, of controls who are healthy
or suffer from disorders not encountered in the differ-
ential diagnosis of ALS. Serum and plasma NF-L correl-
ate well with CSF levels, though performance in
distinguishing ALS from healthy controls is somewhat
diminished, with a sensitivity of 89% and a specificity
of 75% for serum (Lu, Macdonald-Wallis, et al. 2015).
No significant difference between plasma levels of
pNF-H were seen in patients with ALS compared to
controls (Lu, Petzold, et al. 2015).

The utility of CSF neurofilaments in the diagnosis of
ALS, measuring CSF NF-L and pNF-H, as well as Tau
and pTau, was explored in 455 patients, including 253
patients with ALS (including the upper motor neuron-
restricted variant primary lateral sclerosis, PLS) and 85
patients with conditions said to mimic ALS (Steinacker
et al. 2016). Both NF-L and pNF-H performed compar-
ably at distinguishing MND patients from mimics with
a sensitivity of 77% and 81% and specificity of 88%
and 80%, respectively, at the optimal cut-off values.
The strength of this study lies in the large number of

subjects and comparison with disease rather than
healthy controls, although the mimic group was not
typical for those most challenging to differentiate from
ALS in the clinic setting.

CSF levels of both pNF-H and NF-L appear to correl-
ate positively with disease progression rate and nega-
tively with survival from symptom onset
(Brettschneider et al. 2006; Ganesalingam et al. 2011;
Lu, Macdonald-Wallis, et al. 2015; Lu, Petzold, et al.
2015). No significant change in the level of either NF
chain in CSF or blood has been observed over time,
with the caveat that longitudinal sampling is inevitably
limited in patients with rapidly progressive disease (in
whom fluctuation in NF levels might be most likely to
occur). These two properties make NFs attractive
markers for use in clinical trials, to enable stratification
of subjects at recruitment and to detect a suppression
of disease activity (or lack thereof) prior to the emer-
gence of clinically detectable outcomes. This has not
yet been explored in the context of a therapeutic trial.

Finally, in a cross-sectional study of asymptomatic
carriers of genetic mutations associated with a high-
risk of developing ALS, NF levels were not significantly
different from those of healthy controls (Weydt et al.
2016). This supports the view, from combined MRI and
CSF studies in symptomatic ALS patients, that signifi-
cantly raised CSF NF-L levels using current assay tech-
nology, reflect large white matter tract degeneration
(Menke et al. 2015).

Aggregated proteins

Intraneuronal aggregates of hyperphosphorylated TDP-
43 are the pathological hallmark of nearly all cases of
ALS. Several studies have detected elevated CSF TDP-
43 levels in patients with ALS compared to both
healthy controls and neurological disease controls, a
finding which runs contrary to that of PD and AD, in
which CSF aSyn and Ab1–42 levels, respectively, are
decreased (Motter et al. 1995; Mollenhauer et al. 2008;
Kasai et al. 2009; Noto et al. 2011). Counterintuitively,
patients with lower CSF TDP-43 also had shorter sur-
vival from symptom onset. Attempts to replicate the
association of CSF TDP-43 levels with disease activity
in ALS have led to the suggestion that the low levels
of CSF TDP-43 detectable with current commercial
assays may be blood derived (Feneberg et al. 2014).
More research is needed to understand the variable
nature and location of the pathological forms of TDP-
43 found in ALS.

The major component of aggregates in 20% of
familial ALS (2% of all cases) is Cu/Zn superoxide
dismutase (SOD-1), linked to mutations in SOD1.
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No difference in CSF levels of SOD-1 between ALS
patients (including those with SOD1 mutations) and
healthy controls has been demonstrated, including
measurement of misfolded forms (Jacobsson et al.
2001; Zetterstrom et al. 2011). Interestingly, NF levels
were also not significantly raised in this group, despite
a clinical ALS phenotype (Zetterberg, Jacobsson, et al.
2007). Measurement of SOD-1 does not, therefore,
appear to be a promising route for the development
of diagnostic assays, although may still prove useful in
the development of a pharmacodynamic measure for
emerging antisense oligonucleotide therapies for SOD1
mutation carriers (Winer et al. 2013).

Cystatin C, a component of ALS-specific intraneuro-
nal inclusions found in lower motor neurons (Bunina
bodies) has been shown to be decreased in CSF of
patients in both proteomic and candidate-driven stud-
ies (Ranganathan et al. 2005; Tsuji-Akimoto et al. 2009;
Ryberg et al. 2010; Wilson et al. 2010; Collins et al.
2015). Although a correlation was noted between cys-
tatin C levels and rate of disease progression, cystatin
C has proved to have limited accuracy at distinguish-
ing ALS patients from neurological controls, with sensi-
tivity ranging from 23% to 53% and specificity from
52% to 88% (Wilson et al. 2010).

Cytokines, growth factors and oxidative stress

There is evidence of activation of the immune system
in ALS, but primary versus secondary roles in patho-
genesis still require clarification (Evans et al. 2013).
Perturbations in immune signalling molecules remain
a focus of study as potential indicators of disease
activity or severity. CSF levels of transforming growth
factor b1 (TGF-b1) have been examined in ALS, with
one showing elevated levels in CSF and serum only in
patients judged to have terminal clinical status when
compared to healthy controls, and another demon-
strating elevated levels in plasma as well as a weak
positive correlation with disease duration (r¼ 0.66)
(Houi et al. 2002; Ilzecka et al. 2002). Levels of the pro-
inflammatory cytokine IFN-c in serum and CSF meas-
ured by ELISA were elevated in ALS patients compared
with healthy controls as well as a positive correlation
with disease progression rate as measured by rate of
change in the revised ALS Functional Rating Score
(serum r¼ 0.44, CSF r¼ 0.56) (Liu et al. 2015).

Several studies have employed multiplex panels of
cytokines and growth factors in CSF and serum
(Tanaka et al. 2006; Mitchell et al. 2009; Mitchell et al.
2010; Tateishi et al. 2010; Furukawa et al. 2015). Of 16
cytokines common to all four CSF studies, only gran-
ulocyte colony stimulating factor (G-CSF) was

consistently elevated, while interleukin 17 (IL-17, a
pro-inflammatory cytokine) was elevated in three out
of four studies. G-CSF has not been separately vali-
dated in a large cohort and neither its diagnostic
accuracy nor long-term variability has been
established.

Elevation of IL-17 has been reproduced in one
study comparing CSF of 22 ALS patients with 19
patients suffering other neurological conditions (as
well as elevation of IL-23, responsible for induction of
IL-17) (Rentzos et al. 2010). Again, this has not been
subjected to interrogation of diagnostic accuracy or
long-term stability in a large cohort.

Uric acid, an anti-oxidant found abundantly in
serum, is found at lower levels in the serum of ALS
patients compared to healthy controls and those with
a limited number of neurological diseases. Lower lev-
els also correlated with faster disease progression
(Keizman et al. 2009; Zoccolella et al. 2011; Oh et al.
2015). However, elevate urate has been reported in
other neurodegenerative disorders (Pakpoor et al.
2015), and an emerging protective association of pre-
morbid gout suggests a more complex generic inter-
action of this pathway in the pathogenesis of
neurodegenerative disorders (Fang et al. 2013).

Biomarkers in Parkinson Disease and DLB

DLB is a neurodegenerative dementia with additional
symptoms including visual hallucinations, fluctuations
in alertness, slowness of movement, trouble walking
and rigidity. Neuropathologically, DLB and PDD share
many features, suggesting a pathological continuum
of the two disorders.

Unfortunately, so far the field of PD lacks specific
biomarkers to identify the risk of developing the dis-
ease (marker of trait), to signal the manifestation of
the disease (disease state), to signal the speed of its
progression and response to therapy (marker of rate)
or to predict its course (marker of fate).

aSyn has been identified as a main component of
Lewy bodies, which are a neuropathological character-
istic of PD and DLB, as well as of glial inclusions in
multiple system atrophy (MSA) (Spillantini et al. 1997).

PD is an increasingly prevalent neurodegenerative
disorder. aSyn aggregates lead to neuronal loss. All
nerve cells with less myelin (and higher energy turn-
over) are more prone to Lewy body and Lewy neurite
formation and consecutive damage, while myelin and
short axons are resistant (Braak et al. 2003). The spread
of this aSyn pathology follows a stereotypic pattern of
involvement of the central nervous system (Braak et al.
2003).
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The clinical diagnosis of PD is made exclusively by
motor symptoms and their improvement by dopamin-
ergic substitution when more than 50% of dopamin-
ergic neurons are already degenerated. The accuracy
of the clinical diagnosis according to UK Brain Bank
Criteria has been reported to be around 85% in clinical
diagnoses by movement disorder specialists and up to
50% based on autopsy verification (Adler et al. 2014).
An overlap with other neurodegenerative disorders
has been reported.

In congruency with the AD biomarkers, the quantifi-
cation of aSyn in biological fluids as a biomarker of
aSyn-related neurodegenerative disorders has received
much attention in the last years as systematically
reviewed in (Simonsen et al. 2016). Total aSyn can be
reliably measured with different assays; in CSF it has
been shown to be decreased in PD and in the other
aSyn aggregation disorders, MSA and DLB, in single
centre (Tokuda et al. 2006; Mollenhauer et al. 2008;
Mollenhauer et al. 2011; Hall et al. 2012), and in PD
also in multicentre studies (Kang et al. 2013; Kang
et al. 2016), but with significant overlap of single val-
ues between patient groups. Increased aSyn has also
been shown in plasma EVs performing at least as well
as CSF aSyn in diagnostic classification (Shi et al.
2014). Therefore, and due to the complexity and the
clinical heterogeneity of the disease, it is highly likely
that a panel of biomarkers is as necessary as accurate
biomarkers for PD.

Alternative splicing and post-translational modifica-
tions of proteins result in an increased aggregation
potential and oligomer formation and accumulation
(Beyer and Ariza 2013). While the underlying aetiolo-
gies for aSyn aggregation are not well understood,
environmental exposures and genetic mutations have
been shown to trigger the misfolding and aggregation
of aSyn (Breydo et al. 2012). The result of aSyn and its
aggregates is neurotoxicity with malfunction of cellular
processes and alteration of its normal physiological
function (Bennett 2005). aSyn in Lewy bodies has
been shown to be phosphorylated (at S87, S129 or
Y125), ubiquitinated (K12, K21, K23), truncated (at its C
terminus) and oxidised (by tyrosine nitration). Besides
the monomeric aSyn species mentioned above, oligo-
meric and post-translationally modified aSyn can be
detected in the CSF, but it is largely unknown to what
extent monomeric and oligomeric aSyn levels and
post-translational modifications in the CSF reflect the
protein’s condition in the CNS or correlate with dis-
ease progression or severity (Schmid et al. 2013). Post-
translational modifications of aSyn are hypothesised to
show better accuracy and other marker proteins have
been proposed for the diagnosis of PD, but thorough

validated studies with independent cohorts and longi-
tudinal samples are lacking (Schmid et al. 2013). Single
studies have shown increased levels of oligomeric
aSyn levels in CSF of PD (Majbour et al. 2016) and DLB
subjects (Hansson et al. 2014) that may even change
during progression of the disease. Phosphorylation of
serine 129 of aSyn is a pathological event and levels
can be quantified in CSF in single assays showing
increased levels in PD (Wang et al. 2012; Majbour
et al. 2016).

The proximity to the central nervous system makes
CSF an attractive matrix for biomarker studies and this
biofluid has been investigated primarily, but recent
studies have also shown the presence of aSyn in per-
ipheral fluids, likely due to involvement of peripheral
organs in PD (Del Tredici et al. 2010). Studies have
shown that aSyn is also present in other extracellular
fluids, including blood and saliva. aSyn levels in blood
are highly abundant, especially in erythrocytes (El-
Agnaf et al. 2003; Barbour et al. 2008; Mollenhauer
et al. 2008; Scherzer et al. 2008; Devic et al. 2011).
Conflicting results have been reported for plasma
aSyn levels, with two studies reporting elevated aSyn
in PD (El-Agnaf et al. 2006; Lee et al. 2006), one study
with decreased levels (Li et al. 2007), and one with no
difference (Park et al. 2011). The variability in these
results may be related to the variation between meth-
odologies used in these studies. The lack of consist-
ency and the large overlap of single values in the all
studies may be attributed to assay and antibody differ-
ences, different processing of samples and the con-
tamination of the CSF with erythrocytes, which few of
the studies accounted for. But also clinical heterogen-
eity might cause this overlap. Larger biomarker studies
like the Parkinson Progression Marker Initiative of the
Michael J. Fox Foundation (www.ppmi-info.org) will
enable further investigations of subtypes and con-
founding factors.

Outside the central nervous system, aSyn pathology
appears to precede the pathology in the substantia
nigra, which could offer the potential for the develop-
ment of a surrogate biomarker for early diagnosis
through the quantification of aSyn in peripheral tissue
and/or extracellular body fluid. According to Braak,
aSyn pathology spreads in a stereotypic pattern, affect-
ing the peripheral dorsal motor nerve of the vagus
nerve located in the submucosa of the gastrointestinal
(GI) tract at a very early stage and spreading centrally
to the CNS to involve the substantia nigra in the mid-
stage and typical symptomatic motor part of PD. In
fact, aSyn was found in PD patients in neurons of the
autonomic nerve systems in biopsies from the colon tis-
sue, salivary glands and skin (Lebouvier et al. 2008;

THE WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY 295

http://www.ppmi-info.org


Lebouvier et al. 2010; Cersosimo et al. 2011; Shannon
et al. 2012; Beach et al. 2013; Donadio et al. 2014).
This is currently subject of investigation for example in
the Systemic Synuclein Sampling Study (S4; https://
www.michaeljfox.org/page.html?s4).

CJD biomarkers

Routine parameters

The basic routine tests in the CSF are generally nor-
mal in patients with CJD. In advanced stages, a
moderate increase in total protein levels in the CSF
can be observed. Oligoclonal bands are rare and no
inflammatory reaction is observed (Jacobi et al.
2005).

14-3-3 Test

A large number of studies demonstrated that a posi-
tive 14-3-3 protein detection is highly sensitive for
sporadic CJD (sCJD) diagnosis and correlates with clin-
ical diagnosis in 85%–94% of cases (Sanchez-Juan
et al. 2006; Stoeck et al. 2012). 14-3-3 protein levels
increase with disease progression and a decrease in
end-stage disease. This biomarker became important
in the differential diagnostic procedure, and AD and
potentially reversible dementia (in up to 30%) were
identified as most important differential diagnoses
(Van Everbroeck et al. 2004; Heinemann et al. 2007;
Kelley et al. 2009; Chitravas et al. 2011). The sensitivity,
specificity and predictive values of 14-3-3 have been
discussed extensively. A multicenter European study
on more than 10,000 patients demonstrated high spe-
cificity of the test of around 95% in the context of
neurodegenerative disorders. Most false positives
occurred in inflammatory diseases and in stroke
patients as well as after epileptic seizures, i.e. medical
conditions, which can be easily differentiated from CJD
syndrome (Sanchez-Juan et al. 2006; Stoeck et al.
2012).

With respect to methodological problems, the ana-
lysis of 14-3-3 protein is done using western blotting
and there is no generally accepted standard for which
results should be compared or which isoform should
be detected. Therefore, the evaluation of 14-3-3 test
results can be subject to interpretative problems and
requires experience from laboratory personnel. To
overcome this difficulty, several quantitative methods
such as ELISA and protein capture assays were devel-
oped. External QC schemes are extremely important to
ensure the quality of the analyses (Schmitz, Ebert,
et al. 2016).

Tau

Another important marker involves the analysis of
total Tau protein and its phosphorylated isoforms. Tau
levels in CSF are markedly elevated in patients with
CJD and the phosphorylated forms remain low. While
several pTau assays for detection of Tau phosphory-
lated at different sites are commercially available, no
comparative analysis has been performed to define
the best detection methodology, optimal conditions
and optimal test variables. A retrospective cohort
study on more than 9000 CSF samples performed in
routine clinical testing, cross-referencing to the
Swedish Mortality Registry, found AUC values of >0.9
for the CSF Tau/pTau ratio to differentiate CJD from
non-CJD, AD and other dementias (Skillback, Rosen,
et al. 2014).

Molecular disease phenotype, genes and CSF
alterations in CJD: PRNP codon 129 genotype

CSF biomarker levels have been demonstrated to be
influenced also by several genetic determinants. The
major well-known genetic factor influencing prion bio-
markers accuracy is the codon usage at position 129
of the prion protein gene (PRNP). In sCJD, a combin-
ation of methionine–valine polymorphism at position
129 (MM, MV, VV), along with prion typing (type 1 or
2 depending on the electrophoretic mobility of the
pathological PrPSc protein) defines the molecular type
of the disease. The different molecular subtypes pre-
sent well-defined histopathological features and differ
by age at onset and disease course (Parchi et al. 2009;
Parchi et al. 2012).

Tau levels differed considerably between PRNP
codon 129 genotypes in sCJD and are considerably
higher in PrP type 1MM and MV patients but lower in
those presenting VV genotype (Sanchez-Juan et al.
2006; Humpel 2011; Karch et al. 2015; Gmitterova
et al. 2016).

Influence of sCJD molecular typing is also reported
for other biomarkers such as 14-3-3, neuron-specific
enolase, and S100 proteins. For 14-3-3, differences
among molecular subtypes appear to be related to the
PrP type rather than to the codon 129 genotype
(Castellani et al. 2004; Gmitterova et al. 2016; Leitao
et al. 2016). Higher 14-3-3 protein levels are observed
in the classical sCJD subtypes MM1 and MV1 com-
pared to patients presenting atypical subtypes (MV2).
Increased sensitivity was detected in PrP type 1 than
in PrP type 2, whereas the lower levels were observed
in the subtypes associated to longer disease duration
(Castellani et al. 2004; Gmitterova et al. 2009).
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Role of in vitro protein misfolding amplification
assays in prion disease diagnostics

The self-propagating replication of the abnormally
folded host-derived prion protein (PrPC) is characteris-
tic for human prion diseases. The pathogenic conver-
sion mechanism of PrP is the basis for a number of
different in vitro protein misfolded amplification assays
which enables for the first time to study the conver-
sion processes of PrPSc in vitro. Several in vitro conver-
sion-systems are available now (Saborio et al. 2001;
Colby et al. 2007; Atarashi et al. 2008; Atarashi et al.
2011).

The test systems have been adapted to the human
CSF. The real-time quaking-induced conversion (RT-
QuIC) allows amplifying the minimal amount of mis-
folded PrP to detectable levels in a reasonable time
frame of up to 80 h (Schmitz, Cramm, et al. 2016).

In the RT-QuIC assay, samples are subjected to
shaking, which breaks PrP-aggregates into new react-
ive seeds for conversion and incubation. With each
cycle the amyloid reaction product can increase expo-
nentially. Aggregated PrP is monitored by the use of
thioflavin-T. The RT-QuIC has been applied to human
brain tissue, CSF or the olfactory neuroepithelium.
Meanwhile, the CSF RT-QuIC has been standardised
and validated thoroughly and was proven to be highly
reproducible and stable (Cramm et al. 2016). The diag-
nostic accuracy is very high: a specificity of almost
100% and a sensitivity of 85% (Atarashi et al. 2011;
McGuire et al. 2012; Sano et al. 2013; Cramm et al.
2016).

The concept of protein misfolding was previously
thought to be related solely to prion diseases. Since
similar characteristics are discussed for other misfolded
proteins, the RT-QuIC methodology has considerable
diagnostic potential that may become relevant also for
other misfolded proteins/diseases and will result in an
increase of the application spectrum of this test
(Salvadores et al. 2014; Stancu et al. 2015). Indeed, a
RT-QuIC test detection for aSyn has been reported
recently (Fairfoul et al. 2016). Furthermore, it was
recently shown that the total level of PrP in CSF could
be measured by a less time consuming ELISA and it
was proven to be highly accurate in an autopsy-con-
firmed cohort for the detection of definite CJD com-
pared to definite AD and controls. It was shown that
the concentration in definite CJD was decreased com-
pared to the levels in definite AD and controls. Also,
when considering clinical differential diagnosis
between CJD and atypical AD phenotypes, the total
levels of PrP in CSF reached a diagnostic accuracy of

82.1% sensitivity and 91.3% specificity (Dorey,
Tholance, et al. 2015).

CSF and blood biomarkers of cerebral amyloid
angiopathy

Vascular cognitive impairment and dementia and
cerebral amyloid angiopathy

Vascular cognitive impairment and dementia (VCID) is
a form of dementia that is triggered by damage to
cerebral blood vessels or cerebrovascular disease
(Sachdev et al. 2014). Cerebral amyloid angiopathy
(CAA) is a prominent form of small-vessel disease that
can cause VCID and haemorrhage in the elderly
(Arvanitakis et al. 2011; Viswanathan and Greenberg
2011). CAA results from the accumulation of various
amyloid proteins within and along leptomeningeal
and intracortical capillaries, small and medium-sized
arteries and arterioles of the brain (Vinters 1987;
Rensink et al. 2003; Attems et al. 2011). The most
prevalent form of CAA involves the accumulation of
the Ab peptides, which is present at varying levels
in>80% of older healthy individuals (Rensink et al.
2003; Arvanitakis et al. 2011; Attems et al. 2011; Boyle
et al. 2015). The Ab peptide composition of CAA is
clearly different from that in senile plaques, with Ab40
being the predominant isoform, whereas in senile pla-
ques Ab42 prevails (Verbeek et al. 1997). CAA is the
most common vascular co-morbidity found in the
brains of AD patients (Rensink et al. 2003; Attems and
Jellinger 2004), and studies have reported that cerebral
microvascular Ab deposition is associated with demen-
tia in individuals afflicted with AD (Attems and
Jellinger 2004; Attems et al. 2011; Boyle et al. 2015).

Cerebrovascular accumulation of Ab is presumably
caused by a defective clearance of Ab. Cerebral clear-
ance pathways for Ab are thought to involve several
mechanisms that likely act in concert including: (a)
drainage of Ab along perivascular pathways via the
glymphatic pathway (Iliff et al. 2012); (b) transport of
Ab across the blood–brain barrier into the systemic cir-
culation (Deane et al. 2009); and (c) enzymatic or
phagocytic clearance by brain cells (e.g. microglia/
astrocytes) (Miners et al. 2011).

Identification of CAA in individuals

Currently, clinical evidence for the presence of CAA is
based on the presence of haemorrhagic manifestations
of the disease (Viswanathan and Greenberg 2011):
intracerebral haemorrhages (ICH) in a lobar location,
small microbleeds with a lobar distribution, or
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superficial siderosis. This latter lesion comprises a dis-
tinct pattern of blood-breakdown product deposition
limited to cortical sulci over the convexities of the
cerebral hemispheres (Charidimou et al. 2015). These
manifestations, are the basis of the widely used
‘Boston criteria’ for CAA, which are currently used for
the clinical diagnosis of CAA in patients (Smith and
Greenberg 2003; Linn et al. 2010); on the other hand
the Boston criteria do not provide definitive proof of
the disease, but at best yields a diagnosis of ‘probable
CAA’. Final proof of the presence of CAA is still based
on its histological detection following a (rarely per-
formed) brain biopsy or confirmation at autopsy.
Another limitation of the Boston criteria is that they
are based on the presence of cerebral haemorrhages
and do not allow for detecting early stages of the dis-
ease since haemorrhages likely occur during relatively
late stages of the disease. In fact, neuropathological
findings demonstrate that abundant CAA is prevalent
without the presence of microbleeds or superficial
siderosis, in particular in patients with AD (Greenberg
and Vonsattel 1997; Yamada 2000). Biomarkers for
CAA for diagnostic purposes or monitoring treatment
effects should ideally be sensitive, specific, and reflect
severity of amyloid burden. Intracerebral haemor-
rhages, microbleeds and superficial siderosis are not
optimal biomarkers for CAA, since they are not amyl-
oid specific and cannot be considered a continuous
variable. Thus, there is a need for biomarkers for early
stages of CAA prior to the presence of haemorrhagic
lesions detected by neuroimaging.

CSF and blood biomarkers of CAA

Currently, biomarkers to detect CAA are scarce and
there are only a few studies aimed at identifying bio-
markers for CAA. It has been recently demonstrated
that the pattern of Ab42/40 deposition as found in
CAA is reflected in the composition of CSF of CAA
patients, i.e. by decreased levels of both Ab40 and
Ab42 peptides in the CSF. This is in contrast to AD,
where the relative paucity of accumulation of paren-
chymal Ab40 accumulation is reflected in normal CSF
Ab40 levels (Verbeek et al. 2009). These results have
subsequently been confirmed in other cohorts of
patients with AD by independent groups (Renard et al.
2012; Tamura et al. 2014). Recently, these studies were
complemented by a study on patients with superficial
siderosis (Renard et al. 2016), in which a similarly
decreased Ab40 concentration in the CSF of CAA
patients was reported.

Tau proteins (both total and phosphorylated forms)
are only marginally elevated in the CSF from CAA

patients compared to controls, but are substantially
lower than those found in AD patients (Verbeek et al.
2009; Renard et al. 2012). Probably these marginally
elevated Tau protein levels are attributable to low-
level of concomitant AD pathology (neurofibrillary tan-
gles) in pure CAA patients.

Microbleeds are often considered as a late-stage
manifestation of CAA, visible on T2� or SWI MRI
sequences. This view, however, can be challenged as
microbleeds may also have vasculopathic causes, such
as fibrinoid necrosis or a cavernoma (van Veluw et al.
2016). Previous studies demonstrated an independent
correlation between decreased CSF Ab42 and the
occurrence of cortical microbleeds in a heterogenous
cohort of dementia patients (Shams et al. 2016).
Patients with AD and with multiple microbleeds
(defined as more than eight) also had lower CSF Ab42
levels, and increased Tau and pTau levels compared to
AD patients without microbleeds (Goos et al. 2009).
The associations between the occurrence of micro-
bleeds in AD patients and CSF Ab42 and Tau, without
differences in the CSF Ab40 levels, were confirmed in
two other publications (Goos et al. 2012; Kester et al.
2014).

A rare complication of CAA comprises CAA-related
inflammation (CAA-ri), also known as Ab-related angii-
tis. Patients with Ab-related angiitis are clinically char-
acterised by acute/subacute neurological impairment,
headache, behavioural changes, seizures and focal
neurological deficits. During the acute phase of CAA-ri,
increased levels of anti-Ab autoantibodies can be
found in the CSF, as well as increased levels of Tau
and pTau proteins (Piazza et al. 2013).

Several monogenic, familial, forms of CAA exist that
result from mutations that reside within the Ab pep-
tide sequence of APP gene including the Dutch-type
Ab E22Q mutation and the Iowa-type Ab D23N muta-
tion (Levy et al. 1990; Van Broeckhoven et al. 1990;
Grabowski et al. 2001; Van Nostrand et al. 2001). So
far, no studies have been published on the relation
between CSF Ab levels and CAA in these patients,
with the exception of a single case with E22Q
(Verbeek et al. 2009). However, decreased plasma
Ab42, but not Ab40, levels have been reported in
Dutch E22Q mutation carriers (Bornebroek et al. 2003).
In patients with sporadic CAA, plasma Ab40, but not
Ab42, concentrations were associated with white mat-
ter hyperintensities (Gurol et al. 2006), indicating that
circulating Ab peptides may be an indicator of cerebral
microvascular damage. Moreover, in patients with mul-
tiple CAA-related intracerebral haemorrhages, both
plasma Ab42 and Ab40 concentrations were higher
than in controls (Hernandez-Guillamon et al. 2012).
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Future prospects

Relatively few studies have addressed body fluid bio-
markers for CAA. Currently, the identification of CAA in
patients relies on the presence of a large lobar hae-
morrhages, cerebral microbleeds and superficial sidero-
sis, which are late manifestations of the accumulation
of Ab. Moreover, these haemorrhagic manifestations
are not specific for CAA, but may occur in other neuro-
logical diseases. Demonstration of reduced concentra-
tions of both Ab40 and Ab42 peptides in the CSF, in
the absence of increased phosphorylated Tau proteins,
may indicate CAA. Larger studies will be needed to
demonstrate the clinical application of these CSF bio-
markers for CAA. Since it is currently not possible to
detect CAA development at stages prior to the occur-
rence of haemorrhage manifestations, animal models
in which the gradual development of CAA can be
studied, will be crucial to the development of fluid
biomarkers that will be able to track early stages of
cerebrovascular amyloid deposition. Specific animal
models, either transgenic or non-transgenic, of CAA
would facilitate biomarker development. Such animal
models will also be instrumental to study the imaging
abnormalities that occur as a consequence of CAA and
to study disease progression and to develop potential
interventions specifically targeted to CAA.

Cost-effectiveness of the CSF biomarkers in
AD and other dementia disorders

Finally, extremely important are the health-economic
aspects of the biomarkers research and the application
of the biomarkers as a routine diagnostic tool in
dementia disorders.

The worldwide care costs of dementia were esti-
mated US $818 billion in 2015 (Prince et al. 2015).
National care budgets are limited, which forces gov-
ernments to select among all available healthcare
technologies for reimbursement in clinical practice.
Choices are ideally based on cost-effectiveness evi-
dence, such that the available budget is spent on the
selection of interventions that result in the maximum
societal health gain, in other words, to get the best
value for money (Knapp 2015).

Whether CSF biomarkers, extensively discussed in
this paper, are cost-effective depends on evidence on
incremental costs and incremental effects (in terms of
health or health-related quality of life) between a situ-
ation in which CSF biomarkers are used to set the
diagnosis compared to a situation in which CSF bio-
markers are not used (and only is being relied on tests
from the usual care diagnostic workup) in people with

a cognitive disorder. Such evidence is likely not avail-
able from randomised trials due to limitations of blind-
ing and follow-up duration. As an alternative, a so-
called decision analytic model is regularly used to
simulate the likely effects of diagnostic tests in terms
of costs and quality of life combining various pieces of
evidence (Schaafsma et al. 2009), such as diagnostic
accuracy, test costs and the effect of treatment on
health-related quality of life in the subgroup tested
positive.

Current evidence

A systematic review was performed to identify studies
evaluating the cost-effectiveness of diagnostic inter-
ventions for AD (Handels et al. 2014), and was
updated to October 2016 (using only one rater RH of
the evidence). This revealed one study on the costs
per correct diagnosis when using CSF biomarkers to
decide upon off-label Donepezil treatment in MCI
(Valcarcel-Nazco et al. 2014) using a decision analytic
model. The study reported lower costs per correctly
diagnosed patient when using CSF (e1,336) versus
using standard clinical diagnostic criteria (e3,167). The
results are subject to two major limitations. First, the
simulation study relied on the assumption that off-
label treatment is both effective and reduces costs in
MCI, which contradicts available evidence (Raschetti
et al. 2007; Russ and Morling 2012; Cooper et al.
2013). Second, the study did not report on the impact
of the improved diagnostic accuracy on a person’s
health. Therefore, this evidence is considered insuffi-
cient for reimbursement decision-making.

Challenges and recommendations

Schemes similar to the typical four-phased evaluation
of new pharmaceuticals also exist for the evaluation of
new diagnostic tests (Lijmer et al. 2009). Evidence on
the first phases of technical efficacy, diagnostic accur-
acy, diagnostic thinking efficacy and patient outcomes
efficacy often precede studies on the last phase of
cost-effectiveness. A great deal of studies have
reported evidence on the second phase (van Rossum
et al. 2010; Ritchie et al. 2014; Olsson et al. 2016) and
few studies on the third phase (Duits et al. 2015; Meijs
et al. 2015; Handels et al. 2016). However, there is nei-
ther evidence on patient outcomes efficacy for CSF
nor other advanced diagnostics for AD (Dubois et al.
2015). Various studies have evaluated psychological
reactions related to receiving a diagnosis or prognosis
of MCI or dementia (Frank et al. 2006; Lingler et al.
2006; Joosten-Weyn Banningh et al. 2008;
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Robinson et al. 2011; Rahman et al. 2012; Beard and
Neary 2013, Paulsen et al. 2013; Dubois et al. 2015;
Johnson et al. 2015) with mixed outcomes, among
which relief, worrying, planning activities, stress and
stigmatisation. Future studies should attempt to empir-
ically estimate health effects caused by adding a LP to
the standard diagnostic workup and using the CSF bio-
marker test results for medical management or advice.
Such effects could be any emotional, social, behavioural
or cognitive effects as well as any effects from pharma-
cological or non-pharmacological interventions that
have been decided based upon the test result (Bossuyt
and McCaffery 2009). Likewise, costs should be empiric-
ally estimated by measuring visits to care professionals,
hours of informal care and productivity losses. This is
ideally done in a randomised setting (Ferrante di
Ruffano et al. 2012) to extract the effect attributed to
the CSF biomarker results. However, such design has its
limitations in terms of a relatively short time frame and
the number of intervention arms to reflect various pos-
sible test pathways. A decision analytic model could be
used to simulate long-term effects and a wide range of
test pathways in terms of combinations and test-stop-
ping rules (Schaafsma et al. 2009). Such a model could
also include the impact of a false-positive and false
negative diagnosis or prognosis on a person’s health
and care consumption.

Another challenge for routine CSF testing relates to
the medical infrastructure. An LP requires personnel
time, training and facilities. Although CSF samples can
be sent to central laboratories for analysis, the capacity
needs to be scaled up to meet the incidence rates of
MCI and mild dementia if the LP becomes standard
procedure in memory clinics (Wimo et al. 2014).

If disease-modifying treatment (DMT) becomes
available in the future, the health-economics of CSF
analysis likely change. Although the framework for
evaluation as described above can still be applied it is
the dynamic with the health-economic impact of treat-
ment that completely changes. DMT costs are likely
multiple times higher than the costs of the lumbar
puncture, of which reported prices range between
e130 and e622 per LP (Jedenius et al. 2010; van
Rossum et al. 2010; Wimo et al. 2013). CSF might serve
as a tool to predict treatment response rather than to
identify AD pathology or to determine the prognosis
of disease progression. Although these three concepts
are highly related, the optimal cut-off to indicate the
result as abnormal in order to identify AD aetiology
(e.g. when correlation to post-mortem is optimum)
might be different from the optimal cut-off to decide
upon providing DMT (to ensure optimal treatment
response resulting into maximum health gain at

minimal use of care resources). For example, when
DMT is relatively expensive and health improvement is
minor, preventing overtreatment is important from a
health-economic viewpoint. CSF analysis can be used
to verify persons expected to have AD in order to pre-
vent false-positive diagnoses and ensure that the costs
of overtreatment are kept to a minimum. Vice versa, if
DMT is relatively cheap and health effects are substan-
tial, preventing undertreatment is important, for
example by verifying persons expected not to have
AD using CSF (Handels et al. 2015). The latter is
important to ensure the opportunity to improve a per-
son’s health by DMT is not lost by a false-negative
diagnosis. Small improvements in treatment decision-
making could largely improve the cost-effectiveness of
DMT, which are relatively easily offset by the costs of
obtaining CSF biomarkers. This potential of CSF bio-
markers also applies to other AD imaging and bio-
marker tests as has been shown by various simulation
studies (Biasutti et al. 2012; Guo et al. 2012;
Skoldunger et al. 2013).
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