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The purpose of this Supplemental Material is to provide some details about the experimental setup and about the
experimental methodology. We also briefly discuss annex questions about the influence of the strength of the initial
noise and about the analogy between soliton refraction and refraction of light rays. All equations, figures, reference
numbers within this document are prepended with “S” to distinguish them from corresponding numbers in the Letter.
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I. DETAILED DESCRIPTION OF THE EXPERIMENTAL SETUP

FIG. S1. Schematic representation of the experimental setup. The light signals are shaped using two intensity modulators
(EOM) driven independently by the two synchronized channels of an arbitrary waveform generator (AWG) having a bandwidth
of 25 GHz. The optical signals are amplified to Watt-level using Erbium-doped fiber amplifiers (EDFAs) before being combined
via a 50/50 fiber coupler and injected inside the recirculating fiber loop. Light detection is made using a fast photodiode (PD)
coupled to a fast oscilloscope (OSC) having a bandwidth of 65 GHz and a sampling frequency of 160 GSa/s.
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Fig. S1 shows a detailed representation of our experimental setup, including some technical details about the
generation of the optical signals that are not described in the Letter. The light source used for generation of the short
light pulses is a single-frequency continuous-wave (CW) laser diode (APEX-AP3350A) centered at λ0 = 1550 nm
which delivers an optical power of a few mW. The short pulses are produced by using a 20-GHz intensity modulator
(iXblue MX-LN-20) connected to an arbitrary waveform generator (AWG) having a bandwidth of 25 GHz.

The optical soliton gases (SGs) are made using another intensity-modulated laser at the wavelength λ0 + δλ with
δλ = 0.125 nm. The SGs have the initial form of flat-top pulses with durations that increase monotonically from
∼ 200 ps to ∼ 2000 ps in 29 steps. These flat-top pulses are produced using an intensity modulator connected
to the second channel of the AWG. This second channel is synchronized with the first channel of the AWG. The
initial delay between the short pulses and the flat-top pulses (the optical SGs) can be adjusted with a resolution of
20 ps by controlling the shapes and delays of the electrical signals delivered by the each of the two channels of the AWG.

In our experiment the short pulse and the optical SG have slightly different group velocities because the wave-
length of the laser that this used to generate the optical SG is detuned by δλ from the wavelength of the laser
used to generate to short pulses. The group velocity difference δvg between the short pulse and the SG is given
by [δvg]

−1 ≃ (2πc/λ20)β2 δλ ≃ −2.16 ps/km where c represent the velocity of light in vacuum. The group velocity
dispersion coefficient of the fiber is β2 = −22 ps2 km−1 at the wavelength λ0 = 1550 nm.

The short pulses and flat-top pulses are amplified at the Watt-level by using Erbium-doped fiber amplifiers (ED-
FAs). Importantly the amplified spontaneous emission (ASE) of the EDFA amplifying the power of the flat-top pulses
adds some optical noise, which explains that the generated square pulses evolve into fully randomized SGs inside the
recirculating fiber loop.

The light signals at the output of the EDFA are combined using a 50/50 fused fiber coupler connected to an
acousto-optic modulator (AOM). The AOM plays the role of an optical gate that is open during ∼ 500 ns for the
injection of the light signal into the fiber loop and closed over much longer times (typically ∼ 5 ms), when the signal
circulates inside the fiber loop.

The recirculating fiber loop is made of ∼ 8 km of single mode fiber (SMF) closed on itself by a 90/10 fiber
coupler. The SMF has been manufactured by Draka-Prysmian. It has a measured second-order dispersion coeffi-
cient β2 = −22 ps2 km−1 and an estimated Kerr coefficient γ = 1.3 km−1 W−1 at the working wavelength of 1550 nm.

The 90/10 coupler is arranged in such a way that 90% of the intracavity power is recirculated. The optical
signal circulates in the counter-clockwise direction. At each round trip, 10% of the circulating power is extracted
and directed toward a photodetector (PD) coupled to a sampling oscilloscope (160 Gsa/s) leading to an overall 32
GHz detection bandwidth. Experimental data consist in a succession of sequences (one per round trip) that are
subsequently processed numerically to construct single-shot space-time diagrams showing the wavefield dynamics.

The losses accumulated over one circulation in the fiber loop are partially compensated using a counter-propagating
Raman pump at 1450 nm coupled in and out of the loop via wavelength division multiplexers (WDMs). The pump
laser at 1450 nm is a commercial Raman fiber laser delivering an output beam having a power of several Watt. In
our experiments, this optical power is attenuated to typically ≈ 200 mW by using a 90/10 fiber coupler (not shown
in Fig. S1). The mean optical power decay rate of the field circulating in the loop is αeff ∼ 6.2 × 10−4 km−1 or
equivalently ∼ 0.0027 dB/km.

II. CIRCULATING OPTICAL SIGNAL AND OPTICAL POWER CALIBRATION

In this Section, we show and describe the characteristics of the entire optical signal that circulates inside the fiber
loop.

Fig. S2(a) shows the space-time evolution of the entire signal circulating inside the loop. It has a duration of
∼ 400 ns and it propagates over a distance of ∼ 1500 km (the propagation time in one experiment is around 5 ms).
As described in the Letter, the optical signal is composed of an ensemble of 29 short pulses, each of them being fol-
lowed by its own SG that has the initial shape of a flat-top pulse perturbated by some optical noise (see Fig. S2(b)–(e)).
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FIG. S2. (a) Global space-time pattern recorded at the output of the recirculating fiber loop in a single shot. The region where
29 solitons interact with 29 optical SGs is between t ≃ 60 ns and t ≃ 340 ns. (b)–(e) Zoomed view on four selected experiments
where solitons are refracted by SGs of various extensions. (f) Space-time evolution of a broad pulse of constant power initially
pertubated by some optical noise. This space-time pattern is typical from evolution observed in the so-called nonlinear stage
of MI. The optical signal measured at z = 96 km and shown in (f) is used to determine the mean power of the broad pulse.
This measurement is used to calibrate the optical power circulating in the fiber loop.

In Fig. S2(a), the time interval devoted to experiments where solitons interact with SGs ranges between t ≃ 60
ns and t ≃ 340 ns. Between these two times, the duration of the SGs increases monotonically from ∼ 200 ps to
∼ 2000 ps (right part of Fig. S2 around t = 330 ns) in 29 steps. Using this strategy, we capture in one single
shot the space-time evolution of a set of 29 experiments where we observe the interaction between 29 pulses and
29 associated SGs of increasing extents. This “single-shot approach” has the advantage of avoiding any significant
drift in the experimental parameters during the whole experiment (∼ 5 ms). All the 29 experiments (and the as-
sociated shift measurements) are made in the same conditions with identical physical parameters. Also, we note
that the time separation between two neighboring experiments is sufficiently large to guarantee that all the experi-
ments are independent (i. e. long-range coupling between one given experiment and the 28 others are fully negligible).
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In addition to the broad space-time region where solitons interact with SGs, the optical signal propagating inside
the fiber loop has also been designed to incorporate some other regions that permit to measure the optical power
circulating inside the fiber loop with a good accuracy. The region in Fig. S2(a) that is surrounded by an orange
rectangle is the region of propagation of a very broad (∼ 10 ns) flat top pulse perturbated by some small optical noise.
As clearly shown in Fig. S2(f), the flat-top part of the pulse behaves as a plane wave that is destabilized by the small
optical noise through the process of modulation instability (MI), as already shown and extensively discussed in ref. [1].

The observed evolution of the nonlinear stage of MI can be used to advantage to measure the optical power
circulating inside the fiber loop. Fig. S2(g) shows the time signal recorded after a propagation distance of z = 96
km, at a point where large coherent structures can be observed after the initial destabilization of the plane wave.
The number of coherent structures observed on a given time span is directly dependent on the period TMI associated
with the process of MI. In Fig. S2(g), we record a total of 58 coherent structures over a time span of 6.05 ns, which
means that the period associated with the MI process is TMI =104.3 ps. Therefore the mean power P0 of the plane
wave in the measurement region is given by P0 = (2π/TMI)

2|β2|/(2γ) = 29mW [1]. This value is used for calibration
and permits to convert the voltage measured by the fast photodiode into an optical power.
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FIG. S3. (a) Experimental space-time diagram showing the positions of the points Pi(xi, ti) (i = 0, 1, 2) that are measured in
order to determine the space shift (∆x) due to the refraction phenomenon. (b) Zoomed view of (a) showing the measured shift
∆x.

III. MEASUREMENT OF THE SPACE SHIFT IN EXPERIMENTS

In this section we describe how the space shift associated with the refraction of the soliton by the SGs has been
measured in the experiment.

In a first step, the space-time diagrams recorded in the experiment are converted to dimensionless units using
mathematical transformations given in the Letter, see Eq. (3). In a second step, the position (xi, ti) of the soliton is
measured at three different times (i = 0, 1, 2). The first measurement point is the point P0(x0, t0) in Fig. 3(a) that
corresponds to the smallest time at which the soliton position can be measured. The second measurement point is the
point P1(x1, t1) in Fig. S3(a) that corresponds to the soliton position just before it is refracted in the SG. The third
measurement point is the point P2(x2, t2) in Fig. 3(a) that corresponds to the soliton position just after it emerges
from the SG.

The position shift ∆x computed from simple trigonometric considerations is given by

∆x = x2 − x0 − t2 tan(α) (S1)

with tan(α) = x1−x0

t1−t0
.

There exists an uncertainty in positioning P0, P1, P2 in the space-time plot shown in Fig. S3. This uncertainty
translates into an error on the shift ∆x that is measured experimentally. We have estimated it in a statistical way by
repeating the measurement of the positions of P0, P1, P2 a large number of times. Doing that (i.e. repeating 50 times
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the same measurement of the shift in one given experiment), we estimate that the absolute error on the measurement
of the position shift ∆x of the tracer soliton is ±0.5.
Let us emphasize that there also exists some uncertainties on the shift measurement in our numerical simulations.

One source of uncertainty arises from the fact that we make some assumptions about the mathematical form of
the function fitting the noisy pulses that are recorded in the experiments. In the Letter, we have chosen to fit
the experimental pulses by gaussian pulses. If another choice like sech-like pulses is made, we have found that the
imaginary part ηp of the spectral parameter characterizing the pulse can change by ∼ 10% (with the area Ap being
constant). However the relative change of spatial shift arising from this modification of the pulse eigenvalue is typically
only around ∼ 2%. Nevertheless the measurement of the position shift ∆x in our numerical simulations of Eq. (3) is
made using the same procedure as the one used for experimental data and we estimate that the absolute error made
in the measurement of the numerical shifts is similar to the error made in the experimental measurement.

IV. EXPERIMENTAL MEASUREMENT OF THE PULSE AREAS AND NUMERICAL
CALCULATION OF THE ASSOCIATED DISCRETE IST SPECTRA

Fig. S4 shows a typical signal that is recorded in the experiment after a propagation over one round-trip (z = 8
km). In the example shown in Fig. S4, the signal is plotted in dimensionless units. It consists of one pulse located
near one of the SGs of largest extension. The signal plotted with a gray line is the raw signal recorded by the fast
photodiode. The fast oscillations at a frequency of ∼ 15 GHz that are detected on the top of the square pulse are due
to the beating between the laser used to produce the short pulses and the laser used to produce the square pulses
(the optical SGs).

The extinction ratio of the EOMs (see Fig. S1) is of 20 dB. This means that residual light carrying a power that is
∼ 1% smaller than the power of the modulated signals propagate with the square and pulsed signals produced by the
modulators. This produces a spectacular beating pattern on the top of the square pulses which represents however
an observation artifact. In particular, the observed beating signal has no influence on the solitonic content of the pulses.

In order to measure the area of the square pulses, the beating signal is suppressed by using a filter that smooth the
unwanted oscillation at ∼ 15 GHz. This gives the signal plotted with the black line in Fig. S4. The area ASG under
the black line defined by ASG =

∫
|ψ(x)|dx is then easily computed. As described in the Letter, this signal in black

line is then fitted by the function ψSG(x) = b exp
(
−x2n/(2L2n)

)
where the real parameters b, x0, L and the integer

parameter n are determined under the constraint that the integral
∫
|ψSG(x)|dx must be equal to the area ASG that

has been measured for the experimental signal.

The same procedure is used for the short pulse except that the filtering stage is not applied. The measured profile
is fitted by ψp(x) = a exp

(
−x2/(2w2)

)
, where the parameters a and w are determined under the constraint that the

integral
∫
|ψP (x)|dx must be equal to the area AP =

∫
|ψ(x)|dx measured for the short pulse in the experiment.

Once the parameters characterizing the experimental pulses ((a,w) and (b, L, n)) are determined, their discrete IST
spectra are computed numerically using the Fourier collocation method described in ref. [2].
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FIG. S4. Raw signal recorded in the experiment (gray line) plotted in dimensionless units. The black line represents the raw
signal that has been smoothed to remove unwanted oscillations due to the beating between the two laser fields. The red line
represents the functions ψp(x) and ψSG(x) that are fitted from the experimental data.
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V. NUMERICAL VALUES OF THE FITTING PARAMETERS AND OF THE SPACE SHIFTS
CHARACTERIZING EACH OF THE 29 EXPERIMENTS

In this section we provide a table summarizing the parameters fitting the tracer pulses and the square pulses
together with the space shift measured in the experiments and in the numerical simulations of the 1D-NLSE (Eq. (3)
of the manuscript).

a w ηp b L n ∆x(EXP ) ∆x(NLSE)
1 1.08 1.57 0.734 0.427 4.83 2 0.13 0.75
2 1.10 1.21 0.643 0.535 5.45 2 0.57 1.16
3 1.07 1.45 0.693 0.585 6.78 2 0.89 1.61
4 0.92 1.92 0.636 0.533 8.22 2 1.20 1.73
5 0.94 1.83 0.646 0.603 9.74 4 2.06 2.19
6 1.00 1.77 0.698 0.597 10.72 4 2.73 2.50
7 1.02 1.74 0.714 0.600 13.02 4 2.56 3.03
8 0.97 1.87 0.682 0.678 15.07 6 3.36 4.08
9 0.99 1.78 0.687 0.658 16.11 6 3.94 4.12
10 1.03 1.59 0.685 0.600 17.91 6 2.91 4.26
11 1.06 1.49 0.696 0.614 19.51 6 3.70 4.72
12 0.96 1.67 0.635 0.595 21.59 6 4.06 5.31
13 1.05 1.80 0.751 0.568 22.47 6 5.20 5.00
14 1.23 1.31 0.814 0.558 24.22 8 4.17 5.40
15 1.12 1.45 0.740 0.544 25.75 10 5.34 5.81
16 1.00 1.82 0.710 0.542 26.46 10 5.20 5.78
17 1.05 1.74 0.741 0.560 28.57 10 5.83 6.51
18 1.09 1.42 0.704 0.551 29.97 12 5.20 6.86
19 1.08 1.72 0.772 0.573 31.36 12 6.24 7.68
20 1.06 1.50 0.698 0.603 33.64 12 6.75 8.50
21 1.04 1.66 0.712 0.571 36.47 10 7.66 8.67
22 1.16 1.53 0.807 0.566 37.41 10 8.76 8.55
23 1.08 1.67 0.756 0.559 39.23 12 8.23 9.08
24 1.01 1.82 0.720 0.584 40.50 14 9.68 10.01
25 1.07 1.75 0.762 0.584 41.92 14 9.25 10.30
26 1.07 1.76 0.764 0.587 42.00 10 8.81 9.95
27 1.13 1.46 0.758 0.598 43.51 10 9.42 10.65
28 0.95 1.65 0.617 0.603 44.75 10 10.10 11.70
29 0.97 2.04 0.710 0.634 46.78 10 11.37 12.64

TABLE I. For each of the 29 experiments presented in Fig. S2(a), this table summarizes the parameters fitting the amplitude
a and the width w of the tracer pulses that are described by the discrete eigenvalue λp = −v/4 + iηp (v = 4.74). It also
summarizes the amplitude b and the width L of the square pulses together with the exponent n used to fit the pulses by a
super-gaussian function, see Sec. IV. The numerical values of the shift ∆x measured in the experiment and in the numerical
simulation of Eq. (3) are given in the two last columns on the right.
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VI. INFLUENCE OF THE STRENGTH OF THE INITIAL NOISE PERTURBING THE SQUARE
PULSE ON THE SPACE SHIFT EXPERIENCED BY THE TRACER SOLITON

In our experiment, the optical SG has initially the form of a “long” square pulse perturbed by some optical noise
that is added by the EDFA, see Sec. I. In this Section, we show that the strength of this initial noise does not
significantly influence the position shift experienced by the tracer soliton.

FIG. S5. (a) Numerical simulation of Eq. (3) of the manuscript with the initial condition being the square pulse perturbed by
a small noise represented in (c). (b) Same as in (a) but with the square pulse represented in (d) and perturbed by a strong
noise. (e) Discrete IST spectral of the square pulse shown in (c) (blue points) and in (d) red points). (f) Continuous spectrum
of the square pulse shown in (c) (blue line) and in (d) (red line).

Fig. S5 shows numerical simulations of the 1D-NLSE (Eq. (3) of the manuscript with ϵ = 0.016) where square
pulses are perturbed initially by noise having two different levels, compare Fig. S5(c) and Fig. S5(d). As shown in
Fig. S5(a) and Fig. S5(b), the spatio-temporal evolutions that are observed with these two different initial conditions
are very similar. It is noticeable that the development of a fully randomized bound state SG occurs at a short time
(t ∼ 1) when the square pulse is initially perturbed by a strong noise, see Fig. S5(b). On the other hand, it occurs at
a longer time (t ∼ 5) when the initial noise is small, see Fig. S5(a). However the space shift ∆x that is observed due
to the interaction between the tracer soliton and the SG is nearly identical in the two NLSE simulations (compare
the insets in Fig. S5(a) and Fig. S5(b)).

The fact that the space shift ∆x does not significantly depend on the noise level can be understood from simple
considerations from the IST theory. Fig. S5(e) shows the discrete IST spectra the square pulse perturbed by a
small noise (blue points) and by a strong noise (red points). It can be readily seen that the discrete IST spectra are
nearly identical for both pulses, whatever their noise level. On the other hand, the continuous spectra (or reflection
coefficients in the IST theory) of the two square pulses significantly differ: the continuous spectrum of the noisiest
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pulse is significantly perturbed by the presence of the strong random fluctuations on the top of the pulse.
Summarizing, the noise perturbing the square pulses dominantly influences the continuous part of the IST spec-

trum associated with dispersive waves without perturbing significantly the discrete part of the IST spectrum that is
associated with solitonic modes.

The numerical simulation shown in Fig. S5 confirms that the observed space shift dominantly arises from the
interaction between solitonic modes, as described by Eq. (5) of the manuscript. This information is also present in
Fig. 3(a) of the manuscript where most of the points computed from Eq. (5) are very close to those computed from
the numerical simulation of the 1D-NLSE.

VII. ANALOGIES AND DIFFERENCES BETWEEN SOLITON REFRACTION AND REFRACTION
OF LIGHT RAYS

In this section, we briefly discuss the analogies and differences that can be drawn between the soliton refraction
phenomenon evidenced in our work and the conventional refraction of light rays in geometrical optics.

FIG. S6. (a) Space-time plot computed from numerical simulations of 1D-NLSE with a small damping term (Eq. (3) of the
manuscript with ϵ = 0.016). (b) Same as in (a) but without dissipation (ϵ = 0 in Eq. (3)).

In geometrical optics, the refraction of light rays occurs at the interface between two dielectric media having
refractive indexes n1 and n2. This phenomenon is described by the so-called Snell-Descartes law that connects the
angle of refraction α2 of the light ray with its angle of incidence α1 (sin(α2) = n1/n2 sin(α1)). The Snell-Descartes
law describes some linear physics where the refraction phenomenon does not depends on the intensity of the light
beams.

In our work with solitons, we observe an intrinsically nonlinear phenomenon where the “angle of refraction” depends
not only on the “angle of incidence” but also on the optical powers carried by the tracer soliton and the SG. Taking
the perspective of geometrical optics, the refraction angle would be the effective velocity s(ηp) of the tracer soliton
propagating inside the SG while the incidence angle would be the relative velocity v between the free (non-interacting)
tracer soliton and the SG. The relation analogous to Snell-Descartes law would be Eq. (7) of the manuscript that
simplifies into Eq. (8) for the bound state SG realized in our experiment (still keeping the analogy with ray optics,
this bound state SG represents a glass slide).

Eq. (8) of the manuscript indicates how the effective velocity (or refraction angle) of the tracer soliton (or light ray)
is modified due to the interaction with the SG (or glass slide). s(ηp) is a function of v (the “incidence angle”), of ηp
(the parameter encoding the amplitude and width of the tracer soliton) and of b (the parameter giving the amplitude
of the initial noisy square pulse that develops into a SG).

Considering the refraction of a light ray through a glass slide in geometrical optics, it is well known that the incident
ray and the emergent ray are parallel to each other. The transmission through the glass slide results in a position
shift of the light ray for non-zero incidence angles. As illustrated in Fig. S6 showing numerical simulations of the
1D-NLSE (Eq. (3) of the manuscript), the tracer soliton emerges from the SG with a direction that is parallel to the
incident one only if the evolution is governed by the integrable (non-dissipative) 1D-NLSE, see Fig. S6(b). On the
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other hand, collisions or interactions between solitons becomes inelastic in the presence of a small dissipation, which
results in “refraction” and “incidence” angles that are different, as illustrated in Fig. S6(a). Note also that Eq. (8)
of the manuscript indicates that the position shift of the tracer soliton grows with the number of solitons in the SG
(and with its spatial extension).
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