
HAL Id: hal-04403596
https://hal.science/hal-04403596

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Proof-of-Location With Security
Against Geo-Tampering

Mamunur Akand, Reihaneh Safavi-Naini, Marc Kneppers, Matthieu Giraud,
Pascal Lafourcade

To cite this version:
Mamunur Akand, Reihaneh Safavi-Naini, Marc Kneppers, Matthieu Giraud, Pascal Lafourcade.
Privacy-Preserving Proof-of-Location With Security Against Geo-Tampering. IEEE Transactions on
Dependable and Secure Computing, 2023, 20 (1), pp.131-146. �10.1109/TDSC.2021.3128073�. �hal-
04403596�

https://hal.science/hal-04403596
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Privacy-preserving Proof-of-Location With
Security Against Geo-tampering

Mamunur Akand, Reihaneh Safavi-Naini, Marc Kneppers, Matthieu Giraud, and Pascal Lafourcade

Abstract—A Proof-of-Location (POL) system is used to issue a proof-of-location token (pol) to a user who has been present at a
location `oc, such that it can be later presented to a verifier to assure the presence of the user at `oc. Basic POL security requirements
are unforgeability of pol, and its non-transferability (a pol issued to user u1 cannot be used by u2). An additional important property of
POL systems is user privacy against the issuers and verifiers. We make two contributions. First, we formalize the POL security and
privacy properties, and construct the first system providing provable security and privacy against the issuer and the verifier, both.
Second, we introduce a geo-tampering attack that completely breaks POL system security, by simply changing the location of a pol

issuing node. The attack applies to portable infrastructure nodes that are not continually monitored. We propose an algorithm that is
used by a pol issuer to provide a location integrity “proof”, that will be embedded in a pol to protect against this attack. The proof relies
on a novel application of Euclidean Distance Matrices. We implemented our POL on an off-the-shelf Android smartphone to show the
practicality of the proposed algorithms.

Index Terms—Proof-of-Location, Distance bounding, Geo-tampering.

F

1 INTRODUCTION

AProof-of-Location (POL) system issues proof-of-location
tokens that can be carried by the user and later pre-

sented to, and verified by, the verifiers. POL systems [1],
[2], [3] rely on a trusted location infrastructure that reliably
determines the location of the claimant, using a set of
location infrastructure nodes that cover the area of interest,
and issue a proof-of-location token, pol, to a user who has
“proved” their presence at a claimed location `oc. The issued
token can be later used to prove to a (trusted) verifier that
the user has been at `oc. A pol can be seen as a credential
that can be used together with other credentials of the user
to provide refined access control [4], [5] and supply chain
management [6].

A pol can be with respect to a specific geo-coordinate
that is obtained from a Global Positioning System (GPS),
or act as a certification for the proximity of the prover to the
issuer, which has a known (to the infrastructure) location.
POL systems usually use the latter approach because of the
unavailability and unreliability of GPS signals indoors, as
well as a range of known attacks on the GPS systems [7],
[8]1.

The only known method of verifying closeness to the
issuer with provable cryptographic security, is by using
Distance Bounding (DB) protocols [9], [10], [11] that use well
designed challenge-and-responses to allow the (untrusted)
prover to prove their proximity (being within a distance
bound B) to a (trusted) verifier. Systems that use Radio

• M. Akand and R. Safavi-Naini are with University of Calgary, Canada.
E-mail: {mdmamunurrashid.akan, rei} @ucalgary.ca

• M. Kneppers is with Telus Communications, Canada.
E-mail: marc.kneppers @telus.com

• M. Giraud and P. Lafourcade are with University Clermont Auvergne,
France.
E-mail: {matthieu.giraud, pascal.lafourcade} @uca.fr

1. One can always consider a combination of the two to improve
accuracy if reliable GPS signal is available

Signal Strength [12] or Time of Flight [13], [14] for estimating
proximity are not reliable and allow the distance to be
shortened [15].
State of DB-based POL systems. We focus on POL systems
that use DB protocols [16], [17], [18]. Such systems must
provably provide a number of security properties includ-
ing unforgeability, non-transferability and privacy. Existing
POL systems however have two major limitations. Firstly,
there is no known protocol that provides privacy in the
sense that the pol issuer and pol verifier cannot learn the
identity of the user, or be able to link multiple pols and trace
the user. To generate a pol, the issuer (i) uses a DB protocol
to verify a user u’s position with respect to issuer’s location
that is assumed known and trusted, and (ii) digitally signs
this location information. To provide non-transferability, the
prover’s identity must be included in the pol. This however
results in full traceability of a user, both while interacting
with the pol issuer and also while presenting the pol to a
verifier. The only POL system that considers user privacy
against the issuer and the verifier is due to Gambs et al.
[17]. This POL uses a public key DB protocol [19] that does
not provide adequate security level for POL applications.
More specifically, secure DB protocols must protect against
three main attacks, distance fraud, Mafia fraud and Terrorist
fraud [10]. Although in some applications some of these
properties can be tolerated, for secure POL systems, all these
properties are required. The protocol in [19] was shown to
be insecure against distance fraud and terrorist fraud attack
[20], which renders the POL system in [17], insecure. It is
worth noting that the construction of this POL system is
not modular, and critically depends on the structure of its
underlying DB protocol. Thus, there is no known construction
of private POL system. A second important limitation of the
works in this area is that security of POL systems is only
argued informally. POL systems can be seen as anonymous
credential systems that require formal cryptographic model

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

and analysis similar to other credential systems such as [21],
[22], [23]. A formal model and analysis will form the founda-
tion of essential properties such as ensuring that pol issuing
infrastructure has not been tampered with, that we consider
in this paper, as well as new properties such as combining
multiple credentials to achieve high level properties.

Our contribution.
Our goal in this paper is to lay a solid foundation for

design and analysis of POL systems, and design a secure
POL system with provable security using a trusted location
infrastructure. We then relax the trust assumption on the
the location of infrastructure nodes and consider the case that
some of the infrastructure nodes are displaced by the attacker.
Such a physical displacement is a real threat for small and
unprotected infrastructure nodes, and as will be shown in
Section 4 can completely compromise security of the system.
We show how such an attack can be efficiently detected, and
extend POL systems to provide security in this extended
model. In the following we outline our contributions that
are to, (i) formalize security and privacy of POL systems,
and construct a POL system that provably achieves these
properties, assuming an infrastructure that has assured lo-
cation for the infrastructure nodes; (ii) define geo-tampering
attack and show its devastating effect on the security of POL
systems and propose an efficient and effective approach to
providing “proof” of infrastructure integrity, and show that
the pol can be extended to include this extra infrastructure
integrity information, while maintaining its provable secu-
rity guarantee; and (iii) implement our cryptographic al-
gorithm and infrastructure integrity generation algorithms,
to show feasibility of our solution in practice. More details
below.

(i) Security model and construction. We use a game-based
approach to define two security properties, unforgeability
and non-transferability, and an indistinguishability based ap-
proach to define user full anonymity in its interaction with the
issuer and the verifier. We assume there is an identity issuer
that stores sufficient amount of secret information that can
be used to “open” transcripts of the user’s interactions with
the issuer and the verifier, if needed, and hence providing
the required accountability.

The POL construction requires a DB protocol that (a)
provides anonymity for the (DB) prover against the (DB)
verifier, and (b) includes sufficient information in the DB
protocol transcript that can be used in the pol to make it
non-transferable. We construct such a DB, use it to construct
a POL, and prove its security and privacy in our proposed
model. To our knowledge none of the existing anonymous
DB protocols [24], [25], [26], [27] satisfy both properties
simultaneously.

(ii) Geo-tampering attacks and protection. In geo-tampering
attack the hardware and the software of the access point will
remain untouched, and all cryptographic protocols are run
flawlessly2. The attacker however physically moves one or
more access points. Figure 1 is an illustration of the attack:

2. Modern WiFi access points come with built-in encryption scheme
such as WPA/WPA2 and are considered secure if a strong enough
password or paraphrase is used. Therefore, attacker’s ability to move
the AP does not necessarily mean that they can break into the AP.

Fig. 1. A geo-tampering attacker moves ap0 from (x, y) to (x′, y′). This
enables the attacker located at (x′′, y′′) in A′ to claim locations in A.

Fig. 2. ap0 in the office on the top left is moved to the office on the top
right. Alice can obtain a proof of being in the former office, while being
in the latter.

the attacker moves ap0 to a geo-coordinate (x′, y′). This
results in the set of “close-by” pointsA to be replaced byA′,
allowing the attacker (located at (x′′, y′′) to claim a location
inA. The attack is feasible because of the prevalence of small
access points that are increasingly used as infrastructure
nodes. The attack can stay undetected until, for example,
when a proof-of-location (pol) issued to an honest user is not
verified as expected. Fig. 2 shows an example of this attack
in a typical setting, where an employee can obtain a proof-
of-location without being in their designated office.

To detect the attack, an infrastructure node must perform
a real-time integrity checking algorithm to provide veri-
fiable information about its location. We sometimes infor-
mally refer to this information as “proof” of infrastructure
integrity. In Section 4 we show that generating such infor-
mation naively, for example by using trilateration, requires
introduction of many additional infrastructure nodes. We
then propose a novel method of achieving location integrity
information by using geo-location of “neighboring” nodes,
that are reachable from pol issuing node through (possibly)
multiple hops. We construct an initial Euclidean Distance
Matrix (EDM) (see Section 4.1) that records the pairwise
physical (point-to-point straight line) distances among the
nodes in the infrastructure. This matrix is then used to
verify the “proof of integrity” of a pol issuing node, by
comparing the real-time measured pairwise distances of
neighbor nodes of the pol issuer, with the corresponding
recorded values. The effectiveness of the approach is due
to the fact that all physical distances between nodes in
the neighbourhood are used, while trilateration based ap-
proaches rely on the distances of the neighbouring nodes to
the issuing node, only.

(iii) Implementation and experiments.
a. Implementation. We give a proof-of-concept implemen-

tation of our proposed POL system using the Idemix Java li-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

brary3 for an off-the-shelf android smart-phone. The library
is developed by IBM Security Research and is widely used
for anonymous credentials. We use the library to implement
the cryptographic components of the protocol including
commitment, zero-knowledge proof and CL-signatures (see
Section 2 for a description on these primitives), in three
different security (RSA modulus length for CL-signature)
settings.

b. Geo-tampering detection: We implement our detection
algorithm to verify its correct detection of tampering for
spars neighborhoods. We show that our approach can detect
geo-tampering attack with reasonable “accuracy”, that is
defined as the minimum amount of movement of an access
point before tampering is detected (see section 5). Our
experiments clearly show effectiveness and superiority of
using distance information of neighboring nodes, compared
to trilateration which only uses the distances of the neigh-
boring node to the issuing node.

Organization. Section 2 gives the system setting and def-
initions of proof-of-location schemes and their security
properties. Our proof-of-location construction is in Section
3. Section 4 introduces geo-tampering attack on proof-
of-location schemes, and presents an extended proof-of-
location scheme proven to be secure against this attack.
Section 5 details our experiments. We discuss related work
in Section 6 and conclude the paper in Section 7. The
supplemental material includes the security proofs.

2 MODEL AND DEFINITIONS

2.1 Cryptographic Primitives
The following cryptographic primitives are used in our
proof-of-location scheme.

Commitment. Commitment is a two-party protocol between
a committer and a receiver. A commitment scheme (C) has
two stages - Commitment stage and Reveal stage. In the
Commitment stage, the committer, for a value x produces a
commitment c, and in the Reveal stage, opens the commitment
to a value x′. A commitment protocol is perfectly hiding if the
receiver cannot learn anything about the committed value x
after the Commitment stage, and perfectly binding if in the
Reveal stage, the committer can open the commitment only
to the committed value x(x′ = x). The formal definitions
of these properties can be found in [28]. A property can
be satisfied against an unbounded adversary, resulting in
statistical security, or a polynomially bounded adversary,
resulting in computational security.

We use a commitment scheme proposed by Damagard
and Fujisaki [28]. For a security parameter λ, in C.KeyGen,
a public key PKc = (n, g, h) is generated, where n is a
special RSA modulus, h ← QRn, g ← 〈h〉, where 〈h〉 is
the group generated by h, QRn denoting quadratic residue
modulo n. The commitment com = C.Commit(x, r) for a
string x uses a random string r ∈ Zn and is computed
as com = gx × hr mod n. In the reveal stage, the
committer reveals the values x, r. The receiver can verify
com = C.Commit(x, r). This commitment scheme is statisti-
cally hiding, and computationally binding assuming factoring
is a hard problem.

3. www.zurich.ibm.com/idemix

Zero-knowledge proof of knowledge. Zero-knowledge proof of
knowledge (ZKPoK) is a protocol between a prover and a
verifier, in which the prover convinces the verifier that they
possess a certain quantity w that satisfies some polynomial-
time computable relation R, without revealing any infor-
mation about w. We use Camenisch and Stadler’s [29] rep-
resentation of proofs of knowledge of discrete logarithms,
and proofs of the validity of statements about discrete
logarithms. For example, ZKPoK{(α, β, γ) : y = gαhβ ∧ ỹ =
g̃αh̃γ} expresses a Zero-Knowledge Proof of Knowledge
of integers α, β and γ s.t. y = gαhβ and ỹ = g̃αh̃γ are
true, where y, g, h, ỹ, g̃ and h̃ are elements of some groups
G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. By convention, the
Greek letters denote quantities the knowledge of which is
being proved, while all other parameters are known to the
verifier.

We also use Camenisch and Lysianskaya’s digital signa-
ture scheme (CL-signature scheme [30]) that provides exis-
tential unforgeability, and a public key encryption scheme
that provides indistinguishability under chosen ciphertext
(IND-CCA) attack [31]. Backgrounds and notations for these
primitives are in the supplemental material, in Appendix ??.

2.2 Proof-of-Location

System model and entities. As shown in Fig. 3, we consider
four types of entities in the system: i) Users, ii) Infrastructure
nodes that issue pol to registered users, iii) Verifiers who can
verify a pol that is presented by a registered user, and iv)
a trusted authority who sets up the system parameters. The
system works as follows.

User requests a proof-of-location (pol) from an infras-
tructure node. U denotes the set of users in the system.
Infrastructure consists of a set of access points AP =
{ap0, ..., apn} that can issue pols to the users. Infrastructure
also includes a database server DBase that stores the initial
location information of these access points. Verifiers need
to verify a user’s past location information (e.g. to provide
service to them). V denotes the set of verifiers in the system.
Trusted Authority (TA) generates public parameters of the
system and the keys, and registers the users.

Users, access points and verifiers are the participants in
the system. Each participant has a public key that is issued
by the TA, and a geo-location `oc = (x, y) ∈ R×R in a well
defined coordinate system, with distances measured as pla-
nar Euclidean distance. The distance function d(`oc1, `oc2)
returns the distance between two locations `oc1 and `oc2.
Given a distance threshold B, two participants located at
(`oc1, `oc2) are said to be close-by if d(`oc1, `oc2) ≤ B, and
far-away otherwise.

Clock. We assume nodes in the infrastructure and the ver-
ifier use a UTC (Universal Time Coordinate) to loosely
synchronize their local clocks. UTC may not reach all the
system entities at the same time due to atmospheric pres-
sure, network(s) transmission time and software overhead
in local OS [32]. We use interval timestamp to capture the
uncertainty over measuring time using UTC. An issuer will
use interval timestamp to specify the time interval of issuing
a pol, and the verifier check their local interval time to
check validity of the time information. The format of an

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Fig. 3. Proposed proof-of-location system model. Trusted authority pro-
vides secret and public keys to the system entities. pol generation
steps are: G1: user makes a pol request to ap0; G2: ap0 runs a DB
protocol with u; G3: ap0 generates proof of its own location integrity
by communicating with neighboring APs; and G4: ap0 issues the pol to
the user. pol verification stage: V1: user presents the pol to a verifier;
V2,V3: Verifier requests for and receives ap0’s neighborhood data from
the server DBase; V4: ap0 verifies location integrity and signature on
the pol, runs a zero knowledge proof of knowledge protocol with the
user to authenticate it. G3, V2 and V3 are for protection against geo-
tampering - see Section 4.

interval timestamp t is [t1, t2], t2 > t1. The interval width
is source-dependent - may vary from one entity to another.
We will see in Section 4 that the infrastructure nodes also
use interval timestamp to show the time of generation of
“proof” of location integrity.

Trust assumptions. Users are dishonest; they can claim wrong
location, or attempt to forge or transfer a proof-of-location.
APs and the verifiers are honest-but curious and can attempt
to link pols and users to infer location movement trajecto-
ries.

Each AP has a location loc that is stored in a database
DBase. The location of a user is with respect to the location
of the access point that issues the pol. When a user u
requests a proof of location from an access point ap0, the
ap0 runs a DB protocol with the user, which if successful
guarantees that u is close-by. In its basic form, pol is the ap0’s
digital signature on the statement “[u] is within distance
B from `ocap0”, `ocap0 being the location of ap0. This
information is captured in the transcript of the DB protocol.

User privacy is an important requirement of POL sys-
tems. This requires the users to use pseudonyms, to request
pol. We use [u] to denote this pseudonym that will be used
to anonymously authenticate the user u. In the following,
we first describe our computational model, assuming the
infrastructure nodes have correct location.

Adversary (Computational). An adversary can corrupt a
subset of participants X ∗ ⊂ U ∪ AP ∪ V . For each security
property, the adversary has a defined goal, which is reflected
as restrictions of X ∗; in unforgeability and non-transferability,
X ∗ ⊂ U and in anonymity X ∗ ⊂ AP ∪ V . We note that
corrupting a participant refers to the adversary gaining full
control on the participant’s code.

In Section 4 we consider a physical attacker that tampers

with physical location of infrastructure nodes.
Definition 1 (Proof-Of-Location Scheme POL). For a se-

curity parameter λ, a proof-of-location scheme (POL) is
defined by a tuple (POLInit, POLJoin, POLGen, POLVer).
POLInit(1λ) generates the public and private parame-
ters of the system (run by TA). POLJoin is an interactive
protocol between user and TA, where TA registers a
new user in the system and generates credentials for
them. POLGen is an interactive protocol between a user
u ∈ U and an access point ap ∈ AP , that proceeds
in two stages: i) POLGen.DB: a distance bounding pro-
tocol is run between u and ap0, where ap0 verifies if
d(`ocap0 , `ocu) ≤ B, where B is the distance bound.
ii) POLGen.issue: ap0 issues a proof-of-location (pol) to
the user u, which is ap0’s signature on a statement “[u]
is within distance B from `ocap0”, `ocap0 being ap0’s
location. POLVer is an interactive protocol between a
user u ∈ U and a verifier v ∈ V . User u presents a proof-
of-location pol to the verifier v. If the verifier is convinced
that pol was issued by a valid issuer to the presenter of
the proof, it outputs 1 (accept); otherwise it outputs 0
(reject).

POL Correctness. If all parties follow the protocols correctly,
i.e. key generation and POLJoin are correctly executed,
POLGen protocol is performed between an access point ap0
that has trusted code and trusted location, and a close-by
honest user u, the proof-of-location pol issued by the ap0
and held by u, will be successfully verified by the verifier
that runs POLVer protocol with u.

Proving security of cryptographic systems uses two
main approaches, game-based and simulation based. While
simulation based approach gives a more holistic view of
security and allow composition of the proofs, we will
use game-based approach because (i) security of distance
bounding protocols that form a sub-protocol of our POL
system has been studied using game based approach, and
(ii) AP geo-tampering attack is an attack on physical loca-
tion of APs and more amenable to modeling and analysis
using game-based security. Simulation based models that
include “physical” properties have been considered in [33].
However, no simulation-based model has been proposed for
proximity verification.

In game-based approach the game is defined between
the adversary and the challenger. The challenger initializes
the system and provides oracle access to different parts of
the system. The adversary’s power is modelled by the set
of their oracle accesses. We assume the adversary has the
access to the following types of oracle queries.

1) Corrupt(X ∗): An adversary can send a Corrupt(X ∗)
query to the challenger, asking to corrupt a subset of
participants X ∗ ⊂ U ∪ AP ∪ V . The challenger returns
the secret credentials of all participants in X ∗ ⊂ U ∪
AP ∪ V to the adversary. Also, the codes and locations
of these participants are set according to the adversary’s
instruction. The list CorruptList stores the identities of
the corrupted participants.

2) POLGen(ap0, u): The adversary selects an access point
ap0 ∈ AP and a user u ∈ U , and makes an oracle
query POLGen(ap0, u). The challenger runs the proto-
col POLGen as access point ap0 with user u, and returns

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

either a proof-of-location pol, or ⊥. If pol is returned,
the tuple (pol, u) is appended to the list GenList.

3) POLGenIssue(ap0, u): The adversary selects an access
point ap0 ∈ AP and a user u ∈ U , and makes an
oracle query POLGenIssue (ap0, u). The challenger
runs only the second stage of protocol POLGen, i.e.,
POLGen.issue, as access point ap0 with user u, and
returns a proof-of-location pol. The tuple (pol, u) is
appended to a list IssueList.

4) POLV er(v, u, pol): The adversary selects a verifier
v ∈ V and a user u ∈ U , and makes an oracle query
POLV er(v, u, pol) for a proof-of-location pol. The chal-
lenger runs the protocol POLVer as verifier v with user
u on proof-of-location pol, and returns either 1 or 0. If
1 is returned, the tuple (pol, u) is appended to a list
V erList.

We first define a general POL game and then show how
it can be used to define each property.

Definition 2 (POL Game). For a security parameter λ, we
define the following game between a challenger and an
adversary.

1) Initialize: The challenger runs POLInit(1λ) and pub-
lishes the public parameters of the system. The
challenger also initializes empty lists CorruptList,
GenList, IssueList and V erList.

2) Generate participants: The challenger generates a set of
m users (U), a set of n access points (AP), and a set
oof q verifiers (V). The credentials (i.e., public/private
key pairs) are generated for all the verifiers and access
points. The locations of these participants are set ar-
bitrarily. Then the challenger runs POLJoin for all the
users. The challenger publishes the list U ,AP and V
(i.e., the public credentials as well as location of each
participant).

3) Queries: Adversary makes queries to
oracles Corrupt(X ∗), POLGen(ap0, u),
POLGenIssue(ap0, u) and POLV er(v, u, pol).

4) Adversary’s output: The adversary outputs a proof-of-
location polA.

The properties for POL are defined based on the POL
Game. Conditions to win the game however vary de-
pending on the property. We define three POL properties:
unforgeability, non-transferability and anonymity. The fol-
lowing definition were motivated in Section 1, and assume
integrity of the access points’ locations (access points are always
assumed to correctly perform the computation).

Property 1 (POL Unforgeability). Consider a POL scheme
POL and a POL Game with the following restrictions:
the adversary can only corrupt users, i.e., X ∗ ⊂ U in
the Corrupt(X ∗) query. An adversary succeeds in the
game, if there exists an entry (pol, .) ∈ V erList, s.t.,
pol = polA, and any of the following two holds: i) There
does not exist an entry (pol, .) ∈ GenList s.t. pol = polA,
and there does not exist an entry (pol, .) ∈ IssueList s.t.
pol = polA; ii) There exists an entry (pol, .) ∈ GenList
s.t. pol = polA, and d(`ocap0 , `ocu) > B. A proof-
of-location scheme POL provides unforgeability, if the
advantage of the adversary in succeeding in the above
game, denoted by AdvUF , is negligible.

Property 2 (POL Non-transferability). Consider a proof-
of-location scheme POL and a POL Game with the
following restriction: the adversary can only corrupt
users, i.e., X ∗ ⊂ U in the Corrupt(X ∗) query. An
adversary succeeds in the game, if there exists an en-
try (pol, u) ∈ V erList, s.t., pol = polA, and any
of the following two holds: i) There exists an entry
(pol, u′) ∈ GenList s.t. pol = polA, and u′ 6= u; ii) There
exists an entry (pol, u′) ∈ IssueList s.t. pol = polA,
and u′ 6= u. A proof-of-location scheme POL provides
non-transferability if the advantage of the adversary in
succeeding in the above game, denoted by AdvNT , is
negligible.

Property 3 (POL Anonymity). Consider a proof-of-location
scheme POL and a POL Game, with the restriction that
the adversary can only corrupt access points and verifiers,
i.e., X ∗ ⊂ AP ∪ V in the Corrupt(X ∗) query. POL
Anonymity is twofold.

1) Anonymity with respect to the access point: We remove
step 4 in the POL game, and add the following steps. i)
The adversary chooses a pair of users (u0, u1) ∈ U ,
an access point ap ∈ AP , and sends its choice of
the participants to the challenger. However, the pair
of users chosen by the adversary must be either both
close-by the access point ap, or both being far-away
from ap (otherwise, the adversary can win the game
by simply looking at the output of the oracle in the
following step). ii) The challenger randomly selects a bit
bap ← {0, 1}, and simulates POLGen(ap, ubap) oracle.
The oracle returns either ⊥ or a proof-of-location pol,
which is forwarded to the adversary. In addition, the
transcript of the protocol execution (i.e., in this case,
all the messages exchanged between (ap, ubap) in the
POLGen protocol) is also sent to the adversary. iii) The
adversary outputs a bit ˆbap ∈ {0, 1}.

2) Anonymity with respect to verifier: The game is the same
as above, with the following modifications in the ad-
ditional steps: i) the pair of users (u0, u1) ∈ U that
are chosen by the adversary must be both close-by
the access point ap (otherwise the game cannot pro-
ceed to pol verification stage), and ii) the challenger
first simulates POLGen(ap, ubv) oracle, where bv is a
random bit picked by challenger, and then simulates
POLV er(v, ubv , pol) oracle, where v ∈ V is chosen by
the adversary, and pol is the proof-of-location resulted
from POLGen query. The adversary’s final output is a
bit b̂v ∈ {0, 1}.

Adversary’s advantage in winning the game is expressed
as a tuple (AdvapAN ,AdvvAN), where,AdvapAN = |Pr[ˆbap =
bap]− 1

2 | and AdvvAN = |Pr[b̂v = bv]− 1
2 |. The proof-of-

location scheme POL achieves anonymity with respect to
the access point ap ifAdvapAN is negligible, and the verifier
v if AdvvAN is negligible.

Note that anonymity with respect to ap implies anonymity
with respect to the location infrastructure as this is the
only part of the infrastructure that interacts with the user,
and transcripts of different POL sessions are statistically
independent. Following similar arguments, anonymity w.r.t
v implies anonymity with respect to the set of verifiers in
the system, V .

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 4. An overview of pol generation (POLGen) and pol verification
(POLVer) protocols in POLA scheme. Here pol = 〈sig,msg〉, sig ←
DS.Sig(skap0s ,msg),msg = 〈com, pkap0s , `ocap0 , t〉. See Fig. 5 for
com, sKey generation.

3 POLA: PROOF-OF-LOCATION WITH ISSUER
AND VERIFIER ANONYMITY

POLA is a proof-of-location scheme with anonymity against
the issuer and the verifier. We assume each access point
has a registered keypair (skaps , pk

ap
s) of the digital signature

scheme DS that provides security against existential forgery.
The public verifying key pkaps is known by all the verifiers
in the system. Also, each access point (respectively each
verifier) has registered keypair (skape , pk

ap
e) (resp. (skve , pk

v
e)

for verifier) of the encryption scheme E that provides CCA
security. The public encryption keys (pkape , pk

v
e) are known

by all the registered users in the system. Fig. 4 gives an
overview of pol generation and pol verification protocols in
POLA scheme. Details of the scheme follows.

Initialization (POLInit).
TA calls DS.KeyGen(1k) to generate (skTAs , pkTAs), a

private/public key pair of the digital signature scheme.

User registration (POLJoin).
Upon receiving join request from a user with identity u,

TA generates a random binary string as the user’s long term
secret su. TA digitally signs su to generate the certificate
certu = DS.Sig(skTAs , su) and provides the private creden-
tial (su, certu) to the user.

Proof-of-location generation (POLGen).
Access point discovery and initial handshake. APs can be

discovered in several ways by the user. One way is that APs
advertise their capability of providing proof-of-locations
through periodically transmitted beacons, and user scans
for available APs and identify them [34]. Once the public
key of a close-by access point is known, the user performs an
initial handshake with the access point (i.e., user requesting
a pol and AP acknowledging the request), and proceeds to
the distance bounding stage.

Distance bounding between u and ap0 (POLGen.DB). The user
and the access point start the distance bounding protocol as
shown in Figure 5. The protocol has three phases. Let λ be
the security parameter.

1) Initialization Phase: u chooses three random strings
α, β, sKey each of length λ, where α is used to generate a

Fig. 5. The distance bounding protocol (POLGen.DB) in POLA scheme
between user u and access point ap0.

commitment on su, com = C.Commit(su, α). sKey is a ses-
sion key for encrypting (i.e., AES symmetric key encryption)
subsequent messages sent by ap0 to the user. User encrypts
〈com, β, sKey〉 using ap0’s public key pkap0e and the result
Cu is sent to ap0, who decrypts Cu using skap0e and obtains
〈com, β, sKey〉. ap0 chooses a random string γ of length λ,
encrypts using sKey, and sends to u, who decrypts it to
obtain γ. The values com, β and γ will be used by the user
in responding to ap0’s challenges in the distance bounding
phase.

2) Distance Bounding Phase: This phase has λ rounds.
In the i-th round of this phase (1 ≤ i ≤ λ), ap0 sends
a uniformly chosen random bit ci to u. User immediately
replies with comi (if ci = 0) or βi ⊕ γi (if ci = 1). Here xi
represents the i-th bit of the binary string x of length λ. The
round trip time ∆ti for the challenge-response is measured
and stored by ap0.

3) Finalization Phase: This stage starts with a zero-
knowledge proof of knowledge protocol between user and
access point, where the user proves that com is a valid
commitment of a value su that is certified by the TA. We
follow the protocol proposed by Camenisch and Lysyan-
skaya ([30], Sec 6.2, Fig. 2), which is a zero knowledge
proof of knowledge of the values (su, α, certu) such that
com = gsuhα mod γ and DS.Vf(pkTAs , su, certu) = 1. If
the zero-knowledge proof of knowledge protocol succeeds,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

ap0 checks the user’s responses from distance bounding
phase. If the estimated round trip times are within bound
(for distance bound B) and responses are correct in all the
rounds, then ap0 outputs 1, otherwise 0.

Issuing proof-of-location (POLGen.Issue). If distance bound-
ing protocol succeeds and outputs 1, ap0 generates a sig-
nature on the message msg, described below, using signing
key skap0s of the digital signature scheme, and concatenate
msg to this signature to output proof-of-location pol. The
message msg is,

msg = 〈com, pkap0s , `ocap0 , t〉

where, `ocap0 is the location of ap0, t is the interval times-
tamp at the issuer. pol is encrypted using sKey and sent to
the user.

ap0 → u : Encrypt(sKey, pol), pol = 〈sig,msg〉, sig ←
DS.Sig(skap0s ,msg)

Proof-of-location verification (POLVer).
User u presents pol to the verifier v, encrypted

with the verifier’s public key pkve . The verifier rejects
the claim (outputs 0) if, after decrypting the values,
DS.Vf(pkap0s , sig,msg) = 0. If the issuer’s signature is
verified, the verifier v runs the ZKPoK protocol in [30]
(similar to the finalization phase of POLGen.DB). Verifier
rejects the claim if the protocol fails (outputs 0), otherwise v
is convinced that u knows the secret su used to generate the
commitment com and that this secret has been certified by
the TA, and accepts the claim (outputs 1).

Discussion. In POLA, issuing a proof of location requires the
issuer to run a DB protocol. To provide anonymity for the
POL system, one can use an existing anonymous DB protocol
[24], [25], [26], [27]. This however will not be sufficient
because, during the verification phase, the generated pol
should be linkable to the identity credential [u] of the prover.
These protocols do not provide this additional property.
We will prove that while two pols that are issued to the
same user in two distinct sessions, remain unlinkable, each
individually will be linkable to the credential of the user.
Our proposed anonymous DB protocol POLGen.DB satisfies
these properties.

3.1 Security Analysis
Correctness of POLA can be straightforwardly shown. For
security, we first show that the DB protocol between u
and ap0 is secure against distance fraud, distance hijacking,
mafia fraud and terrorist fraud attack (See the supplemental
material, Appendix ?? for attack descriptions). We use this
to prove security of the protocol in Theorem 1.
Theorem 1. Let E be a IND-CCA secure encryption scheme,

C be a computationally binding and computationally
hiding commitment scheme, DS be a digital signature
scheme secure against existential forgery and the pro-
tocol ZKPoK is sound and zero knowledge proof of
knowledge of the values (su, α, certu). Then,

a) The distance bounding protocol (POLGen.DB in Fig. 5)
in POLA between a user u and an access point ap0, is
secure against distance fraud, distance hijacking, mafia
fraud and terrorist fraud attack.

b) If POLGen.DB in POLA is secure against above four types
of attacks, then POLA is unforgeable.

c) Assuming the user is not willing to share their secret
credential, POLA provides non-transferability.

d) POLA is anonymous with respect to both the issuer
access point and the verifier.

Proof is in the supplemental material, Appendix ??.

4 GEO-TAMPERING ATTACK ON POL SYSTEMS

Consider a POL system in Section 2 with a loca-
tion infrastructure AP consisting of n access points
{ap0, ap1, ..., apn−1}, each associated with a location `ocapi
(i = 0, ..., n − 1). The initial location map LocMap =
{(ap0, `ocap0), ..., (apn−1, `ocapn−1)} of the APs is stored in
DBase.

In geo-tampering attack, an access point will have intact
hardware and software but its location has been modified.
Let `ocap0 be the geo-coordinate of an access point ap0 in
LocMap, and `oc′ap0 be its modified geo-coordinate. The
distance bounding protocol will accept the claim of a user
within Circ(`oc′ap0 , B), a circle of radius B around the
location `oc′ap0 , and issue a pol using its stored location
`ocap0 . This is effectively forging a pol for a location that
the user is not in.

One can use an approach such as trilateration to deter-
mine the location of the proof issuing AP, and compare it
with the corresponding value that is stored in LocMap. This
is Geo-tampering detection using location determination.

Geo-tampering detection using location determination.
Assume there are three access points (ap1, ap2, ap3), all with
trusted location (e.g. physically secured devices) that are
at the line-of-sight distance of ap0. Assuming synchronized
clocks, ap0 sends a radio signal to ap1, ap2, ap3, who record
their signal arrival time, and send it to ap0 who can use
the received values to estimate the distances d(ap0, api), i =
1, 2, 3 using the travel time, the (constant) speed of radio
signal. Using these, and the geo-coordinates of ap1, ap2, ap3,
one can find an estimate for the geo-coordinate of ap0,
using a trilateration algorithm (such as the one proposed
in [35]). The new computed location of ap0 will have some
error because of inaccuracy of distance measurement, that
is called trilateration error. A geo-tampering will be detected
if the distance between the initial stored value of the ap0’s
location in LocMap, and its new estimate exceeds a chosen
trilateration error.

Drawback of location determination based approach. Tri-
lateration requires at least three access points with trusted
locations, that are at the line of sight distance (reach of radio
signal) of the pol issuing AP. These requirements can be
fulfilled by providing many APs with trusted location (e.g.
physically protected areas) which makes the infrastructure
nodes expensive for many applications.

4.1 Our approach

We propose a novel approach to detect geo-location tam-
pering that does not require determining the location of pol
issuing AP, but relies on detecting the change in the AP’s

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

relative position to its neighbors. Here the notion of “neigh-
bor” can be defined in a flexible way, and is not restricted
to nodes that are at the line-of-sight of the issuing AP. We
define the neighborhood of ap0 to be the set of all APs
that are “reachable” from ap0, where reachability means
existence of a path consisting of edges that each correspond
to a line of sight communication. That is, a message sent
from ap0 will reach all the nodes in the neighborhood of ap0,
possibly through multiple “hops”. We assume a subset of
APs in the ap0’s neighborhood have not been displaced and
have correct (original) locations. We however do not require
these nodes with correct locations, to be identifiable.
Definition 3 (Neighborhood Nap0). Let G = [V, E] be an

undirected graph where each vertex v ∈ V represents an
AP in the infrastructure of the proof-of-location system,
and an edge e ∈ E between two APs represents the two
being at the line-of-sight of each other. A neighbourhood
of ap0 is a connected component of graphG that includes
ap0. If Nap0 = {ap01, ap02, .., ap0n−1} is the neighborhood
of ap0, then for each ap0i ∈ Nap0 , there is a path from
ap0.

For a neighbourhood Nap0 , we define an Euclidean
Distance Matrix (EDM [36]) DNap0

as follows.
Let |Nap0 | = n (Neighborhood includes ap0). DNap0

is a n × n matrix, with rows and columns labelled by
ap0i ∈ Nap0 and D(i, j) is the length of the straight line
connecting ap0i and ap0j . This matrix can be constructed
by knowing the exact coordinates of the nodes (that can
be found in LocMap stored in DBase) and calculating
the Euclidean distance between them. The geo-tampering
detection algorithm has two steps: (i) construct D′Nap0

, a
real-time estimate of the matrix DNap0

, and (ii) compare the
entries of the two matrices, and use a decision algorithm to
detect tampering. An overview of each step is given below.
Full details and algorithms are in Sec. 4.3.

(i) Constructing D′Nap0
is through making real-time dis-

tance measurements between each pair of nodes in
Nap0 . The distance measurement will be by recording
the arrival time of a radio signal that is sent by one
node associated to an edge, and received by the second
node of that edge. Note that this measurement can
be performed for only nodes that are in the radio
distance of each other. Thus only the entries of D′Nap0

that correspond to nodes that are at radio-distance of
each other can be measured (possibly with some error).
The entries of D′Nap0

that can not be measured can be
“reconstructed” using distance recovery algorithm [36].
This recovery is due to the geometric properties of
distances of neighboring nodes and is available to any
distance matrix. The error that is introduced in this
reconstruction depends on the error in the distance
measurements using radio signal, and the number of
entries that cannot be found through the radio signal
measurement.

(ii) Given DNap0
and its estimation D′Nap0

, one can use
various decision algorithms to detect tampering. We
use a simple threshold algorithm which requires the
corresponding entries of the two matrices to be within
distance ∆ of each other. That is, |DNap0

(i, j) −
D′Nap0

(i, j)| ≤ ∆, (i, j) ∈ {0, .., n− 1}.

Notice that small values of ∆ implies reduced advantage
for the attacker, in terms of its ability to displace the access
points. ∆ is called the Geo-tampering detection threshold, de-
fined bellow.

Definition 4 (Geo-tampering threshold ∆). For a geo-
tampering detection algorithm, ∆ is the maximum dis-
tance by which the geo-tampering attacker is able to
move an access point from its original location, without
getting detected.

∆ is determined by (i) error in distance measurement
between access points in the neighborhood, and (ii) error
in reconstructing the entries in D′Nap0

that could not be
measured. Hence, for our detection algorithm, ∆ is a tuple
(∆M ,∆R); ∆M is the distance measurement error, and ∆R

is the distance reconstruction error.
The rest of this section provides details of our ap-

proach in geo-tampering detection, and the construction of
POLA+, an extension of POLA with protection against geo-
tampering.

4.2 POLA+: Protection against geo-tampering

Protection against geo-tampering requires the pol issuer to
perform a real-time integrity checking algorithm to provide
location integrity proof information. Let LocIntInfo(ap0)
denote the location integrity information (“proof”) that must
be provided by the issuing AP ap0 to convince the POL
system that `ocap0 is correct.

We require the following properties for
LocIntInfo(ap0).

(P1) It must be generated at the time of issuing pol to the
user.
(P2) It must convince the POL system that the geo-location
of ap0 with respect to LocMap is correct.

These requirements allow a modular approach to the
construction of a POL system that provides security against
tampering of the infrastructure node locations, based on
a secure POL system that requires trusted location for the
infrastructure nodes. Theorem 2 below extends Theorem 1
(POLA security) such that geo-tampering with the location
of APs can be tolerated.

Theorem 2. Let LocIntInfo(ap0) satisfy P2 (have sufficient
information to convince the verifier about the integrity
of ap0’s geo-location). By generating and including
LocIntInfo(ap0) at the time of generating pol (and thus
satisfying P1), and including it in pol as shown below:

pol← 〈sig,msg〉, sig ← DS.Sig(skap0s ,msg)

msg = 〈com, pkap0s , `ocap0 , t, LocIntInfo(ap0)〉

we obtain a POL system that satisfies POL secu-
rity properties, i.e., unforgeability (property 1), non-
transferability (property 2) and anonymity (property 3),
while providing security against geo-tampering attack.

Proof is in the supplemental material, Appendix ??.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

4.3 LocIntInfo(ap0) Generation and Verification

Protection against geo-tampering is achieved by, (i)
LocIntInfo(ap0) Generation: at the time of pol generation,
ap0 constructs D′Nap0

, a real-time estimate of the matrix
DNap0

, and appends D′Nap0
to the msg before digitally

signing it to form the pol with the ap0’s location integrity
information LocIntInfo(ap0), and (ii) LocIntInfo(ap0) Veri-
fication: at the time of pol verification, verifier compares the
entries of the two matrices, and uses a decision algorithm to
detect tampering.

4.3.1 LocIntInfo(ap0) Generation

Construction of D′Nap0
requires real-time distance measure-

ment between each pair of nodes in Nap0 , that are at each
other’s line-of-sight. Any entry in D′Nap0

corresponding to a
pair of nodes that are not at LOS, will be left empty.
Measuring distance between two line-of-sight APs. Since both
APs correctly follow the prescribed computation by the
protocol (even if they are geo-tampered), we do not require
cryptographically secure distance measurement techniques
such as distance bounding. One can use distance measure-
ment techniques that are commonly used in wireless sensor
networks, including Time of Flight (TOF) or Time of Arrival
(TOA), for this purpose. We use TOA as it uses a one-way
signal for time measurement and has less communication
overhead.

Algorithm GenLocIntInfo (Fig. 7) is used to estimate the
distance between ap, ap′ (an edge in D′Nap0

). In brief, ap
sends a signed message to ap′ that includes the sending
time ts. ap′ verifies the signature, and if valid computes the
distance between the two as d′(ap, ap′) = (tr − ts − δp)× c,
where tr is the arrival time of the message, c is the speed of
light and δp is the computation delay of the sender (digital
signature). The computation delays are assumed publicly
known.

TOA distance measurement can be affected by clock
drift between two access points. To reduce the clock drift
techniques such as those proposed in “PinPoint” [37] can
be used to improve distance measurement accuracy. In
PinPoint, multiple rounds of timestamp exchange between
the two access points is used to estimate and remove the
difference in the two clock readings. PinPoint provides an
average accuracy of 4.18 feet, with a standard deviation of
4.4 in a complex indoor environment.

Selecting Effective Neighborhood. In practice, only a selected
subset of the actual neighborhood Nap0 may be used in
generating location integrity information. This subset is
selected such that the performance of the geo-tampering
detection algorithm is improved in terms of geo-tampering
threshold ∆. Also, to improve computation time of the
location integrity information, it is important to select access
points that have shorter path-lengths to issuer ap0. Below
we define effective neighborhood for ap0.

Definition 5 (Effective Neighborhood ENap0). An effective
neighborhood ENap0 of access point ap0 is a subset of
ap0’s neighborhood Nap0 and includes ap0. This is a
connected subgraph of Nap0 (see Def. 3 for Nap0). ENap0
includes all the nodes that are used to form ap0’s location
integrity information LocIntInfo(ap0).

By “connected subgraph of Nap0”, we mean a subgraph
of the connected component Nap0 , such that each pair of
vertices in it are connected by a path.

The distance matrix formed byENap0 isDENap0
. As will

be shown in theorem 4, the geo-tampering attack is detected
with high probability if at least three untampered access
points are present in the effective neighborhood. Therefore,
when the risk of nodes being displaced in a system is higher
(such as applications where APs are placed in public places),
it will require having a larger effective neighborhood – that
will increases the chance of having at least three untampered
APs in the effective neighborhood.

Effective Neighbourhood Selection. An effective neighborhood
selection algorithm will first choose the size of the effective
neighbourhood, m, and then select an effective neighborhood
of that size. The effective neighborhood size will depend
on the estimated probability of neighbourhood nodes being
moved by an adversary, with higher probabilities corre-
sponding to larger size of m. Choosing the value of m
will depend on other factors including the required security
guarantee of the system and will not be further studied here.
For a given value of m, the effective neighbourhood will be
a set of size at least m nodes, each connected to ap0 through
a path. The choice of the set will affect (i) the geo-tampering
error threshold ∆, and (ii) the delay in the generation of
location integrity proof, determined by the node with the
longest path to ap0 (assuming equal transmission time on
each link). In the following we consider the problem of
selecting a set that minimizes ∆, and show that it reduces
to the hard problem of finding a clique of size k in an
undirected graph (see below). Selecting a set that takes both
objectives of reducing ∆ and maximum path length will be
an extension of this work.

Minimizing ∆ for a size m Neighborhood . Finding an effective
neighborhood of size m that minimizes ∆ implies minimiz-
ing the EDM reconstruction error, which in turn implies
minimizing the number of missing elements in the matrix
DENap0

, therefore maximizing the number of edges in the
effective neighborhood ENap0 . Now, finding an effective
neighborhood of size m with maximum number of edges,
is NP-hard, as stated in the following theorem.
Theorem 3. Finding an effective neighborhood of ap0 of size

m that has maximum number of edges, is NP-hard.

Proof:
A clique is a subset of vertices in an undirected graph

such that every two vertices are connected by an edge, form-
ing a complete subgraph. The k-clique problem is stated as
follows: given an undirected graph G, find a clique of size k,
where k is the number of vertices. The k-clique problem has
been shown to be NP-complete [38].

Finding ap0’s effective neighborhood of size m that max-
imizes number of edges, can be stated as follows: “Given
a neighbourhood of ap0 consisting of all nodes that are
connected through a path to ap0, find a subset of size
m, each connected to ap0, where the number of edges is
maximum.”

Assume there is a polynomial time algorithm that solves
the above neighborhood selection problem. This algorithm
can also find a subgraph of size m vertices that include ap0,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

and includes all edges. That is, it will find a clique of size
m that includes ap0, if there exists one. Now it is easy to
see that by repeating the algorithm for each vertex of the
graph, one obtains an efficient algorithm that finds a clique
of size m in the graph. This is a contradiction to the NP-
completeness of k-clique problem.

Our approach to selecting effective neighborhood of size m. For
our experiment we consider a heuristic approach (Algo-
rithm in Fig. 6) that works as follows. Let M be a n × n
matrix of all APs in the neighborhood of ap0, including
ap0. In M , each element M(i, j) can take value in {0, 1},
1 denoting the event that real-time distance measurement is
possible between (api, apj), and 0 denoting the opposite -
a missing element, and must be reconstructed. We sort the
APs in Nap0 according to the number of missing elements
involved with the AP. The algorithm sorts the APs in Nap0
according to the number of zeros in the row/column of M
indexed by the APs. Finally, given the required effective
neighborhood size m, simply select the first (m − 1) APs
(excluding ap0) from the sorted list in ascending order,
such that there is a path from ap0 to each of these APs.
In order to find if two nodes are connected (i.e, if there is a
path between these nodes) in an undirected graph, one can
simply use a graph traversal algorithm such as Depth-First-
Search as shown in [39]. Note that the issuing AP ap0 is by
default included in the effective neighborhood.

Generating location integrity information. The nodes in the cho-
sen effective neighborhood set of ap0 measure the pairwise
distances among themselves, and send the results back to
ap0. A path from api to apj is a finite sequence of edges
between api and apj . Algorithm GenLocIntInfo (Fig. 7) uses
TOA technique to generate D′ENap0

. We define Adjap as the
adjacent list of ap, that is the list containing all access points
in radio range of ap. An edge between two APs (api, apj) is
denoted by {api, apj}.

(Step 1) ap0 determines its neighborhood using LocMap,
then selects its effective neighborhood ENap0 by running
algorithm in Fig. 6. A distance matrixD′Nap0

is initiated with
all zero entries. Then ap0 generates and broadcasts a signed
location integrity request Req, that contains a sequence
number ReqID, Requester and Sender name (both set as
ap0), the effective neighborhood list ENList (set as ENap0),
adjacent list SenderAdjList (set as Adjap0), and the time
of sending this message SenderTime (set as ap0’s local time
tap0).

(Step 2) Access point api receives Req, records the
receive time (ReceiverTime) and checks if itself and the
Sender both are members of ENList. If so, it computes
the length of the edge between them (EdgeLength) using
ReceiverTime, SenderTime and sender processing delay
δp. Then it computes a path P back to the Requester, and
transmits a signed response Res containing Destination
(set as Requester), Responder (set as api), Path (set as P),
Edge (set as {Sender, Responder}) and EdgeLength.

api also rebroadcasts the message Req so that it will
reach all the member of effective neighborhood of ap0.
However, instead of using blind flooding (i.e., each node
broadcast the message whenever it receives it) which would
waste wireless resource considerably, we use the “Self-
pruning” method in [40]. Following this method, api checks

Input: ap0’s neighborhood Nap0 of size n, location map
LocMap, required size of effective neighborhood: m

Output: Effective neighborhood ENap0 of size m
1: Include issuer AP ap0 to the effective neighborhood
ENap0 .

2: Create a n × n matrix M , for neighborhood Nap0 ,
with rows and columns labelled by api ∈ Nap0 . Each
element M(i, j) will take value in {0, 1}. 0 denotes an
edge between api, apj , and 1 denotes absence of the
edge.

3: Count the number of zeros in each column (or row) of
M , and assign this number to the AP that labels this
column (or row, respectively).

4: Excluding ap0, sort the APs in Nap0 according to the
assigned number (i.e., count of zeros).

5: Select the first (m − 1) APs in ascending order, such
that there is a path from ap0 to each of these APs. Add
these APs to ENap0 .

6: return ENap0 .

Fig. 6. Effective neighborhood selection algorithm.

if all its adjacent nodes have already received Req. If so,
it refrains from re-broadcasting Req. Otherwise, it resets
Sender as api, SenderAdjList as its own adjacent list,
SenderTime as its own local clock time, then signs and
forwards the modified Req.

(Step 3) ap0 receives Res, it updates the element in
D′Nap0

corresponding to the Edge inRes and discards future
Res with same Edge value. If all the elements in D′ENap0

are updated (excluding the elements that corresponds to
absence of an edge), ap0 outputs location integrity data that
includes ENap0 , D

′
ENap0

and the algorithm completion time
tint.

4.3.2 LocIntInfo(ap0) Verification
Verifier, upon receiving LocIntInfo(ap0) as part of the
pol from a user, runs algorithm VerLocIntInfo (Fig. 8).
Basically this algorithm reconstructs any missing element
in D′ENap0

, then compares the entries of the two matrices
(DENap0

, D′ENap0
), and uses a decision algorithm to detect

tampering.

Reconstructing missing entries. The distance matrix D′ENap0

is an EDM. As noted earlier, the real-time distance mea-
surements using Algorithm GenLocIntInfo (Fig. 7) may not
obtain all the distances and corresponding entries inD′ENap0

will be missing. EDM geometric constraints allow recovery
of missing distances.

We used the algorithm “Alternating Descent” in [36] (see
the supplemental material, Appendix ??) that can complete
an EDM with high success probability when the number of
missing elements in the matrix is bounded.

Comparing the two matrices. Once all distances ofD′ENap0
that

correspond to the stored distances of DENap0
are recovered,

a matching algorithm is used to decide if the effective
neighborhood of ap0 has been tampered with. Note D′ENap0

does not match DENap0
could be because of changes in one

or more node in the neighborhood. The matching algorithm
in our experiments is by simply comparing every pair of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Input: LocMap containing system AP locations, sender processing delay δp for TOA, Effective neighborhood size m
Output: Location integrity data LocIntInfo(ap0)

1: Issuing AP ap0 does the following:
i. Determines its neighborhood Nap0 from LocMap.

ii. Selects effective neighborhood ENap0 of size m by running Algorithm in Fig. 6.
iii. Initializes an empty m×m distance matrix D′Nap0

. Elements in this matrix that correspond to absence of an edge
between the APs indexing the element, are set as 0, representing a missing element.

iv. Selects a unique sequence number ReqID for the message it is going to broadcast. Sets Requester =
ap0, Sender = ap0, ENList = ENap0 , SenderAdjList = Adjap0 , SenderTime = tap0 . Then broadcast a request:
Req = 〈m,DS.Sig(skap0s ,m)〉, m = 〈ReqID, Requester, Sender, ENList, SenderAdjList, SenderTime〉

2: api that receives a message Req, records the reception time ReceiverTime, and does the following:
i. If api ∈ ENap0 and Sender ∈ ENap0 , then computes EdgeLength = (ReceiverTime − SenderTime − δp) × c.

Then computes Path = P to Requester, sets Destination = Requester, Responder = api, Edge =
{Sender, Responder}, selects a unique sequence number ResID, and transmits following response: Res =
〈m′,DS.Sig(skapis ,m′)〉, m′ = 〈ResID, ReqID, Responder, Destination, Path, Edge, EdgeLength〉. This
response will be forwarded along the path P to ap0.

ii. Computes own adjacent list Adjapi . If Adjapi − SenderAdjList − {Sender} is empty, sets Sender =
api, SenderAdjList = Adjapi , SenderTime = tapi . Then forwards the modified request: Req =
〈m,DS.Sig(skapis ,m)〉, m = 〈ReqID, Requester, Sender, ENList, SenderAdjList, SenderTime〉

3: ap0 receives a response Res, and does the following:
i. Extracts Edge from Res. If it has not already received a Res containing same Edge, updates the element in D′Nap0

indexed by APs in the Edge.
iii. If all the elements of D′Nap0

(excluding the ones that were initially set as 0) are updated, or a predefined
waiting period has passed (in which case the elements that were not updated are set as 0), ap0 outputs
LocIntInfo(ap0) = 〈ENap0 , D′ENap0

, tint〉, tint is the timestamp of the algorithm completion, at ap0.

Fig. 7. GenLocIntInfo: Location integrity information generation algorithm

Input: LocIntInfo(ap0), LocMap, geo-tampering detec-
tion threshold ∆ = (∆M ,∆R). ∆M : distance measure-
ment error, ∆R: distance recovery error

Output: Out = {0, 1}
1: Extract the distance matrix D′ENap0

and effective
neighborhood ENap0 from LocIntInfo(ap0).

2: If D′ENap0
has missing elements, let M be the set of

missing elements. Apply the Alternating Descent on
D′ENap0

to recover distances inM.
3: Use LocMap and ENap0 to compute the distance

matrix DENap0
.

4: For each DNap0
(i, j) ∈ M, check if |DNap0

(i, j) −
D′Nap0

(i, j)| ≤ ∆R.
5: For each DNap0

(i, j) /∈ M, check if |DNap0
(i, j) −

D′Nap0
(i, j)| ≤ ∆M .

6: If all the checks succeed, Out← 1, otherwise Out← 0
7: return Out

Fig. 8. VerLocIntInfo: Location integrity information verification algo-
rithm.

corresponding distances in DENap0
and D′ENap0

, and detect
a change if the difference is larger than geo-tampering
detection threshold ∆. As noted earlier, this value is the
tuple of EDM recovery error, and the distance measurement
error.

Theorem 4 states that location integrity data satisfies P2.

Theorem 4 (Sufficiency of LocIntInfo(ap0)). Assum-
ing Alternating Descent can complete EDM with high
success probability, and at least three untampered

node are present in the effective neighborhood of
ap0, LocIntInfo(ap0) generated by algorithm Gen-
LocIntInfo satisfies P2 with high probability: convinces
the POL system that the geo-location of ap0 with respect
to LocMap is correct.

Proof is in the supplemental material, Appendix ??.

4.4 Putting it together: Constructing POLA+

This section puts all the parts together and extends our pro-
posed proof-of-location scheme POLA to construct POLA+

that provides security against geo-tampering attack.

Initialization (POLInit). As in POLA in Section 3.

User registration (POLInit). As in POLA in Section 3.

Proof-of-location generation (POLGen). Access point discov-
ery and initial handshake. As in POLA in Section 3.

Distance bounding between u and ap0 (POLGen.DB). As in
POLA in Section 3.

Generating location integrity data for ap0. If POLGen.DB returns
1, ap0 begins GenLocIntInfo algorithm (see Fig. 7) and
generates LocIntInfo(ap0).

Issuing proof-of-location (POLGen.Issue). This is as in POLA,
but with LocIntInfo(ap0) included in the issued proof-of-
location pol.

pol← 〈sig,msg〉, sig ← DS.Sig(skap0s ,msg)

msg = 〈com, pkap0s , `ocap0 , t, LocIntInfo(ap0)〉

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

LocIntInfo(ap0) = 〈ENap0 , D′ENap0
, tint〉

Proof-of-location verification (POLVer). This is as in POLA,
with following additional checking by the verifier:
• Extracts LocIntInfo(ap0) from pol, retrieves LocMap

from DBase.
• Extracts timestamps t from msg and tint from
LocIntInfo(ap0). Checks that t and tint are at most
a predefined value Γ apart from each other.

• Runs algorithm VerLocIntInfo (Fig. 8).
• If the algorithm outputs 0, verifier rejects the claim and

aborts, otherwise accepts the claim.
Setting a small Γ ensures that LocIntInfo(ap0) is gen-

erated immediately before pol is issued to the user, and so
P1 is satisfied. P2 is also satisfied as proved in theorem 4.
Now we can derive following corollary from theorem 2 and
4.
Corollary 1. POLA+ is secure against geo-tampering, while

preserving POL security properties (property 1, 2 and 3).

5 EXPERIMENTS AND EVALUATION

5.1 Proof-of-concept implementation of POLA
Our implementation goal is to estimate the processing time
of user, issuer, and verifier. For all these we use a mobile
phone (Samsung Galaxy S9) to represent the resource limi-
tations of the user (requester) as well as the small portable
base stations that represent the issuer and the verifier.

We use the Java implementation version v2.3.43 of
Idemix (Identity Mixer) [41], a cryptographic protocol suite
that is designed for providing anonymity for authentication,
and unlinkability for transactions, using CL signature and
hash functions. Idemix uses SHA-256 hash function. Idemix
commitment scheme is based on the hardness of discrete
logarithm (DL) problem, while the CL signature security
relies on the hardness of factorization problem. To show
the effect of key size (security level) on the computation
time and storage, we consider three different RSA modulus
sizes for the CL-signature, 1024 bits, 1536 bits and 2048 bits.
For these sizes, Idemix uses appropriate group sizes for
the DL problem so that the overall cryptographic security
will be equivalent to that of the RSA modulus size. More
details are in the Idemix specification document given as
Table 2 and 3 in [42]. More specifically, Idemix uses 768 bit
commitment modulus with 1024 bit RSA modulus, and 1632
bits commitment modulus with both 1536 and 2048 bit RSA
modulus.

We examine the computational time and storage that are
needed to run POLA with our implementation. The results
that are shown in Figure 9 are based on 10 independent
runs of each test. During the tests, we ensured that no other
background processes were running in parallel.

In our testbed, the user, who already possesses a certifi-
cate from TA on its secret key (a CL-signature from TA on
user’s secret), requests for a pol to an issuer that contains
a commitment on user’s secret and a non-interactive zero-
knowledge proof stating that user holds a valid certificate
from the TA on the committed value. Issuer decides if user
is within an acceptable distance and validates the zero-
knowledge proof. This is the initialization phase in Figure

9. After the initialization phase the user and the issuer take
part in generating the pol credential, which is essentially
the issuer’s CL-signature on user’s commitment, issuer’s
location and time. This is pol generation phase in Figure 9.
Finally, in pol verification phase, the verifier and user takes
part in the verification of pol which is a non-interactive zero-
knowledge proof allowing verifier to validate pol without
revealing user’s identity.

Initialization phase, that corresponds to user making
commitment on its secret and generating zero-knowledge-
proof, and issuer verifying the proof, takes 24.7, 36.3 and
55.6 milliseconds for user, and 16.5, 24.4 and 38.7 for is-
suer (for RSA modulus size of 1024, 1536 and 2048 bits,
respectively). RSA modulus size comes into play when
prover generates zero-knowledge proof of knowledge on its
certificate (CL-signature) from TA, and when issuer verifies
that proof, and thus affecting the computation time.

pol generation phase is most costly (amount of time)
phase in all cases, that generates CL-signature on user at-
tributes (location, time) and requires the user and the issuer
to perform a protocol consisting of multiple rounds (see
specification of Idemix [42], Section 6.1.1 for a description
of the protocol). For three RSA modulus sizes (1024, 1536
and 2048 bits), the computation times for this phase are
170.4, 185.6 and 242.9 ms for users, and 228.7, 234.7 and
288.2 ms for the issuer. pol verification protocol at the user
and verifier takes 21.8, 32, 51.1 ms and 13.6, 22.3, 36.4 ms,
respectively.

pol size for three different RSA modulus lengths are
1840, 2087, 2391 bytes, respectively, that are definitely ac-
ceptable considering the storage capacity of today’s mobile
devices.

U U UI I IV V V
0

100

200

300

Ti
m

e
(m

ill
is

ec
on

ds
)

Initialization pol Generation pol Verification
RSA-1024 RSA-1536 RSA-2048

Fig. 9. Computation time of different phases of POLA for user (U), issuer
(I) and verifier (V), with 1024 bits, 1536 bits and 2048 bits RSA modulus
sizes for CL-signature.

5.2 Geo-tampering detection

The goal of this experiment is to analyze the geo-tampering
detection threshold ∆ (Def. 4) of our geo-tampering de-
tection approach, and to evaluate the performance of our
proposed algorithm to select effective neighborhood (Al-
gorithm in Fig. 6) in terms of lowering this threshold. We
also compare our geo-tampering detection algorithm with
location determination (trilateration) based approach (see
Sec. 4 for descriptions of both approaches).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Fig. 10. Floor plan of an office building of 50 × 25 sq. meter area. A
total of 15 access points (black squares) have been deployed at various
locations in the building. In experiments, we ran each test for 15 times,
to consider all fifteen possible locations as the location of the issuer AP.
To ensure integrity of the experiments, we considered the worst possible
(maximum) value for number of missing edges (Fig. 1) or geo-tampering
threshold ∆ (Fig. 11), among these 15 runs.

We noted earlier that geo-tampering detection threshold
(∆) is the tuple of EDM Recovery Error (∆R) and distance
measurement error (∆M). However, in experiments, dis-
tance measurement error is a parameter that we “choose”,
and observe the EDM Recovery Error for the chosen values
of ∆M . Hence when we mention geo-tampering threshold
(∆) in this section, we mean only the EDM recovery error
(∆R).

5.2.1 Experiment Setup
We considered an indoor office environment of 50 × 25
square meters dimension, that deploys fifteen access points
at different locations (e.g., each of the 10 rooms has one AP
in it, 5 more are deployed in the passageway, see Fig. 10).
We used MATLAB to simulate this environment.

Coverage range instead of line-of-sight. In indoor environment,
Line-Of-Sight (LOS) is hardly achievable due to walls and
other obstacles. However, unavailability of LOS does not
render TOA based distance measurement techniques (which
is used by our approach) impractical in indoor environment.
TOA based ranging between two access points in indoor
environment is practical as long as the APs are within
Coverage range of each other. Coverage range is a distance
that is related to maximum tolerable path loss of the direct
path. A direct path cannot be detected after the Coverage
range due to high attenuation and scattering of signal in
indoor environment [43]. As shown in [43], in typical indoor
environments (such as office, laboratory, factory), coverage
range is between 25 to 60 meters.

5.2.2 Selecting effective neighborhood
We implemented Algorithm in Fig. 6, and for comparison
considered a direct (baseline) approach where, given an
effective neighborhood size m, a total (m − 1) APs are
selected arbitrarily (randomly) from the available APs in
the neighborhood Nap0 . ap0 is included by default, and thus
completing the effective neighborhood.

Comparison of direct and proposed approach. We compared the
direct approach with the proposed approach in terms of
number of missing edges in the resulting effective neigh-
borhood ENap0 , and the comparison is shown in figure 1.

TABLE 1
Effective neighborhood selection: Direct Vs Proposed approach.
Proposed approach significantly reduces the number of missing edges

in ENap0 . When proposed approach selects an ENap0 of size 8 for
coverage range of 25 meters, there are only 4 missing edges out of
total possible 28 edges. Direct approach gives an ENap0 with 12

missing edges, for the same setting.

Coverage Range (m)
25 30 35 40 45

Ef
fe

ct
iv

e
ne

ig
hb

or
ho

od
si

ze

4 Proposed 2(6) 0(6) 0(6) 0(6) 0(6)

Direct 4(6) 3(6) 2(6) 1(6) 0(6)

8 Proposed 4(28) 1(28) 0(28) 0(28) 0(28)

Direct 12(28) 10(28) 6(28) 2(28) 0(28)

12 Proposed 17(66) 8(66) 3(66) 1(66) 0(66)

Direct 28(66) 18(66) 11(66) 3(66) 0(66)

Missing edges (Total edges)

We fixed the distance measurement error to 2 meters. We
ran the test 15 times, each time we selected a different
AP, located at different location in the building, to play
the role of ap0, and took worst possible value, that is, the
highest number of missing edges in ENap0 among this 15
runs. We considered effective neighborhood size of 4, 8 and
12, for Coverage range 25, 30, 35, 40, 45 meters, for both
approaches (See Table 1).

Table 1 shows that our proposed selection algorithm
performs better than the direct one in terms of missing
edges, for all three sizes of ENap0 . For instance, when
the required effective neighborhood size is 8 and the cov-
erage range is 25 meters, proposed approach outputs an
effective neighborhood with only 4 missing edges out of
possible 28 edges, while the direct approach outputs an
effective neighborhood with 12 missing edges. Since EDM
reconstruction error is directly dependent on the number
of missing elements [44], the proposed selection approach
significantly reduces geo-tampering threshold ∆.

5.2.3 Trade-off between ∆ and EN size.
Figure 11 shows how the value of ∆ changes when we
vary: (i) Size of the effective neighborhood (4, 8 and 12),
(ii) Coverage range of access points (ranging from 25 to 45
meters, in 1 meter interval), and (iii) distance measurement
error (0.5 to 3 meters, in 0.5 meter interval). We consider
the AP layout as in Fig. 10, (i.e., 15 APs in a 50 × 25
sq. meters office building). We used algorithm in Fig. 6 to
select the effective neighborhood in all cases. As in the last
experiment, we ran each test for all 15 possible location of
ap0, and took the maximum value of ∆.

Observe that for all sizes of effective neighborhood,
when the coverage range gets bigger, the geo-tampering
threshold ∆ approaches zero. This is due to the fact that
bigger coverage range results in EDMs with very small
percentage of missing elements, and consequently smaller
recovery error. Also notice that smaller the effective neigh-
borhood size, faster the ∆ becomes zero in terms of coverage
range. Smaller sizes of EN are therefore more suitable for
applications that have devices with comparatively weaker
radio strength, and/or operates in more complex indoor
scenarios where coverage ranges are affected by obstacles.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

(a) (b) (c)

Fig. 11. Geo-tampering threshold (∆) for varying coverage range (25 to 45 meters), distance measurement error (0.5 to 3 meters) and size of
effective neighborhood (4, 8, 12). For all cases, after a certain value for coverage range of access points, ∆ becomes zero. For example, in (a),
this happens when coverage range increases from 27 to 28 meters. This jump to zero is due to (i) we chose the coverage range interval for our
experiment as 1 meter, and (ii) number of missing edges in ENap0 is zero when coverage range is 28 meters in this case.

Fig. 12. Comparison with location determination based approach. Star represents the issuer AP, circles represent neighboring APs, and a solid
line between two APs means that these are in coverage range of each other. Location determination (Trilateration) based approach can only detect
geo-tampering in Scenario 1, where all 4 APs are in each other’s coverage range. Our approach is applicable in all three scenarios.

On the other hand, bigger sizes of EN are more suit-
able for applications that operates in less secure or public
area, such as shopping malls, where the possibility of geo-
tampering is higher; so bigger neighborhood will increase
the chance of having at least three untampered APs in it,
and thus guaranteeing the detection of geo-tampering attack
(see Theorem 4).

5.2.4 Comparison with location determination based detec-
tion.
Figure 12 compares our approach in detecting geo-
tampering attack with the location determination (trilater-
ation) based detection approach.

We consider three scenarios. In all scenarios, we consider
the presence of only 4 access points in the office building.
We assume that all other access points are absent (i.e.,
temporarily down or were not deployed in the first place).
In scenario 1, there are three access points at the coverage
range the issuer AP. In scenario 2, two access points are at
the coverage range of the issuer AP, and the remaining one
is two hops away. In scenario 3, only one access point is at
the coverage range of the issuer AP, and rests are two and
three hops away, respectively.

We fixed a distance measurement error of 2 meters, and
tried to compute the geo-tampering detection threshold ∆
in all scenarios, for both approaches. For location determina-
tion based detection approach, the trilateration error, which
is the distance between actual and trilaterated location of
issuer AP, is the amount that the AP needs to be moved for

a successful geo-tampering detection, and according to the
definition 4, this is the geo-tampering detection threshold.

Observe that trilateration based approach is only appli-
cable in scenario 1, where all three APs are at the coverage
range of the issuing AP, and detects a geo-tampering with
∆ = 0.58 meters. Our approach is applicable in all three
scenarios, and and detects geo-tampering with ∆ = 0, 2.1
and 2.2 meters, respectively.

6 RELATED WORK

Geo-tampering attack that is introduced in this paper is
complementary to the traditional attacks in localization
systems such as [45], [46] where the access points remain
intact and the prover’s goal is to claim a different location.
In secure localization systems the prover intends to change
the timing of the signals such that the verifying nodes
have measurements that are constrained by their physical
locations that are assumed correct. For example in [45] it is
shown that the prover’s restriction is that they can add a
single delay to all distances and this will limit the places
that are possible to claim. In our setting the locations of
the access points are malleable and the change, if any, must
be detected in real time and by performing new distance
measurements and comparing them with some base mea-
surements. Note that this attack is increasingly possible as
the number of access points gets smaller and can be easily
moved/relocated. Also note that tampering with location
(moving) is a much easier attack compared to breaking into
such nodes and modify their codes.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

A number of proof-of-location systems have been pro-
posed to date but none of them considers location integrity
of the infrastructure.

Location proof system in Javali et al. [34] utilizes CSI
(Channel State Information) data extracted from packets
sent by users to access points to determine their location,
and a fuzzy vault technique to preserve user location
privacy. However, this is vulnerable to relay attack that
enables a user obtaining proof for locations that they have
not been. VeriPlace [3] is another proof-of-location system
that employs three different trusted third parties to provide
proof-of-location to the users. However, user location ver-
ification capability of this scheme is significantly limited
since the scheme can only detect location cheating when
the two locations claimed by a user in consecutive proof-of-
location requests are impossible in space-time domain for
that individual. APPLAUS [2] is a proof-of-location system
where bluetooth enabled users mutually generate proof-of-
location that are uploaded on a server, that can later by
queried by a verifier to validate a user’s location claim.
Periodically changing pseudonyms are used to provide user
anonymity, that can introduce high storage and manage-
ment overhead for the Certificate Authority. To achieve user
anonymity with respect to the issuer, Nasouhi et al. [47]
use a modified version of DB in [27] and encrypt the user
ID to achieve POL security and privacy. They however do
not provide user anonymity with respect to the pol verifier.
Also, pol generation in the scheme is verifier specific; that
is a user must use the public key of the verifier to encrypt
their identity during the pol generation phase to preserve
anonymity against issuer, resulting in a pol that can be used
only by the target verifier.

Our model of POL system assumes existence of a trusted
location infrastructure consisting of APs with correct lo-
cations and honest behaviour. In [2], [16], [17], [47], [48]
however the pol is constructed by untrusted “witnesses”,
each consisting of a neighbouring device. These works,
however, do not cryptographically model and prove se-
curity. Rather they use informal security arguments such
as “trust ranking” [2], [16], [17] or incentive and penalty
models [47], [48] to show security of the system.

7 CONCLUDING REMARKS

We provided a formal model and security definition for
proof-of-location systems that provide privacy for the user
against pol issuer and verifier, and proposed a proof-of-
location system with provable properties in our model. We
introduced a novel attack that targets the physical integrity
of the proof issuing infrastructure, and results in forged pol.
We showed how EDM can be effectively used to provide
provable protection against this attack. Using EDM for
infrastructure integrity is a novel approach and can have
applications to other location systems. We also implemented
our proof-of-location scheme on android smart-phones to
observe computational time and storage requirement. Op-
timal placement of access points given the physical restric-
tions of indoor environments to naturally protect against
geo-tampering is an interesting research direction.

ACKNOWLEDGMENT

The work of Mamunur Akand and Reihaneh Safavi-Naini
was in part supported by Natural Sciences and Engineering
Research Council of Canada and Telus Communications
Industrial Research Chair Program.

REFERENCES

[1] B. Waters et al., “Secure, Private Proofs of Location,” Princeton
University, Technical, 2002.

[2] Z. Zhu et al., “APPLAUS: A Privacy-Preserving Location Proof
Updating System for location-based services,” in 2011 Proceedings
IEEE INFOCOM, 2011, pp. 1889–1897.

[3] W. Luo et al., “VeriPlace: A Privacy-aware Location Proof Archi-
tecture,” in Proc. of the 18th SIGSPATIAL, ser. GIS ’10. New York,
NY, USA: ACM, 2010, pp. 23–32.

[4] C. Ardagna et al., “Privacy-enhanced location-based access con-
trol,” in Handbook of Database Security. Springer, 2008, pp. 531–
552.

[5] I. Ray, M. Kumar, and L. Yu, “Lrbac: a location-aware role-based
access control model,” in International Conference on Information
Systems Security. Springer, 2006, pp. 147–161.

[6] R. Khan et al., “A secure location proof generation scheme for
supply chain integrity preservation,” in IEEE HST’13, vol. 13, 2013,
pp. 446–450.

[7] C. Bonebrake et al., “Attacks on gps time reliability,” IEEE Security
& Privacy, vol. 12, no. 3, pp. 82–84, 2014.

[8] T. Nighswander et al., “Gps software attacks,” in Proc.s of the 2012
ACM CCS. ACM, 2012, pp. 450–461.

[9] S. Brands et al., “Distance-bounding protocols,” in Workshop on the
Theory and Application of of Cryptographic Techniques. Springer,
1993, pp. 344–359.

[10] I. Boureanu et al., “Secure and lightweight distance-bounding,” in
International Workshop on LightSec. Springer, 2013, pp. 97–113.

[11] G. Hancke et al., “An rfid distance bounding protocol,” in Proc. of
the 2005 SecureComm. IEEE, 2005, pp. 67–73.

[12] R. V. others, “Rss-based sensor localization with unknown trans-
mit power,” in Proc. of 2011 ICASSP. IEEE, 2011, pp. 2480–2483.

[13] E. Xu et al., “Source localization in wireless sensor networks from
signal time-of-arrival measurements,” IEEE Transactions on Signal
Processing, vol. 59, no. 6, pp. 2887–2897, 2011.

[14] C. Zhang et al., “Accurate uwb indoor localization system utilizing
time difference of arrival approach,” in 2006 IEEE RWS. IEEE,
2006, pp. 515–518.

[15] A. Ranganathan et al., “Are we really close? verifying proximity in
wireless systems,” IEEE S&P, 2017.

[16] X. Wang et al., “STAMP: Ad hoc spatial-temporal provenance
assurance for mobile users,” in Proc. of 21st ICNP), 2013, pp. 1–
10.

[17] S. Gambs et al., “PROPS: A PRivacy-Preserving Location Proof
System,” in Proc. of the 33rd SRDS, 2014, pp. 1–10.

[18] M. Graham et al., “Protecting Privacy and Securing the Gathering
of Location Proofs – The Secure Location Verification Proof Gath-
ering Protocol,” in MobiSec. Springer, 2009, pp. 160–171.

[19] L. Bussard et al., “Distance-bounding proof of knowledge to avoid
real-time attacks,” in IFIP SEC. Springer, 2005, pp. 223–238.

[20] A. Bay et al., “The bussard-bagga and other distance-bounding
protocols under attacks,” in Proc. of the 2012 ICISC. Springer,
2012, pp. 371–391.

[21] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity re-
vocation,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2001, pp. 93–118.

[22] J. Camenisch et al., “Efficient attributes for anonymous creden-
tials,” in Proc. of the 15th ACM CCS. ACM, 2008, pp. 345–356.

[23] G. Persiano and I. Visconti, “An efficient and usable multi-show
non-transferable anonymous credential system,” in International
Conference on Financial Cryptography. Springer, 2004, pp. 196–211.

[24] A. Ahmadi et al., “New attacks and secure design for anonymous
distance-bounding,” in Proc. of the 2018 ACISP. Springer, 2018,
pp. 598–616.

[25] X. Bultel et al., “A prover-anonymous and terrorist-fraud resistant
distance-bounding protocol,” in Proc. of the 9th ACM WiSec. ACM,
2016, pp. 121–133.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

[26] S. Gambs et al., “Prover anonymous and deniable distance-
bounding authentication,” in Proc. of the 9th ASIACCS. ACM,
2014, pp. 501–506.

[27] G. Avoine et al., “A terrorist-fraud resistant and extractor-free
anonymous distance-bounding protocol,” in ASIACCS’17. ACM,
2017, pp. 800–814.

[28] I. Damagard and E. Fujisaki, “An integer commitment scheme
based on groups with hidden order,” IACR Cryptology ePrint
Archive 2001/064, 2001.

[29] J. Camenisch et al., “Efficient group signature schemes for large
groups,” in Annual International Cryptology Conference. Springer,
1997, pp. 410–424.

[30] ——, “A signature scheme with efficient protocols,” in Security in
communication networks. Springer, 2002, pp. 268–289.

[31] C. Rackoff et al., “Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack,” in CRYPTO’91. Springer,
1991, pp. 433–444.

[32] J. Bacon and K. Moody, “Time in distributed systems,” https://
www.cl.cam.ac.uk/teaching/0910/ConcDistS/10a-Time.pdf, (Ac-
cessed on 06/26/2020).

[33] B. Fisch et al., “Physical zero-knowledge proofs of physical proper-
ties,” in Annual Cryptology Conference. Springer, 2014, pp. 313–336.

[34] C. Javali et al., “I Am Alice, I Was in Wonderland: Secure Location
Proof Generation and Verification Protocol,” in Proc. of the 2016
LCN, 2016, pp. 477–485.

[35] A. Norrdine, “An algebraic solution to the multilateration prob-
lem,” in Proc. of the 15th IPIN, vol. 1315, 2012.

[36] I. Dokmanic et al., “Euclidean distance matrices: A short
walk through theory, algorithms and applications,” CoRR, vol.
abs/1502.07541, 2015.

[37] M. Youssef et al., “Pinpoint: An asynchronous time-based location
determination system,” in Proc. of the 4th SIGMOBILE. ACM,
2006, pp. 165–176.

[38] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations. Springer, 1972, pp. 85–103.

[39] “Find if there is a path between two vertices in an
undirected graph,” https://www.geeksforgeeks.org/
find-if-there-is-a-path-between-two-vertices-in-an-undirected-graph/,
(Accessed on 08/20/2020).

[40] H. Lim and C. Kim, “Flooding in wireless ad hoc networks,”
Computer Communications, vol. 24, no. 3-4, pp. 353–363, 2001.

[41] “Msp implementation with identity mixer,” https:
//hyperledger-fabric.readthedocs.io/en/release-1.3/idemix.
html\#what-is-idemix, (Accessed on 08/24/2020).

[42] J. Camenisch et al., “Specification of the identity mixer crypto-
graphic library,” IBM Research—Zurich, pp. 1–48, 2010.

[43] N. A. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and
modeling of ultrawideband toa-based ranging in indoor multipath
environments,” IEEE Transactions on Vehicular Technology, vol. 58,
no. 3, pp. 1046–1058, 2008.

[44] R. Parhizkar, “Euclidean distance matrices: Properties, algorithms
and applications,” Ph.D. dissertation, Ph. D. dissertation, Ecole
Polytechnique Federale de Lausanne (EPFL), 2013.

[45] V. Shmatikov et al., “Secure verification of location claims with
simultaneous distance modification,” in ASIAN. Springer, 2007,
pp. 181–195.

[46] J. Chiang et al., “Secure and precise location verification using
distance bounding and simultaneous multilateration,” in ACM
WiSec’09. ACM, 2009, pp. 181–192.

[47] M. R. Nosouhi et al., “Pasport: A secure and private location
proof generation and verification framework,” IEEE Transactions
on Computational Social Systems, vol. 7, no. 2, pp. 293–307, 2020.

[48] M. Amoretti, G. Brambilla, F. Medioli, and F. Zanichelli,
“Blockchain-based proof of location,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 2018, pp. 146–153.

[49] U. Dürholz et al., “A formal approach to distance-bounding rfid
protocols,” in ISW. Springer, 2011, pp. 47–62.

Mamunur Akand is a Ph.D. candidate in the
Department of Computer Science, University of
Calgary, Canada, and Dr. Reihaneh Safavi-Naini
is his current supervisor. He received his Bache-
lor and Master in Computer Science from Islamic
University of Technology, Bangladesh and Uni-
versity of Calgary, Canada, respectively. Akand
has been working with ISPIA Lab, University
of Calgary since 2014. His research interests
include cryptography, information security, and
location-based security and privacy.

Reihaneh Safavi-Naini holds the NSERC/Telus
Industrial Research Chair and Alberta Innovates
Chair in Information Security. She is the (co-)
Founding Director of Institute for Security, Pri-
vacy and Information Assurance at the Univer-
sity of Calgary, during 2009-2019, and currently
the Director of Information Security Lab in the
Department of Computer Science at the Univer-
sity of Calgary, Canada. Before joining Univer-
sity of Calgary in 2007, she was a Professor of
Computer Science, and the Director of Telecom-

munication and Information Technology Research Institute (TITR) and
the Centre for Information Security, all at the University of Wollongong,
Australia. She has a Ph.D. in coding theory from University of Waterloo,
Canada. Her current research interests include information-theoretic
security, provable cryptography, network security, and security of dis-
tributed and decentralised systems.

Marc Kneppers received his Master in Astron-
omy from University of Western Ontario (West-
ern University). He has 20 years of experience
in IT/networking security and was appointed a
TELUS Fellow and is now the Chief Security Ar-
chitect for TELUS Communications. His respon-
sibilities include security oversight and strategy
across all of TELUS’ technologies and portfo-
lios. He represents TELUS on Canadian national
infrastructure forums and industry boards with
membership in international security forums and

vendor advisory boards.

Matthieu Giraud received his Master in Cryptography in 2016 from
Universite de Bordeaux, France, and Ph.D. in 2019 from Laboratory
LIMOS of University Clermont Auvergne, France, on the security of
data storage in the cloud. Currently he is working as an Engineer in
the cryptography department of Thales Security and Communications
(Gennevilliers, France). His research interests include cryptography,
mathematics, and protection of privacy. He has worked on symmetric
searchable encryption schemes, particularly on their leakage.

Pascal Lafourcade obtained his Ph.D. in 2006
from ENS Cachan (laboratory LSV) on verifica-
tion of cryptographic protocols in presence of
algebraic properties. He spent 1 year at the ETH
Zurich in David Basin group, where he worked
on WSN. Then, he was associate professor at
Verimag during 7 years, where he developed
automatic techniques for verifying cryptographic
primitives and analyzed security protocols. Cur-
rently, he holds an industrial chair on Digital Trust
in Laboratory LIMOS (Team Networks and Pro-

tocols) and is associate professor at University of Auvergne (Clermont-
Ferrand, France).

