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Very Important Paper

Data-Driven Protein Engineering for Improving Catalytic
Activity and Selectivity
Yu-Fei Ao,*[a, b, e] Mark Dörr,[a] Marian J. Menke,[a] Stefan Born,[c] Egon Heuson,[d] and
Uwe T. Bornscheuer*[a]

Protein engineering is essential for altering the substrate scope,
catalytic activity and selectivity of enzymes for applications in
biocatalysis. However, traditional approaches, such as directed
evolution and rational design, encounter the challenge in
dealing with the experimental screening process of a large
protein mutation space. Machine learning methods allow the
approximation of protein fitness landscapes and the identifica-
tion of catalytic patterns using limited experimental data, thus

providing a new avenue to guide protein engineering cam-
paigns. In this concept article, we review machine learning
models that have been developed to assess enzyme-substrate-
catalysis performance relationships aiming to improve enzymes
through data-driven protein engineering. Furthermore, we
prospect the future development of this field to provide
additional strategies and tools for achieving desired activities
and selectivities.

Introduction

Protein engineering is essential to improve the catalytic
function of enzymes including substrate scope, catalytic activity
and selectivity to produce pharmaceuticals, flavors and fragran-
ces, other fine and specialty chemicals as well as biofuels to
establish green chemistry processes.[1] Currently, two classical
approaches for protein engineering, directed evolution and
rational design, are mainly employed to design enzyme variants
with increased activity, broader substrate scope and improved
selectivity for specific substrates.[2] However, both approaches
still encounter significant obstacles due to the expensive, time-
consuming and difficult to handle experimental screening
process of the huge protein sequence space. As a result, only a

small fraction of this can be practically explored experimentally,
even using current high-throughput screening and computa-
tional techniques.

To overcome these limitations, machine learning (ML) has
been employed to assist protein engineering, which led to
many successful protein variants with enhanced catalytic
activity and/or selectivity.[3] This data-driven strategy enables
the approximation of protein fitness landscapes from sparsely
sampled experimental data, reducing the portion of the
sequence space that is potentially valuable to explore. More-
over, it can identify catalytic patterns, especially nonlinear
epistatic effects in the collected data, thereby predicting
previously unnoticed but promising variants like novel combi-
nations of substitutions. As a result, machine learning is
believed to have the potential to considerably reduce the
computational and experimental effort required by traditional
methods.

The typical process of machine learning involves several
components, including data collection and pre-processing, data
curation, feature extraction and selection, model training,
validations and iterations.[3] The success of a ML predictor
crucially depends on the data selection representation and
feature extraction. To date, the available biocatalysis-related
open-source databases, such as UniProt[4] and BRENDA,[5]

contain a large amount of protein sequence/structure informa-
tion as well as annotated information about enzyme functions
such as the corresponding enzyme commission (EC) numbers
and reaction kinetics parameters. Machine learning algorithms
trained by these data have been used to characterize the
correlation between sequence/structure and function,[6,30] EC
numbers,[7] protein-ligand binding affinity[8] or kcat values.[9]

However, these databases lack specific information about
reactivity, selectivity and details for a particular substrate. This
means that a predictor may not be able to establish a
relationship between reaction performance and enzyme/sub-
strate structure. As a result, it may not be able to effectively
guide protein engineering.
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In addition, when it comes to the application of enzymes in
biocatalytic synthesis, the information contained in these data-
bases is generally non-standardized, often resulting from
experiments carried out under very different experimental
conditions, with a significant proportion of the metadata
missing. It is therefore very difficult to assess their individual
veracity, and to remove those that appear to be exceptions, or
even invalid, from the training sets. In order to provide access
to more homogeneous, and above all, more reproducible and
verifiable data sets, several initiatives are ongoing, notably
around standardizing the measurement of enzyme kinetic
parameters using common conditions,[10] and building more
complete databases, requiring a minimal set of parameters for
the addition of new entries, such as STRENDA DB.[11] In fact, the
main difference between this new database and the more

general databases mentioned above is that the latter is oriented
towards the use of enzymes in synthesis, rather than towards
general enzymology or even the global study of proteins. This
difference is crucial when it comes to use them to predict new
mutations, as the data they contain de facto incorporate the
catalytic dimension, with the associated metadata, which
remain optional in more general databases. It then appears that
the development of new prediction algorithms will be concom-
itant with the development of this new type of specialized
database. It should be noted that database problems are just a
few of the many factors that still limit the possibility of
predicting enzyme activity accurately from its protein sequence.

As this field is in full expansion, with numerous advances
over the last few years, we therefore review in this article the
strategies and applications of data-driven protein engineering
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with a specific focus on enhancing catalytic activity and
selectivity as well as a list of the main problems still to be
solved. Generally speaking, current ML models rely on the
supervised regression ML models and quantitatively map
catalytic performance levels to protein sequence/structure,
which enables to predict catalytic performance values for
unseen input mutation sequences and efficient design of
protein mutations to improve the targeted catalytic properties.

Altering activity and selectivity

Due to the lack of diversity, sufficient and well-prepared
samples in the existing datasets, efficient access to high-quality
data has become a major challenge in training models, which
limits the application of ML to protein engineering. Commonly,
the data provided as a training set for ML needs to be obtained
from literature or experiments, and thus the amount of stand-
ardized and comparable data is very limited. Therefore, simple
ML algorithms (support vector machines or random forest
algorithms, etc.) are commonly used for such small training
datasets and typical examples are summarized in Table 1.

In 2007, an early outstanding publication by the Codexis
team[12] described a statistical approach called ProSAR (protein
sequence activity relationships). Through the construction of a
multiple linear regression algorithm and the capture of addi-
tional information contained in the sequence-activity data, this
approach evaluates the contribution of amino acid substitutions

for the improvement of catalytic activity in each round of
directed evolution. Positive substitutions were iteratively added
and continuously increased catalytic activity. This approach was
used to engineer a halohydrin dehalogenase for the synthesis
of an intermediate of the drug Lipitor, with 35 amino acid
substitutions leading to a 4,000-fold increased volumetric
productivity without impairing the stereoselectivity of the
enzyme (Table 1).

An alternative concept for protein engineering has been the
design of ‘small but smart’ mutant libraries. This can be guided
by the commercial software platform 3DM, which in brief
identifies the most likely set of amino acid substitutions at a
given position in the protein of interest guided by a sequence-
structured based alignment. This can also identify correlated
mutation networks (CorNet).[13] This concept was first demon-
strated to be useful for the design of a more thermostable[14] or
a more stereoselective[15] esterase. Another concept is the
computational tool FRESCO developed in the Janssen group,
which was demonstrated to be useful to increase the thermo-
stability of a limonene epoxide hydrolase from 50 to 85 °C.[16]

In 2018, Cadet and Reetz[17] used a sequence-activity
relationship (innov’SAR) methodology, which can be applied to
build ML predictive models using protein sequence information
and the fitness of variants measured in the wet-lab. The model
permits to find the resulting property of the protein when n
single point mutations are permuted (2n combinations). Unlike
the above-mentioned ProSAR approach, which rather assumes
that mutations are additive in nature, innov’SAR is more

Table 1. Summary of data-driven protein engineering for improving activity and/or selectivity.

Enzyme Substrate Datasets for training Algorithm Catalytic performance
improvement

Reference
number

Halohydrin
dehalogenase ~60,000 datapoints

Multiple linear regression
(ProSAR approach)

Activity: 4000-fold
improved volumetric
productivity

12

Epoxide
hydrolase

37 measured
datapoints

Partial least square regression
(innov’SAR approach)

Stereoselectivity:
E-value up to 253 17

Nitric oxide
dioxygenase

445 measured
datapoints

Linear, kernel, neural network,
ensemble methods

Stereoselectivity:
up to 93%ee

18

Imine
reductase

~8,000 measured
datapoints Random forest

Activity: conversion up
to 72%; Stereoselectivity:
up to >99%ee

19

PETase amorphous PET film Over 19,000 sequence-
balanced protein structures
from the PDB

Three-dimensional
convolutional neural network
(MutCompute approach)

Activity: improved up
to 38-fold at 50 °C

22

Amine
transaminase

1,948 measured
datapoints

Gradient boosting regression
tree

Improved activity and
stereoselectivity toward
new substrates

25

Ene-
reductase

50 measured
datapoints

Multivariate linear
regression

Improved
enantioselectivity toward
new substrates

27
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suitable for reflecting the effect of epistatic interactions
between protein mutations. Finally, this method was used to
predict the enantioselectivity of 512 variants (n=9) of an
epoxide hydrolase from Aspergillus niger using data from 37
characterized variants (9 single variants and 28 multiple point
mutation variants). Five of the predicted variants were exper-
imentally verified and the best one showed an improved E-
value (E=253), nearly 2.2-fold higher compared to the best
existing variant (E=118).

In 2019, the Arnold group[18] applied machine learning
concepts to the directed evolution workflow to explore the full
combinatorial space of mutations at selected positions. In this
approach, data from a random sample of the combinatorial
library were used to train machine learning models used to
predict a smaller set of variants, which can be encoded with
degenerate codons for experimental evaluations. They applied
this to a putative nitric oxide dioxygenase (NOD) from
Rhodothermus marinus (Rma) to produce each of the two
product enantiomers via a new-to-nature carbene Si� H inser-
tion reaction. Starting from a parent variant with low
enantiopreference (76%ee, (S)-enantiomer), the approach pre-
dicted libraries enriched in functional enzymes and fixed seven
mutations using 805 variants (445 for model training and 360
for model testing) to identify variants enabling stereoselective
catalysis with 93%ee ((S)-enantiomer) and 79%ee ((R)-enan-
tiomer).

A team at Novartis[19] assessed ML-assisted directed evolu-
tion to improve the stereoselectivity of an imine reductase. The
study discovered that this approach produced a library of highly
active and stereoselective variants with a significantly shifted
activity distribution compared to variants obtained by deep
mutational scanning or error-prone PCR. Utilising data from
approximately 8,000 unique variants, two random forest models
were trained using UniRep descriptors to score the in silico
generated variants for either activity or stereoselectivity. The
top 89 variants were experimentally verified revealing a
significantly improved cumulative activity distribution and
stereoselectivities with very good (R)- or (S)-selective enzymes.
The highest ee value obtained was 81%ee, much higher than
the 30%ee achieved with the starting scaffold. In addition to
this study, two other teams have also demonstrated the
application of machine learning-assisted protein engineering to
improve an in vivo fatty alcohol production by engineering an
acyl-ACP reductase[20] and for the asymmetric late-stage
functionalization of soraphens by engineering an aliphatic
halogenase WeIO5*.[21]

In 2022, the Alper group[22] used a three-dimensional self-
supervised convolutional neural network, MutCompute,[23] to
identify stabilizing mutations in an esterase for the hydrolysis of
the plastic polymer (poly)ethylene terephthalate (PET). This
algorithm learns the local chemical microenvironments of
amino acids by training based on 19,000 protein sequence-
structure data obtained from the Protein Data Bank and
generates a discrete probability distribution for the fit of all 20
amino acids at each position in the wild-type (WT) PETase,
which was accomplished by conducting an extensive in silico
mutagenesis scan. The predicted distributions were examined

versus the protein crystal structure to identify positions where
WT amino acid residues fitted less well than potential
substitutions. After ranking the predictions according to their
predicted probabilities and further characterizations, the gen-
erated 159 mutations showed improved catalytic activity and
thermostability in the hydrolysis of PET, of which the best
variant showed 2.4- and 38-fold improved activity at 40 and
50 °C, respectively.

Broadening substrate scope

The aforementioned examples focused on the relationship
between protein variants and the catalytic performance of the
enzymes studied. However, for the application of biocatalysts, it
is often necessary to take advantage of the substrate promiscu-
ity of proteins to explore novel reactions and chemistries. Thus,
it is of great practical importance to develop ML models for
predicting the substrate scope. For this purpose, it is vital to
evaluate not only the complex protein sequence/structure
space, but also the potential substrate space. It is also important
to collect data for substrate promiscuity, as well as to design
substrate descriptors. However, the combination of such
strategies has rarely been published. It is worth mentioning that
although many ML models have been built for predicting the
relationship between homologous proteins sequence/structure
and their substrate specificity,[24] these models were not
designed for protein engineering, therefore they will not be
discussed here.

We recently reported the structure- and data-driven protein
engineering of an amine transaminase (ATA) for improving its
activity and stereoselectivity as well as broadening its substrate
scope.[25] First, variants of the ATA from Ruegeria sp. (3FCR) with
improved catalytic activity and reversed stereoselectivity were
created by a structure-dependent rational design and a high-
quality dataset (high-diversity for catalytic stereoselectivity and
activity) was collected in this process. Subsequently, a modified
one-hot encoding was designed to describe steric and
electronic effects of substrates and residues within ATAs. Finally,
a gradient boosting regression tree predictor was built for
catalytic activity and stereoselectivity. This was then applied to
the data-driven design of optimized variants which indeed
showed improved activity.

To better assess the relationship between enzyme variants,
substrates and catalytic activity as well as stereoselectivity using
a limited amount of data, the data-collection experiments were
deliberately designed to increase the diversity of ATA variants
and to obtain experimental data for a set of 15 substrates
(Figure 1A and 1B). First, a structure-dependent rational design
strategy was used to rapidly reverse ATA’s enantioselectivity
and to improve their activity, so as to cover the comprehensive
catalytic performance space; secondly, to cover the complex
substrate space as comprehensively as possible.

For this, a range of substrates containing different steric and
electronic substituents was designed, obtained and experimen-
tally verified toward different ATA variants, so that the epistatic
effect between substrate and enzyme can be evaluated by this
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model; finally a feature extraction method was designed to
match the understanding of the underlying catalytic mecha-
nism. For example, each amino acid is encoded into two
elements, which respectively represents the electronic and
steric properties of a given amino acid residue. Each amine
substrate can be divided into a large-pocket binding group and
a small-pocket binding group, and each binding group is
encoded into four elements to describe its electronic and steric
properties.

Recently, the groups of Hyster and Sigman[27] also reported
a strategy to investigate the biocatalytic reaction space and to
gain an understanding of the molecular mechanisms driving
enzymatic transformations. They explored and collected enan-
tioselectivity data (expressed as ΔΔG¼6 , 50 datapoints) of an
ene-reductase. The limited number of datapoints required very
informative low-dimensional descriptors, so they employed a
more complex approach than the one described in the work by
Ao et al.[25] to extract protein and ligand structural features: they
identified two complementary conformational search platforms
(accelerated molecular dynamics and induced fit docking) to
acquire the protein-ligand conformational ensembles, and
subsequently compute and extract their electronic, steric and
dynamic descriptors. Trained by a forward-stepwise multivariate
linear regression algorithm, the resultant ML model related
structural features of the enzyme and the substrate to
enantioselectivity and this information was used to predict
ΔΔG¼6 values in reactions with out-of-sample substrates and
variants (Figure 1C).

Future Directions

Acquisition of large amounts of high-quality data

In the past, it was common for AI experts to collect data from
reported publications to train models, and then to validate the
models through wet-lab experimentation, therefore data ac-
quisition was usually a one-way and passive process. This
causes the problem of a lack of data diversity, especially when a
directed evolution strategy is used, the distribution of data in
the underlying publications tends to be very imbalanced (too
many good results, too few bad results), which affects the
generalisation performance of a model derived from it. Enzyme
activity data is also very rarely published in a machine under-
standable form (e.g., with semantic annotations), which
impedes automatic data aggregation. We believe that in the
future the data used for modelling will be deliberately designed
and collected with a more evenly distributed diversity for
modelling purposes.[25] The lack of diversity in the data is also
found in the overall structure of the enzymes studied. Indeed,
while the above example[25] is particularly promising with
respect to the possibility of predicting the activity and
selectivity of certain enzymes, or even certain scaffolds or sub-
families, it should be noted that one of the main limitations is
still that in this example the focus was mainly on certain distinct
parts or regions of the protein, and almost exclusively on the
first amino acid coordination sphere around the active site. This
is largely due to the data sets, particularly experimental data,
on which they have been trained, with the proteins tested
having a fairly identical overall amino acid structure and
sequence, with only a few punctual points of variation located

Figure 1. Examples of ML-assisted protein engineering for better catalytic performance toward different substrates. (A): Specific activity of 3FCR variants
toward (S)- and (R)-enantiomers of amines. (B): Transaminase activity was determined using the acetophenone assay.[26] Both, (S)- and (R)-amines were assayed
with pyruvate as amino acceptor followed by collection of specific activity data for different 3FCR variants.[25] (C): Predicted and experimentally verified
enantioselectivities of new ene-reductase variants with out-of-sample substrates.[27] The range for the predictions was computed at a 99% confidence interval
using bootstrap subsampling.
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near the active site. This means that they cannot easily be
transposed to other scaffolds within the same enzyme family, or
even new families, whose structure is remote from those used
to train the algorithms, thus confining them to enzyme
engineering approaches and not to the wider exploration of
biodiversity or the discovery of enzymes with new activities or
other properties.

In order to solve such problems, one solution is to obtain a
large amount of high-quality data. Higher reproducibility and
availability of enzymatic activity data can be achieved by
automating the experimental screening process. Common
approaches are microfluidic platforms[28] and classical liquid-
handling high-throughput systems,[29a] like the REALCAT plat-
form in Lille[29b] and the LARA system in Greifswald,[29c] offering
advantages like high versatility, determination of enzyme
kinetics in a high-throughput manner, and providing reliable
data similar to HPLC or gas chromatography. Both types of
platforms are highly complementary and very promising to
collect enzyme activity data in a standardized format for AI and
machine learning. This can be achieved by data management
systems that (mostly) automatically capture important exper-
imental data and metadata. The vividly developed, open-source
project LARAsuite[29d] fills this gap by capturing most of these
enumerated aspects and by exploring how far experimentation
and semantic annotation can be automated.

The use of structure-based descriptors and algorithms

Although sequence information proved to be enough to predict
an enzyme structure,[30] enzyme reactions are dynamic in
nature: the substrate moves – to the active site (in many cases)
through a dynamically changing tunnel[31] – or at least a funnel
or groove shaped cavity, it then binds or interacts with residues
in the active site, often loops, lids or even the whole enzyme
structure moves, then the conversion of the substrate happens
– mostly in a directed way, with many electron density changes,
finally the product is released, again accompanied with
structural changes.[32] Representing enzymes and substrates via
structure based descriptors can provide models with the right
inductive bias and this reduces the dimensionality compared to
sequence-based representations. With the development of
computational (machine learning) models that estimate folded
3D structures from amino acid sequences[30] and other compu-
tational tools for automated docking, calculation of
conformers,[33a] active site detection,[33b] protein binding inter-
faces prediction[33c] etc., it is now possible to calculate such
conformational changes and to use models that operate on this
structural information. A next generation of machine learning
algorithms is currently developed which can make use of
explicit three-dimensional models, molecular dynamics – and
ultimately electrodynamics and quantum effects.[34] In general,
molecular dynamics and quantum dynamics can be simulated,
but at high (computational) cost. This is especially problematic
for the virtual screenings of thousands of molecules. Graph
Neural Networks (GNN) offer a simpler, yet effective approach
to build regressors or classifiers from 3D structures and docked

substrates.[35a] This new type of approach could thus make it
easier to capture the structural dynamics mentioned above,
especially when embedding several intermediates occurring
within an enzymatic reaction mechanism, thereby also tran-
scribing the temporal evolution of the system.[35b–c] However, to
date, these approaches have not yet been applied to the
prediction of enzyme activity or selectivity, and even less so
with experimental verification of the latter, providing room for
improvement. This or “classical quantum computation ap-
proaches” for molecular dynamics simulations might be the
ultimate way to calculate and therefore predict enzymatic
activity. It has been shown that this approach can be superior
to purely sequence-based ML methods.[34,35]

Development of new algorithms

When there is little data, simple ML algorithms such as
ensemble algorithms show a clear advantage.[25] However, the
number of available protein sequences increased more than
twenty-fold in the last five years (2023:[36] >2,400 Mio.; 2018:[37]

~123 Mio.). The very large amount of available protein
sequences with some annotations and the still large amount of
resolved crystallized protein structures (~200,000) have allowed
the training of deep learning models for the prediction of 3D
structures and functions,[6–8,30] and for sequence completion
tasks.[38] The internal representations of proteins in such models
necessarily capture properties of the evolutional sequence
space like preserved motives, protein domains, contacts in
folded proteins. Reusing these representations as inputs for
regression models that predict targets for protein engineering
is a promising approach in protein engineering known as
transfer learning.[39] With more effort, one can simultaneously
train a model on a large data task and regression models for
specific tasks. We would like to mention that the use of trained
ML models for 3D structure predictions and the calculation of
structure-based descriptors is also a kind of transfer learning. In
addition, large language models and deep generative models
may contribute to breakthroughs, especially for refining the
enzymatic properties where only low-throughput activity assays
are feasible. For example, the probability assigned to a
sequence by a large language model is positively correlated
with the protein fitness for some engineering tasks[40a] and can
also be used to generate protein sequences with a predictable
function.[40b] Conditional generative models allow to sample
candidates for a certain protein property, including enzymatic
activity far away from known wild-type enzymes;[38] Diffusion
models were applied for molecular docking between proteins
and ligands,[41] or for modelling and de novo design of proteins
and other biomolecules.[42] It is worth noting that because
biocatalytic systems are highly complicated, first-principles-
based calculations to predict catalytic performance are often
difficult to perform. Although the computational process of
deep learning is considered an “ultimate black box”, the model
can be used for virtual screening to guide the design of
mutants. The scoring and ranking of the results can summarise
the effect patterns of the mutations, so that a deep learning
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model with high prediction accuracy can still help to under-
stand the regularity of protein engineering.

Summary

As the availability of high-quality data continues to increase,
feature extraction methods continue to be developed, and new
algorithms continue to emerge, data-driven protein engineering
has been increasingly applied to improve catalytic activity and
selectivity of enzymes. In the future, this field will pay more
attention to the generalisation ability of models, the establish-
ment of cross-species biocatalytic large models and making the
enzyme activity data machine findable and understandable.
This is expected to fundamentally change the existing empiri-
cally and trial-and-error based directed evolution research
strategies and will reshape the knowledge system of biocatal-
ysis.
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Machine learning approaches allow
the creation of protein adaptive land-
scapes and the identification of
catalytic modes using limited experi-
mental data to establish relationships
between enzyme, substrate and
catalytic performance, and have been
used for data-driven protein engineer-
ing to improve their catalytic activity
and selectivity.
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